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Ground-state self-consistent calculation of quantum dots under magnetic fields:
Addition spectrum

N. Barberan
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A density-functional self-consistent calculation of the ground-state electronic density of quantum dots under
an arbitrary magnetic field is performed. We consider a parabolic lateral confining potential. The addition
energy,E(N11)2E(N), whereN is the number of electrons, is compared with experimental data and the
different contributions to the energy are analyzed. The Hamiltonian is modeled by a density functional, which
includes the exchange and correlation interactions and the local formation of Landau levels for different
equilibrium spin populations. We obtain an analytical expression for the critical density under which sponta-
neous polarization, induced by the exchange interaction, takes place.@S0163-1829~98!07740-6#
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I. INTRODUCTION

Quantum dots represent systems in which the transi
from quantum to semiclassical physics can be tested in
increasingly controlled way and are suitable for compar
different theoretical approaches with experimental da1

Here we concentrate on the study of the ground state~g.s.!
properties. We examine the formation of compressible
incompressible regions within the dot and their depende
on the applied magnetic field as well as the different con
butions to the energy from the different terms of the Ham
tonian. Finally, we propose an interpretation of the addit
spectrum in the quantum Hall regime given by McEu
et al.2

In order to develop a managable method for dealing w
a wide range of quantum dots, an alternative model to
Thomas-Fermi calculation given by McEuenet al.2 or Mar-
morkos and Beenakker3 has been developed. There are tw
main differences between our model and the stand
Thomas-Fermi or semiclassical approaches previously
ported in the literature~see, for example, Refs. 2, 4, 5, an
6!:

~1! The kinetic term in the Hamiltonian is given by a loc
density functional for each spin population, taking into a
count the Landau Levels~LL ! created by the magnetic field
In Ref. 2 the kinetic contribution is not given by a local term
but instead each LL energy is multiplied by a global dens
rns ~within the whole dot! assigned to this level, characte
ized by thens indexes, and self-consistently calculated. T
level densities are treated separately on the assumption
the coupling between states in distinct LL’s is small. O
treatment produces total charges for each LL that are
restricted to integer numbers and therefore, compatible w
the idea of the formation of ‘‘melting states’’ as discussed
Palacioset al.7

~2! The exchange interaction is taken into account in t
different ways: as a density functional term in the Ham
tonian and as an interaction that determines~together with
the kinetic term and spin-magnetic field interaction! the spin
populations that locally minimize the energy. In McEuen
paper the exchange interaction is not taken into accoun
PRB 580163-1829/98/58~19!/12970~10!/$15.00
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all. We obtain an analytical expression for the critical dens
under which the system is spontaneously fully polarized.

As in McEuen’s work, ours is a self-consistent calcu
tion, and benefits from the ability to analyze each contrib
tion of the Hamiltonian directly.

This paper is organized as follows. In Sec. II we descr
the model used in our calculation, the different parts of
Hamiltonian are described, with special emphasis be
placed on the kinetic term and on the way in which the s
population is locally determined. In Sec. III the numeric
method used in the iterative calculation is described and
Sec. IV detailed numerical results for electronic densities a
g.s. energies for various magnetic fields are presented.
propose a possible interpretation of the addition spectra.

II. THE MODEL USED

The total energy of the system is given by the tw
dimensional~2D! integral,

Etot5E drW@ek1econf1edir1eex1ecor1eB#, ~1!

where in the kinetic term

ek5ek11ek2 ~2!

the subindexes distinguish the different spin populations

eki5
\vc

2
DSi

21\vc~Si1
1
2 !~ni2SiD !, i 51,2. ~3!

The first term is the contribution to the kinetic energy fro
the fully occupied LL, whereas the second term is the c
tribution that comes from the last, possible partially occup
LL. D5B e/hc is the LL degeneracy per unit area,B being
the magnetic field strength,e the electronic charge, andc the
light velocity in vacuum. Locally, we consider a free syste
of independent electrons under a magnetic field in a do
area pR2. The cyclotron frequency is given byvc
5eB/cm* , m* being the effective electron mass,Si the
last LL fully ~locally! occupied andni the electronic density
given by
12 970 ©1998 The American Physical Society
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n15 1
2 n~12j! or n25 1

2 n~11j!, ~4!

where 0<j<1 is the spin asymmetry.
Si is defined as

Si5IntegerFni~r !

D G . ~5!

The j parameter is determined by minimizing the ener
againstj as is explained below. The next term,

econf5
1
2 m* v0

2r 2n~r !, n5n11n2 , ~6!

is the contribution that comes from the confining potent
assumed to be parabolic~nonquadratic terms can be added
see the effects of nonparabolicity!.

The next three terms in Eq.~1! come from the Coulomb
interaction. The direct Coulomb term is given by

edir5
e

2
V~r !n, ~7!

whereV(r ) is the potential created by the 2D electronic dis
and is given by

V~r !5
e

«E n~r 8W !dr8W

urW2r 8W u
5

12

r

e

«E0

r

dx xn~x!ES x

r D
1

4

r

e

«E0

r

dx x2n8~x!ES x

r D
24

e

«Er

`

dx xn8~x!ES r

xD28r
e

«
n~r !, ~8!

whereE is the complete elliptic integral of the second kind8

and« is the dielectric constant of the semiconductor.
The exchange term is given by the expression

eex52
8

3Ap

e2

« S n

2D 3/2

@~12j!3/21~11j!3/2# ~9!

calculated from the exchange energy term per electron
2D system given in Refs. 9 and 10 by

Eex~kW !52
2e2

p«
kFES k2

kF
2 D , ~10!

once it is averaged and separately considered for each
population.

Finally, the Zeeman splitting and correlation terms in E
~1! are given by

eB5
g

2
mBBjn ~11!

and

ecor520.977
e2

« S n3/2

117.8165aB* n1/2D , ~12!

whereg is the Lande´ factor appropriate to the semicondu
tor, mB is the Bohr magneton~for the free electron mass
l,

,

a

pin

.

mB5e\/2mc), andecor is the Wigner approximation calcu
lated for a 2D system,11 whereaB* 5«\2/m* e2.

By minimizing the total energy of the dot with respect
the density for a fixed number of electrons, an Eul
Lagrange equation is obtained,

]e tot~n!

]n
5mc , ~13!

wheremc is the chemical potential ande tot(n) is the density
functional energy per unit area obtained from the six terms
Eq. ~1!.

It must be emphasized that each term is calculated wi
a local approximation and especially the kinetic term
r , ek(r ) is the contribution of a 2D free-electron gas of de
sity n(r ) under a magnetic field, in the same spirit as t
Thomas-Fermi functional is calculated for an infinite hom
geneous gas. For a large number of electrons, and low m
netic field, our kinetic functional approaches the 2D Thom
Fermi contribution:\2pn(r )/m* as expected~see Fig. 1!.

The local approximation is expected to be reasona
good, due to the partial cancellation between the direct C
lomb term and the confining potential, a cancellation th
produces a rather flat effective potential within the dot ar
as is verified below.

The functional variation of each of the six terms in Eq.~1!
is straightforward, except in the case of the kinetic contrib
tion where some care must be taken. To complete this
tion, we will discus the kinetic contribution to the Eule
equation and the calculation of thej parameter in the nex
two subsections.

A. Kinetic contribution

If one assumes that the addition of an extra electron~let
us say in the spin up population! leaves the number of fully
occupied LL’s,~S! unchanged and that only the highest pa
tially filled level is affected, then the nonvanishing contrib

FIG. 1. Kinetic contribution to the Euler equation along the d
radius for a dome density. The smooth curve is the Thomas-Fe
result and the stepped curve the LL type result forN5100 and for
N510 in the inset.B51 T has been considered in both cases.
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12 972 PRB 58N. BARBERAN
tion to ]ek /]n comes from theni-dependent part of the sec
ond term on the right-hand side of Eq.~3! and is given by

\vc~Si1
1
2 !. ~14!

A subtle problem arises from those values of the lo
electronic density that produce an integer filling factor, d
to the discontinuities of the function]ek /]n at these values
of the density12 ~see Fig. 2!.

A simple way to solve the uncertainty at the points
discontinuity is given by the consideration that]ek /]n is the
energy of an electron at the Fermi level~the highest possible
single-particle state!. From this point of view, the value of its
energy, once the local density and the degeneracyD are
known is clear. The value that one must assign to]ek /]n at
n( i ) ~see Fig. 2! is the one given by the lower edge of th
gap ~the black dots in Fig. 2!.

The final expresion for the Euler equation is then given

]e tot

]n
5C1eV~r !1

1

2
m* v0

2r 21
g

2
mBB

2
e2

«
4F n

2p
~11j!G1/2

20.9775
e2

«

3

2
n1/217.8165aB* n

~117.8165aB* n1/2!2
, ~15!

whereC is given by

C5H 0 if a50 and S50

\vc~S2 1
2 ! if a50 and SÞ0

\vc~S1 1
2 ! if aÞ0,

~16!

FIG. 2. Left axis labeling: Kinetic contribution to the energ
density as a function of the electronic density. The arrows co
spond to integer filling factors@at n( i )#. Right axis labeling: Kinetic
contribution to the Euler equation.B51 T in both cases.
l
e

f

s

a being the difference betweenn(r )/D andS and where an
electron inside the greatest spin population (S5S2) has been
considered, i.e., the derivative is taken with respect ton2 ,
keepingn1 fixed.

For a system of electrons in the absence of magnetic fi
the non-negative functionn(r ) that produces a constan
function on the right-hand side of Eq.~13! is the g.s. density.
However, the presence of a magnetic field localizes the e
trons in space and the functions involved in the Euler eq
tion have to be redefined.

To reconcile the definition of the functionC given by Eq.
~16!, which has abrupt changes alongr that are only partially
compensated by the Coulomb terms, with the presence
constant chemical potential on the right-hand side of Eq.~13!
one must make a more general treatment. Following Ref.
the kinetic contribution to Eq.~13! is defined by the set val
ued function,

]ek

]n
5$\vc~S11/2!% if aÞ0, ~17!

]ek

]n
5@\vc~S21/2!,\vc~S11/2!# if a50, ~18!

where $x% denotes a single value and@x1 ,x2# is a closed
interval. The Euler equation can then be written as

2Vc~r !1mcP
]ek~r !

]n
, ~19!

where Vc(r ) includes the last five terms of the right-han
side of Eq.~15! andmc is constant along the radius.

For a fixed number of electrons and magnetic field, Lie12

has proved that there is a unique non-negative density a
constantmc that satisfy Eq.~19!.

In addition to this explanation, we went ahead with t
specific realization of the kinetic term given by the fuctionC
defined by Eq.~16! in order to obtain numerically the mini
mizer density. We definem5]e/]n to distinguish it from the
chemical potentialmc . The solution of Eq.~19! is obtained
when the iterative process converges to a density that
duces a constant value ofm within the regions wherea
Þ0.

Physically this means that even though the energy of
last one-electron occupied state«F is not the same over the
whole dot, one can define a chemical potential. This is
consequence of dealing with strongly localized electrons
which Koopman’s theorem, which identifies themc constant
with the Fermi energy,13 does not apply.

B. The j parameter

Thej parameter has to be obtained from the minimizat
of the total energy againstj. However, there are only thre
terms that explicitly depend onj: the kinetic energy, the
Coulomb exchange term, and the Zeeman splitting contri
tion. Apparently, the spin population obtained from on
these three terms would correspond to an extended sy
free from any confining potential and therefore uninfluenc
by v0 . However, the action of the confining potential on t

-



n-
f

ar

e

s

to
as
tic

n

ro
h
po

f

n
t i
re
o
n

m
q

nt
n
it

do
n

th
ti

in
n-
a

nge
.

for

s
tput
us
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spin population, which undoubtedly exists, is indirectly i
cluded via the local densityn(r ) obtained by the solution o
the whole Hamiltonian.

Therefore, the three terms that have to be minimized

e~j!5ek1eex1eB , ~20!

whereek from Eq. ~2! can be written as

ek5
\vc

2
$n@11S11S21j~S22S1!#

2D@S1~S111!1S2~S211!#% ~21!

and whereeex andeB are given by Eqs.~9! and~11!, respec-
tively. The value ofj that locally minimizes the energy@Eq.
~20!# is not calculated from the condition of vanishing of th
first derivative, but is explicitly obtained numerically from
the variation of e(j). The kinetic contribution increase
monotonically with j (Si are j dependent! whereas the
negative exchange contribution decreases also mono
cally. The Zeeman splitting term gives a negligible decre
ing (g,0) contribution except for extremely high magne
fields.

In the absence of any magnetic field, for high local de
sity, the kinetic term is the dominant part andj50 mini-
mizes the energy~yielding a nonpolarized system!. However,
if the density is low~i.e., at the edge of the dot! the exchange
contribution competes with the kinetic term and may p
duce a completely polarized system. The critical density t
determines an abrupt change from fully polarized to non
larized systems~with zero magnetic field! is given by

e~nc ,j51!5e~nc ,j50! ~22!

or

nc5F8A2~A221!

3 G2 e4m* 2

\4«2p3
52.44

e4m* 2

\4«2p3
~23!

~this means about 3 electrons within a dot of a radius oR
5400 Å, or nc56.8231010 cm2250.0787aB*

22 for m*
50.067me , and «513.6). Spontaneous spin polarizatio
was previously reported, in the region of the saddle poin
quantum point contacts as the electron density is lowe
using the spin-polarized density-functional theory
Kohn-Sham.11 This effect provided a qualitative explanatio
to conduction anomalies observed experimentally.14

Turning back to Fig. 1, which shows the Thomas-Fer
and the Landau-type kinetic contribution considered in E
~15!, some structures can now be understood. At the ce
of the dot, the electron at the Fermi level lies at the seve
LL and falls into lower levels as the density decreases w
r . An abrupt oscillation is apparent near the edge of the
where the density lies below the critical value. In this regio
the system is suddenly fully polarized and the density of
greatest spin population suffers an abrupt increase promo
the last electron into higher levels.

The value ofj(n) that minimizes the energy is shown
Fig. 3 for two different values of the magnetic field. A no
zero magnetic field produces a critical density higher th
the one given by Eq.~23!. The oscillations of thej parameter
e
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produce the irregular structure of the kinetic and excha
contributions to the chemical potential as we show below

The spin polarization of the entire dot is obtained from

jeff5
1

NE j~r !n~r !drW, ~24!

whereN is the total number of electrons.

III. NUMERICAL CALCULATION

To solve the Euler-Lagrange equation@Eq. ~13!# we trans-
form it into a fictitious Schro¨dinger equation in the following
way: we add and subtract a Laplacian operator term:

2a
Dn

n
1a

Dn

n
1

]e tot

]n
5m ~25!

and substitute the last two terms on the left-hand side
their value at a given starting densityn0 , obtaining

2aDn1Fa
Dn0

n0
1

]e tot

]n0
Gn5mn. ~26!

This can be written as

hn5mn ~27!

where

h52aD1u0 , u05a
Dn0

n0
1

]e tot

]n0
~28!

and wheren must satisfy the normalization condition

E ndrW5N. ~29!

In this way Eq.~27! becomes an eigenvalue problem. A
long as a convergent iterative procedure produces an ou
density equal to the input density coming from the previo
step, the solution of Eq.~27! will be a solution of Eq.~13!.

Now, we consider the equation

FIG. 3. Spin asymmetry parameterj as a function of the elec-
tronic density. Curve 1 forB51 T and curve 2 forB56 T.
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]n

]t
52hn, ~30!

wheret is a ‘‘fake time.’’15 For positive eigenvalues, the ne
result of the time evolution of a linear combination of eige
functions is to enhance those components that have sm
eigenvalues. To understand what is going on, let the se
statesnn be the eigenfunctions of the discrete operatorh with
eigenvaluesmn . Sinceh is Hermitian operator, the eigenva
ues are real, the eigenvectors can be chosen to be ortho
mal, and an expansion ofn on this basis at any time is give
by

nj5(
n

an
j nn , ~31!

where time evolution is represented by steps ofDt for j
50,1,2, . . . . On theother hand, the exact time evolution o
n is given by

nj5e2h jDtn0 ~32!

in such a way that each component of the linear combina
should evolve as

an
j 5e2mn j Dtan

0 . ~33!

That is to say, components with larger eigenvalues dis
pear more rapidly, leaving the eigenstate of lowest energ
the dominant contribution for sufficiently long time evolu
tion.

As long asDt is chosen to be small enough, Eq.~32! can
be written as

n15~12Dth!n05
12~Dt/2!h

11~Dt/2!h
n0 ~34!

after the first step@to order (Dt)2#, or

S 11
Dt

2
hDn15S 12

Dt

2
hDn0 . ~35!

Finally, if the right-hand side is fully calculated at th
initial densityn0 , then we obtain

S 11
Dt

2
hDn15S 12

Dt

2

]e tot

]n0
Dn0 . ~36!

If an iterative calculation is performed, normalizingnj
after each step, the convergent process must evolve to
ground-state density of the system.

The space derivatives are approximated by finite diff
ences on a uniform lattice ofN11 points having spacingd
51/N, therefore transforming Eq.~36! into an (N11)3(N
11) system of equations that can be solved by inverting
matrix @11(Dt/2)h# i j , i , j 51,2, . . .N11.

Although this numerical procedure is straightforward,
involves a few subtleties. The parametera must be chosen in
such a way thataDn0 /n0 and ]e tot /]n0 are of the same
order of magnitude andDt must guarantee that the approx
mations made in the expansions of Eq.~34! are valid. More-
over, it is sometimes necessary to average the last two
sities to generate the next.
-
ller
of

or-

n

p-
as

he

-

e

t

n-

The appropriate boundary conditions for our problem
the cancellation of the first-order derivatives atr (1) and
r (N11) and, must be implemented in the first and last ro
of the (N11)3(N11) matrix in Eq.~36! on the left-hand
side and in the first and last values of the column on
right-hand side.

In some cases, the convergence of the numerical pro
turns out to be quite sensitive to the initial input density.
a rule of thumb, it is convenient to begin with an electron
density confined within the classical radiusR given in the
next section by Eq.~39!, and which approximately repro
duces the valuen(0) given by Eq.~38!.

IV. RESULTS

Some test calculations will first be discussed. They are
some interest in their own right, besides providing a che
on the method and the numerical calculation. We will co
centrate on three such tests:

~1! Semiclassical model. An analytical solution of the g
density can be obtained16,17 if the Hamiltonian contains only
two terms, the direct Coulomb contribution and the confini
potential. The solution is given by a ‘‘dome’’ density, give
by

n~r !5n~0!A12
r 2

R2
, ~37!

where

n~0!5
3N

2pR2
~38!

and where a relation between the three parameters,v0 , R,
andN must hold:

v05A 3pNe2

4«m* R3
. ~39!

In Fig. 4 the two terms that enter the Euler equation
displayed~as ‘‘dir’’ and ‘‘conf’’ !. The Coulomb potential
created by the electronic density and the confining poten
cancel each other out, producing a constant chemical po
tial throughout the dot (‘ ‘m ’ ’). These two terms are th
main ones in the general case, which includes all the term
the Hamiltonian, as is verified below, and as a conseque
the effective potential seen by an electron inside the dot
always be quite flat. To see the relative importance of eac
the terms in the full Hamiltonian, in Fig. 4 we also sho
their contributions separately using the dome density a
first approximation. It must be stressed that the dome den
is not a solution of the whole Hamiltonian and that the ‘‘m ’ ’
curve contains only the ‘‘dir’’ and ‘‘conf’’ terms.

Although the model used has certain similarities with t
Thomas-Fermi model, particularly in the way the system
inspected locally, point by point, there are significant diffe
ences. As in the Thomas-Fermi model, one has to wo
about the space variations in the fields felt by the electro
The models are justified only in the case where the poten
are flat enough to consider free electrons locally, in suc
way that the local effect of the potentials is to change
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zero of energy. Under this hypothesis, the semiclass
Thomas-Fermi kinetic energy is calculated assuming a c
tinuous density of states and full occupation of each le
~the total number of electrons is always an even number!. In
contrast, in our model the kinetic contribution is the exa
quantum contribution from a free system of electrons,
which the discrete energy levels with finite degeneracy
considered for each spin state. In order to recover
Thomas-Fermi result as a limit, one must reduce the ene
gaps to zero~decreasing the magnetic field! and consider all
levels as being fully occupied.

One consequence of our model is the appearance
strong variations in the kinetic contribution to the Eul
equation within short distances~see Figs. 1 and 4!. However,
this effect does not violate our initial hypothesis concern
the smoothness of the potentials, which justifies the f
electron assumption.

Besides this argument, it is true that the use of wave fu
tions would smooth the abrupt variations of the kinetic te
used to generate new densities after each iteration. To s
it had any effect on the final converged density, we con
luted ek(r ) within each iteration, using a Gaussian functi
with a width typical of a single electron wave function of th
Laguerre type@Eq. ~40!#. However, within the numerical pre
cision considered, we could find no differences.

~2! If in contrast, within the Hamiltonian we include onl
the kinetic term~including a nonvanishing magnetic field!
and the confining potential, and as such we define a sys
of independent electrons, the analytical solution for
eigenfunctions is known to be given by Laguerre polynom
als Ln

u l u ,18

fnl~r ,u!5A n!

2p~n1u l u!!
1

l
e2 i l uuu l u/2e2u/2Ln

u l u~u!,

~40!

FIG. 4. Direct Coulomb~dir! and confining potential~conf! con-
tributions to the Euler equation along the radius using the do
density for 10 electrons andR5400 Å, g520.44, m*
50.067me , \v052.6 meV ande512.4. m being the chemical
potential for this two terms. Contributions to the Euler equat
from the kinetic (k), correlation~cor!, exchange~ex! and Zeeman
splitting ~B! terms are also displayed.
al
n-
l

t
n
e
e

gy

of

g
e

c-

if
-

m
e
-

wheren50,1,2. . . , l 50,61,62, . . . ,

l25
\

m* ṽ
, ṽ5Avc

214v0
2 ~41!

andu5r 2/(2l2).
Since the Laguerre polynomials are well behaved at

boundaries, we selected these wave functions as a stan
way for generating the starting density within the gene
iterative procedure.

As a second test, we began withn0 generated by Laguerre
polynomials and looked for the solution of the semiclassi
model, that is, when only the Coulomb and confining pote
tial terms are included in the Hamiltonian. Taking the first
wave functions of lowest energy to produce the starting d
sity n0 ~normalized toN electrons!, the iterative procedure
produces the density shown in Fig. 5~a!. The lower dotted
curve is the starting densityn0 , the upper dotted curve is th
exact dome density included for comparison, and the c

e

FIG. 5. ~a! Succesive iterations~solid lines! generated from a
semiclassical model Hamiltonian~see text!. The lower dotted curve
is the starting densityn0 and the upper dotted curve the exact dom
solution.~b! Chemical potentials forn0 ~ dotted curve! and the last
iteration ~full curve!.
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tinuous lines give succesive iterations. However, we w
unable to arrive at the exact solution because of the diffe
boundary conditions atR. The exact solution has an infinit
derivative whereas the iterative procedure produces dens
of vanishing first derivative at the edge of the dot. Howev
the last iteration gives a good approximation to the Eu
equation as shown in Fig. 5~b!.

~3! For the last test, a system of 10 independent electr
was considered. The result obtained is shown in Fig. 6~a!
where the upper dotted curve labeled 1 and included
comparison is the exact solution built up from the first fi
functions @given by Eq. ~40!# of the lowest energy~each
level filled with two electrons of spin up and down! and the
lower dotted curve labeled 3 is the starting density. The
sult of the iteration procedure is shown as a solid line labe
2. It must be realized that the probability of finding an ele
tron at r is given by r n(r ). Multiplication by r would di-
minish the differences, enhanced in the representation
n(r ). There is, however, a remarkable coincidence parti
larly if we consider that it is a system of only 10 electro

FIG. 6. ~a! Electronic density of a 10 electron dot forB
51 T, e512.4 and\v052.6 meV. For a noninteracting system
curve 1 is the exact solution, added for comparison, curve 3 is
starting densityn0 , curve 2 is the numerical result and curve 4
the Thomas-Fermi approximation. Curve 5 is the numerical re
that includes electron-electron interaction.~b! Chemical potentials
for the first three densities: lower dotted curve is forn0 , upper
dotted curve is for the exact solution, and the full curve is for
numerical result.
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within a model that tends to the exact quantum solution
N→`.12 Within this calculation, an unpolarized system wi
constantj50 was considered~there is no exchange interac
tion and the magnetic field considered is small!. The starting
density was the same as that used above, generated fro
Laguerre functions and normalized to 10 electrons.

The chemical potentials are shown in Fig. 6~b!. Due to the
different treatment of the kinetic term the exact density is
the solution to our Euler equation, and the iterations c
verge to a different density, which nevertheless is relativ
close to the exact solution.

Our result produces a succession of small steps that
low the semiclassical Thomas-Fermi result displayed
curve 4 and obtained from the replacement of the kine
term by the expression\2pn(r )/m* . The agreement be
tween the Thomas-Fermi profile and the exact solution
most of ther range is due to the small influence that t
magnetic field has at this relatively high density.

This result would suggest that the inclusion of the LL ty
kinetic term does not produce a great improvement in
results if compared to those obtained from the semiclass
Thomas-Fermi model. Nonetheless, a qualitatively differ
result is obtained when an electron-electron interaction
considered including not only the direct Coulomb term b
also the exchange interaction. The formation of plateaus
the density profile is shown~curve 5! as a consequence o
electronic interaction. The width of the plateaus changes
the magnetic field increases, as is shown below. It mus
stressed that the steps of curve 2 are a direct manifestatio
the LL’s whereas the plateaus of curve 5 result from
interplay between kinetic and Coulomb interaction.

Before discussing the addition spectrum calculation
proved both useful and instructive to analyze the evolution
the g.s. electronic density and the g.s. energy with the m
netic field. From now on the parameters used are those o
experiment reported in Ref. 2: g520.44, m*
50.067me , N539 ~the number of electrons!, \v0
51.6 meV, ande513.6. In Fig. 7 the evolution of the pro
file density is shown as a function of the magnetic field~from
0.4 to 2.9 T!.

As the magnetic field changes, the periodic formation
density plateaus becomes visible. AtB51.1 T two constant
density regions are produced at aroundr 57.5aB* and atr
514aB* . These disappear for greater values ofB, appearing
again forB52.1 T at aroundr 59.3aB* .

A Lang-Kohn type calculation produces Friedel oscill
tions in the density profiles that mask the plateaus, as is
case in Refs. 19 and 20 where moreover, a different den
functional for the exchange interaction is used.

It is also apparent in Fig. 7 that for very small or ve
large values ofB, the density resembles that of the classic
dome, although the energetic structure of the dots diff
greatly. For highB the kinetic term tends towards anr-
independent value given by the first LL, while for very lo
values ofB the kinetic term tends to the semiclassical val
pn(r ).

The competition between the tendency for the density
increase at the center of the dot as the magnetic field
creases and for the density to decrease as a result o
Coulomb repulsion produces roughly the same density ar
50 for all the values ofB.
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FIG. 7. Evolution of the density profile with
the magnetic field for the 39 electrons quantu
dot from B50.4 T to 2.9 T by steps of 0.1 T
From now on, the parameters proposed in Ref
have been used, i.e.,m* 50.067me with me elec-
tron mass,e513.6, which give a Bohr radius
aB* 5\2e/m* e25107.42 Å and \v051.6
meV.
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The plateaus are related to the formation of incompre
ible circular regions within the dot21 where LL’s are fully
occupied. This can be seen in Fig. 8~a!, in which the local
value of the filling factor forB51.1 T is displayed. Within
these regions the electrons show no mobility and their ef
tive potential is not fully screened, as can be verified in F
8~b! where the effective potential, obtained from the le
hand side of Eq.~13! by the subtraction of the kinetic term
is also shown. In contrast, within the compressible regio
the effective potential is constant. Here the metallic chara
screens the fields and there is no net force on the char
Within the incompressible regions, the gradient of the eff
tive potential has a nonzero value and the equilibrium
obtained by discrete changes in the kinetic energy, produ
wiggles inm as shown in Fig. 8~b!.

As the magnetic field increases, only one strongly deg
erate LL is occupied, and the full dot acquires a meta
character producing a constant functionm throughout the
dot. Much stronger fields~about 30 T! would produce new
effects related to the fractional quantum Hall regime.

Figure 9 shows the variation of the total energy@Eq. ~1!#
with B. The different contributions to the energy are i
cluded, at different scales. The Zeeman splitting term is
included as it is a negligible monotonous decreasing con
bution ~of order 1022 meV).

Over all the values ofB, partial cancelation between th
direct Coulomb term and the confining potential takes pla
as was the case in the semiclassical test. To understand
behavior, it is easier to follow the evolution of the me
radius of the density distribution, defined as the integral
s-
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rn(r ) and not included in the figures, since it has virtua
the same dependence onB as the confining potential contri
bution, proportional to the integral ofr 2 n(r ) and displayed
in Fig. 9~b! ~as Econf). As the mean radius increases, th
confining potential contribution also increases. In contra
the expansion of the electronic density diminishes the dir
Coulomb repulsion at a very similar rate. This competitio
flattens their contribution to the total energy. Although mo
of the total energy comes from the electrostatic terms~direct
Coulomb and confining potential!, their partial cancelation
produces the following effect: the variation of the total e
ergy with B is in fact quite sensitive to the nondominan
contributions, the exchange term for weakB and the kinetic
term for strong magnetic fields. A type of oscillatory beha
ior in the mean radius was previously obtained in Ref. 1
These authors relate the periodic oscillations to change
the angular momentum. With increasing magnetic field,
density moves inward becoming more highly localize
around the origin, provided the angular momentum rema
constant. This leads to an increase in electrostatic ene
which is suddenly released when the angular moment
changes its value and the density peak moves outward. T
pattern is repeated every time the orbital angular momen
increases.

For large values ofB, the kinetic term~preportional to
vc) increases in value determining the variation of the to
energy withB. The total energy behaves as the energy of
independent particle system in a metalliclike regime, wh
only the kinetic energy is important. In contrast, the Co
lomb interaction has an inert role, having been frozen. T
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is the case for strongly correlated systems~for example, a
high density electron gas in which the electron-electron
teraction is nearly completely screened!.

Figure 10 shows the addition spectrumE(N)2E(N21)
5mc for different magnetic fields. The spectrum shows
structure superimposed on the general increase withB,
which has been interpreted in different ways within the
erature.

As suggested by the independent electron result, the
of mc(B) at about 1.9 T in the experimental data has be
related to filling factorn52: the first LL is fully occupied
and the spin population is symmetric. From 2 to 3 T, t
small wiggles would be produced by successive jumps
electrons from inside the dot to the outside as a resul
Coulomb electrostatic repulsion, with a simultaneous s
flipping induced by the exchange interaction. This proc
ends when the compact droplet withn51 is formed.

Our results suggest a different explanation. For the l
value of \v051.6 meV proposed in Ref. 2, the electron
densityn(r ) lies below the critical value@see Eq.~23!# ex-
cept atr close to the origin, producing an effective asymm
try parameter very close to one@see Eq.~24!#, i.e., a fully
polarized system for all the values of the magnetic field.
other words, the exchange interaction has promoted

FIG. 8. ~a! Local filling factor along the radius.~b! Left axis
labeling: effective potential and right axis labeling: chemical pot
tial. In all cases the density displayed in Fig. 7 atB51.1 T, is
used.
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f
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spin-up~or down depending on the sign of the Lande´ factor!
states to much higher energies, and different LL are close
energy than different spin states. A higher value of\v0
would produce higher densities and the possibility of succ
sive variations induced byB, as seems to be reflected by th
experimental data. That is to say, we suggest that these
perimental data could not have been produced by such a
value of\v0 .

Besides this conclusion, the curve displayed in Fig.
can be interpreted for a fully polarized system in the follo

-

FIG. 9. ~a! Variation of the total energy@Eq. ~1!# as a function
of the magnetic field.~b! Different contributions to the total energ
displayed on different scales.
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ing way: at first, it is necessary to stress that the definition
filling factor in the 2D independent system of electrons c
not be extrapolated directly to a quantum dot of interact
electrons. As a consequence of the space localization o
electrons in different regions~compressible or incompress
ible! and the electron interaction, the filling factor become
local function. In Fig. 11 we display its value at the center
the dot, and though its variation withB gives useful infor-
mation, its significance has limitations.

The mc /B curve is a consequence of the variation
E(N) with B. The minima ofE(N) at aboutB51.1 andB

FIG. 10. Chemical potential as a function of the magnetic fie
Experimental results of the back-gate voltage from Ref. 2 are
displayed.
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52.2 T @see Fig. 9~a!# are related to the appearance
marked plateaus in the profile density at these same value
B and also related ton(0)52 and 1, respectively. It must b
stressed, however, thatn52 in our result means that the tw
first LL are occupied by electrons of the same spin state.
mentioned previously, the contribution of the kinetic ter
and the exchange interaction determines the final shap
the mc /B curve.
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FIG. 11. Filling factor at the center of the dot as a function
the magnetic field.
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