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ABSTRACT 

This paper extends the framework for the valuation of life insurance policies and annuities 

by Andrés-Sánchez and González-Vila (2012, 2014) in two ways. First, we allow various 

uncertain magnitudes to be estimated by means of fuzzy numbers. This applies not only to 

interest rates but also to the amounts to be paid out by the insurance company. Second, 

the use of symmetrical triangular fuzzy numbers allows us to obtain expressions for the 

pricing of life contingencies and their variability that are closely linked to standard 

financial and actuarial mathematics. Moreover, they are relatively straightforward to 

compute and understand from a standard actuarial point of view. 
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1. INTRODUCTION 

Stochastic techniques are, beyond doubt, at the core of actuarial mathematics. However, in 

insurance decision-making problems, as well as in other areas related to economics and 

finance, much of the information is imprecise and vague, or relies heavily on subjective 

judgements and, so, it is not clearly measurable. For such information, the use of fuzzy set 

theory (FST) can represent a suitable alternative and/or a supplementary way to that of 

pure statistical methods as has been shown in De Witt (1982), Lemaire (1990), 

Ostaszewski (1993), Cummins and Derrig (1997), Andrés-Sánchez and Terceño (2003) 

and Shapiro (2004). 
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In the field of the financial pricing of insurance, FST has been used to model discount rates. 

Cummins and Derrig (1997), Derrig and Ostaszewski (1997) and Andrés-Sánchez (2014) 

do so in a non-life context, while Lemaire (1990), Ostaszewski (1993) and Betzuen et al. 

(1997) model discount rates for life insurance contingencies valuation. In these papers 

probabilities, however, are reduced to predefined frequencies and so, the financial pricing 

of insurance contracts is solved by applying the fuzzy financial mathematics developed by 

Buckley (1987). Anyway, when applying these methods, probabilistic information is lost 

because random magnitudes are reduced to their mathematical expectation. 

Shapiro (2009) exposes the concept of fuzzy random variables (FRVs) with Actuarial 

Science in view. Similarly, Huang et al. (2009) develop an individual risk model in which 

the cost of accidents is estimated using fuzzy numbers (FNs), while the number of claims 

follows a Poisson process. In the field of life insurance, Andrés-Sánchez and González-Vila 

(2012, 2014) develop a methodology in which discount rates are fuzzy whereas the 

mortality is strictly random. In these papers, the stochastic modelling of life contingencies 

with deterministic discount rates and monetary amounts (see Wolthuis and Van Hoek 

(1986) for a complete description) is extended to cases in which the discount rates are 

fuzzy and, so, the outcomes (the present value of insured life contingencies) are fuzzy sets. 

All these developments also rely on the concept of FRVs. 

This paper extends the previous findings of Andrés-Sánchez and González-Vila (2012, 

2014) in two ways. First, we also allow the insured amounts to be paid out by the 

insurance company to be uncertain and to be quantified with FNs. Note, that, in fact, these 

amounts may be linked to economic indexes, such as the consumer price index, a wage 

growth rate, etc. Likewise, if we are evaluating the underwriter’s overall outcome of a 

policy, future maintenance costs, general and settlement expenses, etc. may not be known 

exactly a priori. 

Second, we suppose that the amounts to be paid and the interest rates are fitted with 

symmetrical triangular fuzzy numbers (STFNs). Indeed, the use of these FNs is very 

common in the fuzzy literature. In a strictly actuarial context, we find Andrés-Sánchez and 

Terceño (2003), Shapiro (2013) and Heberle and Thomas (2014). This approach allows us 

to deduce several operational results that are relatively easy to implement and understand 

with standard actuarial skills, as they rely on conventional statistical and financial 

concepts. 

We structure the rest of our paper as follows. In section 2 we describe the concepts and 

instruments of FST used in our developments: FNs and FRVs. We then develop a STFN 

approximation for the present value derived from STFN cash-flows and discount rates 

with a straightforward financial interpretation. In sections 4 and 5 we introduce the use of 

FRV with STFN outcomes to price life contingencies. We conclude our paper with a 

summary of the main conclusions and possible extensions. 
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2. FUZZY NUMBERS AND FUZZY RANDOM VARIABLES 

2.1. FUZZY NUMBERS AND FUZZY ARITHMETIC 

In this section we describe the basic concepts of FST and FNs and so present the basic 

notation used throughout this paper. The basic concept on which FST is based is the fuzzy 

set. A fuzzy set 𝐴 ̃ can be defined as 𝐴 ̃ =  {(𝑥, 𝜇�̃�(𝑥))|𝑥 ∈ 𝑋}, where 𝜇�̃�  is known as the 

membership function and is a mapping from the referential set 𝑋 to the interval [0,1], i.e. 

𝜇�̃�: 𝑋[0,1]. Therefore, 0 indicates non-membership of the fuzzy subset 𝐴 ̃ and 1 indicates 

absolute membership. Alternatively, a fuzzy set can be represented by its -level sets or -

cuts. An -cut is a crisp set 𝐴, where 𝐴 = {𝑥 ∈ 𝑋| 𝜇�̃�(𝑥) ≥  }, ∀ ∈ (0,1], with the 

convention that 𝐴=0 is the closure of the support of 𝐴 ̃, i.e. all 𝑥 ∈ 𝑋 that  𝜇𝐴(𝑥) ≥ 0. 

A fuzzy number is a fuzzy subset 𝐴 ̃ defined over the set of real numbers and it is a 

fundamental concept of FST for representing uncertain quantities. It is normal, i.e.  

max 
𝑥 𝑋 

𝜇�̃�𝑥) = 1, and convex, that is, its -cuts are closed and bounded intervals. So, they 

are 𝐴 = [𝐴(𝛼), 𝐴(𝛼)], 0 ≤  ≤ 1. In this paper we use symmetrical triangular fuzzy 

numbers, which we denote as 𝐴 ̃ = (𝐴, 𝑟𝐴). The value A is the core of the FN, i.e. 𝜇�̃�𝐴) =

1 whereas 𝑟𝐴 is the spread. Thus, the membership function and its corresponding -cuts 

are: 

𝜇�̃�𝑥) = max{0,
|𝑥 − 𝐴|

𝑟𝐴
} 

𝐴 = [𝐴(𝛼), 𝐴(𝛼)] = [𝐴 − 𝑟𝐴(1 − 𝛼), 𝐴 + 𝑟𝐴(1 − 𝛼)]  (1) 

The expected value of the FN 𝐴 ̃, 𝐸𝑉(𝐴 ̃; 𝜆) , is a representative real value of this FN that 

was developed in Campos and González (1989). This concept allows us to introduce the 

risk aversion of the decision maker with a coefficient 0 ≤  ≤ 1 in such a way that: 

𝐸𝑉(𝐴 ̃; 𝜆) = (1 − 𝜆)∫𝐴(𝛼)𝑑𝛼

1

0

+ 𝜆∫𝐴(𝛼)𝑑𝛼

1

0

 

So, for a STFN 𝐴 ̃ = (𝐴, 𝑟𝐴) it is straightforward to check that: 

𝐸𝑉(𝐴 ̃; 𝜆) = 𝐴 + 𝑟𝐴 (𝜆 −
1

2
)    (2) 

Let 𝑓(·) be a continuous real valued function of 𝑛-real variables 𝑥𝑗, 𝑗 = 1,2,… , 𝑛, and let 

�̃�1, �̃�2, … , �̃�𝑛 𝑛 FNs. Then Zadeh’s extension principle in Zadeh (1965) allows us to define a 

FN �̃� induced by the FNs �̃�1, �̃�2, … , �̃�𝑛 through 𝑓(·) as �̃� = 𝑓(�̃�1, �̃�2, … , �̃�𝑛). 

Although it is usually impossible to obtain the membership function of �̃�, it is often 

possible to obtain a closed expression for its -cuts, 𝐵. If 𝑓(·) is increasing with respect to 

the first 𝑚 variables, 𝑚 ≤ 𝑛, and decreases in the last 𝑛 −𝑚 variables, Buckley and Qu 

(1990) demonstrate that: 

𝐵𝛼 = [𝐵(𝛼), 𝐵(𝛼)] = [𝑓 (𝐴1(𝛼), 𝐴2(𝛼),… , 𝐴𝑚(𝛼), 𝐴𝑚+1(𝛼), 𝐴𝑚+2(𝛼),…𝐴𝑛(𝛼)) , 
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𝑓 (𝐴1(𝛼), 𝐴2(𝛼),…𝐴𝑚(𝛼), 𝐴𝑚+1(𝛼), 𝐴𝑚+2(𝛼),… , 𝐴𝑛(𝛼))]  (3) 

When 𝑓(·) is simply a linear combination of its variables ∑ 𝑘𝑗𝑥𝑗
𝑛
𝑗=1 , 𝑘𝑗, 𝑗 = 1,2,… , 𝑛, the 

result of evaluating this function with �̃�𝑗 = (𝐴𝑗 , 𝑟𝐴𝑗), 𝑗 = 1,2,… , 𝑛, is a STFN �̃� = (𝐵, 𝑟𝐵), 

where: 

𝐵 = ∑ 𝑘𝑗𝐴𝑗
𝑛
𝑗=1 ,  𝑟𝐵 = ∑ |𝑘𝑗|𝑟𝐴𝑗

𝑛
𝑗=1  

However, the result of evaluating non-linear functions with STFNs is not a STFN. In any 

case, if 𝑓(·) is a real-valued function increasing (decreasing) with respect to the first (last) 

𝑚 (𝑛 −𝑚) variables, it admits a STFN approximation that is based on the approximation 

to non-linear operations with L-R FNs developed in Dubois and Prade (1980, 1993). It is 

built up from the first-order Taylor polynomial expansion from the 1-cut to any -cut. So, 

let us approximate 𝐵(𝛼) in (3) from 𝐵(1) using the Taylor expansion to the first degree 

with 𝐵()𝐵(1) +
𝑑𝐵(1)

𝑑𝛼
(𝛼 − 1). If we name the vector comprising the centers of �̃�𝑗, 

𝑗 = 1,2,… , 𝑛, 𝐴𝐶 = (𝐴1, 𝐴2, … , 𝐴𝑛), this Taylor expansion is equivalent to: 

𝐵() = 𝑓(𝐴1(𝛼), 𝐴2(𝛼), … , 𝐴𝑚(𝛼), 𝐴𝑚+1(𝛼), 𝐴𝑚+2(𝛼),…𝐴𝑛(𝛼)) ≈ 

≈ 𝑓(𝐴𝐶) −∑
𝜕𝑓(𝐴𝐶)

𝜕𝑥𝑗
𝑟𝐴𝑗(1 − 𝛼) +

𝑚

𝑗=1

∑
𝜕𝑓(𝐴𝐶)

𝜕𝑥𝑗
𝑟𝐴𝑗(1 − 𝛼)

𝑛

𝑗=𝑚+1

= 𝑓(𝐴𝐶) −∑|
𝜕𝑓(𝐴𝐶)

𝜕𝑥𝑗
| 𝑟𝐴𝑗(1 − 𝛼)

𝑛

𝑗=1

 

Analogously, for �̅�(𝛼) we find: 

𝐵(𝛼) = 𝑓 (𝐴𝑚+1(𝛼), 𝐴𝑚+2(𝛼),…𝐴𝑛(𝛼), 𝐴1(𝛼), 𝐴2(𝛼),… , 𝐴𝑚(𝛼)) ≈

≈ 𝑓(𝐴𝐶) +∑|
𝜕𝑓(𝐴𝐶)

𝜕𝑥𝑗
| 𝑟𝐴𝑗(1 − 𝛼)

𝑛

𝑗=1

 

So, �̃�(𝐵, 𝑟𝐵) where: 

𝐵 =  𝑓(𝐴𝐶)     (4a) 

𝑟𝐵 = ∑ |
𝜕𝑓(𝐴𝐶)

𝜕𝑥𝑗
| 𝑟𝐴𝑗

𝑛
𝑗=1  (4b) 

In an actuarial context, STFNs and this STFN approximation to any arithmetic operation 

are used in Andrés-Sánchez and Terceño (2003) for the pricing of life and non-life 

insurance, whereas Heberle and Thomas (2014) and Andrés-Sánchez and Terceño (2003) 

adapt chain ladder and London chain ladder reserving methods, respectively, to the use of 

development factors estimated by means of STFNs. 
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2.2. FUZZY RANDOM VARIABLES 

In many real situations, uncertainty is caused by a variety of factors: randomness, hazard, 

vagueness, inaccuracy, imprecision, etc. Stochastic variability can be described by the use 

of probability theory, while other types of uncertainty, such as vagueness and imprecision, 

can be captured with the use of fuzzy sets (Viertl and Hareter (2004)). The concept of 

FRVs combines both random and fuzzy uncertainty. 

Roughly speaking, a FRV can be defined as a random variable (RV) whose outcomes are 

not real numbers (or vectors) but FNs (or fuzzy sets defined on 𝑛). It was initially 

proposed by Kwakernaak (1978, 1979), who extended the concept of RVs on  to the case 

where the realizations are FNs. Kruse and Meyer (1987) subsequently enhanced 

Kwakernaak’s concepts. Likewise, Puri and Ralescu (1986) conceptualized FRVs as a 

fuzzification of a random set. However, when outcomes are mapped to the real line both 

definitions coincide, as demonstrated in Krätchmer (2001). In an insurance context, 

Shapiro (2009) presented a general reflection on the potential uses of FRVs in Actuarial 

Science. In more specific problems, Huang et al. (2009) developed a non-life risk model in 

which the number of claims follows a Poisson distribution, while their monetary values 

are triangular FNs. Later, Shapiro (2013) models future lifetime as a FRV. Finally, Andrés-

Sánchez and González-Vila (2012, 2014) apply FRVs to price life contingencies under the 

hypothesis of fuzzy interest rate and random behavior of mortality. 

To define a discrete FRV, we consider a probability space defined by (,𝒜, 𝑃) where  is 

a discrete space of elementary events {𝑗}, 𝑗 = 1,2,… , 𝑛, 𝒜 is the -algebra of subsets of  

and 𝑃 is a probability measure on . Additionally, we consider the Borel measurable space 

(, ℬ) and we name the set of all FNs defined on  as 𝐹(). The mapping �̃�:𝐹(), 

where for ∀𝑗 ∈  the fuzzy outcome is �̃�𝑗 with -cuts 𝑋𝑗𝛼 = [𝑋𝑗
(𝛼), 𝑋𝑗(𝛼)], is called a 

fuzzy random variable �̃� if: 

∀𝐵 ∈ ℬ, ∀ ∈ [0,1], {𝑗 ∈ |𝑋𝑗𝛼 ∩ 𝐵 ≠ ∅}  ∈ 𝒜 

Wang and Zhang (1992) demonstrate that any FRV �̃� defines, ∀ ∈ [0,1], an infima RV 

𝑿(𝛼) and a suprema RV 𝑿(𝛼), whose realizations are, respectively, {𝑋𝑗(𝛼)}
𝑗=1,2,…,𝑛

  and 

{𝑋𝑗(𝛼)}𝑗=1,2,…,𝑛. These RVs allow us to bound the distribution function of the FRV 

𝐹�̃�(𝑥) = 𝑃(�̃� ≤ 𝑥). 

Concretely, if we symbolize as 𝐹𝑿(𝛼)(𝑥) and 𝐹𝑿(𝛼)(𝑥), ∀ ∈ [0,1], the distribution functions 

of the RVs 𝑿(𝛼) and 𝑿(𝛼) obtained from �̃�, we define the couple of the distribution 

functions of the RVs infima and suprema for that membership level, 𝐹�̃�(𝑥)𝛼 =

{𝐹�̃�(𝑥)𝛼 , 𝐹�̃�(𝑥)𝛼}  , as: 

𝐹�̃�(𝑥)𝛼 = 𝑃(𝑿(𝛼) ≤ 𝑥) = 𝐹𝑿(𝛼)(𝑥) (5a) 

𝐹�̃�(𝑥)𝛼 = 𝑃(𝑿(𝛼) ≤ 𝑥) = 𝐹𝑿(𝛼)(𝑥) (5b) 
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Likewise, we can define the -quantile of �̃�, 𝑄𝜀(�̃�), as the minimum quantity that allows 

𝐹�̃� (𝑄
𝜀(�̃�)), i.e. 𝑄𝜀(�̃�) = 𝐹�̃�

−1(𝜀). Again, with the RVs 𝑿(𝛼) and 𝑿(𝛼) obtained from �̃�, 

∀ ∈ [0,1], we bound the -quantile with the couple 𝑄𝜀(�̃�)
𝛼
= {𝑄𝜀(�̃�)

𝛼
, 𝑄𝜀(�̃�)

𝛼
}, where: 

𝑄𝜀(�̃�)
𝛼
= {min 𝑥|𝐹𝑿(𝛼)(𝑥)}     (6a) 

𝑄𝜀(�̃�)
𝛼
= {min 𝑥| 𝐹𝑿(𝛼)(𝑥)}    (6b) 

The mathematical expectation of a FRV is a FN 𝐸(�̃�)  whose -cuts are 𝐸(�̃�)
𝛼
=

[𝐸 (𝑿(𝛼)) , 𝐸 (𝑿(𝛼))]. To obtain its defuzzified value (e.g. to rank FRVs from their 

mathematical expectations), López-Díaz and Gil (1998) propose using the concept of 

expected value of a FN, developed by Campos and González (1989), given its desirable 

properties for fuzzy decision problems. López-Díaz and Gil (1998) show that the 

fundamentals of the fuzzy utility function can be established by means of an axiomatic 

development of the fuzzy expected utility. 

The variance measure of a FRV admits a fuzzy definition, in the same way as the 

expectation (Kruse and Meyer (1987)) or a real value (Körner (1997), Näther (2000) and 

Feng et al. (2001)). Following Couso and Dubois (2009) considerations, Andrés-Sánchez 

and González-Vila (2012) propose using the definition in Feng et al. (2001) for the pricing 

of life contingencies. In this paper the variance of �̃�, 𝑉(�̃�), is defined as: 

𝑉(�̃�) =
1

2
∫ [𝑉 (𝑿(𝛼)) + 𝑉 (𝑿(𝛼))]
1

0
𝑑𝛼  (7) 

where 𝑉(·) on RVs stands for the usual variance operator. Of course, the standard 

deviation is 𝑆𝐷(�̃�) = √𝑉(�̃�). 

Let us examine some results when the outcomes of the FRVs are STFNs, i.e., the 𝑗th 

outcome is �̃�𝑗 = (𝑋𝑗 , 𝑟𝑋𝑗). If we symbolize as X the RV whose realizations are the centers of 

�̃�𝑗, i.e. 𝑋𝑗, and as 𝒓𝑿 the RV that can be built up from the spreads, 𝑟𝑋𝑗 , ∀𝑗 = 1,2,… , 𝑛, the 

FRV �̃� can be represented as �̃� = (𝑿, 𝒓𝑿). 

 

Example 1: Let us consider a probability space defined by (,𝒜, 𝑃) where  is a discrete 

space of elementary events {1,2}. We define the FRV �̃� as follows: 

�̃�:   𝐹()

   1  �̃�(1) = (2, 0.01) = �̃�1 

   2  �̃�(2) = (3, 0.005) = �̃�2

 

being the -cuts of these FNs, considering (1): 

𝑋1𝛼 = [2 − 0.01(1 − 𝛼), 2 + 0.01(1 − 𝛼)] 
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𝑋2𝛼 = [3 − 0.005(1 − 𝛼), 3 + 0.005(1 − 𝛼)] 

As explained above, �̃� defines, ∀ ∈ [0,1], an infima RV 𝑿(𝛼) and a suprema RV 𝑿(𝛼), 

whose realizations are, respectively,  {2 − 0.01(1 − 𝛼), 3 − 0.005(1 − 𝛼)}  and 

{2 + 0.01(1 − 𝛼), 3 + 0.005(1 − 𝛼)}. 

Furthermore, it is possible to define the RVs X and 𝒓𝑿 , whose realizations are, respectively, 

{2, 3} and {0.01,0.05} and, in this way, the FRV can be represented by �̃� = (𝑿, 𝒓𝑿). 

 

From this representation of this FRV, whose outcomes are a STFN, it follows that the lower 

and upper RVs for a given -level are:  

𝑿(𝛼) = 𝑿 − 𝒓𝑿(1 − 𝛼) 

𝑿(𝛼) = 𝑿 + 𝒓𝑿(1 − 𝛼) 

As discussed above, the -cuts of the mathematical expectation of the FRV �̃� can be 

obtained from 𝐸 (𝑿(𝛼))  and 𝐸 (𝑿(𝛼)) . Since 𝐸 (𝑿(𝛼)) = 𝐸(𝑿) − 𝐸(𝒓𝑿)(1 − 𝛼) , with 

similar expression for 𝐸 (𝑿(𝛼)), it turns out that the mathematical expectation of �̃� is also 

a STFN with: 

𝐸(�̃�) = (𝐸(𝑿), 𝐸(𝒓𝑿)) 

And consequently, considering, (2), the expected value of the mathematical expectation is: 

𝐸𝑉(𝐸(�̃�);) = 𝐸(𝑿) + 𝐸(𝒓𝑿) (−
1

2
)    (8) 

For the variance, from (7) we can write: 

𝑉(�̃�) =
1

2
∫[𝑉(𝑿 − 𝒓𝑿(1 − 𝛼)) + 𝑉(𝑿 + 𝒓𝑿(1 − 𝛼))]𝑑𝛼 =

1

0

=
1

2
∫{𝐸 [(𝑿 − 𝒓𝑿(1 − 𝛼))

𝟐
− (𝐸(𝑿) − 𝐸(𝒓𝑿)(1 − 𝛼))

2
] +

1

0

+ 𝐸 [(𝑿 + 𝒓𝑿(1 − 𝛼))
𝟐
− (𝐸(𝑿) + 𝐸(𝒓𝑿)(1 − 𝛼))

2
]} 𝑑𝛼 = 𝑉(𝑿) +

1

3
𝑉(𝒓𝑿) 

           (9) 

 

Example 2: Consider that in example 1 the probabilities are 𝑝(1) = 0.6 and 𝑝(1) = 0.4. 

The mathematical expectation of �̃�  is 𝐸(�̃�) = (2.4,0.008)  and its variance 𝑉(�̃�) =

0.240002.  
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Note that in this section, as well as throughout the paper, an RV is denoted with a bold 

letter and a FN with a non-bold letter with the superscript “”. Thus, a FRV is denoted with 

a bold and superscripted letter.  

 

3. PRESENT VALUE WITH SYMMETRICAL TRIANGULAR FUZZY NUMBERS 

In this section we describe how to compute the present value of a stream of cash flows 

when they and the interest rate are given by a STFN. Let us begin with the crisp set of cash 

flows 𝐹1, 𝐹2, … , 𝐹𝑛 ≥ 0 whose maturities are 𝑡1, 𝑡2, … , 𝑡𝑛 years, respectively. To value them 

we use the interest rate 𝑖 ≥ 0. If we denote by 𝐹 = (𝐹1, 𝐹2, … , 𝐹𝑛), the present value of 𝐹 is 

the function: 

𝑃𝑉(𝐹, 𝑖) = ∑ 𝐹𝑗(1 + 𝑖)
−𝑡𝑗𝑛

𝑗=1     (10) 

with: 

𝜕𝑃𝑉(𝐹,𝑖)

𝜕𝐹𝑗
= (1 + 𝑖)−𝑡𝑗 > 0    (11a) 

𝜕𝑃𝑉(𝐹,𝑖)

𝜕𝑖
= −

∑ 𝐹𝑗𝑡𝑗(1+𝑖)
−𝑡𝑗𝑛

𝑗=1

1+𝑖
< 0   (11b) 

Of course, the Macaulay duration can also be understood as a function of 𝐹 and 𝑖 as: 

𝐷(𝐹, 𝑖) =
∑ 𝐹𝑗𝑡𝑗(1 + 𝑖)

−𝑡𝑗𝑛
𝑗=1

∑ 𝐹𝑗(1 + 𝑖)
−𝑡𝑗𝑛

𝑗=1

= −

𝜕𝑃𝑉(𝐹, 𝑖)
𝜕𝑖

(1 + 𝑖)

𝑃𝑉(𝐹, 𝑖)
 

i.e.: 

𝜕𝑃𝑉(𝐹,𝑖)

𝜕𝑖
= −𝑃𝑉(𝐹, 𝑖)

𝐷(𝐹,𝑖)

1+𝑖
    (11c) 

Financial mathematics with fuzzy parameters was developed in the late 1980s and early 

‘90s by such authors as Kaufmann (1986), Buckley (1987) and Li Calzi (1990). The 

problem consists, primarily, in evaluating the basic expression of the present value (10) 

(and also the accumulated value function) when interest rate(s) and cash flows are FNs. 

In our case, we evaluate the net present value of fuzzy cash flows �̃�𝑗, 𝑗 = 1,2, … , 𝑛, where 

�̃�𝑗 = (𝐹𝑗, 𝑟𝐹𝑗)  and the fuzzy interest rate 𝑖̃ = (𝑖, 𝑟𝑖) . Likewise, we denote as �̃� =

(�̃�1, �̃�2, … , �̃�𝑛), 𝐹𝐶 = (𝐹1, 𝐹2, … , 𝐹𝑛) and 𝑟𝐹 = (𝑟𝐹1 , 𝑟𝐹2 , … , 𝑟𝐹𝑛). The fuzzy present value is the 

FN 𝑃�̃�  induced by �̃�  and 𝑖̃  through the function 𝑃𝑉(·) , i.e. 𝑃�̃� = 𝑃𝑉(�̃�, 𝑖̃) . Its -cuts 

representation is, from (3): 
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𝑃𝑉𝛼 = [𝑃𝑉(𝛼), 𝑃𝑉(𝛼)] = 

= [∑[𝐹𝑗 − 𝑟𝐹𝑗(1 − 𝛼)] (1 + 𝑖 + 𝑟𝑖(1 − 𝛼))
−𝑡𝑗

𝑛

𝑗=1

,∑[𝐹𝑗 + 𝑟𝐹𝑗(1 − 𝛼)] (1 + 𝑖 − 𝑟𝑖(1 − 𝛼))
−𝑡𝑗

𝑛

𝑗=1

] 

(12) 

So, 𝑃�̃� does not maintain the STFN shape. However, bearing (4) and (11) in mind, we can 

approximate it as 𝑃�̃�(𝑃𝑉(𝐹𝐶 , 𝑖), 𝑟𝑃𝑉) where: 

𝑃𝑉(𝐹𝐶 , 𝑖) = ∑ 𝐹𝐶(1 + 𝑖)
−𝑡𝑗𝑛

𝑗=1      (13a) 

𝑟𝑃𝑉 =  𝑃𝑉(𝑟𝐹 , 𝑖) + 𝑃𝑉(𝐹𝐶 , 𝑖)
𝐷(𝐹𝐶,𝑖)

1+𝑖
𝑟𝑖    (13b) 

The above result is very appealing from a financial perspective. The most reliable value of 

the approximation for 𝑃�̃� is obtained by evaluating the present value in the most possible 

values of cash flows and interest rates. The uncertainty of the present value, 𝑟𝑃𝑉  , comes 

from two sources: the uncertainty of cash flows and the spread of the interest rate. The 

contribution of cash flow spreads in the uncertainty of the approximation of 𝑃�̃� is its own 

present value with the most reliable interest rate. Likewise, the fuzziness  that comes from 

the interest rate is measured with the Macaulay duration, as is common in standard fixed 

income analysis. 

Table 1 shows the -cuts of the present value of the cash flows �̃�1 = (1000,50), 

�̃�2 = (1500,75), �̃�3 = (2000,100) and �̃�4 = (2500,100), whose maturities are 1, 2, 3 and 4 

years, respectively. The interest rate is 𝑖̃ = (0.02, 0.005). We define the errors: 

𝑒𝑟𝑟(𝛼) =
|𝑃𝑉(𝛼) − 𝑃𝑉′(𝛼)|

𝑃𝑉(𝛼)
 

𝑒𝑟𝑟(𝛼) =
| 𝑃𝑉(𝛼) − 𝑃𝑉′(𝛼)|

 𝑃𝑉(𝛼)
 

being 𝑃𝑉(𝛼), 𝑃𝑉(𝛼) the extremes of the -cuts obtained with (12) and 𝑃𝑉′(𝛼) and 𝑃𝑉′(𝛼) 

these extremes in the STFN approximation of 𝑃�̃� in (13). Notice that the error increases 

when 𝛼 decreases because the Taylor expansion is developed from 𝛼 = 1 to lower levels 

(0 ≤ 𝛼 < 1). In any case, they are never greater than 0.1% and so, in our opinion, we can 

conclude that the proposed approximation is quite accurate. 

 

Table 1. Comparison of the -cuts of the fuzzy present value and its STFN approximation 
 𝑃�̃� (𝑃𝑉(𝐹𝐶 , 𝑖), 𝑟𝑃𝑉)   

𝛼 𝑃𝑉(𝛼) 𝑃𝑉(𝛼) 𝑃𝑉′(𝛼) 𝑃𝑉′(𝛼) 𝑒𝑟𝑟(𝛼) 𝑒𝑟𝑟(𝛼) 

1 6616.40 6616.40 6616.40 6616.40 0.00% 0.00% 

0,75 6516.80 6716.64 6516.49 6716.32 0.00% 0.00% 

0,5 6417.84 6817.52 6416.57 6816.24 0.02% 0.02% 

0,25 6319.50 6919.04 6316.65 6916.15 0.05% 0.04% 
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0 6221.79 7021.22 6216.74 7016.07 0.08% 0.07% 

 

Now, let us symbolize the present value of a stream of unitary cash flows as 𝑃𝑉(𝑖) =

∑ (1 + 𝑖)−𝑡𝑗𝑛
𝑗=1  and its duration as 𝐷(𝑖) =

∑ 𝑡𝑗(1+𝑖)
−𝑡𝑗𝑛

𝑗=1

𝑃𝑉(𝑖)
. Table 2 shows the expressions of 

the present value and the Macaulay duration for unitary financial and life insurance 

structures. Notice that Li and Panjer (1994) generalize the concept of duration under 

several yield rate regimes in life insurance pricing with deterministic mortality. Note that 

Table 2 aims to be general since pre-payable and deferred annuities embed any other kind 

of annuity. For example, the present value of a post-payable and immediate 𝑛-term 

annuity 𝑎𝑛|𝑖 can also be calculated as �̈�1 𝑛|̅̅ ̅𝑖. Likewise, whole life contracts are included by 

considering 𝑛 = − 𝑥 + 1, with  the maximum attainable age in the mortality table, and 

immediate liabilities are also evaluated by taking 𝑚 = 0. 

 

Table 2. Present value and duration of several unitary financial and life contingency 
structures 

 
Present value of unitary 

payments 
Macaulay duration of the unitary payments 

Discount factor 𝑑𝑡̅|𝑖= (1 + 𝑖)−𝑡  𝐷(𝑑𝑡̅|𝑖) = 𝑡 

Post-payable and 
immediate 𝑛-term 

annuity 
𝑎𝑛|𝑖 =

1 − 𝑑�̅�|𝑖

𝑖
 𝐷(𝑎𝑛|𝑖) =

(1 +
1
𝑖
− 𝑛) 𝑎𝑛|𝑖 −

𝑛
𝑖

𝑎𝑛|𝑖
 

Pre-payable and 
deferred 𝑚 years 𝑛-

term annuity 

�̈�𝑚 𝑛|̅̅ ̅𝑖 = ∑ (1 + 𝑖)−𝑡
𝑚+𝑛−1

𝑡=𝑚

= 𝑎𝑛|𝑖𝑑𝑚−1̅̅ ̅̅ ̅̅ ̅|𝑖 

𝐷( �̈�𝑚 𝑛|̅̅̅𝑖) =
[(𝑚 +

1
𝑖
− 𝑛) 𝑎𝑛|𝑖 −

𝑛
𝑖
] 𝑑𝑚−1̅̅ ̅̅ ̅̅ ̅|𝑖

�̈�𝑚 𝑛|̅̅̅𝑖

 

𝑛-years pure 
endowment for a 

person aged 𝑥 

𝐴   1
𝑥:𝑛|𝑖

= 𝑑�̅�|𝑖 𝑝𝑛 𝑥  𝐷 (𝐴   1
𝑥:𝑛|𝑖

) = 𝑛 

𝑛-years life insurance 
deferred 𝑚 years for a 

person aged 𝑥 
𝐴𝑚|𝑛 𝑥|̅𝑖 = ∑ 𝑑𝑡̅|𝑖 𝑞𝑡−1| 𝑥

𝑚+𝑛

𝑡=𝑚+1

 𝐷( 𝐴𝑚|𝑛 𝑥|̅𝑖) =
∑ 𝑡𝑑𝑡̅|𝑖  𝑞𝑡−1| 𝑥
𝑚+𝑛
𝑡=𝑚+1

𝐴𝑚|𝑛 𝑥|̅𝑖

 

𝑛-year mixed 
endowment deferred 
𝑚 years for a person 

aged 𝑥 

𝐴𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖 = 𝐴   1
𝑥:𝑚+𝑛|𝑖

+ 𝐴𝑚|𝑛 𝑥|̅𝑖  𝐷( 𝐴𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖) =
(𝑚 + 𝑛)𝑑𝑚+𝑛̅̅ ̅̅ ̅̅ ̅|𝑖 𝑝 𝑚+𝑛 𝑥 +∑ 𝑡𝑑𝑡̅|𝑖 𝑞 𝑡−1| 𝑥

𝑚+𝑛
𝑡=𝑚+1

𝐴𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖

 

Pre-payable and 
deferred 𝑚 years 𝑛 -

term life annuity for a 
person aged 𝑥 

�̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖 = ∑ 𝑑𝑡̅|𝑖 𝑝𝑡 𝑥

𝑚+𝑛−1

𝑡=𝑚

 𝐷( �̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖) =
∑ 𝑡𝑑𝑡̅|𝑖 𝑝𝑡 𝑥
𝑚+𝑛−1
𝑡=𝑚

�̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖

 

 
Notes: * 𝑝𝑛 𝑥  is the probability that the insured, aged 𝑥, survives at age 𝑥 + 𝑛. 

** 𝑞𝑛| 𝑥  is the probability that the insured, aged 𝑥, dies within the 𝑛th year. 

 

Let us define the fuzzy unitary payment by means of a FN of “approximately 1 monetary 

unit (m.u.)”, which will be symbolized as 𝑢.̃ If it is a STFN, then �̃� = (1, 𝑟𝑢) where 𝑟𝑢 ≤ 1 . Of 

course, we can generate any other fuzzy positive quantity by using any scalar 𝐹 ≥ 0, 

�̃� = 𝐹�̃�. In our opinion, fuzzy monetary amounts may be suitable for modeling situations 

in which they are linked to the evolution of an economic index or when we are evaluating 
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not only claimed quantities, but also future expenses associated with them that are not 

known exactly (e.g. settlement costs). In this situation, fuzzy unitary cash-flows cover the 

case where the cash flows are “approximately constant”. In any case, all the results can be 

extended to fuzzy variable cash-flows. 

For a fuzzy interest rate 𝑖̃ = (𝑖, 𝑟𝑖), the present value of the stream of fuzzy unitary 

quantities is 𝑃�̃�(𝑃𝑉(𝑖), 𝑟𝑃𝑉), where, considering (13): 

𝑃𝑉(𝑖) = ∑ (1 + 𝑖)−𝑡𝑗𝑛
𝑗=1     (14a) 

𝑟𝑃𝑉 = 𝑟𝑢𝑃𝑉(𝑖) + 𝑃𝑉(𝑖)
𝐷(𝑖)

 𝑖
𝑟𝑖 = 𝑃𝑉(𝑖) (𝑟𝑢 +

𝐷(𝑖)

1+𝑖
𝑟𝑖)  (14b) 

Next, we evaluate several classical financial and actuarial structures with fuzzy interest 

rates and payments. To do so, we use the results in Table 2, (4) and (14). Notice that the 

expressions contained in Table 2 use the classical equivalence principle for life 

contingency structures and, so, they reduce the probabilities of insured events to 

deterministic rates of occurrence. This is the approach used in Lemaire (1990), 

Ostaszewski (1993), Betzuen et al. (1997) and so evaluating life insurance and annuity 

contracts is reduced to evaluating (10) with fuzzy parameters as we have just shown 

above. 

 For a fuzzy unitary payment �̃� = (1, 𝑟𝑢), where 𝑟𝑢 ≤ 1 ,  and for an interest rate 

𝑖̃ = (𝑖, 𝑟𝑖) the discount factor,  is: 

�̃�𝑡̅|𝑖 = �̃�(1 + 𝑖)̃
−𝑡 

and by using the STFN approximation �̃�𝑡̅|𝑖 (𝑑𝑡̅|𝑖, 𝑟𝑑�̅�|𝑖) 

𝑑𝑡̅|𝑖 = (1 + 𝑖)
−𝑡 

𝑟𝑑�̅�|𝑖 = 𝑑𝑡̅|𝑖 (𝑟𝑢 +
𝑡

1 + 𝑖
𝑟𝑖) 

 In the case of a pre-payable and deferred 𝑚 years 𝑛-term annuity the fuzzy present 

value �̃̈�𝑚 𝑛|̅̅ ̅𝑖 is: 

�̃̈�𝑚 𝑛|̅̅ ̅𝑖 = �̃� ∑ (1 + 𝑖̃)−𝑡
𝑚+𝑛−1

𝑡=𝑚

 

 

and it can be approximated by �̃̈�𝑚 𝑛|̅̅ ̅𝑖 ≈ ( �̈�𝑚 𝑛|̅̅ ̅𝑖 , 𝑟 �̈�𝑚 𝑛|̅̅ ̅𝑖
), where, by using (14): 

�̈�𝑚 𝑛|̅̅ ̅𝑖 =
1 − 𝑑�̅�|𝑖

𝑖
 𝑑𝑚−1̅̅ ̅̅ ̅̅ ̅|𝑖 

𝑟 �̈�𝑚 𝑛|̅̅ ̅𝑖
= �̈�𝑚 𝑛|̅̅ ̅𝑖 (𝑟𝑢 + 

𝐷( �̈�𝑚 𝑛|̅̅ ̅𝑖)

1 + 𝑖
𝑟𝑖) 
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 The mathematical expectation of the present value of an 𝑛-year pure endowment 

for a person aged 𝑥 is: 

�̃�   1
𝑥:𝑛|𝑖

= �̃��̅�|𝑖 𝑝𝑛 𝑥 

and �̃�   1
𝑥:𝑛|𝑖

≈ (𝐴   1
𝑥:𝑛|𝑖

, 𝑟𝐴   1
𝑥:𝑛|𝑖

), being: 

𝐴   1
𝑥:𝑛|𝑖

= 𝑑�̅�|𝑖 𝑝𝑛 𝑥    (15a) 

𝑟𝐴   1
𝑥:𝑛|𝑖

= 𝐴   1
𝑥:𝑛|𝑖

(𝑟𝑢 + 
𝑛

1+𝑖
𝑟𝑖)   (15b) 

 In the case of an 𝑛-year life insurance deferred 𝑚 years for a person aged 𝑥 and 

fuzzy unitary payments, the fuzzy mathematical expectation value is: 

�̃�𝑚|𝑛 �̅�|𝑖 = �̃� ∑ �̃�𝑡̅|𝑖

𝑚+𝑛

𝑡=𝑚+1

𝑞𝑡−1| 𝑥 

So, �̃�𝑚|𝑛 �̅�|𝑖 ≈ ( 𝐴𝑚|𝑛 �̅�|𝑖 , 𝑟 𝐴𝑚|𝑛 �̅�|𝑖
), where: 

𝐴𝑚|𝑛 �̅�|𝑖 = ∑ 𝑑𝑡̅|𝑖 𝑞𝑡−1| 𝑥
𝑚+𝑛
𝑡=𝑚+1     (16a) 

𝑟
𝐴𝑚|𝑛 �̅�|𝑖

= 𝐴𝑚|𝑛 �̅�|𝑖 (𝑟𝑢 +
𝐷( 𝐴𝑚|𝑛 𝑥|̅𝑖

)

1+𝑖
𝑟𝑖)    (16b) 

 In the case of an 𝑛-year mixed endowment deferred 𝑚 years for a person aged 𝑥, 

we have �̃�𝑚 𝑥:𝑛̅̅ ̅̅̅|𝑖 = �̃�   1
𝑥:𝑚+𝑛|𝑖

+ �̃�𝑚|𝑛 𝑥|̅𝑖 . So we have only to sum two SFTNs to obtain the 

approximation of �̃�𝑚 𝑥:𝑛̅̅ ̅̅̅|𝑖 ≈ ( 𝐴𝑚 𝑥:𝑛̅̅ ̅̅̅|𝑖, 𝑟 𝐴𝑚 𝑥:𝑛̅̅ ̅̅ ̅|𝑖
), with: 

𝐴𝑚 𝑥:𝑛̅̅ ̅̅̅|𝑖 = 𝐴   1
𝑥:𝑚+𝑛|𝑖

+ 𝐴𝑚|𝑛 𝑥|̅𝑖     (17a) 

𝑟 𝐴𝑚 𝑥:𝑛̅̅ ̅̅ ̅|𝑖
= 𝐴   1

𝑥:𝑚+𝑛|𝑖
(𝑟𝑢 + 

𝑚 + 𝑛

1 + 𝑖
𝑟𝑖) + 𝐴𝑚|𝑛 �̅�|𝑖 (𝑟𝑢 +

𝐷 ( 𝐴𝑚|𝑛 𝑥|̅𝑖
)

1 + 𝑖
𝑟𝑖) = 

= 𝐴𝑚 𝑥:𝑛̅̅ ̅̅̅|𝑖 (𝑟𝑢 +
𝐷( 𝐴𝑚 𝑥:𝑛|̅̅ ̅̅ ̅𝑖)

1+𝑖
𝑟𝑖)   (17b) 

 Finally, for a pre-payable and deferred 𝑚 years 𝑛 -term life annuity for a person 

aged 𝑥, the fuzzy mathematical expectation value is: 

�̃̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖 = ∑ �̃�𝑡̅|𝑖 𝑝𝑡 𝑥

𝑚+𝑛−1

𝑡=𝑚
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And so, �̃̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖 ≈ ( �̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖 , 𝑟 �̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖
) where: 

�̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖 = ∑ 𝑑𝑡̅|𝑖
𝑚+𝑛−1
𝑡=𝑚 𝑝𝑡 𝑥   (18a) 

𝑟 �̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖
= �̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖 (𝑟𝑢 +

𝐷( �̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅𝑖)

1+𝑖
𝑟𝑖)   (18b) 

Whereas Table 3a shows the fuzzy mathematical expectation for several types of life 

contingencies, Table 3b shows its defuzzified value with the concept of expected value of a 

FN contained in (2). 

 

Table 3a. Fuzzy mathematical expectation of the present value of several immediate life 
contingencies 

 𝐹 · �̃�𝑚|𝑛 �̅�|𝑖 𝐹 · �̃�𝑚 𝑥:𝑛̅̅ ̅̅̅|𝑖 𝐹 · �̃̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖 

𝑥 𝐹 · 𝐴𝑚|𝑛 �̅�|𝑖  
𝐹 · 𝑟

𝐴𝑚|𝑛 �̅�|𝑖
 𝐷( 𝐴𝑚|𝑛 𝑥|̅𝑖) 𝐹 · 𝐴𝑚 𝑥:𝑛̅̅ ̅̅ ̅|𝑖 𝐹 · 𝑟 𝐴𝑚 𝑥:𝑛̅̅ ̅̅ ̅|𝑖

 𝐷( 𝐴𝑚 𝑥:𝑛̅̅ ̅̅ ̅|𝑖) 𝐹 · �̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖 
𝐹 · 𝑟 �̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖

 𝐷( �̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖) 

25 326.01 94.09 54.79 820.61 56.57 9.98 34374.28 4646.69 24.47 

35 394.87 95.57 45.29 820.88 56.52 9.97 30863.17 3710.70 21.41 

45 476.24 93.68 36.05 821.94 56.31 9.90 26713.92 2789.71 18.19 

55 567.82 87.90 27.50 824.22 55.87 9.75 22042.86 1939.60 14.83 

65 668.34 77.70 19.64 828.74 55.00 9.46 16917.07 1203.92 11.38 

75 775.85 62.71 12.41 843.43 52.16 8.54 11433.78 624.45 7.97 

85 872.96 46.06 6.68 884.77 44.08 6.08 6482.19 259.88 4.94 

95 933.82 34.18 3.39 934.47 34.13 3.37 3367.70 100.54 2.71 

 
Notes: * 𝑖̃ = (0.02, 0.005), �̃� = (1, 0.02) and F=1000 m.u. The life contingency probabilities are taken from 

the mortality tables of the Spanish population for both males and females in the year 2010 included 

in the Human Mortality Database (http://www.mortality.org), and obtained as explained in Wilmoth 

et al. (2007). 

** In all cases, life contingencies are immediate, i.e. 𝑚 = 0  and both life insurance and annuities are 

whole life, i.e. 𝑛 = − 𝑥 + 1. On the other hand, for the mixed endowment we have considered 𝑛 =

10. 

Table 3b. Expected value for the fuzzy mathematical expectation of the present value of 
life contingencies in Table 3a 

 𝐸𝑉(1000 · �̃�𝑚|𝑛 �̅�|𝑖; 𝜆) 𝐸𝑉(1000 · �̃�𝑚 𝑥:𝑛̅̅ ̅̅̅|𝑖; 𝜆) 𝐸𝑉(1000 · �̃̈�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖; 𝜆) 

𝑥   0 0.5 1 0 0.5 1 0 0.5 1 

25 278.97 326.01 373.06 792.33 820.61 848.90 32050.94 34374.28 36697.63 

35 347.09 394.87 442.66 792.62 820.88 849.14 29007.82 30863.17 32718.52 

45 429.40 476.24 523.08 793.79 821.94 850.10 25319.07 26713.92 28108.78 

55 523.87 567.82 611.77 796.29 824.22 852.16 21073.06 22042.86 23012.66 

65 629.49 668.34 707.19 801.24 828.74 856.24 16315.11 16917.07 17519.03 

75 744.50 775.85 807.21 817.35 843.43 869.51 11121.56 11433.78 11746.01 

85 849.93 872.96 895.99 862.73 884.77 906.81 6352.25 6482.19 6612.13 

95 916.73 933.82 950.91 917.41 934.47 951.54 3317.43 3367.70 3417.97 

 

http://www.mortality.org/
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4. PRICING LIFE CONTINGENCIES WITH FUZZY RANDOM VARIABLES 

In the previous section we calculated the present value of several life contingency 

structures by “fuzzifying” the classical equivalence principle. This approach has the 

disadvantage that all the information providing a complete statistical description of the 

present values of life contingent liabilities is lost. To avoid this, we propose adapting the 

stochastic approach to life insurance and annuities to the case of fuzzy unitary cash flows 

and fuzzy discount interest rate by using the concept of FRV. Our developments here are 

based on Andrés-Sánchez and González-Vila (2012, 2014). 

Any kind of life contingency policy produces for the insurer a FRV present value of life 

contingencies, �̃�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 , whose realizations can be approximated by STFNs. Here 𝑚 

symbolizes the number of deferred years, 𝑛 is the time horizon of the contract, 𝑥 is the age 

of the insured person and 𝑖 represents the most reliable discount rate. Following the 

developments in the previous sections, we can write �̃�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎  ( 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 , 𝒓 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎
) . 

Furthermore, we denote the 𝑗th outcome of �̃�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎  as 𝑃�̃�𝑗(𝑖) = (𝑃𝑉𝑗(𝑖), 𝑟𝑃𝑉𝑗(𝑖)), where 

𝑃𝑉𝑗(𝑖) denotes the present value of 1 m.u. or a unitary annuity whereas 𝑟𝑃𝑉𝑗 is, from (14): 

𝑟𝑃𝑉𝑗(𝑖) = 𝑃𝑉𝑗(𝑖) (𝑟𝑢 +
𝐷𝑗(𝑖)

1 + 𝑖
𝑟𝑖) 

Thus, we can find the mathematical expectation of the FRV present value of life 

contingencies as: 

𝐸( �̃�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 ) = (𝐸( 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 ), 𝐸 (𝒓 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎
)) 

where: 

𝐸( 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 ) =∑𝑃𝑉𝑗(𝑖)𝑝𝑗
𝑗

 

𝐸 (𝒓 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎
) = ∑ 𝑟𝑃𝑉𝑗(𝑖)𝑗 𝑝𝑗 = ∑ 𝑃𝑉𝑗(𝑖) (𝑟𝑢 +

𝐷𝑗(𝑖)

1+𝑖
𝑟𝑖)𝑗 𝑝𝑗   (19) 

and 𝑝𝑗  is the probability of the 𝑗th outcome. 

For the variance of �̃�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 , taking into account (9), we can obtain: 

V( �̃�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 ) = 𝑉( 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 ) +
1

3
𝑉 (𝒓 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎

) 

being: 

𝑉( 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 ) = 𝐸 (( 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 )
2
) − (𝐸( 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 ))

2
=∑(𝑃𝑉𝑗(𝑖))

2
𝑝𝑗 −

𝑗

(∑𝑃𝑉𝑗(𝑖)𝑝𝑗
𝑗

)

2

 

(20a) 
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and: 

𝑉 (𝒓 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎
) = 𝐸 ((𝒓 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎

)
𝟐
) − (𝐸 (𝒓 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎

))

2

= 

=∑[𝑃𝑉𝑗(𝑖) (𝑟𝑢 +
𝐷𝑗(𝑖)

1 + 𝑖
𝑟𝑖)]

2

𝑗

𝑝𝑗 − (∑𝑃𝑉𝑗(𝑖) (𝑟𝑢 +
𝐷𝑗(𝑖)

1 + 𝑖
𝑟𝑖)

𝑗

𝑝𝑗)

2

 

(20b) 

In a life insurance contract, the randomness derives from the maturity of the payment of 

the insured amounts. So, we will symbolize as 𝒕𝒙𝒎|𝒏  the discrete RV “payment maturity” 

for a life insurance contract that is deferred 𝑚 years, with a time horizon 𝑛 and for an 

insured aged 𝑥 years. If there is no insured money for some death ages, then the outcome 

of 𝒕𝒙𝒎|𝒏  is ∞ years. So, in any contract of this kind, the FRV �̃�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎  can be expressed as: 

�̃�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 =�̃�
𝒕𝒙𝒎|𝒏

̅̅ ̅̅ ̅̅ ̅̅
|𝑖

 

which in terms of a STFN approximation can be written as: 

�̃�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 ≈ ( 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 , 𝒓 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎
) = (𝑑

𝒕𝒙𝒎|𝒏
̅̅ ̅̅ ̅̅ ̅̅

|𝑖
, 𝑑

𝒕𝒙𝒎|𝒏
̅̅ ̅̅ ̅̅ ̅̅

|𝑖
(𝑟𝑢 + 

𝒕𝒙𝒎|𝒏

1+𝑖
𝑟𝑖)) (21) 

Similarly, in a life annuity the randomness derives from the number of terms to be paid by 

the insurer. We symbolize as 𝑵𝒙𝒎|𝒏  the discrete RV “number of terms” for a deferred 𝑚 

years 𝑛- term life annuity, where 𝑥 is the age of the insured. In this case we can express  

�̃�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎  as: 

�̃�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 ≈ ( 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 , 𝒓 𝑳𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎
) =

(

 
 

�̈�
𝑵𝒙𝒎|𝒏 |

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑚 , �̈�

𝑵𝒙𝒎|𝒏 |
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖𝑚 (𝑟𝑢 + 

𝐷( �̈�
𝑵𝒙𝒎|𝒏 |

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖

𝑚 )

1+𝑖
𝑟𝑖)

)

 
 

 (22) 

From this general setting, below we study some actuarial structures by applying the 

stochastic approach to life insurance and annuities to the case of fuzzy unitary cash flows 

and fuzzy discount interest rate. 

 Let us consider an 𝑛-year pure endowment for a person aged 𝑥. In this case, it is 

supposed that the liability is �̃� m.u. if the insured survives 𝑛 years and no payment 

otherwise. From the mortality tables we can deduce the RV “payment maturity” 

𝒕𝒙 = {𝑛, }𝒎|𝒏  with probabilities { 𝑝𝑛 𝑥 , 𝑞𝑛 𝑥}. Hence, the FRV present value of the pure 

endowment, which we symbolize as �̃�   𝟏
𝒙:𝒏|𝒊

, can be represented as the pair �̃�   𝟏
𝒙:𝒏|𝒊

=

(𝑨   𝟏
𝒙:𝒏|𝒊

, 𝒓𝑨   𝟏
𝒙:𝒏|𝒊

) where, from (21): 
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(𝑨   𝟏
𝒙:𝒏|𝒊

, 𝒓𝑨   𝟏
𝒙:𝒏|𝒊

) = {
0 with probability  𝑞𝑛 𝑥

(𝑑�̅�|𝑖, 𝑑�̅�|𝑖  (𝑟𝑢 +
𝑛

1+𝑖
𝑟𝑖)) with probability 𝑝𝑛 𝑥

 (23) 

So, 𝐸 (�̃�   𝟏
𝒙:𝒏|𝒊

) = (𝐸 (𝑨   𝟏
𝒙:𝒏|𝒊

) , 𝐸 (𝒓𝑨   𝟏
𝒙:𝒏|𝒊

)) = �̃�   1
𝑥:𝑛|𝑖

≈ (𝐴   1
𝑥:𝑛|𝑖

, 𝑟𝐴   1
𝑥:𝑛|𝑖

), i.e. (15a) and (15b). 

Now, let us obtain the variance 𝑉 (�̃�   𝟏
𝒙:𝒏|𝒊

). Following (9) it can be obtained as: 

𝑉 (�̃�   𝟏
𝒙:𝒏|

) = 𝑉 (𝑨   𝟏
𝒙:𝒏|𝒊

) +
1

3
𝑉 (𝒓𝑨   𝟏

𝒙:𝒏|𝒊

) 

It is easy to show that: 

𝑉 (𝑨   𝟏
𝒙:𝒏|

) = (𝑑�̅�|𝑖)
2
𝑝𝑛 𝑥 − (𝐴   1

𝑥:𝑛|𝑖
)
2

=𝑑2𝑛̅̅̅̅ |𝑖 𝑝𝑛 𝑥 𝑞𝑛 𝑥 

𝑉 (𝒓𝑨   𝟏
𝒙:𝒏|𝒊

) = (𝑟𝑢 + 
𝑛

1 + 𝑖
𝑟𝑖)

2

𝑑2𝑛̅̅̅̅ |𝑖 𝑝𝑛 𝑥 − (𝑟𝐴   1
𝑥:𝑛|𝑖

)

2

= (𝑟𝑢 + 
𝑛

1 + 𝑖
𝑟𝑖)

2

𝑑2𝑛̅̅̅̅ |𝑖 𝑝𝑛 𝑥 𝑞𝑛 𝑥 

and so: 

𝑉 (�̃�   𝟏
𝒙:𝒏|

) = [1 +
1

3
(𝑟𝑢 + 

𝑛

1 + 𝑖
𝑟𝑖)

2

] 𝑑2𝑛̅̅̅̅ |𝑖 𝑝𝑛 𝑥 𝑞𝑛 𝑥 

 Now, let us take an  𝑛-year life insurance, deferred 𝑚 years, for a person aged 𝑥. Of 

course, if it were a whole life insurance policy, 𝑛 would be − 𝑥 + 1. The insured party 

aged 𝑥 will receive the STFN �̃� m.u. at the end of the year of his death, if he dies between 

the ages 𝑥 +𝑚 and 𝑥 +𝑚 + 𝑛 and otherwise he does not receive anything. So, the RV 

“maturity of the benefits”, 𝒕𝒙𝒎|𝒏 , has as its outcomes {𝑚 + 1,𝑚 + 2,… ,𝑚 + 𝑛,∞} with 

probabilities { 𝑞𝑚| 𝑥 , 𝑞𝑚+1| 𝑥, … , 𝑞𝑚+𝑛−1| 𝑥, 𝑝𝑚+𝑛 𝑥 + 𝑞𝑚 𝑥}. The FRV present value of the life 

insurance, �̃�𝒎|𝒏 𝒙, can be represented as �̃�𝒎|𝒏 �̅�|𝒊 = ( 𝑨𝒎|𝒏 �̅�|𝒊, 𝒓 𝑨𝒎|𝒏 �̅�|𝒊
)  where, from (21): 

( 𝑨𝒎|𝒏 �̅�|𝒊, 𝒓 𝑨𝒎|𝒏 �̅�|𝒊
) =

= {

0 with probability 𝑝𝑚+𝑛 𝑥 + 𝑞𝑚 𝑥

(𝑑𝑡̅|𝑖, 𝑑𝑡̅|𝑖  (𝑟𝑢 +
𝑡

1 + 𝑖
𝑟𝑖)) with probability 𝑞𝑡−1| 𝑥, 𝑡 = 𝑚 + 1,𝑚 + 2,… ,𝑚 + 𝑛 

 

(24) 

So, 𝐸( �̃�𝒎|𝒏 �̅�|𝒊) = (𝐸( 𝑨𝒎|𝒏 �̅�|𝒊), 𝐸 (𝒓 𝑨𝒎|𝒏 �̅�|𝒊
)) = �̃�𝑚|𝑛 �̅�|𝑖 ≈ ( 𝐴𝑚|𝑛 �̅�|𝑖, 𝑟 𝐴𝑚|𝑛 �̅�|𝑖

) i.e. (16a) and 

(16b). 

Considering (9), it turns out that: 
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𝑉( �̃�𝒎|𝒏 �̅�|𝒊) = 𝑉( 𝑨𝒎|𝒏 �̅�|𝒊) +
1

3
𝑉 (𝒓

𝑨𝒎|𝒏 �̅�|𝒊
) 

and from the definition of �̃�𝒎|𝒏 �̅�|𝒊, (20) and Table 2 we find: 

𝑉( 𝑨𝒎|𝒏 �̅�|𝒊) = ∑ 𝑑2𝑡̅̅ ̅|𝑖 𝑞𝑡−1| 𝑥

𝑚+𝑛

𝑡=𝑚+1

− ( 𝐴𝑚|𝑛 �̅�|𝑖)
2

 

𝑉 (𝒓
𝑨𝒎|𝒏 �̅�|𝒊
) = ∑ 𝑑2𝑡̅̅ ̅|𝑖 (𝑟𝑢 +

𝑡

1 + 𝑖
𝑟𝑖)

2
𝑚+𝑛

𝑡=𝑚+1

𝑞𝑡−1| 𝑥 − (𝑟 𝐴𝑚|𝑛 �̅�|𝑖
)
2

 

 For an 𝑛 -year mixed endowment, deferred 𝑚 years, linked to a person aged 𝑥 

years, the outcomes of the RV “maturity of the benefits”, 𝒕𝒙𝒎|𝒏  , are {∞,𝑚 + 1,𝑚 +

2,… ,𝑚 + 𝑛 − 1,𝑚 + 𝑛} with probabilities { 𝑞𝑚 𝑥, 𝑞𝑚| 𝑥, 𝑞𝑚+1| 𝑥, … , 𝑞𝑚+𝑛−1| 𝑥 , 𝑝𝑚+𝑛 𝑥}. As all 

the benefits are considered as STFN, the fuzzy RV present value of liabilities, �̃�𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊 can be 

represented by ( 𝑨𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊, 𝒓 𝑨𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊
) where, bearing in mind (21): 

( 𝑨𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊, 𝒓 𝑨𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊
) =

=

{
 
 

 
 

0 with probability 𝑞𝑚 𝑥

(𝑑𝑡̅|𝑖, 𝑑𝑡̅|𝑖 (𝑟𝑢 +
𝑡

1 + 𝑖
𝑟𝑖)) with probability 𝑞𝑡−1| 𝑥 , 𝑡 = 𝑚 + 1,𝑚 + 2,… ,𝑚 + 𝑛

(𝑑𝑚+𝑛̅̅ ̅̅ ̅̅ ̅|𝑖, 𝑑𝑚+𝑛̅̅ ̅̅ ̅̅ ̅|𝑖 (𝑟𝑢 +
𝑚 + 𝑛

1 + 𝑖
𝑟𝑖)) with probability 𝑝𝑚+𝑛 𝑥

 

 (25) 

In this case 𝐸( �̃�𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊. ) = (𝐸( 𝑨𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊), 𝐸 (𝒓 𝑨𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊
)) = �̃�𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖  so, considering (17), 

𝐸( 𝑨𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊) = 𝐴𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖  and 𝐸 (𝒓 𝑨𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊
) = 𝑟 𝐴𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖

. 

To obtain the variance 𝑉( �̃�𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊) = 𝑉( 𝑨𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊) +
1

3
𝑉 (𝒓 𝑨𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊

), we have to take into 

account that, from (20): 

𝑉( 𝑨𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊) = ∑ 𝑑2𝑡̅̅ ̅|𝑖 𝑞𝑡−1| 𝑥 +

𝑚+𝑛

𝑡=𝑚+1

𝑑2(𝑚+𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|𝑖 𝑝𝑚+𝑛 𝑥 − ( 𝐴𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖)
2

 

𝑉 (𝒓 𝑨𝒎 𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊
) =  ∑ 𝑑2𝑡̅̅ ̅|𝑖 (𝑟𝑢 +

𝑡

1 + 𝑖
𝑟𝑖)

2

𝑞𝑡−1| 𝑥 +

𝑚+𝑛

𝑡=𝑚+1

𝑑2(𝑚+𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|𝑖 (𝑟𝑢 +
𝑚+ 𝑛

1 + 𝑖
𝑟𝑖)

2

𝑝𝑚+𝑛 𝑥 − (𝑟 𝐴𝑚 𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖
)
2

 

 Finally1, for a pre-payable, deferred 𝑚 years, 𝑛 -term life annuity for a person aged 

𝑥 the randomness will derive from the number of terms to be paid by the insurer. For this 

reason, the discrete RV “number of terms”, 𝑵𝒙𝒎|𝒏 , has to be considered. Its outcomes are 

                                                           
1 Notice that an 𝑛 -year pure endowment can be considered as a 1-term annuity �̃̈�𝒙:𝟏|̅̅ ̅̅ ̅𝒊𝒏  where the 

possible outcomes and probabilities of 𝑁𝑥𝑛|1  are {1,0} and { 𝑝𝑛 𝑥 , 𝑞𝑛 𝑥}, respectively. 
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{0,1,2,… , 𝑛 − 1, 𝑛} where their probabilities are { 𝑞𝑚 𝑥, 𝑞𝑚| 𝑥, 𝑞𝑚+1| 𝑥, … , 𝑞𝑚+𝑛−2| 𝑥, 𝑝𝑚+𝑛−1 𝑥}. 

Once again, if we consider that the outcomes of the FRV present value of the annuity are 

STFN, it can be represented as �̃̈�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 = ( �̈�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 , 𝒓 �̈�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎
). 

Therefore, following (22): 

( �̈�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 , 𝒓 �̈�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎
) =

=

{
 
 
 

 
 
 

0 with probability  𝑞𝑚 𝑥

( �̈�𝑚 𝑗|̅𝑖 , �̈�𝑚 𝑗|̅𝑖 (𝑟𝑢 + 
𝐷( �̈�𝑚 𝑗|̅𝑖)

1 + 𝑖
𝑟𝑖)) with probability 𝑞𝑚+𝑗−1| 𝑥, 𝑗 = 1,2,… , 𝑛 − 1

( �̈�𝑚 𝑛|̅̅ ̅𝑖, �̈�𝑚 𝑛|̅̅ ̅𝑖 (𝑟𝑢 + 
𝐷( �̈�𝑚 𝑛|̅̅ ̅𝑖)

1 + 𝑖
𝑟𝑖)) with probability 𝑝𝑚+𝑛−1 𝑥

 

 (26) 

Furthermore, 𝐸( �̃̈�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 ) = �̃̈�𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖𝑚  ( �̈�𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖𝑚 , 𝑟 �̈�𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖𝑚
), where �̈�𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖𝑚  and 𝑟 �̈�𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖𝑚

 can be 

obtained with the expressions contained in (18). 

The determination of the variance requires considering the relation: 

𝑉( �̃̈�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 ) = 𝑉( �̈�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 ) +
1

3
𝑉 (𝒓 �̈�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎

) 

where: 

𝑉( �̈�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎 ) = ∑( �̈�𝑚 𝑗|̅𝑖)
2

𝑛−1

𝑗=1

𝑞𝑚+𝑗−1| 𝑥 + ( �̈�𝑚 𝑛|̅̅ ̅𝑖)
2

𝑝𝑚+𝑛−1 𝑥 − ( �̈�𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖𝑚 )
2

 

𝑉 (𝒓 �̈�𝒙:𝒏|̅̅ ̅̅ ̅̅ 𝒊𝒎
) =  ∑( �̈�𝑚 𝑗|̅𝑖)

2
𝑛−1

𝑗=1

(𝑟𝑢 + 
𝐷( �̈�𝑚 𝑗|̅𝑖)

1 + 𝑖
𝑟𝑖)

2

𝑞𝑚+𝑗−1| 𝑥 + 

+( �̈�𝑚 𝑛|̅̅ ̅𝑖)
2
(𝑟𝑢 + 

𝐷( �̈�𝑚 𝑛|̅̅ ̅𝑖)

1 + 𝑖
𝑟𝑖)

2

𝑝𝑚+𝑛−1 𝑥 − (𝑟 �̈�𝑥:𝑛|̅̅ ̅̅ ̅̅ 𝑖𝑚
)
2

 

Table 4 shows the standard deviation of the present value of the same life contingencies as 

those presented in Table 3a. 

Table 4. Standard deviation of the present value of life contingencies in Table 3a 
 1000 · �̃�𝟎|−𝒙+𝟏 �̅�|𝒊 1000 · �̃�𝟎 𝒙:𝟏𝟎̅̅ ̅̅ ̅̅ |𝒊 1000 · �̃̈�𝟎 𝒙:−𝒙+𝟏|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝒊 

𝑥 (1) (2) (3) (1) (2) (3) (1) (2) (3) 

25 93.81 5.02 93.85 5.24 1.03 5.28 4782.24 1156.03 4828.59 

35 106.55 6.79 106.62 7.31 1.43 7.36 5432.41 1111.38 5470.17 

45 117.97 10.58 118.13 12.66 2.48 12.74 6016.22 1012.33 6044.55 

55 120.98 14.05 121.25 19.70 3.86 19.83 6170.71 844.53 6189.95 

65 113.97 16.11 114.35 28.31 5.55 28.49 5815.99 632.11 5827.43 

75 98.85 16.48 99.31 43.01 8.45 43.29 5046.75 411.42 5052.34 
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85 73.01 13.83 73.44 55.32 11.02 55.69 3738.57 217.17 3740.67 

95 46.29 8.94 46.58 42.40 8.72 42.70 2238.69 93.88 2239.35 

 
Notes: * Life contingencies and technical basis are the same as in Table 3a. So, the mathematical expectation 

for the present value of liabilities is contained in this table. 

** (1) stands for the standard deviation of the RV defined by the centers, (2) for the standard deviation 

of the RVs whose outcomes are the spreads and (3) is the standard deviation of the FRV present 

value. 

 

 

5. PRICING PORTFOLIOS OF FUZZY UNITARY LIFE CONTINGENCIES 

Computing the mathematical expectation and the variance for the whole portfolio, under 

the hypothesis of independence of mortality between policies is straightforward, given 

that the mathematical expectation and the variance of FRVs have similar properties to 

analogous indicators for conventional RVs. 

If we symbolize the present value of the 𝑗th liability of the portfolio as �̃�𝒙𝒋:𝒏𝒋|̅̅ ̅̅ ̅̅ ̅̅ 𝒊𝒎𝒋
=

( 𝑳𝒙𝒋:𝒏𝒋|̅̅ ̅̅ ̅̅ ̅̅ 𝒊𝒎𝒋
, 𝒓 𝑳𝒙𝒋:𝒏𝒋|̅̅ ̅̅ ̅̅ ̅̅ 𝒊𝒎𝒋

), the present value of a portfolio made up of 𝐽 contracts is a FRV �̃� 

where: 

�̃� =∑ �̃�𝒙𝒋:𝒏𝒋|̅̅ ̅̅ ̅̅ ̅̅ 𝒊𝒎𝒋

𝐽

𝑗=1

 

And so, �̃� = (𝑳, 𝒓𝑳) with: 

(𝑳, 𝒓𝑳) = (∑ 𝑳𝒙𝒋:𝒏𝒋|̅̅ ̅̅ ̅̅ ̅̅ 𝒊𝒎𝒋

𝐽

𝑗=1

,∑𝒓 𝑳𝒙𝒋:𝒏𝒋|̅̅ ̅̅ ̅̅ ̅̅ 𝒊𝒎𝒋

𝐽

𝑗=1

) 

The rules for the expectation of RVs are identical to those for FRV. So, for 𝐸(�̃�) =

(𝐸(𝑳), 𝐸(𝒓𝑳))  we immediately derive: 

𝐸(𝑳) =∑𝐸 ( 𝑳𝒙𝒋:𝒏𝒋|̅̅ ̅̅ ̅̅ ̅̅ 𝒊𝒎𝒋
)

𝐽

𝑗=1

 

𝐸(𝒓𝑳) =∑𝐸 (𝒓 𝑳𝒙𝒋:𝒏𝒋|̅̅ ̅̅ ̅̅ ̅̅ 𝒊𝒎𝒋
)

𝐽

𝑗=1

 

Likewise, given that we are dealing with independent FRVs, to obtain 𝑉(�̃�) we have to 

compute: 

𝑉(𝑳) =∑𝑉 ( 𝑳𝒙𝒋:𝒏𝒋|̅̅ ̅̅ ̅̅ ̅̅ 𝒊𝒎𝒋
)

𝐽

𝑗=1
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𝑉(𝒓𝑳) =∑𝑉 (𝒓 𝑳𝒙𝒋:𝒏𝒋|̅̅ ̅̅ ̅̅ ̅̅ 𝒊𝒎𝒋
)

𝐽

𝑗=1

 

And so, 𝑉(�̃�) = 𝑉(𝑳) +
1

3
𝑉(𝒓𝑳). 

On the other hand, under our hypothesis that the cost of claims and discount rates are 

STFN, we can extend the results in Andrés-Sánchez and González-Vila (2012, 2014) to 

compute the quantiles of the present value of liabilities. We should emphasize that these 

indicators play an important role in evaluating the solvency of an insurance company. 

If the group of policies can be divided into large homogeneous sets of liabilities, a suitable 

way to approach �̃� is by using a fuzzy normal RV with a fuzzy mean 𝐸(�̃�) =

(𝐸(𝑳), 𝐸(𝒓𝑳)) and a crisp standard deviation 𝑆𝐷(�̃�). Fuzzy Gaussian RVs have been used in 

the financial context for portfolio selection (Inuiguchi and Ramik (2000)) and to obtain 

value-at-risk in a fuzzy environment (Zmeskal (2005)). In an actuarial context, Shapiro 

(2009) suggests their use in practical applications. 

When the set of liabilities cannot be divided into broad groups of homogeneous policies, 

Andrés-Sánchez and González-Vila (2012, 2014) propose using statistical simulation to 

obtain empirically the FRV “present value of the portfolio’s life contingencies”. In these 

papers, the authors adapt the schema proposed in Pitacco (1986) to the fact that the 

outcomes are FNs. The steps that have to be taken to obtain the percentiles of the present 

value are presented below. 

Step 1 Simulate 𝑆 times for each of the 𝐽 policies the RV 𝒕𝒙𝒎|𝒏  in insurance contracts and 

𝑵𝒙𝒎|𝒏  in annuity policies. 

Step 2. By applying (23), (24), (25) or (26) to the 𝑠th simulation of the 𝑗th life contingency 

contract, we obtain a STFN that quantifies the present value of this policy in the 𝑠th 

simulation. Notice that the use of our STFN extension reduces notably the calculations that 

have to be implemented to obtain simulated fuzzy present values respect to Andrés-

Sánchez and González-Vila (2012, 2014). In this paper, the quantification of the present 

value that derives from the 𝑠th simulation for the 𝑗th policy only requires the calculation 

of one crisp present value and a variability margin closely linked to the Macaulay duration 

of this present value. On the other hand, in those papers, given that the present value 

calculations are based on the 𝛼-cuts of discount rates, if we take a not particularly detailed 

scale for 𝛼 (specifically 𝛼 = 0, 0.25, 0.5, 0.75, 1), to fit the present value of one concrete 

simulation would require calculating 10 values (the 10 extremes of 5 𝛼-cuts). Calculating 

𝛼-cuts with a more detailed scale would clearly imply an increase in the number of 

calculations. 

Step 3. The 𝑠th simulation of the whole portfolio of life contingencies is obtained as a STFN 

by summing the present value of the 𝐽 policies for that 𝑠th simulation. So, we have an 

approximation to the FRV present value of the portfolio, �̃�, where each outcome has the 

same probability 1/𝑆. 
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Step 4. From the 𝛼-cut representation of the approximation to �̃� we can obtain its couple of 

the distribution functions with (5a) and (5b) and the bounds of their quantiles by using 

(6a) and (6b). 

Tables 5a and 5b describe a small set of immediate whole life insurances and show the 

99th and 95th percentiles of the present value of liabilities for segregated and aggregate 

subsets of contracts. Likewise, in Tables 6a and 6b we develop an analogous numerical 

application for a set of life annuities. 

 

Table 5a. Portfolio of whole life insurances 1000 · �̃�𝟎|−𝒙+𝟏 �̅�|𝒊 with several ages and 

contracts 
 

 

�̃� 

Age Number of 
contracts 𝐸(𝑳) 𝐸(𝒓𝑳) 𝑆𝐷(�̃�) 

55 5 2839.09 439.52 271.12 

65 10 6683.37 776.95 361.61 

75 5 3879.23 313.53 222.06 

Whole portfolio 25 13401.70 1530.00 503.57 

 
Note:  * Whole life insurances and technical basis are the same as those considered in Tables 3a and 4. 

Table 5b. 99th and 95th percentiles of portfolio and sub-portfolios of whole life insurances 

1000 · �̃�𝟎|−𝒙+𝟏 �̅�|𝒊 in Table 5a 

 

Contract: 1000 · �̃�𝟎|−𝟓𝟓+𝟏 𝟓𝟓̅̅̅̅ |𝒊 

Number of contracts: 5 

Contract: 1000 · �̃�𝟎|−𝟔𝟓+𝟏 𝟔𝟓̅̅̅̅ |𝒊 

Number of contracts: 10 

𝛼 
𝑄0.99(�̃�)

𝛼
 𝑄0.99(�̃�)

𝛼
 𝑄

0.95(�̃�)
𝛼

 𝑄0.95(�̃�)
𝛼

 𝑄
0.99(�̃�)

𝛼
 𝑄0.99(�̃�)

𝛼
 𝑄

0.95(�̃�)
𝛼

 𝑄0.95(�̃�)
𝛼

 

1 3577.59 3577.59 3323.50 3323.50 7637.49 7637.49 7347.51 7347.51 

0.75 3492.02 3662.01 3229.71 3417.30 7476.46 7798.52 7175.04 7519.98 

0.5 3406.46 3745.89 3134.78 3511.10 7315.47 7959.54 7002.58 7692.58 

0.25 3320.89 3829.76 3037.86 3604.79 7154.49 8120.57 6830.11 7865.34 

0 3237.87 3913.64 2940.93 3698.41 6993.52 8281.59 6655.65 8038.11 

   

 

Contract: 1000 · �̃�𝟎|−𝟕𝟓+𝟏 𝟕𝟓̅̅̅̅ |𝒊 

Number of contracts: 5 
Whole portfolio 

𝛼 
𝑄0.99(�̃�)

𝛼
 𝑄0.99(�̃�)

𝛼
 𝑄

0.95(�̃�)
𝛼

 𝑄0.95(�̃�)
𝛼

 𝑄
0.99(�̃�)

𝛼
 𝑄0.99(�̃�)

𝛼
 𝑄

0.95(�̃�)
𝛼

 𝑄0.95(�̃�)
𝛼

 

1 4379.39 4379.39 4227.66 4227.66 14911.43 14911.43 14477.85 14477.85 

0.75 4323.04 4436.62 4165.48 4292.05 14580.40 15242.46 14131.10 14824.65 

0.5 4266.54 4493.85 4103.80 4356.44 14249.40 15573.49 13784.57 15173.82 

0.25 4209.45 4551.09 4041.73 4420.77 13918.41 15904.52 13432.80 15525.92 

0 4153.06 4608.32 3978.06 4482.84 13590.51 16235.54 13082.85 15877.63 

 
Note:  * Whole life insurances and technical basis are the same as those considered in Tables 3a and 4. 
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Table 6a. Portfolio of whole life insurances 1000 · �̃̈�𝟎 𝒙:−𝒙+𝟏|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝒊 with several ages and 

contracts 
 

 

�̃� 

Age Number of 
contracts 𝐸(𝑳) 𝐸(𝒓𝑳) 𝑆𝐷(�̃�) 

55 5 110214.28 9698.01 13841.14 

65 10 169170.68 12039.18 18427.94 

75 5 57168.89 3122.25 11297.37 

Whole portfolio 25 57168.89 3122.25 25667.04 

 
Note:  * Whole life insurances and technical basis are the same as those considered in Tables 3a and 4. 

Table 6b. 99th and 95th percentiles of portfolio and sub-portfolios of whole life annuities 

1000 · �̃̈�𝟎 𝒙:−𝒙+𝟏|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝒊 in Table 6a 

 

Contract: 1000 · �̃̈�𝟎 𝟓𝟓:−𝟓𝟓+𝟏|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝒊 

Number of contracts: 5 

Contract: 1000 · �̃̈�𝟎 𝟔𝟓:−𝟔𝟓+𝟏|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝒊 

Number of contracts: 10 

𝛼 
𝑄0.99(�̃�)

𝛼
 𝑄0.99(�̃�)

𝛼
 𝑄0.95(�̃�)

𝛼
 𝑄0.95(�̃�)

𝛼
 𝑄0.99(�̃�)

𝛼
 𝑄0.99(�̃�)

𝛼
 𝑄0.95(�̃�)

𝛼
 𝑄0.95(�̃�)

𝛼
 

1 136297.47 136297.47 130500.05 130500.05 213630.32 213630.32 199509.08 199509.08 

0.75 132853.68 139741.26 127345.77 133665.07 209360.34 217900.30 195620.09 203300.79 

0.5 129409.88 143185.06 124191.48 136881.81 205090.36 222170.28 191769.42 207092.50 

0.25 125966.09 146628.85 121037.20 140098.56 200820.38 226440.26 187962.84 210884.20 

0 122522.30 150072.64 117882.91 143311.54 196550.40 230710.24 184156.64 214675.91 

   

 

Contract: 1000 · �̃̈�𝟎 𝟕𝟓:−𝟕𝟓+𝟏|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝒊 

Number of contracts: 5 
Whole portfolio 

𝛼 
𝑄0.99(�̃�)

𝛼
 𝑄0.99(�̃�)

𝛼
 𝑄0.95(�̃�)

𝛼
 𝑄0.95(�̃�)

𝛼
 𝑄0.99(�̃�)

𝛼
 𝑄0.99(�̃�)

𝛼
 𝑄0.95(�̃�)

𝛼
 𝑄0.95(�̃�)

𝛼
 

1 82582.50 82582.50 75146.83 75146.83 332116.81 332116.81 316496.67 316496.67 

0.75 81276.75 83888.26 74014.93 76278.78 325290.95 338942.66 310049.54 322946.50 

0.5 79970.99 85194.01 72884.71 77410.72 318465.10 345768.52 303651.51 329399.04 

0.25 78665.57 86499.77 71754.97 78544.03 311639.24 352594.37 297136.33 335848.24 

0 77360.20 87805.53 70625.22 79678.22 304716.27 359420.23 290618.21 342250.14 

 
Note:  * Whole life insurances and technical basis are the same as those considered in Tables 3a and 4. 

 

 

6. CONCLUSIONS 

In this paper we have extended the results reported in Andrés-Sánchez and González-Vila 

(2012, 2014), which model life contingency pricing with fuzzy random variables (FRVs), in 

two ways. First, we allow not only the discount rate(s), but also the amounts to be paid out 

by the insurance companies, to be fuzzy. Thus, our schema can be used when part of the 

cost of an insurance policy is not known with precision (e.g. when insured amounts are 

indexed or when future expenses such as settlement costs need to be taken into account). 

Second, under the hypothesis that the parameters are symmetrical triangular fuzzy 

numbers (STFNs), we have obtained several indicators that enable us to obtain the fair (or 



23 

expected) price of life contingencies, the reasonable variability of this mathematical 

expectation and the variability of the present cost of these life contingencies (i.e. the 

solvency cost). 

Using the STFN approximation based on  Dubois and prade (1980, 1993) to the present 

value with STFN parameters enable us to obtain interesting operational expressions that 

simplify the computational requirements of the results in Andrés-Sánchez and González-

Vila (2012, 2014). In fact, the calculation of the fuzzy present value is reduced to obtain 

the most reliable value with the centers of interest rate and cash flows. Likewise, the 

variability of the present value is intuitively (from a financial perspective) evaluated, by 

aggregating the present value of cash flow spreads and the variability that comes from 

interest rate uncertainty, which is linearly approximated, as is usual in standard financial 

mathematics, with the Macaulay duration. The use of FRVs with STFN outcomes allows us 

to describe the present value of life contingencies using just two conventional random 

variables: the centers and the spreads (i.e. the uncertainty) of the present value of insured 

amounts. Thus, the calculation of such magnitudes as mathematical expectation, standard 

deviation, quantiles, etc. for a contract (and, consequently, for a portfolio of policies) is 

relatively easy and intuitive. 

The results presented in this paper can, we believe, be readily extended to more general 

forms of fuzzy numbers. Moreover, in relation to life insurance policies, a slight 

generalization of our proposed developments can be derived from the consideration that 

the time when the insured amount is paid is not the end of the year of death, but any 

moment within that year and so, the payment maturity date is fuzzy. The latter may 

depend, for example, on the exact date of death, the delay before the heirs file their claim, 

or other factors. For example, if the insured dies in the 𝑟th year, the maturity payment may 

be the STFN (𝑟 +
1

2
,
1

2
), i.e. it is recognized that payment of the insured amount can be 

made at the beginning of the 𝑟th year or at the end of that year with the most reliable 

value being at the midpoint. Other natural ways in which our findings can be extended 

include the use of the fuzzy, non-flat, temporal structure of interest rates, as proposed in 

Ostaszewski (1993) and in Andrés-Sánchez and Terceño (2003), or the introduction of 

fuzzy uncertainty in the future lifetime, as suggested Shapiro (2013). 
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