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ABSTRACT

Objectives: Rapid identification ofAcinetobacter species is critical since members of
the A. baumannii (Ab) groupdiffer in antibiotic susceptibility and clinical tzomesA.
baumannii, A. pittii and A. nosocomialis can be identified by MALDI-TOF/MS, while
the novel specieA. seifertii andA. dijkshoorniae cannot. Low identification rates fdx.
nosocomialis have also been reported. We evaluated the use diIMAOF/MS to
identify isolates ofA. seifertii andA. dijkshoorniae and revisited the identification &€
nosocomialisto update the Bruker taxonomy database.

Methods: Species characterisation was performed rpgB-clustering and MLSA.
MALDI-TOF/MS spectra were recovered from formic deicetonitrile bacterial
extracts overlaid witha-cyano-4-hydroxy-cinnamic acid matrix on a Microfld in
linear positive mode and 2,000-20,00@x range mass. Spectra were examined with the
ClinProTools v2.2 software. Mean spectra (MSP) wereated with the BioTyper
software.

Results: Seventy-eighAcinetobacter isolates representative of the Ab group were used
to calculate the average spectra/species and dgenpedtern recognition models.
Species-specific peaks were identified for all sggcand MSPs derived from A
seifertii, 2 A. dijkshoorniae and 2A. nosocomialis strains were added to the Bruker
taxonomy database, allowing successful identificabtf all isolates using spectra from
either bacterial extracts or direct colonies, r@sglin a positive predictive value (PPV)
of 99.6% (777/780) and 96.8% (302/312), respeativel

Conclusions: The use of post-processing data software identifiedtissizally
significant species-specific peaks to generatereate signatures for rapid accurate
identification of species within the Ab group, piding relevant information for the

clinical management dicinetobacter infections.
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INTRODUCTION

The use of matrix-assisted laser desorption ioimisdatme of flight mass spectrometry
(MALDI-TOF/MS) for the identification of bacteriakpecies has been a major
breakthrough in clinical microbiology. MALDI-TOF/M8&as proven to be a rapid and
accurate methodology highly relevant for the ddfaration of closely related bacterial
species that are otherwise indistinguishable byveotional phenotypic methods,
providing an inexpensive alternative to the labesiand time-consuming molecular
identification methods [1].

Former members of thécinetobacter baumannii (Ab) group @A. baumannii, A.
nosocomialis andA. pittii) are virtually indistinguishable using conventibphenotypic
tests while accurate species differentiation isieadd by sequencing of the RNA
polymerasg3-subunit (poB) gene, the DNA gyrase B)\rB) gene and/or by multilocus
sequence analysis (MLSA), all of which most likebnstitute the current gold standard
for molecular identification [2-4].

In a previous work, we evaluated and optimisedugeof MALDI-TOF/MS for species
identification of the former members of the Ab gooand demonstrated that it was an
accurate and reliable method [5]. Subsequent MALDF/MS studies by several other
groups together with the recent technological adeann molecular methods (such as
whole genome sequencing) have revealed a relatwmdance of nobaumannii
Acinetobacter species of the Ab group in clinical specimens, hgostvolving A.
nosocomialis andA. pittii isolates [6-11].

In the last few years the taxonomy of the geAametobacter has undergone major
modifications, with more than 18 new species hawiagn described since 2014 [3]. In
particular, two novel pathogenic speci@sseifertii andA. dijkshoorniae, have recently

been included within the Ab group and, like tharier members of the group, they can
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be best differentiated by molecular methods [3, Idgntification of these novel species
by MALDI-TOF/MS is not yet possible, since a thogbustudy that evaluates the
distinctness of spectral signatures of all the igsewithin the Ab group and provides
reference spectra for the novel species is stkitag. In addition, several studies have
shown that while the Bruker MALDI-TOF BioTyper sgat correctly identifies almost
all A. baumannii andA. pittii isolates, identification rates féx. nosocomialis range at
about 70%, suggesting that the Bruker databasddbewpdated and further improved
to allow efficient identification of alhcinetobacter species [8, 13, 14].

The aim of the present study was to perform anejptidl analysis of the spectrum
profiles of all the Acinetobacter species currently included in the Ab group, and
generate reference spectra to allow accurate drableeidentification to the species
level by MALDI-TOF/MS.

MATERIALS and METHODS

Bacterial isolates

The present study included 78 isolates belongingheo five Acinetobacter species
within the Ab groupA. baumannii (n=16), A. nosocomialis (n=24), A. pittii (n=15), A.
dijkshoorniae (n=12) andA. seifertii (n=11), mainly obtained from clinical samples in
different geographical locations over a period bfykars Supplementary Table S1).
Isolates were identified at the species level lyusacing of the RNA polymerage
subunit (poB) gene and multilocus sequence analysis (MLSAllezsribed previously

[3]. Isolates were preserved at -80°C in 10% skichmék until use.
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Sample preparation and MALDI-TOF/MS data acquisition

Bacterial cultures were grown overnight on ColumBiaeep blood agar (Becton
Dickinson, Heidelberg, Germany) at 37°C and subpkecto ethanol-formic acid
extraction according to [5].

One microliter of each bacterial extract was spbttieto a MALDI target plate (MSP 96
target ground steel; Bruker Daltonics, Bremen, Gayh) and air-dried at room
temperature. Each spotted sample was then ovesidndl pL of a saturated matrix
solution @-cyano-4-hydroxy-cinnamic acid; Bruker Daltonics) 50% acetonitrile-
2.5% trifluoroacetic acid (Sigma-Aldrich chemicab.CMadrid, Spain) and air-dried.
For MALDI-TOF/MS analysis performed directly fronrayvn bacterial colonies, a
small fraction of a single colony was spotted otite MALDI target plate, carefully
spread and subsequently overlaid with 1 pl of matri

MALDI-TOF/MS was conducted in a Microflex LT (BrukeDaltonics) benchtop
instrument as described previously [5]. Bacterdfacts from all isolates were spotted
5 times onto a MALDI target plate and each spot massured twice, resulting in 10
mass spectra for each individual isolate. Diredbrmp samples were spotted twice, and
each spot was also measured twice, resulting inadsnspectra for each individual
isolate.

MALDI-TOF/MS data analysis

Spectra from bacterial extracts were loaded intcoGhnProTools software (version 2.2;
Bruker Daltonics) and prepared for analysis witle tfollowing parameters: 800
resolution, Top Hat baseline subtraction with a Ii#imal baseline width and no data
reduction. Null spectra and noise spectra exclusitin a noise threshold of 2.00 were
both enabled and spectra grouping was also sughdteak selection and average peak

list calculation ranged from 2,000 to 10,000 mas<harge ratio valuesn(z), and
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recalibration was performed with a 1,000 parts pélion (ppm) maximal peak shift
and 30% match to calibrant peaks. Non-recalibrapeittra were excluded.

m/z values from average spectra were identified acogrdio their statistical
significance, as determined by the different dia$ tests supported by ClinProTools:
Anderson-Darling test, t-/ANOVA test and Wilcoxomlstal-Wallis test. Informative
peaks were those showing a significant differencereg all species as described
previously [15].

For the generation and validation of pattern redegn models, the 78 isolates were
divided into two sets — (i) a reference set comg0 isolatesA. baumannii (n=7), A.
nosocomialis (n=13), A. pittii (n=8), A. dijkshoorniae (n=6) andA. sefertii (n=6); and
(if) a validation set containing 38 isolatés:baumannii (n=9), A. nosocomialis (n=11),

A. pittii (n=7), A. dijkshoorniae (n=6) andA. seifertii (n=5). Selection was performed on
the grounds of the spectral analysis in order thusle as much diversity as possible
within both sets, prioritising the reference seteméver an equitable distribution was
not possible. Classification models were generatgdg the genetic algorithm (GA),
supervised neural network (SNN), and QuickClassifieC) algorithms with default
settings. The recognition capability and cross datlon values were calculated to
demonstrate the reliability and accuracy of the ehod

Bacterial identification

Spectra were analysed with the MALDI BioTyper saites (version 3.1; Bruker
Daltonics) using the pre-processing and BioTypeimnsaectrum (MSP) identification
standard methods (mass range: 2,000 to 20n@@0against either the default Bruker
database or the association of the Bruker databadeour own reference spectra.
Accuracy of the identification was determined byogarithmic score value resulting

from the alignment of peaks to the best matchifgremce spectrum [5].
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Bacterial extracts of isolates selected for MSRitioe were re-spotted 10 times onto a
ground steel target and each spot was measuraae3.tiThe resulting 30 mass spectra
were carefully analysed using the FlexAnalysisvgafe (version 3.4; Bruker Daltonics)
to yield a minimum of 20 spectra per isolate witmé& shift of less than 0.05%.
Selected spectra were then uploaded onto the MARIBTyper to create a single MSP
for each isolate with the BioTyper MSP creatiomdtrd method.

The MSP dendrogram was constructed using the atioeldistance measure with the
weighted linkage algorithm settings of the MALDIdBiyper software.

rpoB-based cluster analysis as well as ML8Aister analysis were performed as
described elsewhere [3].

RESULTS

Spectral analysis

Seventy-eightAcinetobacter isolates representative 8f baumannii, A. nosocomialis,

A. pittii, A. dijkshoorniae, and A. seifertii were used to identify species-specific
biomarker peaks using the Bruker ClinProTools safew Acquired spectra were loaded
into ClinProTools and grouped into 5 different sles, one for eacKAcinetobacter
species, and the average spectrum for each classcaleulated. A detailed spectra
analysis of each species was performed in the mdggdween 2,000 and 10,069z that
concentrated the bulk of mass peaks, and seveealespspecific peaks ranging from
2876 to 88571z values were identifiedT@ble 1), as were 6 peaks (4265, 4661, 5175,
6090, 6948 and 9319/z) that were present in all isolates.

For A. baumannii, a biomarker peak unique to this species and pteseall isolates
was located at 574z (Figure 1E), as describegreviously [5, 14, 16, 17]. Two
additional peaks at 4244 and 848%z likely representing the single and double

protonation states of the same protein, were asntified in allA. baumannii isolates
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but these were also shared with some isolafed. nosocomialis, as shown below.
Spectra from alA. baumannii isolates were correctly identified Asbaumannii (100%)

by the Bruker BioTyper using the default taxononayathase.

For A. nosocomialis, several peaks unique to this species were idettiiA pair of
peaks at 4069 and 818%z (Figure 1B and 1H), also likely corresponding to different
protonation states of a single protein, were prieseall isolates but one, with the latter
isolate displaying a shifted version of the paicdted at 4084 and 8166Vz
respectively (data not shown), in good agreemeti wrevious reports [14, 17]. A
second pair of unique peaks was located at 418@3a58nVz but it was present in only
12 out of 24 isolated~{gure 1C and 1l).

Bacterial identification using the default Brukakbnomy database was able to identify
asA. nosocomialis only 13 out of 24 isolates (54%), while the renmagnisolates were
misidentified asA. baumannii (46%). Similar inconsistent results regarding the
identification of A. nosocomialis have also been reported by other authors [8, 13, 14
The A. nosocomialis isolates that were correctly classified by the BruBioTyper
software were clustered together (group I) and @eg with those that were
misidentified (group Il). Spectra within each grosipowed very similar peak profiles
but there were some significant differences betwexh groupsKigure 2D).

As shown inFigure 2A and 2C isolates inA. nosocomialis group | and Il shared th&
nosocomialis species-specific peaks centred around 4069 and B185All but one
isolate in group | also presented the other twaiggespecific peaks centred around
4180 and 83581z, which were absent among group Il profiles. Indteaolates in
group Il presented the two peaks at 4244 and 848%hat were also present in &l

baumannii isolates, as mentioned before.
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Despite the clear splitting of al. nosocomialis isolates into two separate groups
according to their peak signatures, this cleafrdisbn was not observed lbpoB-based
clustering (data not shown) or MLSA analydtsgure 3).

For A. pittii, the analysis of spectra recognised a higher éegfreariability with only a
few species-specific peaks shared by a majoritigahtes. A major peak at 571z
(Figure 1E) was identified in all isolates but one, in googtement with previous
reports [14, 16-18], and a second unique peak @2 66z was present in 10 out of 15
isolates Figure 1F). Eight out of 15 isolates also showed a pair @ks located at
4411 and 8821z, respectively, again likely representing the défaly charged states
of a single proteinKigure 1D and 1). These two peaks were also identified in 2
additional isolates although they were shifted 3d 4and 8691z, respectively (data
not shown). Similarities among. pittii isolates at the spectra level did not correlate
with eitherrpoB or MLSA clustering either (data not shown). Spsddentification
using the default Bruker taxonomy database cogredtntified all spectra aA. pittii,

in agreement with previous reports [13, 14].

For A. dijkshoorniae, the analysis of spectra identified 4 masseswleae present in all
isolates and were also unique to this species: jBrrpaaks located at 4430, 5788 and
8857 m/z values Figure 1D, 1E and 1), as described previously [3], as well as a
smaller peak at 6728Vz (Figure 1F). Since there were no reference spectra for this
novel Acinetobacter species in the Bruker taxonomy database, the bestification
matches of spectra from. dijkshoorniae isolates were td\. pittii reference spectra.
Interestingly, the first two best matches were gbsvéo the sam@é\. pittii reference
spectra A. pittii serovar 18 DSM9341 and serovar 22 DSM9318), wighsicores >2.0,
while the subsequent best matches ag&inpittii isolates showed log scores <2.0. It is

plausible that the two isolates originally usedcteate these MSPs belonged to the

10
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novelA. dijkshoorniae species. Of note, the MSPs for these isolates usrd to screen
our Acinetobacter collection and led to the identification of 3 igtds that turned out to
be A. dijkshoorniae by molecular methods.

For A. seifertii, a unique peak was present at 7448 (Figure 1G) in all isolates and
several additional species-specific peaks were w@entified, albeit with differences
depending on the isolates. A pair of peaks located194 and 838&vz (Figure 1C
and 1l) was identified in all but 2 isolates that, nevelele, presented a similar pair but
shifted at 4122 and 824Wz (data not shown). Likewise, another pair of pdakated

at 3948 and 7898vz (Figure 1A and 1H) was present in all but 3 isolates, the latter
showing a shifted pair at 3985 and 796& (2 isolates) or 3961 and 7926/z (1
isolate) (data not shown).

As it occurred withA. dijkshoorniae, there were no reference spectraAoseifertii in
the Bruker taxonomy database either, and the lgesttification matches were .
baumannii reference spectra. However, the first best match always to the same
baumannii reference spectrad( baumannii CS_62_1 BRB) with log scores >2.0, while
the subsequent best matches showed log scores ®2e0MSP forA. baumannii
CS 62 _1 BRB was also used to screen Asinetobacter collection and it led to the
identification of one isolate that was confirmedAasseifertii by molecular methods,
again suggesting that the isolate used to creaté/tBPA. baumannii CS_62_1 BRB
most likely belonged to the noval seifertii species.

Generation and validation of pattern recognition malels

Spectra from a reference set of isolates (see Miteand Methods) were uploaded to
the ClinProTools software and grouped again inthfferent classes according to each
Acinetobacter species. The average spectra from esghetobacter species were used

to generate classification models based on the tigeAdgorithm, SNN and Quick

11
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Classifier algorithms to select an optimal set ehks that allowed correct species
allocation of the spectra used for model generati®h three algorithms provided
recognition and cross-validation values above 9% &7%, respectively, suggesting
that successful differentiation of allAcinetobacter species was possible. Of the three
algorithms, the SNN model yielded the highest redogn and cross-validation values
(100% and 92.6%, respectively) and was therefolectssl to evaluate its ability to
classify spectra from isolates not included in generation of the model (external
validation). The SNN model was able to allocate tmafsthe spectra from the 38
isolates of the validation set to their correspagdicinetobacter species, resulting in a
positive predictive value (PPV) of 96.8%able 2).

BioTyper database update and automated identificatin

As described in Materials and Methods, new BioTyp8Ps were created from
representative isolates to account for the intrad mter-species variability observed.
MSPs forA. seifertii derived from isolates NIPH 97%type strain), R00-JV54 and LUH
05789. MSPs foA. dijkshoorniae originated from isolates JVAPO1type strain) and
R10-JV222. In addition, we included new MSPs Aoinosocomialis that derived from
isolates SCOPE 150 and RUH 503, to account fordéetification ofA. nosocomialis
isolates belonging t8. nosocomialis group Il (Figure 2).

Cluster analysis of MSPs from all tieinetobacter species within thé\cinetobacter
calcoaceticus-Acinetobacter baumannii complex (which includes the Ab group)
grouped MSPs from eachAcinetobacter species into separate monophyletic clusters
(Figure 4). Interestingly, the two MSPs from representatsaates ofA. nosocomialis
group Il were grouped more closely fa baumannii MSPs than to those ofA.
nosocomialis group |, while still forming a separate clade, als@ood agreement with

results from the spectral analysis.
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Spectra from all 78 isolates were then analysethaga custom database that included
the MSPs from all théAcinetobacter species within the default Bruker taxonomy
database plus the novel reference signaturef\faeifertii, A. dijkshoorniae and A.
nosocomialis. As shown inTable 2, the allocation of spectra obtained from bacterial
extracts to their correspondindcinetobacter species provided sensitivity and
specificity values ranging from 98.8-100% and 9808%, respectively, resulting in a
PPV of 99.6%. In addition, strains RUH 204. junii), RUH 44 @A. haemolyticus),
RUH 45 A. Iwoffii), RUH 3517 A. radioresistens), and RUH 584 A. calcoaceticus),
representing a set of referen&enetobacter strains belonging técinetobacter species
other than those included within the Ab group [sgre also correctly identified (data
not shown). These results showed the absence sg-wentification between the novel
MSPs and othehcinetobacter spp.

Likewise, the identification of spectra from direxilonies instead of bacterial extracts
yielded sensitivity and specificity values rangifrgpm 91.7-100% and 98.0-100%,
respectively, with a PPV of 96.8%4dble 2).

DISCUSSION

In the present study we have compared for the finsé the spectral profiles of the
current members of the Ab group, including the hadveseifertii andA. dijkshoorniae
species. Spectral analysis has allowed the ideatifin of a conserved set of peaks that
are present in all isolates and, therefore, arestinat least to the Ab group. Four of
these peaks correspond to 4 out of the 5 peaksilbedcby Sousat al. as being
specific to theAcinetobacter genus (4662, 5176, 6949 and 932%) [17]. We have
found, however, that the peak described by Setish at 7435m/z is present in all

species exce. seifertii, which instead presents a unique peak at 1446
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The thorough analysis of all spectra has also dethe identification of several peaks
that are unique to eacAcinetobacter species and might serve for identification
purposes. The majority of such peaks corroborageipus findings but, nevertheless,
remarkable differences have also been found. Fstamte, previous studies have
reported a peak at 2878z as specific téA. baumannii [5, 19], although Sousat al.
reported such peak iA. nosocomialis [17]. In the present study, we have identified a
peak at 2876n/z in all A. baumannii isolates that overlaps with a small intensity peak
centred around 286%/z present in somA. nosocomialisisolates. The presence of such
a peak might be misleading for identification psg® (data not shown). Likewise,
Hsuehet al. identified a peak at 288%/z that was unique t@é. pittii [14] and in our
study this peak is indeed present infalpittii isolates but it is also identified in several
isolates ofA. nosocomialis andA. dijkshoorniae; and a peak at 954%/z considered as
unique toA. seifertii by Sousaet al. [17] is clearly present in severAl pittii and A.
dijkshoorniaeisolates in our study.

In addition, the comprehensive examination of Aaenosocomialis isolates has led to
their differentiation into two groups accordingtheir spectra profiles. Isolates included
in group | contain 4A. nosocomialis-specific peaks while isolates in group Il only gho
two of these peaks but share two additional peakts Av baumannii. Interestingly, of
the 5 reference spectra (MSPs) fornosocomialis included in the Bruker taxonomy
databaseHRigure 3), 4 originated from isolates belonging to grougnd only one was
representative of group Il. These differences togetvith the underrepresentation of
group Il MSPs in the default BioTyper software ntigitcount for the low rates of
successful identification oA. nosocomialis isolates reported by several authors [8, 13,

14].
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So far only two studies have confronted the amhigudentification of certain isolates
from the Ab group, either using alternative sampieparation protocols [16] or by
coupling MALDI-TOF/MS with chemometric methods [17These novel approaches
have certainly improved the differentiation of foeemer members of the Ab group, but
they have failed to provide automated spectra adoun linked to automated species
identification and, therefore, cannot be succelsfiohplemented in routine clinical
laboratories. In addition, none of these studiesveh#horoughly evaluated the
identification of the novel members of the Ab groApdijkshoorniae andA. seifertii.

The results from the spectral analysis and thelaabn of the SNN pattern recognition
model in our study suggest that conventional antoraated MALDI-TOF/MS
identification of all the current members of the Atoup is possible with an updated
reference taxonomy database. We have created nefeezence signatures (MSPSs) to
improve the identification of group KA. nosocomialis isolates as well as of the novel
speciesA. dijkshoorniae and A. seifertii. Cluster analysis of the novel MSPs together
with those already present in the default Brukemot@my database also support the
unambiguous identification of all species using tieichnology. Of note, the MSPs from
isolatesA. pittii serovar 18 DSM9341 anAl pittii serovar 22 DSM9318 are clustered
together with those @. dijkshoorniae, and the MSP frorA\. baumannii CS_62_1 BRB

is clustered together with the MSPs frénseafertii isolates Figure 4), emphasising
that the species identification of these isolatéwulkl be revisited since the
characterisation of novélcinetobacter species.

Bacterial identification by MALDI-TOF/MS using owustom taxonomy database has
shown correct identification of alcinetobacter species within the Ab group with
sensitivity and specificity values well above 98%en using spectra from bacterial

extracts, and above 91% and 98%, respectively, wisng spectra directly from
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bacterial colonies. It should be noted, howeveat the quality of spectra with the use
of direct colonies highly depends on technicianestipe during sample loading, with
identification rates varying greatly.

Inclusion of these novel MSPs into the Bruker taotag database should allow rapid
automated identification of all th&cinetobacter species within the group, contributing
to the assessment of the clinical and epidemio&bgrlevance of the different species
in the Ab group and, eventually, improving the tmeent and management of
Acinetobacter infections [20].

We acknowledge that the small number of isolateduded might have been a
limitation in our study, in particular foA. pittii. A. pittii isolates show the largest
variability, both regarding spectra profiles anchefic sequences, and although there is
no cross-identification betweeh pittii and otherAcinetobacter spp., the inclusion of
additional strains may contribute to further dediteethis species.

It is also clear from this study that achievingreot identification of bacterial species
by MALDI-TOF/MS strongly relies on the accuracy arabustness of the reference
database, which needs to be constantly refinedvaldiated on a par with an evolving
taxonomic classification.
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455 TABLES

456 TABLE 1. ClinProTools peak statistics for all the speciesesiic peaks

457
Peak number Mass DAve PTTA PWKW PAD Abau Anos Apit Adij Asei
21 3948.53 13.65 0.00344 0.0000533 < 0.000001
23 4069.73 4.81 0.000539 < 0.000001 < 0.000001
26 4180.56 9.36 < 0.000001 < 0.000001 < 0.000001
27 4194.14 13.42 < 0.000001 < 0.000001 < 0.000001
34 4411.95 11.99 < 0.000001 < 0.000001 < 0.000001
35 4430.15 37.02 < 0.000001 < 0.000001 < 0.000001
58 5747.48 137.56 < 0.000001 < 0.000001 < 0.000001
59 5777.3 157.06 < 0.000001 < 0.000001 < 0.000001
60 5788.92 101.76 < 0.000001 < 0.000001 < 0.000001
78 6692.55 5.97 0.00000267 < 0.000001 < 0.000001
80 6729.52 3.94 0.0000755 < 0.000001 < 0.000001
88 7446.28 8.73 0.000984 0.0000173 < 0.000001
89 7893.14 61.67 0.000187 < 0.000001 < 0.000001
92 8135.43 33.8 < 0.000001 < 0.000001 < 0.000001
96 8358.1 50.16 < 0.000001 < 0.000001 < 0.000001
97 8385.13 53.54 < 0.000001 < 0.000001 < 0.000001
101 8821.13 43.15 < 0.000001 < 0.000001 < 0.000001
102 8857.63 103.26 < 0.000001 < 0.000001 < 0.000001

458 Peak number: correlative numbering of the peakénalverage spectra; Mas3z value; DAve: difference between the maximal aredrtiinimal
459 average peak area/intensity of all the species;PPplvalue of t-/analysis of variance test; PWKWvagdue of Wilcoxon/Kruskal-Wallis test

460 (preferable for non-normally distributed data); PADvalue of Anderson—Darling test, which givesomfiation about normal distribution (p-
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461 value AD <0.05, non-normally distributed; p-valu® &0.05, normally distributedbau: A. baumannii; Anos. A. nosocomialis; Apit: A. pittii;
462 Adij: A. dijkshoorniae; Asai: A. seifertii. Shaded boxes indicate species specificity.

463

464 TABLE 2. External validation of the supervised neural nek(&NN) model and the novel mean spectra (MSHeguke ClinProTools and the
465 MALDI BioTyper software, respectively.

466
Spectra classification

Method Acinetob_acter N° of N° of A A A A A Sen Spe PPV
species Isolates spectra baumannii nosocomialis pittii dijkshoorniae seifertii (%) (%) (%)

ClinProTools  A. baumannii 9 90 89 1 0 0 0 98.9 100

A. nosocomialis 11 110 0 110 0 0 0 100 96.7
A. pittii 7 70 0 7 61 0 2 87.1 99.7 96.8

A. dijkshoorniae 6 60 0 0 1 59 0 98.3 100

A. seifertii 5 50 0 1 0 0 49 98.0 99.4

BioTyper A. baumannii 16 160 158 2 0 0 0 98.8 99.8
(Bacterial A. nosocomialis 24 240 1 239 0 0 0 99.6 99.6 99.6

extracts) A. pittii 15 150 0 0 150 0 0 100 100

A. dijkshoorniae 12 120 0 0 0 120 0 100 100

A. seifertii 11 110 0 0 0 0 110 100 100

BioTyper A. baumannii 16 64 63 1 0 0 0 98.4 98.0
(Direct A. nosocomialis 24 96 5 91 0 0 0 94.8 995 96.8

colonies) A. pittii 15 60 0 0 60 0 0 100 984 ™™
A. dijkshoorniae 12 48 0 0 4 44 0 91.7 100
A. seifertii 11 44 0 0 0 0 44 100 100
467

468 Sen (%), sensitivity (%); Spe (%), specificity (%PV, positive predictive value
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FIGURE CAPTIONS

FIGURE 1. MALDI-TOF/MS averaged spectra plots from isolatdstiee Ab group
showing specific peaks foA. baumannii (red),A. nosocomialis (green) A. pittii (blue),

A. dijkshoorniae (yellow) and A seifertii (purple). The background noise signal is
shown in orange. The x-axis shows th#z values and the y-axis indicates the
intensities of the peaks expressed in arbitragnisity units. Peaks are ordered from left

to right as A-J according to their ascendimg values.

FIGURE 2. Spectral analysis ofA. nosocomialis and A. baumannii isolates. A.
nosocomialis isolates are clustered into groups | and Il accmydod BioTyper results.
(A, B and C) Averaged spectra plots for all the spectra inaludghin each groupA.
baumannii (red), A. nosocomialis group | (blue),A. nosocomialis group Il (green),
background noise signal (orange). The x-axis shthvwesm/z values and the y-axis
indicates the intensities of the peaks expressedhitrary intensity unit§D) Gel view
representation in quadratic mode and chromaticesafbll independent spectra within
the 4,000-9,000n/z mass range. Each isolate is represented by 10endept spectra.
The x-axis shows thevz values and the y-axis indicates the number oftspéleft) as
well as intensities of the peaks expressed inraryitintensity units (right). Grey lines
are used to separate spectra from different groupews indicatenvz values that are
present inA. nosocomialis group | and Il (orange labels); only A1 nosocomialis group

| (blue labels); in bot\. nosocomialis group Il and inA. baumannii (green labels); and

only in A. baumannii (red label).

FIGURE 3. Cluster analysis of all the 78 Ab group isolateduded in the study based

on the concatenated partial sequences otcpnéO, fusA, gltA, pyrG, recA, rplB and

23



494 rpoB genes used for MLST under the Pasteur scheme.p@heal sequences of the
495 individual genes used for MLSA can be retrievednfraghe PubMLST website
496 (http://[pubmist.org/abaumannii/) under the sequentge codes listed in
497 Supplementary Table S1 Phylogenetic trees were constructed using thghbeur-
498 joining method with genetic distances computed bsnl€a’s two-parameter model
499 (Kimura, 1980) with a bootstrap value of 1000 regiés. Bootstrap values (%) are
500 indicated above the branches. The scale bar imdicaequence divergencgl)
501 Collapsed phylogenetic tree showing the monophy/idtistering of isolates from each
502 Acinetobacter species within the Ab groufB) Expanded phylogenetic tree showing
503 the clustering of all th&. nosocomialisisolates. Circles (in blue) and squares (in green)
504 indicate A. nosocomialis isolates classified as belonging to group | (cdroTyper
505 identification) or group Il (BioTyper misidentifitan), respectively, using the default
506 Bruker taxonomy database. The MSP label indicatetates that originated the 5
507 reference spectra (MSPs) fAr nosocomialis currentlyincluded in the default Bruker
508 taxonomy database.

509

510 FIGURE 4. MSP dendrogram containing all the MALDI-TOF/MS sifie signatures
511 of isolates from theAcinetobacter calcoaceticus-Acinetobacter baumannii complex
512 included within the default Bruker taxonomy databas well as specific signatures for
513 A dijkshoorniae, A. seifertii andA. nosocomialis created in this study. Distance values
514 are relative and normalised to a maximal value,00Q. The novel MSPs created in this
515 study are labelled with a single asterislk. (MSPs from isolates that failed to cluster
516 with their correspondindcinetobacter species are labelled with a double astert$K.(
517 T:Type strain.

518
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