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Chapter 1

Introduction



2 Introduction

Physics has reached an unprecedented degree of precision and descriptive power through
perturbative field theory analysis. The accomplishments of this versatile framework
are extended through a wide spectrum of systems, scales and constituents, more often
than not providing accurate predictions that surpass or challenge the best available
experimental setups, both in particle physics and condensed matter models. Nevertheless,
this success is somehow delusive: perturbation theory is applicable only when certain
conditions are satisfied, and that is generally not the case.

To begin with, even in weakly interacting field theories, perturbative methods totally
fail to account for a certain class of phenomena that have consequently been denominated
nonperturbative effects. This is reflected in the fact that perturbative series are in general
asymptotic, and therefore their precision is in general bounded. It is nonetheless often
possible to add complementary terms to perturbative expansions to encompass the
missing physics, and indeed the ongoing research on resurgent methods might soon offer
a way to make this analysis systematic. Most of the known nonperturbative effects can
be dealt with by studying the instantons in the theory, and therefore, they are often
under control.

That is not the end of the story, though. Whenever the theory under consideration
does not admit a weakly coupled quasiparticle description at the regime of interest no
perturbative expansion is applicable and, on general grounds, we lack the mathematical
technology to analyse it. Admittedly, this question might have been considered of little
interest by most physicists if such nonperturbative field theories were not realized in
nature, but in fact numerous physical systems are known or expected to fall into this
class. They include a case of central interest in nuclear physics, for instance: the theory
of quantum chromodynamics in the regime where it becomes strongly coupled, which is
precisely the parametric region where the infamous confinement crossover, the so-called
hadronization, takes place. Another theory thought to require a nonperturbative field
description is the effective description of superconductors with high critical temperatures.
To my knowledge, there is no known theory that successfully accounts for their transport
properties, but a minutious analysis of the experimental results clearly disfavours any
description in terms of (weakly-coupled) quasiparticles. Let me point out that, in contrast
to what happens with strongly coupled chromodynamics, there is in general no reason to
think that a nonperturbative field theory ought to be the extension of a weakly coupled
field theory beyond the validity of the power-series in the coupling, or in regimes where
perturbative effects become dominant. In fact, in large families of known nonperturbative
field theories, a weakly coupled regime where one can define particles is not even expected.
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To make things worse, there is an important sector of physics where even the paradigm
of quantum field theory is at stake: quantum gravity. There is no evidence that the
quantum theory for a dynamical geometry can be build upon a full-fledged field theoretical
description, at least not in terms of its own dynamical fields. It is known that, if any
quantum ultraviolet completion exists for Einstein’s equations, this fixed point will not
be Gaussian. While the search for this hypothetical nonperturbative quantum completion
of gravity is an open line of research, in this case there are reasons to suspect not
only the perturbative adjective but also the field theory label. Indeed, why should we
expect quantum field theory, a framework that relies on placid, semiclassical geometrical
backgrounds, to be able to withstand such a dramatic deformation as the quantization
of the spacetime it lives on? In this regard, string theory arises as a good alternative: in
an oversimplifying, heuristic, way, this framework delegates the quantization of the fields
that describe spacetime to a field theory defined in another spacetime with nondynamical
metric. This framework comes with (at least) a drawback: To the best of my knowledge,
we are not yet able to formulate a full-fledged nonperturbative string theory, and all our
string theoretical constructions can be tracked back to asymptotic perturbative series,
possibly with nonperturbative corrections. This fact can be somehow discouraging from a
philosophical point of view, but it does not invalidate the theory as long as the accessible
regimes cover our descriptive needs. In fact, many nonperturbative string regimes can be
studied using a type of relation between string constructions known as duality.

The main character in this thesis precisely ties together the problems of nonper-
turbative field theories and quantum gravity, and offers resources to address them. It
goes under many names: gravitational holography, Maldacena’s conjecture, AdS/CFT,
gauge-strings correspondence, and sometimes consistent reorganizations of these words.
For the purposes of this introduction it is sufficient to state that this conjectured equiv-
alence relates gauge field theories to certain realizations of string theory. The way
this relationship is established makes the duality extremely interesting, and indeed it
has remained one of the central subjects of study of theoretical physics for almost two
full decades, principally for two reasons: On the one hand, this correspondence maps
specific nonperturbative regimes of certain gauge theories to the semiclassical dynamics
of hyperbolic gravitational spacetimes, which equips us with analytical and numerical
well-understood geometrical tools to explore the former. On the other, the possibility to
rephrase the regime of perturbative string theory in a field theoretical language gives us
a way of meaningfully completing the string realization beyond its perturbative regime,
and encodes the mysterious domain of string-theoretical quantum gravity into a well-
defined quantum field theory on a rigid spacetime. The AdS/CFT construction, therefore,
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opens two windows towards quantum regimes that would otherwise be considered almost
unattainable. Two of the widest gaps in our understanding of quantum theories can in
principle be filled by better deciphering this conceptual Rosetta Stone.

Unfortunately, in practice, this duality is hard to explore. Like other well-known
correspondences involving nonperturbative regimes, it eludes a formal proof or formulation,
because its two sides are seldom simultaneously accessible, and sometimes not even
simultaneously well-defined. Needless to say, that’s precisely why holography is expected
to become so useful once we understand it, and therefore waiting for a hypothetical
nonperturbative string completion or mathematical control on nonperturbative field
theories to derive it from first principles would defy its main purposes. Instead, research
in AdS/CFT aims at gaining intuition for the duality by looking at specific cases where
symmetries, and more specifically supersymmetry and conformal symmetry, enhance our
visibility. Through these landmarks we progressively learn how to approach less symmetric
setups. Let me emphasise, though, that the directory of regimes and observables that
can be used for this program is, as of today, very short.

To sum up, holography is a bridge in the making. Some provisional structure makes it
practicable for some purposes, yet we are far from the solid reliable building we envision.
Theoretical physicists have made slow but steady progress in its construction for almost
two decades now, even in nontrivial regimes. The construction level is reached by stepping
on auxiliary scaffolds; stable narrow platforms attached to solid grounds on their sides,
but sustained over the void out with the help of high amounts of symmetry for almost
all their length.

This thesis is ultimately a laborer’s contribution to this colossal project. It focuses
on a very precise target: the exploration of how the duality can benefit from the exact
predictions of a field theoretic technique known as supersymmetric localization. More
precisely, its content addresses a specific type of observables amenable to this technique:
supersymmetric loop operators of the Wilsonian type. The results I will present in this
dissertation are based on the research I conducted in collaboration with Blai Garolera
and Bartomeu Fiol, and which resulted in the publications [1, 2, 3, 4], where we provided:

• A benchmark for the study of strongly coupled field theories through holographic
supergravity.

• Precision tests for the holographic conjecture.
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• A refinement on the bubbling geometry description of the gravitational duals to
theories with so and sp algebras.

• String theory predictions for the nonorientable sectors of the string topological
expansion at all orders.

• A list of potential diagnostic methods for semiclassical holographical duals in field
theories.

• Nonperturbative predictions for the dissipation and the radiative properties of highly
energetic particles moving through strongly coupled backgrounds.

These results are contextualized and detailed in the central part of this thesis. More
specifically, chapter 3 elaborates on the interplay between localization and holographic
techniques for one of the simplest configurations at hand, namely, N = 4 super Yang-Mills
theory at large number of SU (N) colors, while chapters 4 and 5 study the implications
on holography of supersymmetric localization in more general settings: N = 4 theories
of generic classical Lie algebras of finite rank and N = 2 superconformal field theories,
respectively.

These chapters are preceded by an overview of several concepts and methods of
relevance in this dissertation (chapter 2). In particular, I considered most important to
present:

• A short digression on the roles played by objects of reduced dimensionality in field
and string theories.

• A brief introduction to the framework of the holographic conjecture.

• A detailed characterization of the field theoretical observables of interest: Wilson
loop operators that preserve some amount of symmetry in 4-dimensional N = 4
nonabelian gauge theories and their closer relatives.

• A general overview of the supersymmetric localization method, its predictions for
N = 2 Lagrangian supersymmetric field theories on flat 4-dimensional spacetimes,
and the mathematical resources one can use to analyse the resulting matrix models.

The reader should nonetheless bear in mind that this text is not fully self-contained.
Modern physics refuses to stick to the “tree of knowledge” conventional (and frequently
inappropriate) picture for science, forming instead a less story-friendly “net of knowledge”.
Bethe-like descriptions of this net are specially inefficient and misleading in the edges
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of our understanding, where the interplay between many related frameworks becomes
an important driving force for research. In my efforts to keep this dissertation compact,
the links of minor importance for my purposes have been either omitted or referred
to the literature. I have also assumed in the writing that the reader is familiar with
Lie algebras and their representations, quantum field theory, linear response analysis,
conformal symmetry, supersymmetry, and differential geometry.

I would like to make a few disclaimers before going into details:

• The taming of nonperturbative effects can somehow help us extend a weakly coupled
field theory to stronger couplings, reaching regimes where the theory becomes
nonperturbative. Consequently, I have allowed myself to include both methods
used to describe nonperturbative effects and generic approaches to nonperturbative
theories under the same label: “nonperturbative methods”.

• From the preceding text the reader might get the impression that the characterization
of nonperturbative physics is a recent line of research, motivated by the saturation of
the applicability of perturbative methods. That vision would not only be wrong, it
would be totally unfair as well. Some nonperturbative methods to characterize both
perturbative and nonperturbative effects and theories are as old as perturbative
theory itself and very useful and necessary complements to it. Their list includes
the field theoretical identities obtained from symmetries and functional field theory
methods relying on analyticity. Other nonperturbative methods were not born with
quantum field theories, but they are still older than holography, including among
others lattice discretizations of quantum field theories, the bootstrap equations
on conformal field theory, the so-called Seiberg-Witten formalism, and instanton
calculus. Even when it is not designed as a non-perturbative tool itself, an immediate
predecessor of holography called “large N” expansionthat will be mentioned later
in this document can also be a useful framework to obtain some nonperturbative
results.

• In the same manner, I should warn the reader that holography is not the only
recently opened window towards nonperturbative physics. Together with the other
main character in this dissertation, namely supersymmetric localization, and other
strategies including integrability, resurgent analysis, and several dualities derived
from geometrical tools in higher dimensions, they set the scenario for a new type of
approach towards nonperturbative physics. They no longer aim only for qualitative
targets, such as analytical structure or anomaly characterization, but address specific
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computations of nontrivial nonperturbative observables with quantitative precision.
As of today, only supersymmetric configurations are at reach for most purposes,
but hopefully the regions where the applicability of different methods overlap will
permit symbiosis amongst them and help us perfect tools that we can later use in
more realistic settings.
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Chapter 2

General concepts and analytical tools
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2.1 Defects and probes

This section is devoted to the study of defects in relativistic quantum theories. The
word defect denotes here any object implemented through an embedded submanifold.
It will help us to avoid, when necessary, the subtle linguistic distinctions between state,
operator, theory, and physical object, which often have little or no support in the quantum
mechanical framework.

Two applications of defects are cornerstones of this thesis:

• Wilson loop operators in gauge theories constitute its main testing ground. These
objects will be discussed in general in 2.1.3. Later, in 2.3 we will stipulate which
specific Wilson operators will be of interest in this thesis.

• String theory sets a conceptual background from which the implications of Wilson
loop results are inferred. The key objects in our setting are not strings themselves,
but through another sort of constituents of these theories: D-branes. These objects
will be introduced in 2.1.4 from string theoretical dualities.

Before going into this specific details, some general contextualization on defects will be
provided.

2.1.1 Fauna and flora of the defect operator landscape

As their name indicates, quantum field theories (QFTs) are defined in general in terms
of fields. However, this does not exclude the possibility that they develop effective
objects of reduced dimensionality. It neither diminishes the importance of geometrical
quantities defined on submanifolds, such as fluxes across virtual surfaces or charges in a
volume, through which we characterize some field configurations. For these and many
other reasons, defects are useful objects in in quantum theories, and they are in general
implemented through operators with support on the locus where the submanifold resides.

Some of these operators can be defined in terms of integrals over the defect of local
fields, or, more properly, of their restrictions and pull-backs. When physical defects are
given by a worldspace Lagrangian are treated perturbatively, for instance, they end up as
a series of n-points of such operators. These insertions to the theory are harmless in the
sense that they are algebraically defined from local operators, and, thus, we don’t have
to introduce any new rule to work with them in quantum field theory. I should warn the
reader that one should not be careless with these operators, however: for noncompact
manifolds the integral over the worldspace is usually IR-divergent, and their reduced



General concepts and analytical tools 11

dimensionality requires a specific treatment of the UV divergences of their fields1. Both
types of divergences can be properly addressed using conventional methods.

Another word of caution is needed: the class of operators presented in the previous
paragraph does not cover the full set of defect operators one can build. As Kapustin
argued in [5], in the UV fixed point where the theory flows from, conformal symmetry
can be used to map the problem to a theory where the defect is located at a boundary.
In this language, one can freely specify which symmetry-preserving boundary conditions
for the fields are imposed by the defect. Although in general this does not exempt us
from including the defect contribution in the action or inserting the defect operator,
the amount of possible choices for these boundary conditions enlarges the set of defect
operators we are able to define. This is a central topic in the study of defects, and the list
of operators that need this formalism for their construction includes important examples
such as the ’t Hooft loops. However, this direction will not be further explored in this
dissertation.

Not every defect operator D can represent a sensible physical insertion or deformation
of the theory. A necessary consistency condition for this to happen is that the v.e.v.s of
observables in presence of the defect, which would read

〈O〉D = 〈OD〉
〈D〉

, (2.1)

define a unitary theory. This is guaranteed if the defects are built from combinations of
physical objects in a unitary theory. All the defects we will consider in this thesis are of
this type.

For some defects, quantities of the form (2.1) can be computed in perturbation theory,
but this is not the general rule. The behaviour of correlators with defects depends largely
on the properties of the theory and the defect, and for this reason very few things can be
stated about it in general. In fact, Despite their definition in terms of a submanifold,
it is not guaranteed that their repercussion on the theory will be confined to a small
neighbourhood of their location. For specific defects their insertion can even change the
moduli structure of vacua.

For semiclassical theories, an interesting question to ask regarding this issue is whether
the backreaction of the defect, i.e., the change it causes to the solution of the equations
of motion, is local. If this is the case, there will be scales where backreaction can be

1This issue is specially confusing when, as it happens for Wilson loops, the defect operator is built
purely in terms of the charges, fields and couplings of the field theory: The condition for the absence
of divergences is different if the field insertion is integrated over d dimensions instead of D dimensions,
and there is an apparent contradiction between the renormalization equations in the worldspace and
that of the target space. The way out of this paradox is to notice that the apparent change of nature
of the field is caused by the fact that these operators can only be meaningful if either they are later
integrated over the path integral of the embedding fields or the path they are defined on is a saddle
point of this second integral. Heuristically, in both cases the renormalization of bulk charges and
fields is divided in two steps, longitudinal and transverse. The “renormalization of the dimensional
integral” is just half the whole story.



12 General concepts and analytical tools

neglected, and we reach a regime where the insertion can be used as a measuring tool for
the defect-less theory. This approximation is concordantly called the probe approximation,
and the defects where it is appropriate are referred to as probes.

2.1.2 Defects as building blocks?

So far, we have discussed how effective defects can be inserted into QFTs and which type
of operators are they related to. A totally different matter is whether one can build a
relativistic quantum theory out of fundamental defects. We know the answer for particle
theories: only partially.

In perturbative field theory we can replace propagators in terms of free particles using
Schwinger’s proper time formalism;

G (x, y) = 〈x| i

p2 −m2 |y〉 =
ˆ ∞

0
dT

ˆ

r (0) = x
r (T ) = y

[Dr] e−im
´ T
0 dt
√
ṙ2 (2.2)

for the case of free propagation, and more involved 2-point effective actions

Γ (x, y) =
ˆ ∞

0
dT

ˆ

r (0) = x
r (T ) = y

[Dr] e−i
´ T
0 dt

(
m(r)
√
ṙ2(t)+λiφi(r(t))

)
(2.3)

for generic backgrounds2. The propagation of a gauge-dependent degree of freedom, for
instance, can be expressed in this formalism through a “minimally coupled” expression
that implements the gauge transport, matching the equivalent degrees of freedom at both
ends:

Γ (x, y) =
ˆ ∞

0
dT

ˆ

r (0) = x
r (T ) = y

[Dr] e−i
´ T
0 dt(m√ṙ2+qAµṙµ) . (2.4)

In 2.1.3 we will examine the phase in this integrand from a deeper point of view.

Some questions are in practice impossible to address in the language of particles,
though: nontrivial vacua and renormalization, nonperturbative solutions and systems
among them. At best, we can give some intuition for them as “particle condensates”.
In addition, the field theoretical framework deals automatically with a set of issues in

2Seen as the effective action obtained by integrating out some degrees of freedom in the path integral,
expression (2.3) is not at odds with the quantization of its φi fields. This expression appears as a
factor inside the path integral for a specific set of Feynman diagrams: those involving the particle
propagation in question.
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the construction of the theory that would require the introduction of ad hoc rules from
the particle description. Causality and the structure of Feynman diagrams are the two
clearest examples of this fact.

What happens for defects of higher dimensionality? In practice, only a specific
type of 2-dimensional defect (the critical string) can be addressed with a particle-like
construction, i.e., first identifying freely propagating objects, then introducing rules for
their propagation, and afterwards extending its description to nontrivial backgrounds
sourced by condensation of their “quanta”. No nonperturbatively complete theory is
presently at reach for this structure, and yet its study is highly appealing: critical string
theories include descriptions of gravity that are free from the UV pathologies inherent to
QFT.

Let us now address the construction of generic theories with higher dimensional defects
as the building blocks and observe where the special properties of critical string theories
arise from. The full-detailed discussion of this issue is full of important subtleties, which
are extensively addressed in string theory books and are not essential for the remaining
of this dissertation. I will therefore content myself with presenting a story that, although
incomplete, captures the most colourful parts of the puzzle.

To keep this discussion bounded we restrict ourselves to the construction of a free
nontopological defect: the action will include the worldvolume form coming from the
pulled-back metric of the target space:

V =
√

det |P [g]|dnσ; P [g]ij = ∂ix
M∂jx

NgMN (2.5)

For later reference, I should mention that for the specific case of a string (d = 2) this
action term is known as the Nambu-Goto (NG) action.

Although the form (2.5) is often useful to study semiclassical effective actions, it is
preferable to use a less involved equivalent expression instead if we wish to quantize the
embedding fields. Through the introduction of an auxiliary nondynamical field γij that
we will call the auxiliary worldspace metric, we obtain

VP =
√

det |γ|γijgMN∂ix
M∂jx

Ndnσ (2.6)

For particles reparametrization invariance allow us to gauge-fix γ = η. The only other
type of defect for which this happens is the critical string, namely, a type of string where
an additional symmetry γ → c (X) γ known as Weyl rescaling invariance is kept, not
only classically but also at the quantum level. This fixes a specific dimension for the
target space of the theory, D = D0. It turns out that D0 � 4. However, the amount of
unobserved dimensions required by these objects is not an insurmountable problem: they
can remain hidden in low energy physics via Kaluza-Klein compactification or a type of
constructions known as “worldbrane universes”.

There are some terms we can add to (2.6) without breaking the symmetry of
reparametrization (and Weyl invariance):
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• For d = 1, one can consider a “mass” term −m2γ and write the (bosonic) particle
action as

S = 1
2

ˆ
dt

(
ẋ2
√
γ
−√γm2

)
(2.7)

• For d = 2, one can add an Einstein-Hilbert term on γ without cosmological constant,
any other option would violate Weyl rescaling invariance. This term turns out to
be topological for d = 2. Therefore, with this insertion, γ has not been promoted
to a dynamical field. This term in the action ultimately becomes to the Euler
characteristic χΩ of the worldsheet Ω, with a specific prefactor. The critical string
action in trivial backgrounds is therefore given by the sum of this term and the
worldvolume term, which, in this context, is called the Polyakov action. The latter
reads

SP = 1
4πα′

´
Ω d

2σ
√
−γγij∂ixµ∂jxνηµν (2.8)

I should mention here that although the notation in the previous expressions suggests a
bosonic euclidean target space, the same ideas can be applied to compact targets, and
even to superspaces. In the latter case, the right and left-moving modes of a fermion can
additionally have two types of boundary conditions:

• Ramond (R) modes, with periodic boundary conditions around the closed string
or the same relative sign between right-moving and left-moving modes at both
endpoints of the open string.

• Neveu-Schwarz (NS) modes, with antiperiodic conditions or different sigh at the
two endpoints, respectively.

For closed strings, where the right and left moving sectors can be varied almost indepen-
dently, we split the spectrum in four sectors: NSNS, NSR, RNS and RR. This distinction
plays an important role in the study of the physical spectrum of the superstring.

Observe that, although the previous arguments restrict the Lagrangian of the free
string to a very simple and rigid form, the action has still a nonlocal freedom: the global
topology of the worldsheet Ω. In contrast to what happens in the d = 1 case, this topology
can be highly nontrivial, independently of whether we considered compact manifolds
(closed strings) or allow them to have spatial endpoints (open strings). Nontrivial
topologies are seen from any time slicing as processes involving junctions and splitting
of strings (see figure 2.1). We can therefore introduce string interactions in the theory
without ad hoc rules. The theory will also be free from similar singular vertex-like loci:
external states with different number of strings can be connected through a smooth
evolution. The sum over amplitudes of processes with different topology arranges itself
in a perturbative series because of a prefactor gχΩ

s coming from the Einstein-Hilbert term
on the action. The coefficient gs is known as the string coupling because it plays the role
of a coupling constant in a “smoothed” Feynman diagram structure.
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Figure 2.1: Examples of interacting diagrams in string theory. From left to right, the depicted
diagram describes a closed string process, an open string process and an a diagram
connecting an open string to a closed one. The arrow indicates the direction of
time in some coordinates. The dotted lines are slicings of the worldsheet according
to the same time, and help us observe that strings join and split, although the
whole worldsheet is smooth

When we quantize either (2.7) or (2.8) we have to be specially careful with gauge
reparametrization invariance and Weyl rescaling. For the bosonic particle case, it turns
out it is sufficient to quantize the gauge-fixed action and impose the constraint p2−m2 = 0
for the physical states. The quantization of the free critical string is comparatively more
involved. Even after imposing the boundary conditions dictated by Ω (either restrictions
on the endpoints of the open string or periodicity in the closed string) and fixing γ = η,
we have some residual gauge symmetry. The quantization of the theory can be either
be made using the BRST mechanism, or fixing the so-called lightcone gauge. In the
former case we keep covariance at the cost of having to deal with ghosts. In the latter,
we work with only physical states but ultimately need to justify the absence of anomalies
to recover covariance. Both paths ultimately lead to the same results for D0 and the
physical spectrum. The gauge constraints are manifest in the result in the fact that the
right-moving and left-moving states are maximal-weight representations of their Virasoro
algebra. Additionally, physical states are restricted to have a nonvanishing component
for the zero mode that lies on a mass-shell.For the bosonic closed string, for instance,

M2 = pµpµ = 1
α′

(
N + N̄ − 2

)
, (2.9)

where N and N̄ are positive or zero labels related in a degenerated way to the left and
right-moving configurations, respectively. These levels are generally not independent:
for the open bosonic string, for instance, boundary conditions enforce the right and
left-moving structure to be identical, while for closed bosonic strings we get a physical
restriction known as level-matching that, in absence of compactification, reads N̄−N = 0.

The spectrum obtained in all string theories as we have presented them has some
generic characteristics:
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Type RR spectrum (lightcone) Worldspace SUSY

IIA Aµ, Aµ,ν,ρ Non-Chiral, N = 2

IIB A, Aµ,ν , Aµ,ν,ρ,σ (self-dual) Chiral N = 2

Het SO (32) adj (SO (32)) Chiral N = 1

Het E8 × E8 adj (E8 × E8) Chiral N = 1

Additionally, the bosonic spectrum always includes the NSNS sector, gµ,ν , Bµ,ν , φ.

Table 2.1: Bosonic spectrum in the lightcone gauge and worldsheet supersymmetry for the
four perturbative closed superstring theories.

• The massless part of the spectrum contains a tensor Tµν that we generically
decompose in its trace φ, its symmetric traceless part gµν and its antisymmetric
part Bµν .

• For open strings, the spectrum contains additional massless states: a gauge field
for the target space directions where the motion is free (Von Neumann boundary
conditions) and a scalar field for the target space directions where the motion is
fixed (Dirichlett boundary conditions). In 2.1.4 these fields will be reinterpreted in
terms of D-brane objects, the string theory defects to which open strings endpoints
can be restricted.

• The spectrum includes in general a pathological tachyonic state (M2 < 0) signalling
an instability.

A sensible theory should admit additional structure so that the part of the spectrum
including the tachyon can be projected out. It turns out that this can be achieved only
for supersymmetric strings, or superstrings for short. All the cases where this happens
have D0 = 10. For closed string theories we obtain four possibilities:

• Homotic string theories, with 8 transverse bosons and 8 Majorana fermions. In
these theories, left-moving and right-moving sectors are treated symmetrically.
Their perturbative string sector is known as “Type II” superstrings. The projection
can be done in two manners, which are called type IIA and type IIB.

• Heterotic string theories, with 8 transverse bosons, 8 right-moving Majorana-
Weyl fermions and 32 left-moving Majorana-Weyl fermions. Depending on the
implementation of boundary conditions we can get two different algebraic structures
for the gauge field in the spectrum: either an adjoint representation of SO (32) or
of E8 × E8.
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Additionally, a fifth type of perturbative superstring theory can be built if we include
open strings with Von Neumann boundary conditions to type IIB strings and take the
appropriate projections. This theory is known as type I strings.

We now address the question of string propagation in nontrivial backgrounds. In
general it is not known how to consistently couple the string to arbitrary condensates
of the bosonic modes in the superstring spectrum: the ghost dependence of fermions in
the covariant formulation, the need of “picture changing operators” and the breaking
of separate superconformal symmetry of the matter and ghost sectors are important
obstacles that leave RR backgrounds out of reach. Conversely, if we consider only NSNS
modes the following worldsheet effective action can be built:

Sws = 1
4πα′

ˆ
Ω
d2σ

√
|γ|
((
γijgMN (x) + εijBMN (x)

)
∂iX

M∂jX
N
)

+ α′Φ (x) R [γ] + . . . ,

(2.10)

where the dots denote a fermionic part of the action. From the point of view of the
worldspace theory, background classical fields act as an infinite set of couplings for the
embedding function:

f (x) =
∞∑
n=0

fµ1...µnx
µ1 . . . xµn . (2.11)

When considered under this light, g, B and Φ would in general be expected to flow under
RG. Yet, conformal invariance for the worldsheet is still needed to decouple pathological
states from the spectrum. Consistency therefore demands that the β functions for these
coupling fields become 0, and this imposes a set of equations on them. These equations
coincide with the ones obtained in an Einstein-Hilbert gravity coupled to a gauge form
B.

By carefully analysing the fermionic sector as well as the bosonic, we observe that
type IIA and IIB reproduce the equations of motion for 10-dimensional type IIA and IIB
N = 2 supergravity, respectively, while the heterotic closed theories and type I generate
10-dimensional N = 1 supergravities coupled to Yang-Mills. Since by compactification
they can generate lower dimensional supergravities, almost all possible supergravities
admit a string theoretical origin. We will comment in 2.1.4 that the obvious exception,
11-dimensional N = 1 supergravity, is related to certain nonperturbative regimes of
string theory.

One of the questions one would like to ask the UV completion of quantum gravity
is what happens at the singularities where the classical theory breaks down. If string
theory truly provides an UV completion of supergravities, it should account for the black
p-brane defects, namely, objects of p spacelike dimensions evolving in time and coupling
to a background p+ 1-gauge form, that these theories can develop3. The simplest version

3The 10-dimensional supergravities have another type of brane also explained by string theory, the
5-dimensional solitonic brane, charged under the B NSNS field
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of this object is the extremal black p-brane, described by the following configuration
ds2 = H−

1
2 (r) dxαdxα −H

1
2 (r)

(
dr2 + r2dΩ2

8−p

)
H (r) ≡ 1 +

(
R
r

)7−p

 , (2.12)

and held together by a conserved radial Fp+2 flux that fulfils
N ≡

¸
S8−p

?Fp+2 = ctt

R7−p = (4πα′)
7−p

2 gsN
4π Γ

(
7−p

2

)
 . (2.13)

Their physically UV complete description, of course, should not be expected at the level
of the effective action (2.10) where the theory essentially implements supergravity, but at
the level of the nonperturbative completion of string theory. As we will review in 2.1.4 a
specific nonsingular description of these objects is accessible through string dualities.

Let me make a final comment concerning string theory: naively one could expect that
the theories obtained from superstrings will have very fine-tuned characteristics: very
specific contents of matter and only two independent coupling parameters, gs and α′.
Indeed, they do have this structure in ten dimensions. However, the compactification
to 4 dimensions adds more freedom than we could wish for. String theory offers a UV
completion with gravity of such a vast amount of 4-dimensional low-energy theories that
it is often accused of not being predictive for being able to predict virtually “anything”
beyond the range of observed regimes. I wish to point out here that this situation has
been the rule, not the exception, for the theoretical framework in physics through history.
We come from a short interval in the XX-th century in which the geometrical possibilities
for the universe were underestimated and UV pathologies were thought to be terminal,
which left an unusually low (and fictitious) number of options for “fundamental” theories.

2.1.3 Wilson lines and loops

Local gauge transformations are not physical symmetries but artefacts of our description.
Objects in nonsinglet gauge representations can only be combined directly in a gauge-
invariant way if they lie at the same point: their “color” decomposition and/or “gauge
phases” are meaningful only when we refer them to a local origin and basis choice. Any
nonlocal measure should, therefore, include a parallel transport rule for the gauge field
in order to “translate” the gauge “color” or “phase” along the manifold. And it is not
possible in general to choose it to be parallelly transported everywhere: as we already
know from classical electrodynamics, charged defects have prescribed nontrivial gauge
holonomies [6]. In mathematical language, all these facts find a precise formulation in
terms of fiber bundles.

From the previous paragraph we conclude that the gauge parallel transport rule that
connects gauge-variant descriptions sitting at two different points needs to be defined
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along a path that does not cross neither wrap any defect. The gauge field is locally free
and therefore it can be written as

Aµ = i

q
Ω−1∂µΩ (2.14)

From this equation in terms of the group variables, that we can solve for Ω by exponenti-
ating the infinitesimal behaviour, we obtain:

Ω = Pe−iq
´
AµdxµΩ0 (2.15)

where P is a path-ordering operator. The quantum defect operator built with this recipe
is known as a Wilson line.

Wilson line operators are ubiquitous in field theories. Their most straightforward
application is the definition of gauge invariant operators, such as

• Meson operators, obtained by coupling the endpoints of the lines to charges in
conjugate representations q and q† and letting Aµ act appropriately upon them,

MC (x, y) = q† (x) Pe−iq
´
C Aµdx

µq (x) (2.16)

When these operators are timelike, they are interpreted as the creation, propagation
and annihilation of a charged particles.

• Wilson loops, obtained by closing a Wilson line upon itself and tracing it in any
representation of the algebra to similarly close the gauge structure:

WR (C) = TrRPe−iq
¸
Aµdxµ (2.17)

In the absence of charges, operators of the form (2.17) are the only possible building
blocks of gauge-invariant operators in the theory. Polyakov [7, 8] proved that free gauge
theories could indeed be rephrased in terms of this observables, and explicitly discussed
how the suppression of gauge redundancies in the original field theory lead to a dynamical
theory defined on a “loop space” characterized by their paths C.

However, this was not the original purpose for which these operators were designed.
Instead their motivation came from the study of the semiclassical limit of massive particles.
The path integral of a charged particle propagator coupled to the gauge field with minimal
coupling can be written in terms of propagators of the form (2.4). When the particle is
massive enough, this integral can be approximated through a saddle point approximation
and the factor concerning the gauge field evaluates to a factor of type (2.15) [9, 10]. I
should point out that in general the particle will be coupled to other background fields
and we will obtain generalizations of Wilson loops that include other fields in their
effective action. This type of extensions is of special relevance in supersymmetry and for
the purposes of this thesis.
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V (L� 1) Phase Vmag (L� 1)

∼ 1
L

Coulomb ∼ 1
L

∼ 1
L logLΛ Free electric ∼ logLΛ

L

∼ logLΛ
L

Free magnetic ∼ 1
L logLΛ

∼ ctt Higgs ∼ σL

∼ σL Confining ∼ ctt

Table 2.2: The behaviour of the charge-anticharge potential (and its magnetic dual when it
exists) at large separation serves as an order parameter for some phases frequently
found in 4-dimensional gauge theories. The free electric and free magnetic phase
happen when screening effects source logarithmic corrections to the Coulomb
potential. Notice the electric and magnetic charged are affected in a complementary
way. Condensation of electric particles is known to join the magnetic field lines
in flux tubes, thus confining the dual magnetic monopoles. This is known as
the Meissner effect. Its electromagnetic dual has been proposed as the driving
mechanism of quark confinement.

The dynamical picture of line operators described in the previous paragraph was
precisely the one used by Wilson in his seminal paper [11], where he suggested rectangular
Wilson loop operators as an order parameter to study confinement in strongly coupled
field theories. In particular, he focused on the case where these rectangles have spatial
sides of size L and temporal sides of size T , with T � L. Their v.e.v. can be interpreted
as the amplitude for creating a quark-antiquark massive pair with separation L and
annihilating it back after some time T . If T is sufficiently large, this amplitude is
dominated by the interactions between the two “propagating” sides, and we can use it to
evaluate the quark-antiquark effective potential:

〈Wqq̄〉 ∼ e−TV (L) (2.18)

Whenever this potential decreases at large distances the process of pair creation will
not be infinitely suppressed and deconfined quarks are observable. In contrast, if V
increases with distance, one should only be able to detect the internal “partons” of a
meson when probing them at very small resolution. In the simplest examples one can
think of, deconfining regimes have no quark-antiquark interaction at large L and therefore
the exponent scales with a perimeter law while for confining examples the pair sources
interacting bosons across the loop and the exponent scales as the volume instead. In
practice, more diverse and sophisticated qualitative behaviours can be found at large
L. They are labelled in the literature as different “phases” for the underlying theories,
although the “phase transitions” between them are sometimes continuous crossovers.
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It is in this interpretation in terms of particle propagation where another of its
interesting applications shows up. It was already observed in [8] that whenever we pick a
path for a Wilson line that has a cusp at one point its exponent develops an additional
logarithmic term that is highly sensitive to the IR and UV structure of the defect. This
term, known as the cusp anomalous dimension, turns out to be independent of the
general shape of the loop, and to characterize with its coefficient the radiative properties
of the probe.

Let me illustrate with a toy example why should we expect to obtain a term with
logarithmic dependence on the cutoffs and these properties: Consider a weakly coupled
theory where we introduce a Wilson line straight segment of length L. If the coupling
is sufficiently small, the contributions to the loop are dominated by the exponential of
the propagator. The argument will still hold if this propagator is corrected by local
physics as long as it has a ∼ ∆x−2 behaviour. In the perturbative expansion, the UV
behaviour clearly dominates the interactions on the loop itself: there is no solid angle
to soften the ∆x−2 divergence. Curvature in the shape would in general modify the
distances between arbitrary loop points, but only curvatures of radius comparable to ε
can modify the leading UV contributions. When we integrate over the two endpoints
of the propagators we will get a ε−1 behaviour characterizing short-distance physics
integrated along the loop, resulting in a contribution linear in L

ε
, which ultimately would

endow the closed loop with the perimeter-law behaviour we expect in this deconfining
regime. Schematically,

ˆ L

0
dx1

ˆ L

0
dx2

Θ|x1−x2|−ε

|x1 − x2|2
= 2

ˆ L−ε

0
dx1

ˆ L−x1

ε

dx
1
x2 = 2L

ε
− 2 ln L

ε
+O (1) (2.19)

We could naively think that the log subdominant contribution is uninteresting because it
arises from an artificial IR cutoff, but in fact it contains a lot of physical information.
Observe for instance that (2.19) should still hold when we double the length L, and,
by comparison with the collinear junction of two independent segments of length L, we
learn that the leading contribution of the cross-interactions between these two segments
can be determined from this precise logarithmic term. In this sense, the information it
contains represents the equilibrium properties of the charge cloud polarized by the line
defect. Whenever a junction like the previous is not done collinearly, the two ∼ ln L

ε

terms that did cancel in the collinear case don’t vanish identically anymore, and the
discordant coefficients signal how the polarized cloud reequilibrates and emits radiation.

The detailed relations between Wilson loops, radiation and cusp anomalous dimensions
will be clarified along this dissertation, but it is convenient to introduce at this point
some specific terminology. In particular, we define the “Cusp anomalous dimension” [12]
as the coefficient controlling the energy radiated by a particle in a homogeneous vacuum
at small acceleration, which has the shape

∆E = −2πB
ˆ
dtaµaµ (2.20)
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Notice that for QED this equation becomes the Larmor-Liénard formula, with B = e2

12π2c3

Apart from the universal properties discussed here, observables involving Wilson
loop operators convey, in specific cases, large amounts of interesting information. The
list of relations that will not be exploited in this dissertation includes the possibility of
computing gluon scattering amplitudes through light-like Wilson loop polygons [13] and
the correspondence between the lightlike-to-lightlike cusp anomalous dimensions and the
anomalous dimension of large spin operators of twist 2 [14, 15].

2.1.4 Dualities, their role in string theory and D-branes

It is often pointed out that a significant part of the success of modern physics comes
from its ability to treat different physical systems with the same mathematical language,
either exactly or as a controlled approximation. The harmonic oscillator and the plane
wave are the most paradigmatic examples of classes of systems addressed with the
same framework. In general, these analogies and equivalences are very useful to develop
intuition and to set a language to study unfamiliar systems. The complementary situation
is frequent (and fertile) as well: the description of the same physical system through
seemingly independent mathematical frameworks provides a guideline to connect this
alternative mathematical structures. When this happens we say the two setups are dual,
or equivalently they are connected by a duality.

Dualities are of great help in formulating mathematical conjectures, developing new
theorems and offering alternative manners of performing a computation, but they are not
restricted to these uses. In fact, having more than one description of a physical system is
seldom a luxury: more often than not the regimes of applicability of dual descriptions are
not totally coincident and therefore dualities are frequently essential tools to explore all
the accessible parametric configurations of the problem. Occasionally, they might even
help us find how to improve one of the descriptions to enlarge its domain of applicability.
Notice also that when a mathematical framework is part of both dualites and analogies
the applications and implications of the former are extended to the analogue systems as
well, beyond the physical system where they were identified.

One of the simplest examples of duality is the electric-magnetic duality of 4D elec-
tromagnetism, which essentially consists in rephrasing of the theory in terms of the
Hodge-dual form of F , ∗F . The electric jµ and magnetic kµ currents of the theory are
interchanged in the dual picture as jµ → kµ, kµ → −jµ. I should mention in the passing
that at the quantum level the coexistence between electric and magnetic charges imposes
severe restrictions on the theory. This can be seen from the fact that the quantum
fundamental object in the field description is the gauge field Aµ, not F , and this form
cannot describe continuously the sphere wrapping a particle with magnetic charge in any
gauge: at best, a string-like singularity extends from the magnetic monopole to infinity,
with a gauge-dependent position. The theory can only be consistent if this string defect
is not physical, or, equivalently, if it does not affect the motion of electric charges. This
condition can be imposed to a particle of purely electric qe by studying its Wilson loop
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around the singular string and imposing that the holonomy vanishes:

1 = ei
qe
~
¸
A = ei

qe
~
´
~B ~dS = e

i
~ qeqm ⇒ qeqm = 2πn~ (2.21)

In other words, consistency demands that both electric and magnetic charges are quantized
in terms of elementary charges, and that, in appropriate units, the electrical and magnetic
coupling are inverse one of the other. Notice that because of the latter property strongly
and weakly coupled descriptions get interchanged through the electric-magnetic duality.
This weak-strong character makes this duality very useful to explore a theory beyond its
perturbative regimes. Unfortunately, its extension to nonabelian gauge theories, that
goes under the name S-duality is quite more involved. For N = 4 super Yang-Mills
theories this duality has successfully been built, and in its more general version [16, 17]
it acts as a modular SL (2,Z) transformation on a combination of the gauge coupling
g and theta angle θ (τ = θ

2π + 4πi
g2 ) with a potential interchange of the charge weight

lattice ΛG by the corresponding lattice for the Langlands conjugated group, ΛLG. Again,
a subtle issue is played by the charges admitted by the theory: not any population of the
charge weight lattice is consistent, but consistency leaves in general more than one option.
Different choices for the occupation of this lattice lead to different theories that often are
interrelated by dualities [18]. Beyond N = 4 super Yang-Mills, analogues of S-duality
are thought to exist in many cases, but it is seldom known to explicitly implement them.

S-dualities appear frequently in superstring theory as well, by means of compact
toric spaces [19]. In addition, superstrings have other types of dualities such as the
so-called T-duality. In its simplest form, T-duality is just the observation that when we
compactify circularly one of the target space dimensions of a closed string theory, we
get two interchangeable towers of modes representing the wrapping and winding modes
of the string around that circle. More specifically, the zero mode of a compact boson
xc ∼ xc + 2πRn with a cylindrical worldspace, decomposes because of compactness in a
sum of two towers of discrete modes that we interpret as wrapping and winding:

• Wrapping appears because the string can encircle the compact direction: xc (σ) ∼
xc (σ + 2π) decomposes under Fourier in modes of einRσ type, n ∈ Z.

• Winding appears through the quantization of the momentum caused by the periodic
boundary conditions, p = α′m

R
, coming from modes of the eiα′mR τ type, m ∈ Z.

These two sectors ultimately have the same type of physical contributions. The mass
spectrum for the string, for instance, is given by

M2 = 1
α′

(
m2 α

′

R2 + n2R
2

α′
+ 2

(
N + N̄ − 2

))
;


0 ≤ n,m,N, N̄ ∈ Z

N̄ −N = nm

 (2.22)

The formal symmetry between these two towers of modes grants that the same physics
can be described through a similar (T -dualized) construction, obtained by replacing
the compact radius by R′ = α′/R and interchanging the winding and wrapping modes
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(n ↔ m). Alternatively, the T -dualization can be viewed as a change of sign of the
right-moving part of the compact boson.

Both S and T dualities play a crucial role in the modern viewpoint on string theory.
During the mid-90s, compelling evidence was gathered showing that the five perturbative
superstring theories presented above are not different theories but dual descriptions
of the same underlying physics [20, 21, 22], which was dubbed “M-theory” and was
seen to admit yet another semiclassical limit: eleven dimensional supergravity. The
full discussion of dualities in string theory and M-theory surpasses by far the scope of
this thesis, though, and will not be presented here. Instead, let us focus on another
consequence of string theory dualities: the existence of a type of defect known as D-brane.

D-branes can precisely be introduced in string theory by building the T-dual de-
scription of open string theory. Since the open string does not topologically wrap the
compact circle, we should make sense of the T -dualization as the sing interchange of
the right-moving part of the compact boson. In practice, this is equivalent to changing
Von Neumann boundary conditions into Dirichlett boundary conditions. The string is
therefore forced to end in a very special locus known a Dirichlet-brane, or D-brane for
short. In general, this object is described through an effective action that should include

• A gauge field accounting for the longitudinal string modes Aµ that generates a gauge
theory on the brane, and appears only in the specific combination F = 2πα′F−P [B]
with F = dA, so that gauge transformations 2πα′B → 2πα′B+dΛ can be absorbed
by A→ A+ Λ. The 2πα′ choice of normalization for the field A has been taken for
convenience.

• A scalar field for any transverse modes of the brane (and the modes with Dirichlett
boundary conditions for the strings) that describes the effective dynamics of its
embedding. These scalars should be coupled through a volume form, and for
consistency g should appear in combination with B as in (2.10).

• A tension that can be computed from the propagation of a closed string between
two branes, or, equivalently, from a vacuum loop of open strings. One obtains

Tp =
√

2π(
2π
√
α′
)p+1

gs
. (2.23)

• In the open string restricted to a hyperplane, the boundary conditions break half
of the supersymmetry. D-branes will in general be curved, but locally they should
still preserve half of the supersymmetries. Therefore the D-brane must be a BPS
operator and this ultimately implies that it will couple to RR fields.

The effective action for this kind of object was built by Leigh et. al [23, 24] for specific
backgrounds and later its general form with explicit Lorentz invariance (with the corre-
sponding κ-symmetry projection to match the number of fermionic and bosonic degrees
of freedom and allow for local supersymmetry) was developed in parallel by several
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groups [25, 26, 27]. The resulting action for a D-brane of p dimensions, or D − p-brane
for short, is the sum of two parts, which are respectively called of “Dirac-Born-Infield”
and “Wess-Zumino” in reference at their simpler analogues. They respectively read, in
the notation of [28],

SDBI = −Tp
ˆ

Ω
dp+1xe−Φ

√
|det (gMN∂iξM∂jξN + Fij)| (2.24)

SWZ = Tp

ˆ
Ω
eF ∧ C (2.25)

where the target space is in general taken to be a superspace and

Fij = 2πα′Fij −BMN∂iξ
M∂jξ

N ; C =
⊕
n

Cn (2.26)

Observe that in the weak curvature limit when the background is flat and for small F
the action (2.24) admits a Taylor expansion and the resulting theory will have as the
leading nontrivial action a Maxwell term coupled to scalars and their superpartners.

When we form a stack of N D-branes instead of considering them independent,
endpoints of open strings inherit a label that tells which brane they are ending on.
This indices, known as “Chan-Paton” indices, get translated through T -duality into
the brane low effective action, where all the fields will be in the adjoint representation
of a nonabelian U (N) theory. In this case, the effective theory obtained from the
low-deformation action around flat space becomes a Super-Yang-Mills (SYM) theory
[29, 30].

By carefully analysing the degrees of freedom, dependence on the string coupling,
symmetries and RR charge of D-brane stacks, Polchinski argued they provided dual
description of the black brane solitons of supergravity [31]. This connexion is the seed
where holography germinated from.

Let us close this section with a remark on D-branes that connects to the appreciations
we made earlier about effective defects. I have already highlighted that the connection
between D-branes and black branes explained in the previous paragraph constitutes a
paradigmatic example of the effective defects we mentioned in 2.1.1. It is by no means
the only example of this type of situation found in field theories: even field theories in flat
spacetime are filled with solitons and instantons that, in the appropriate approximations,
are better described as defects. However, this idea can be taken a step further, and
D-branes is precisely one of the richest contexts to observe it. The issue is the following:
from the worldspace point of view the embedding function is a field, and as such it
can develop singular behaviour in a locus of reduced dimensionality [32, 33, 34, 35],
which are sometimes called BIons. In the target space this type of solution will look
like an infinite spike (with possible flat directions) developed by the brane in question,
with the appropriate charges to be interpreted as another type of object of reduced
dimensionality ending on the original brane. In a specific limit where the spike becomes
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D3
F1

D3

Figure 2.2: The D3 brane BIon is an efficient description of a large stack of fundamental
strings being polarized by the Emparan-Myers effect near their endpoint in a D3
brane. For a single fundamental string, in contrast, we distrust the highly curved
D3 singular embedding and resort to the conventional Nambu-Goto description
for the string.

narrow, the defect-to-defect description will suffice to describe the system, while in the
regimes where the embedding becomes smoother the spiked D-brane solution is more
efficient: it captures the polarization, in the sense of the Emparan-Myers effect [36, 30]
that transforms a lower-dimensional brane into a BIon.

For the purposes of this thesis, we will be specially interested in a specific imple-
mentation of the Myers effect, the polarization of D3 branes into fundamental strings,
schematically depicted in figure 2.2. This structure, first considered in [33], is weakly
curved and therefore trustful when it represents a stack of multiple strings (see [37, 38]
for more precise details on this regard).
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2.2 General holographic concepts

In this section we will focus on the central subject of study of this thesis: the conjectured
correspondence between d-dimensional gauge field theories in locally flat space and a
string theory compactified to a d+ 1 gravity. Let me begin this section by historically
contextualizing its appearance.

Many symptoms of holography were already known before Juan Maldacena developed
its first implementations [39] in 1997. Let me list here a sample of manifest consequences
of this relation:

The algebraic structure of conformal algebras: Both the conformal group of a Minkowskian
D-dimensional spacetime and the isometry group of a hyperbolic AdSD+1 spacetime are
SO (D, 2). A straightforward way to see this is to depart from a D + 2-dimensional flat
spacetime of coordinates ξα, α ∈ (−1, D), with ξ−1 and ξ0 timelike. Then:

• One obtains AdS spacetime as the universal cover of the hyperboloid ηαβξαξβ = R2.
Global coordinates for the resulting space, that has hypercylindrical topology, can
be obtained through 

ξ−1 = R cosh ρ sin τ

ξ0 = R cosh ρ cos τ

ξi = R sinh ρΩ(i)
D−1; i∈{1,. . .,D}


(2.27)

ds2 = R2
(
dρ2 − cosh2 ρdτ 2 + sinh2 ρdΩ2

D−1

)
(2.28)

where Ω(i)
D−1 denotes the unitary vector in the i-th Cartesian coordinate in a D-

dimensional space. The universal covering is obtained by continuing τ to (−∞,∞).
For our purposes, a specific region of this space will be of interest, that known as
the “Poincaré patch”. It can be obtained from the hyperboloid through the variable
substitution: 

ξ−1 = R2+z2−ηµνxµxν
2z

ξµ = R
z
xµ; µ ∈ {0, . . . , D − 1}

ξD = R2−z2+ηµνxµxν
2z


(2.29)

ds2 = R2
(
ηµνdx

µdxν − dz2

z2

)
(2.30)

Regardless of the coordinate system used the isometries that leave the hyperboloid
invariant are precisely the orthogonal transformations in the (D, 2) spacetime.
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• At the projective hypercone ηαβξαξβ = 0, we can study the effects of the D + 1-
dimensional rotations [40]

iJαβ = ξα∂β − ξβ∂α (2.31)

on

Xµ = ξµ

ξ−1 + ξD
(2.32)

They reproduce the effects of translations, special conformal transformations,
dilatations and rotations. Respectively,

P µ = JDµ + J−1µ

Kµ = JDµ − J−1µ

Jµν

D = JD−1


→



iP µXν = ηµν

iKµXν = XµXν

iJµνXρ = Xµηνρ −Xνηµρ

iDXµ = 2Xµ


(2.33)

The conventional commutation relations for the conformal group can be obtained
from those of the orthogonal group in (D, 2):

i
[
Jαβ, iJγδ

]
= ηβγJαδ + ηαδJβγ − ηβδJαγ − ηαγJβδ (2.34)

An important observation here is that at the z → 0 boundary of the Poincaré patch,
at finite xµ, we precisely encounter the projective space where the conformal algebra is
realized.

Flux tubes: Quark-antiquark flux tubes have a stringy behaviour that endows light
mesons with very particular characteristics, among which the celebrated “Regge-slope
law” that relates mass and angular momentum for families of mesons:

J − J0 = α′M2 (2.35)

In fact, string theory was born as a justification of the “dual resonance models” that
attempted to explain these properties before the advent of quantum chromodynamics [41].
The success of these archaic string theories was only partial and they were abandoned
in favour of the gauge theory. Surprisingly, in its holographic implementation, string
theory stands again as a good model to describe confining flux tubes, bypassing all the
objections that caused its original demise by residing in additional dimensions, as we
shall see in 2.3.3.
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Planar in S2

Planar in T 2

4 vertices
4 color cycles

4 vertices
2 color cycles

Planar in S2
4 vertices
4 color cycles

Figure 2.3: The double line notation specifies the color structure without the ambiguity
inherent to the vertices-propagators graph. It also makes explicit the number of
color traces in a diagram.

The gravitational entropy: The black hole entropy derived by Bekenstein [42] from black
hole thermodynamics

S = c3Area
4G~ , (2.36)

has to describe the maximal amount of entropy a region bounded by a specific area can
have. Otherwise, black hole formation could in general violate the second principle of
black hole thermodynamics. Elaborating on the suggestion of ’t Hooft [43], Susskind
[44] illustrated how this formula is consistent with a holographic construction of gravity,
where all d-dimensional gravitational degrees of freedom are encoded in a screen or box
of dimension d− 1.

’t Hooft’s large N expansion for simple gauge theories: The rank of the gauge group
N can be used for interacting gauge theories with simple classical gauge algebras as
the inverse of an expansion parameter. This was first realized by ’t Hooft [45], who
observed that in the limit N →∞ (which has to be taken keeping λ ≡ g2N fixed to keep
the theory interacting), the theory becomes simpler: and all Feynman diagrams with
nonplanar graphs become infinitely suppressed in comparison to the leading planar ones.

More precisely, ’t Hooft studied a U (N) gauge theory, for which the adjoint represen-
tation can be built as the product of two conjugate fundamental representations. This
allows to rewrite the adjoint elements in a double-index notation, where we observe the
following relation for the color generators in two vertices connected by a propagator.

∑
i

(Ti)ab (Ti)cd = C2

N
δadδ

b
c (2.37)

If we represent graphically the propagation of the two indices of this notation indepen-
dently, the number of independent color traces in a Feynman diagram becomes manifest
as the number of independent fundamental index cycles in its double-line graph (see
figure 2.3). A minutious analysis of the vertex and propagator factors show that
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+ + + + ...

Figure 2.4: Both in perturbative string theory and gauge theories of large rank we can
arrange the diagramatic expansion in terms of a topological sequence of surfaces
of increasing complexity. For U(N) theories containing only adjoint fields the only
topological property that varies between the terms is the genus of the surface.

the order of a diagram in the N−1 expansion depends on the Euler characteristic of a
compact 2-dimensional oriented surface related to the diagram. We obtain this surface
as the topologically simplest surface where the diagram can be drawn planarly respecting
the double line structure4. This argument shows that in this case the theory admits
a topological expansion, and, at each order, an expansion in terms of the coupling.
Schematically,

〈O〉 =
∑
χ,n

Oχ,nN−χλn (2.38)

This double expansion resembles suspiciously the perturbative behaviour of string theories
(see figure 2.4).

The generalization of this idea to other classical simple groups introduces additional
terms to the expansion. For SU (N) they are simply subleading N−1 contributions to
each diagram. Their origin is the trace subtraction from the U (N) structure generated
by the product of conjugated fundamental representations. In turn, SO (N) and SP (N)
include nonorientable terms emerging from matrices that raise and lower the double line
indices. Consequently, the topological expansion in SO and SP includes an expansion
on the number of crosscaps in addition to the expansion in the genus. A well-known
topological result (Dyck’s theorem) states that three crosscaps can always be traded for
a handle and a single crosscap, and therefore ’t Hooft’s topological expansion can be
arranged in terms of surfaces that contain two crosscaps at most. Table 2.3 summarizes
the structure found for each of these simple groups.

By combining these ideas with that of gravitational entropy it became apparent that a
gauge/gravity duality should exist [44]. Even in the solvable 2-dimensional gauge-matter
theories, though, it was not clear how to formulate the string dual [46, 47].

Chern-Simons and Wess-Zumino-Witten:The observation that the 3-dimensional topolog-
ical Chern-Simons field theory can be explicitly rewritten in terms of a conformal theory
on its boundary, the Wess-Zumino-Witten model [48], sets an interesting precedent for
AdS/CFT, though in this case the bulk description involves no metric (is topological).

4Equivalently, this 2-dimensional surface is defined by a triangulation provided by the diagram, where
each double line defines a 1-simplex of the triangulation.
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Group Double line properties

SU (N) ∑
i (Ti)ab (Ti)cd ∝ δadδ

b
c − 1

N
δab δ

d
c

SO (N) ∑
i (Ti)ab (Ti)cd ∝ δadδ

b
c − δbdδac

SP (N) ∑
i (Ti)ab (Ti)cd ∝ δadδ

b
c − JbdJ ca

Table 2.3: Bosonic spectrum in the lightcone gauge and worldsheet supersymmetry for the
four perturbative closed superstring theories. In the SP (N) case J denotes the
block matrix establishing the symplectic structure

2.2.1 The AdS/CFT correspondence

Let us now discuss how, by using the relation between D-branes and black branes that was
discussed in section 2.1.4, Juan-Martín Maldacena was able to explicitly build examples
of gauge-string duality [39].

The low-energy description of branes the degrees of freedom associated to the defect
usually decouple from those of the background. In particular,

• In a supersymmetric D-brane configuration, the low-energy description of open
strings ending on a specific D-brane stack is a supersymmetric gauge theory defined
on the worldvolume, which decouples from the background fields at low energy.

• The low-energy (as seen from infinity) description of a black brane defect in
supergravity includes generic modes on the gravitational “throat” whose energy
is seen as “low” because of the redshift factor. This makes them invisible to
the long-wavelenght modes of the asymptotically flat spacetime, and therefore the
theory develops two decoupled sectors: a flat gravity and a near-horizon geometrical
description.

Although the regimes where the D-brane description and black brane description are
disjoint, they are in principle perturbative descriptions of the same type of object.
In his seminal paper, [39] Maldacena made use of this fact to conjecture that there
should be specific constructions where the very same object is described in both sides,
and the two descriptions become dual low-energy descriptions. Since in both cases
we obtain a decoupled flat gravitational sector, the conjecture ultimately relates the
AdS-like spacetimes that emerge in the near-horizon limit of black brane solutions to the
gauge CFT descriptions of the D-brane open string sector, that’s why the conjecture is
generically called “AdS/CFT” or “gauge-gravity”.

To identify precise examples of such dualities we mostly rely on symmetry. Maldacena
[39] already presented examples of the correspondence where symmetry totally fixes the
form of the duality at both sides. Other maximally symmetric cases have been identified
posteriorly. Less symmetrical examples of the theory can be constructed by deforming
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examples under control. Although most of the ideas exposed in what follows are in
general valid for any holographic duality, I will on purpose exemplify them only for a
specific example of the original list of [39].

The precise example that will be exposed in this thesis is the duality obtained by
studying defects of d = 3 in type IIB strings. The supersymmetric case is described on
the one hand by the superconformal phase of an N = 4 SYM theory (in particular, with
gauge group SU (N) ), whose Lagrangian density is, in Euclidean signature,

L = 1
g2Tr

1
2F

2
µν + g2θ

8π2FµνF̃
µν + (DµΦi)2 − 1

2
∑
i,j

[Φi,Φj]2 + iΨ̄ΓµDµΨ + iΨ̄Γi [Φi,Ψ]

 ,

(2.39)

with g =
√

4πgs. On the other hand, the near horizon description of a flat black 3-brane
in supergravity becomes an AdS5× S5 spacetime, whose background is given by the near
horizon limit r � R of (2.12). In terms of z = R2

r
,

ds2 = R2
(
dxαdxα
z2 − dz2

z2 − dΩ2
5

)
(2.40)

To put this duality to work we need to understand better how the elements on one side
can be translated to the other. The key ideas in this matching are:

The matching of parameters: Recall where the parameters in our construction come
from: We depart from a string theory with string coupling gs and tension (2πα′)−1. Two
descriptions of extremal D3-rane stacks are known:

• In the supergravity description of the string theory, at gs � 1, the extremal brane
construction (2.12) for p = 3 and at fixed F5 form flux N , has a radius R that
satisfies R4 = 4πgsα′2N . At R4 �

√
α′, the semiclassical description is valid.

• The tension of a single effective D3-brane description is given by (2.23). Taking N
branes in the low energy description, we identify the g−2 coupling for the Yang-Mills
coefficient: g2 = 4πgsN .

Therefore, the relation between the AdS/CFT coefficients is given by

λ ≡ g2N = 4πgsN = R4

α′2
(2.41)

Notice that both approaches rely on gs � 1. Also,

• The weak coupling expansion needs

λ = R4

α′2
� 1 (2.42)
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• Holography is semiclassical in the regime

λ = R4

α′2
� 1 (2.43)

The matching of symmetries: We already discussed the coincidence of the isometry
group of AdS5 and the conformal group in 3 + 1 dimensions. The isometries of the
compact S5 manifold coincide with the SO (6) R-symmetry group of N = 4 SYM. Also,
the superconformal N = 4 group matches the 32 Killing generators of a maximally
supersymmetric type IIB supersymmetry.

The matching of observables: A more precise formulation of the conjecture [49, 50] for
Euclidean signature follows from the idea that in the duality between the black brane
and D-brane descriptions the physics should be the same and therefore the partition
functions of the two systems should be equated5. In the supergravity regime, we can
evaluate the gravitational partition function from its semiclassical action, and therefore

ZCFT ∼ exp
(
−SSUGRA

)
(2.44)

If we identify the sources introduced in a CFT with the boundary conditions of the
corresponding field in AdS5×S5 the prescription to compute a local observables becomes

〈
φJ (x) eJφ

〉
J=0

=
δZCFT
δJ

∣∣∣∣∣
J=0
∼
δ exp

(
−SSUGRA (J)

)
δJ

∣∣∣∣∣∣
J=0

(2.45)

where SSUGRA (J) denotes the action for the classical solution with a prescribed limit
for the field associated to J at the z → 0 limit. In particular, this field should satisfy

J (z)→ εd−∆J (2.46)

where

∆ = d

2 ±
√
d2

2 +R2m2 (2.47)

coincides with the scaling dimension of φJ and d coincides with the number of dimensions
of the AdS boundary. This procedure is known as the GKPW recipe.

The extension of this prescription to Lorentzian signature is not straightforward and
was developed by Son and Starinets in [51]

5As Witten points out [50], for the partition function in the gravity side we have to restrict the possible
metrics to those inducing the appropriate boundary behaviour.
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2.2.2 Extensions of the conjecture

Known specific realizations of the AdS/CFT conjecture, as the one presented above,
constitute landmarks in our exploration of the duality. We can obtain other holographic
realizations from applying equivalent deformations on both sides. This can be done in
several ways, including6:

Turning on a thermal background: In the holographic side this is studied by taking a
nonextremal stack of branes instead of the extremal one and keeping the energy-to-
nonextremality ratio fixed in the low energy limit. We obtain a Schwarzschild-AdS
solution at finite temperature T . In this regime, interestingly, the theory develops
many characteristics of generic field theories, including mass gap, phase transitions and
confinement [50].

Moving along the moduli space: In the gravity side we know how to implement this
idea directly on the Coulomb branch, where the spontaneous symmetry breaking can be
realized by splitting the original stack of branes in different stacks at a finite distance.
When this distance is large enough, the strings connecting different stacks of branes can
be treated as semiclassical objects of infinite mass from the field theory side. We will
discuss this limit in more detail in 2.3.3.

Adding a Lagrangian deformation: We can add generic deformations to any specific
CFT and study how the theory behaves along the RG flow. The main guideline in this
operation is the GKPW prescription, which imposes how the theory behaves near the
z → 0 boundary.

Observe that this type of deformation reproduces in z-slices qualitatively the properties
of the RG flow caused by the UV deformation in the field theory side: It is not possible
to make sense of irrelevant deformations in this framework, these deformations develop
pathological divergences as z → 0 that indicate we would need an UV completion of
the theory including the new irrelevant operators. For relevant operators, in contrast,
the effect at z ∼ 0 can be studied as a perturbation. We obtain the deformed geometry
evolving the original equations of motion with the appropriate boundary conditions at
z = 0. In general, this evolution will eventually become inconsistent with supergravity at
a certain depth, unless the deformation is fine-tuned to asymptote a specific well-behaved
large z limit.

Folding the spacetime: We can perform further geometrical identifications in the string
theory. A possibility to keep the dimensions along our field theory unaltered, is to
consider in general foldings in the compact space in the gravity side.

An important family of duality constructions of this type was built by Kakhru and
Silverstein [53], by replacing in the D3 construction of Maldacena the D-brane stack in a
trivial background by the orbifold 3-plane resolution in terms of D3-branes [54]. The
compact space in the AdS side becomes S5/Γ, with Γ a finite group (a Zn in the original

6Further details on the study of the holographic landscape by deforming known solutions can be found
in [52]
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G θNS = 0 θNS = 1/2

θRR = 0 SO (2N) SP (2N)

θRR = 1/2 SO (2N + 1) SP (2N)

Table 2.4: Correspondence between different choices for discrete torsion of 2-forms in the Z2
orientifolded geometry and the gauge algebra governing the field theory worldspace
description

construction of [53]). In the low energy field theoretic limit these theories become quiver
gauge theories. For Γ = Zn, for instance, the associated quiver is described by an An−1
Dynkin diagram.

For the scope of this thesis, we will be interested in a specific subset of these
constructions, namely, those with an antipodal Γ = Z2 action on the S5, corresponding
to the case where stack of branes sits at an orientifold 3-plane. Recall that when a
Z2 identification acts on S5 by identifying antipodal points the resulting manifold is a
projective RP5 plane, and therefore in this case the geometry of the supergravitational
construction will be AdS5 × RP5. For this particular case the gauge group of the
field theory is still given by a simple gauge group, of SO (N) or SP (N) type. The
additional ingredients that discriminate between SO (2N), SO (2N + 1) and SP (2N)
are the possible choices of discrete torsion for the B and C2 two-forms of the string
theory, which become twisted two-forms. Since H3

(
RP5, Z̃

)
= Z2 their discrete torsion

is classified respectively by θNS and θR, both with two possible values: 0 and 1/2. The
action of the SL (2,Z) S-duality on these cases permits to identify which gauge algebra
emerges in every case, see table 2.4.
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2.3 Loops and superconformality

In this section we will discuss the characterization of specific classes of loop operators,
and more specifically, Wilson loop operators, that preserve some of the symmetries of
N = 4.

2.3.1 Loops preserving conformal subgroups

A 2-dimensional defect on a D dimensional spacetime can preserve an SL (2,R) ×
SO (D − 1) subgroup of the conformal symmetry at most [5]. This subgroup is easy to
identify for a defect lying on a straight line through the origin: denoting the longitudinal
indices by i, j, . . . and transverse indices by a, b, . . ., we observe that the stability
subgroup for the defect is generated by D, Ki, Pi, Mij and Mab. This structure of
symmetries will remain unchanged under any inner automorphism, and therefore we
can identify the same structure in any circular or hyperbolic loop that can be obtained
through conformal transformations of a straight line defect [55, 56].

For these maximally conformal loops, conformal field theory allows to reduce all the
dynamics of their “two-object” functions with local operators7 into numerical coefficients.
It is useful to define the coefficients fW and hW for the operator defect W through [5]

〈L (x) W〉
〈W〉 = fW

|x|4
(2.48)

〈Tµν (x) W〉
〈W〉 = hW

|x|4
tµν ;


t00 = 1

tij = 2ninj − δij

t0i = 0


(2.49)

More generally, we can study the OPE structure of a theory in the presence of a
defect[58]. Operators defined on the worldspace, such as the local operators for the
transverse embedding functions, that are known as “displacement operators”, have
nontrivial relations amongst themselves and with the other operators in the theory, and
therefore we have three sectors for the OPE that are called “bulk-to-bulk”, “bulk-to-defect”
and “defect-to-defect” in the literature.

In chapter 3 we will elaborate on another helpful aspect of conformal symmetry in the
study of loop operators, namely, a relation between the properties of the cusp anomalous
dimension at low angles, the Bremsstrahlung function for the radiatin and the coefficient
controlling the local thermodynamic fluctuations of the loop path at the linearized level,
originally observed in [12].

7More generic situations, including correlators with more than a local operator are discussed in [57]
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2.3.2 Loops preserving supersymmetry

The 4-dimensional N = 4 SYM theory contains only adjoint matter, but fundamental
W -bosons are generated in the coulomb branch, for instance, when the gauge group is
broken from SU (N + 1) to SU (N) × U (1). In energies far lower than the W -boson
mass, these objects can be efficiently described 8 by Wilson loops with coupling to the
scalars, which we generically write as

WR = 1
dimRtrP exp

(
i

ˆ
dxAµẋ

µ + |ẋ| θiΦi

)
. (2.50)

The normalization used in this expression has emerged as the canonical one in the
literature, though its adequacy will depend on the physical purpose of the operator
insertion in any case.

Using the construction of 4-dimensional N = 4 SYM as a dimensional reduction of
10-dimensional N = 1 SYM, Dymarsky and Pestun [60] classified the set of symmetry-
preserving Wilson loops one can build in this theory. In this picture, the tangent vector
to the loop and the coupling to the scalars are expressed in a single 10-dimensional vector
vµ, and supersymmetry with respect to the transformation generated by a killing spinor
εa imposes

vM (x) ΓMε (x) = 0 (2.51)

The set of 10-dimensional flat space Killing spinors are in turn fixed by

Dµε = 1
4Γµ��Dε⇒ ε = εs + xµΓµεc (2.52)

where εs and εc are constant spinors, respectively chiral and antichiral. For non-pure
spinors, uM ≡ εΓMε 6= 0, the equation (2.51) can only be solved by vM = λuµ. In the
pure spinor case, vM = 0, ε can be used to define an almost complex structure, and
equation (2.51) is solved by its anti-holomorfic sector.

This systematic construction contains as particular cases of the pure spinor antiholo-
morphic case the two families of supersymmetric operators that were known at the time
of its publication, namely,

The Wilson loops of Zarembo’s type: For the loops proposed originally in [61], super-
symmetry is obtained by imposing that the coupling to the scalars Φi is given in terms
of the unitary 6-vector

θi = M i
µ

ẋµ

|ẋ|
(2.53)

8see, for example, the appendix A of [59]
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with M defines an R4hyperplane embedding in R6. This way, the equation for 4-
dimensional supersymmetry is identical at every point of the loop, and, therefore, it
is solved by the same spinor, that defines a global supersymmetry. The Wilson loop
operators satisfying this condition can be expressed as

W = 1
N

trPe
¸
dxµ(iAµ+M i

µΦi) (2.54)

If the shape of the Wilson loop is restricted to a Rn surface (with n ≤ 4, the n = 4 case
being unrestricted) the resulting Wilson loop will be at least of 2n−4-BPS type. All the
loops of this family, are conjectured to satisfy 〈W〉 = 1, even at the quantum level.

The Wilson loops of DGRT type: In this case [62, 63, 64], the coupling to the scalars is
taken to be

θi = σIµνx
νM Ii (2.55)

In this expression indices I are Pauli matrix indices,M is a 3×6 matrix withMMT = I3×3,
and σIµν relates the decomposition of anti-chiral Lorentz generators into Pauli matrices
τI :

1
2
(
1− γ5

)
γµν = iσIµντI (2.56)

The loop becomes 1
16-BPS when its path is restricted to lie on an S3. Again, paths of

enhanced symmetry provide more supersymmetric Wilson loops: on a maximal S2 for
instance, they become 1

8 -BPS, while for maximal circles we obtain 1
2 BPS loops.

In contrast to what happens for the loops of the previous family, DGRT loops are
in general nontrivial. Of special relevance are the loops that wind once around a circle
on S2, say, at a specific latitude θ0. They are in general 1

4 -BPS
9, but it was argued in

[65] and later discussed in [62, 63, 64, 66, 67, 68] that their v.e.v. can be related to the
1
2 -BPS one sitting at θ0 = 0 by a coupling redefinition:

〈Wθ0〉 (λ) = 〈W◦〉
(
λ cos2 θ0

)
. (2.57)

This fact was used in [12] to argue that the Bremsstrahlung function of N = 4 SYM
loops can be obtained from the 1

2 -BPS DGRT loop through

B = 1
2π2λ∂λ ln 〈W0〉 . (2.58)

In chapter 3 this quantity and its properties will be discussed with more generality.

9The limit θ0 → π
2 in this construction connects to a 1

2 -BPS loop of the family defined by Zarembo.
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Figure 2.5: Structure of the probe embeddings for the three types of holographic probes we
can describe as defects, i.e., fundamental strings, D3 brane spikes and D5 brane
wrapping the compact sphere.

2.3.3 Holographic loops

Let us now briefly discuss how the Coulomb branch construction we mentioned in 2.3.2
can be implemented holographically and how can we use holography to compute Wilson
loops.

An SU (N + 1)→ SU (N)×U (1) spontaneous breaking corresponds in the D3-brane
holographic construction of Maldacena to separating a single D3 from an N D3-brane
stack. The role of heavy W -bosons is played in this case by strings hanging between the
stack and the “Higgsed” brane.

A fundamental Wilson loop is therefore implemented holographically as a fundamental
string with prescribed boundary conditions at the z → 0 limit of AdS5. Following the
idea of the GKPW prescription, the v.e.v. for the Wilson loop should be computed
as the effective string action in the gravitational side. In the supergravity limit the
dominant contribution is given by the area of the string of extremal surface satisfying the
appropriate boundary conditions [69, 70, 59], up to an infinite substraction needed to
regularize this quantity. As noted in [59], though, only Wilson loops with local half-BPS
symmetry, i.e., unitary coupling to the scalars in the proper time parametrization, can
be consistently implemented this way.
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What about charges of higher representation? In 2.1.4 we mentioned that string-
like objects ending in D3 branes can be under certain circumstances described with a
singularity in the D3 embedding function [33, 34, 35]. These type of solution, which was
extended to AdS backgrounds in [70, 38], is reliable when the effective string it describes
carries a large charge and provides plausible results for the leading order that connect
to the fundamental string. Nonetheless, the total charge for a Wilson loop (and its
corresponding dual string stack) does not distinguish different physical situations where
the trace structure of the dual Wilson loop changes, and which should have different
subleading features [38]. The same total charge occurs, for instance, in the superposition
of k fundamental Wilson loops, when a fundamental Wilson loop is wrapped k times on
itself, and in a k-symmetrical or k-antisymmetrical representation for the loop. Which
solution is captured by the D3-brane polarized string?

This question was elucidated for generic representations in [71] after some examples
[72, 73] illustrated that for specific cases the proper contribution was not the one
predicted by the polarization of a D3 brane, but instead could be reproduced by a D5
brane wrapping an S4 on the compact S5 holographic sphere. Matching the symmetries
of BPS configurations the paper [71] argued that the generic irreducible representation
can always be described via a set of D3 brane stacks embedded in AdS5 or equivalently10

a set of D5 brane stacks wrapping the aforementioned S4 sphere in S5. The cases we can
address using the DBI+WZ actions, i.e., the single D3 and D5 brane stacks of charge
k correspond, respectively, to the k-symmetric and k-antisymmetric representations, as
summarized schematically in figure 2.5.

2.3.4 Early hints of localization

A surprising observation was made by Erickson, Semenoff and Zarembo (ESZ) about the
1
2 -BPS circular loop in U (N) N = 4 SYM [74]. They found by perturbative analysis at
low orders that all interacting diagrams cancelled in the Wilson loop v.e.v., which could
therefore be evaluated at large N by summing only the contributions the set of diagrams
of “rainbow” type, as the one depicted in 2.6. Furthermore, the supersymmetry and
geometrical structure of the 1

2 -BPS Wilson loop makes all the propagators between two
points of the loop independent of their endpoints once the scalar and vector contributions
has been cancelled, and therefore the sum of rainbow contributions can be computed,
up to an overall factor fixed by the single propagator case, by counting the number of
diagrams. Conjecturing that the suppression of non-rainbow diagrams observed in their
analysis was valid at all orders, the three authors obtained:

〈W〉 = 2√
λ
I1
(√

λ
)

+O
(
λ

N2

)
(2.59)

matching the behaviour predicted from holography. They also observed that the coordi-
nate dependence of the propagators mapped the problem to a matrix model.

10The two pictures are related by the framework of fermion bosonization
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Figure 2.6: The term rainbow diagram for diagrams without circular vertices in circular
Wilson loops is easy to justify.

Drukker and Gross [75] provided an explanation to the cancellations observed in [74]
and the fact that the problem could be reduced to a 0-dimensional problem. The circular
1
2 -BPS Wilson loop can be obtained in these theory as a conformal transformation of
the straight line Wilson loop, which has trivial v.e.v., 〈W〉 = 1. The transformation is
anomalous, and an intuitive reason of why this should happen is that special conformal
transformations interchange points of the theory with a point that is not part of it, the
“point at infinity”. The same authors computed the expression for the circular loop at all
N , λ: From the matrix model of the ESZ conjecture

〈W〉 = 1
N

ˆ
[dM ] eMe−

2N
λ
Tr(M2) , (2.60)

where M runs over Hermitical matrices, they obtained

〈W〉 =
L1
N−1

(
− λ

4N

)
e
λ

8N

N
, (2.61)

which reproduces (2.59) at large N .
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2.4 Supersymmetric localization

In 2007 Pestun provided an elegant proof of the ESZ conjecture that relied on the
symmetry of the configuration. His argument is valid ∀λ, N , even at the nonperturbative
level, for generic N = 2 Lagrangian SYM theories. This thesis ultimately builds on this
result, whose origin and applicability will be summarized in this section.

2.4.1 An overview of the localization method

Supersymmetric localization is an extension to path integrals of the localization technique
of equivariant cohomology. Let us observe how it works, schematically: Suppose that for
a specific type of integrals the integration measure and domain makes them invariant
under the addition of Q-exact elements to the integrand, where Q is a generic linear field
operator. Any combination of α+ Qβ is equivalent under the integral to α, and therefore
we can divide the possible integrands in classes of equivalent elements under Q-addition,
in close analogy to cohomological classes. It is often computationally efficient to replace
the original representative of this class by the representative that makes the integral
the simplest. Localization takes this idea one step further. Let us define Q2 ≡ LB for
convenience. For any Q-exact α and LB-exact VF , αe−tQVF lies in the same cohomology
class as α, for any t ∈ R:

d

dt

(
αe−tQVF

)
= Q

(
αVF e

−tQVF
)

(2.62)

The key point in what follows is that if the bosonic part of QVF is positive definite, for
the t→∞ cohomological representative the integral can be exactly evaluated through
the saddle point technique, which becomes exact in this limit.

In its original formulation, namely, in equivariant cohomology, this idea was developed
for spaces of polyforms, with Q ≡ d + ξiV , and Q2 = ξ [d, iV ] = ξLV . In this case
LV denotes a Lie derivative along V , and any integral on a closed domain of maximal
dimensionality is invariant under the addition of Q-exact terms, defining the equivariant
cohomology classes.

To extend this idea to the CFT, observe that if we take a nonanomalous supersymmetry
of the theory Q, 

QS = 0
´

[Dφ] Q (f (φ)) = 0

 , (2.63)

the supersymmetric localization technique can be applied to any scalar observable under
Q, provided we find a potential VF such that QVF is positive definite and Q2VF = 0. The
evaluation of this observable is restricted to an integral over the critical surface of QVF ,



General concepts and analytical tools 43

typically a locus of a reduced dimension, therefore the name localization. In summary,
QS = 0; QO = 0

Re (QVF ) ≥ 0∀φ
´

[Dφ] Q (f (φ)) = 0


⇒ 〈O〉 =

ˆ
QVF=0

[
Dφloc

] (
Oe−S

)
QVF=0

Z1−loop (2.64)

In this computation, Z1−loop appears in the exact Gaussian evaluation and does not
depend on O, only on the theory and QVF .

The success of the method relies on the possibility of having operators VF with all the
aforementioned properties for the appropriate Q. In supersymmetric field theories, we can
use for this purpose a generator of supersymmetry Q in combination with VF =

(
ψ,Qψ

)
.

2.4.2 Localization on N=2 4-dimensional theories:

The work of Pestun [76] implements supersymmetric localization on a set of N = 2
theories on a compact euclidean S4 manifold. In particular, it considers N = 2 theories
built from a gauge multiplet with gauge algebra G and a massive hypermultiplet whose
fields are in a specific representation of this algebra. This set of theories includes the
massive deformation of 4D N = 4 that flows to pure N = 2, namely, the N = 2? 4-
dimensional SYM family. The presence of spacetime curvature makes the supersymmetric
structure more demanding, but introduces additional interplay between the localization
potential QVF and the fields that leaves only a flat direction for a specific field in discrete
points. More precisely, the zero modes that will not localize are the values of the
scalar field at the poles of the sphere. Therefore, his result is a computational rule for
supersymmetric observables through a Gaussian matrix model:

〈O〉 = 1
Z

ˆ
dΦ0O (Φ0) e−

8π2r2(Φ0,Φ0)
g2 Z1-loop (rΦ0)Zinst

(
Φ0,

1
r
,
1
r
, q
)2

, (2.65)

where ( , ) denotes the Killing form of the algebra, and r is the radius of S4. The
factor Zinst (Φ0, ε1, ε2, q) denotes Nekrasov’s instantonic partition function [77]. In turn,
Z1-loop is a factor obtained from determinants of the appropriate kinetic operators for
the bosons and fermions integrated out by the localization process. Its general form is
involved and in general it needs a regularization. For this dissertation, however, we will
only need its expression for superconformal theories, which is finite and reads

Z1−loop (x) =
∏
α∈ΛR(G) H (α · x)∏

ω∈Λω(G) (H (ω · x))nR(ω) , (2.66)

where ΛR (G) and Λω (G) designate respectively the set of roots and the weight lattice of
the algebraG. The labelR designates here the representation of the matter hypermultiplet
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of the N = 2 theory under consideration, and nR (ω) is the multiplicity of weight ω in
this representation.

Without going into details, Pestun’s analysis proceeds by:

• Identifying the Killing spinors on the sphere and deforming the flat space N = 2
action to keep the on-shell supersymmetry on this curved manifold.

• Introducing auxiliary fields through the Berkovitz construction in order to make
the specific symmetry we will use for localization, δ, realized off shell.

• Covariantly gauge-fixing the theory through the BRST formalism. It is practical
to build the Q generator from a specific combination of δ and δBRST that makes its
action on the fields completely nontrivial.

• Computing the 1-loop factor Z1−loop, obtained from operator determinants, by
using results of algebraic topology [78].

• Arguing that the instanton contributions Zinst, is given by Nekrasov’s partition
function [77], which was also derived using supersymmetric localization, locating
the theory in flat space instead.

It should be noted that in the original publication [76], some points of the discussion are
only analysed for the N = 2? family. Most results can nevertheless be straightforwardly
extended to generic Lagrangian N = 2 theories, in particular those of the superconformal
field theories we will encounter in this thesis.

The results on the decompactification limit R→∞ are known to match the expected
behaviour for many supersymmetric observables, among which, the 1

2 -BPS Wilson loops.
In particular, the ESZ conjecture is verified by computing the v.e.v. of the equatorial
half-BPS Wilson loop, which corresponds in the matrix model to the operator

WR̃ (Φ0) = 1
dim R̃

trRe2πrΦ0 . (2.67)

In the large N limit, where the instantonic factor is supposed to become one, this
observable becomes independent of r, as one can easily see with a change of variables
that absorbs 2πr into Φ. The result coincides then with expression 2.61 for a loop
in the fundamental representation of SU (N) N = 4 SYM (where Z1-loop = 1 and
(Φ0,Φ0) = Φ2

0).

Nevertheless, one should take care when exploring the noncompact theory from
a decompactification limit: In the compact sphere transitions between vacua of the
theory happen with finite amplitude, and therefore the observables computed through
localization will contain in the decompactification limit an average on their values on the
vacua of the theory in flat space. This combination is likely to be dominated by a specific
vacuum, as discussed in [79, 80, 81]. The problem might become milder for large N : it is
known that such theories can develop phase transitions even in compact spaces [82].
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Algebra ∆FP (x)

SU (N) ∏
i<j (xi − xj)2

SO (2N) ∏
i<j

(
x2
i − x2

j

)2

SO (2N + 1) ∏
i<j

(
x2
i − x2

j

)2∏
i x

2
i

SP (2N) ∏
i<j

(
x2
i − x2

j

)2∏
i (2xi)2

Table 2.5: Faddeev-Popov factors obtained in the gauge-fixing of matrix models to their
Cartan subalgebra for nonexceptional gauge algebras. They follow straightforwardly
from the root structure of these algebras.

2.4.3 Computational tools for matrix models

Matrix models such as (2.65) are ubiquitous in mathematics, statistics and quantum
mechanics. In their simplest nondynamical version (which coincides with the form they
take in localization), they are defined by the partition function

Z ∝
ˆ
M

dme−S(m) , (2.68)

where M is an N ×N matrix algebra. Their action S (m) is invariant under the action of
the algebra itself, and the transformations it induces are considered to be gauge. For the
specific case of localization they indeed have origin in a gauge symmetry: they represent
the action of the gauge on the value at the north pole of the zero mode that survives
localization. Since this theory is not dynamical, in practice we can gauge-fix the states
independently. Using the conventional Faddeev-Popov technique to restrict the matrices
to a chosen Cartan subalgebra, we obtain, up to an irrelevant overall normalization
factor,

Z =
ˆ
dNxi∆FP (x) e−S(xi) . (2.69)

The Faddeev-Popov determinant is given by

∆FP (x) =
∏

α∈ΛR(G)
(α · x) . (2.70)

The particular form of this determinant for nonexceptional simple Lie algebras is listed
in table 2.5.

Two simple techniques can be often used to study this type of model, both of them
widely used throughout this dissertation. In what follows, I give an overview of both of
them, for a more complete and detailed explanation I would refer the reader to [83].
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Orthogonal polynomials: Observe that for any classical simple gauge algebra the Faddeev-
Popov includes the square of the following factor, which is known as the Vandermonde
determinant:

∆V =
∏
i>j

(xi − xj) = det
(
xj−1
i

)
= det (pj−1 (xi)) . (2.71)

In the last step of 2.71, columns of the determinant have been recombined to form
polynomials of arbitrary form, up to a fixed degree and normalization:

pj−1 (x) = xj−1 +
j−2∑
n=0

cnx
n . (2.72)

The cn coefficients are in principle different and independent for every j. Needless to say,
for SO and SP algebras, where the Vandermonde determinant appears in terms of the
squared variables, this trick can still be applied but polynomial pj will be of order 2j
and contain only even powers in the original variables. Furthermore, for SO (2N + 1)
and SP (2N) we may let every pj polynomial absorb an additional xi factor from the
Faddeev-Popov determinant, obtaining instead odd pj polynomials of order 2j + 1. The
main advantage in this transformation is that all the Faddeev-Popov determinant is
rewritten as the determinant of polynomials pj, without any additional factor.

It follows from the definition of a determinant that ∆V can be evaluated as a sum of
terms where the contributions of xi are factorized, and the contributions for every xi are
identical. If the same is true for the remaining factors in Z, the integrals of the matrix
model can be evaluated by choosing conveniently the pj family to be orthogonal under
the appropriate integration weight.

Fortunately, the construction of orthogonal polynomials under the integration of
a single variable with an arbitrary integral weight dµ (x) can be done recursively in
j in a systematic way, as long as

´
dµ (x) 6= 0. It is sufficient to observe that in the

normalization of 2.72, necessarily

pj (x) = xpj−1 (x)−
j−1∑
n=0

c̃j;nx
n , (2.73)

and the coefficients c̃n can be fixed for pj once all the orthogonal polynomials of smaller
degree are known by the corresponding orthogonality conditions

ˆ
dµ (x) pj (x) pk (x) = hjδjk . (2.74)
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Substituting equation 2.73 into 2.74 one obtains the following recurrence rule:
p0 (x) = 1; p1 (x) = (x+ s0)

pj+1 (x) = (x+ sj) pj (x)− hj
hj−1

pj−1 (x)

sj = 1
hj

´
dµ (x)xp2

j (x)


. (2.75)

In chapter 4 we will use the orthogonal polynomials obtained from this recurrence under
a gaussian weight, known as Hermite polynomials.

Observe that this construction gives us an unexpected resource: The polynomials
obtained from a specific dµ (x) can be used to compute

´
dµ (x)xkpi (x) pj (x) as well,

by absorbing factors of x in one of the polynomials with an iterated use of 2.75.

Saddle point approximation: The integrals over x can be evaluated through a Gaussian
approximation. The equations fixing the position of the saddle point intertwine all the
eigenvalues of the model. In fact, this problem becomes analogous to the search for the
stable equilibrium configurations of a system with N interacting particles moving on a
line, and we will, in what follows, use the clarifying language of the latter to discuss the
problem.

The action S (x) will generate a background potential for the particles that keeps them
at finite distance from the origin, but the interactions arising from the Faddeev-Popov
determinant will in general include pair repulsion at short distance from the Vandermonde
factors that avoid the condensation of eigenvalues. At intermediate distances the problem
might develop other types of behaviour, depending on the shape of S and the Vandermonde
factor.

If we restrict ourselves to the matrix model of a simple nonexceptional algebra, the
Faddeev-Popov term will generate only two-body couplings and modifications to the
background potential S (x). In practice, we are able to solve the problem analytically in
two cases: either very large or very small N . The large N case is addressed using the
continuum approximation: we build the distribution

ρ (x) ≡ 1
N

N∑
k=1

δ (x− xk) (2.76)

and look for continuous ρ̃ (x) functions with some support Γ on the line that, in the
distribution sense and for sufficiently smooth test functions, behave as ρ (x). In what
follows, to keep the notation simple, we will denote both ρ̃ and ρ with the symbol ρ.
Although the continuum limit can be applied to any large N problem, its solvability for
the case of simple classical algebras is due to the fact that the resulting equation is in
this case of a Fredholm problem of second type:

d

dx
(S (x)−K1 (x)) = NP

ˆ
Γ
dyρ (y)K2 (x, y) , (2.77)
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whereK1 andK2 are to be determined from ∆F−P . This equation should be supplemented
with the appropriate normalization condition:

ˆ
Γ
dyρ (y) = 1 . (2.78)

The structure of Γ can in general be inferred from the physical problem. For a Gaussian
action, for instance, with symmetrical ~x→ −~x interactions, we expect Γ to be a symmetric
segment [−µ, µ], where µ can be determined by normalization.

In order to illustrate the use of the large N saddle point method let us analyse one of
the simplest cases at hand, known as the Wigner surmise. This matrix model, which was
proposed by Wigner [84] in the context of quantum energy level statistics, is an SU(N)
Gaussian matrix model,

Z =
ˆ
dNxi

∏
i<j

(xi − xj)2 e−8π2Nx2/λ . (2.79)

The unusual way of writing the Gaussian variance in (2.79) will match the form in which
this problem appears in the supersymmetric localization of SU(N) N = 4 SYM (among
other theories, as we will clarify in chapter 5).

The large N saddle point equation for the Wigner surmise reads

8π2x

λ
=
 µ

−µ
dyρ (y) 1

x− y
. (2.80)

In order to solve this problem it suffices to find an integral operator that is inverse to
the principal part distribution P (x− y)−1. This can be rephrased as a Riemann-Hilbert
problem in distributions using the resolvent method (see for instance [83]). One obtains
through this path

P−1
x→z [f (x)] = − 1

π2

 µ

−µ

dx

z − x

√
µ2 − z2

µ2 − x2f (x) , (2.81)

which inverts the principal part integral operator in the following sense:

P−1
x→z

[ µ

−µ
dy

ρ (y)
x− y

]
= ρ (z) ; z ∈ [−µ, µ] . (2.82)

The use of this functional takes us directly to the solution of Wigner’s problem, which is
known as the Wigner semicircle law:

ρ (y) = 8π
λ

√
µ2 − x2

µ =
√

λ
4π2

 . (2.83)



Chapter 3

Momentum fluctuations of strongly
coupled particles
Predictions of localization for large N , large λ N = 4 SYM

In this chapter, field theoretical results for supersymmetric half-BPS Wilson loops in
the large N and strongly coupled limits of N = 4 SYM are compared to the predictions
of holography, focusing our attention on the transverse momentum fluctuations of heavy
particles. Both holographic and localization results are available in this regime, and
therefore the role of the correspondence is here almost testimonial. Nonetheless, beyond
the sanity check that supposes the matching of the two approaches to the problem,
the exact results of supersymmetric localization can be used to gauge the reliability of
the probe and supergravitational approximations in the holographic side and provide
nontrivial tests for holography. The content of this chapter follows closely the ideas of
[1].
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3.1 Linear response for line operators in generic
conformal field theories

The statistical and quantum mechanical fluctuations of a heavy particle in a representation
R of the gauge group can be studied using perturbative methods around its path C
in the classical equilibrium solution. We already learned in 2.1.3 that the effective
action for the particle can be described as a Wilson loop operator WR. The linearized
response describing the fluctuations in the particle’s position around the classical saddle
WR (C) can be described in terms of a certain set of adjoint operators that are known as
displacement operators [85, 12] Di:

δWR (C) = trRP
(

W (C)
ˆ
dtδxj (t)Dj (t)

)
. (3.1)

These operators Di are in general gauge-dependent on their own, but, evaluated over
the world-line, they form gauge-invariant operators. For a generic and possibly nonlocal
operator O with support on the defect, we denote with double brackets its normalized
two-point function with the loop:

〈〈O〉〉WR(C) ≡
〈trRPOW〉
〈WR (C)〉 (3.2)

known as the “insertion” of O into the loop. The subindex WR (C) will be omitted when
it can be inferred from the context.

We can regard Di as a force applied to the particle (or equivalently a source for δx
fluctuations), although the quantum or statistical mechanical average on this fields makes
this force random, and the problem becomes a generalization of a Brownian motion,
which can be addressed, at the linear response level, by means of Langevin dynamics with
white noise [86, 10, 87]. The interpretation as a force is specially transparent for the case
of a particle coupled minimally to a U (1) Maxwell field and moving with 4-velocity Uµ

in the Lorentz gauge: the corresponding displacement operator becomes Dµ = qFµνU
ν ,

the Lorentz force.

Let us now focus in the transverse displacement operators in CFT theories. Notice that
the dimensionality of δxj and dt in (3.1) is the canonical one by definition, and therefore
Dj is necessarily an operator of ∆ = 2, protected against quantum corrections. For
the SL (2,R)× SO (3)-preserving defects discussed in [5, 55, 56], the three independent
transverse displacement operators form an SO (3) triplet DT

i (i ∈ {1, 2, 3}), and, therefore,
in the timelike case, where the conformally symmetric motion is hyperbolic, symmetry
constraints the 2-insertions of displacement operators to

Gij (τ) =
〈〈

DT
i (τ)DT

j (0)
〉〉

= γ̃
δij

16R4 sinh4 τ
2R

. (3.3)
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The result for the static particle (straight line) can be recovered when the limit τ � 2R
is taken appropriately:

〈〈
DT
i (t)DT

j (0)
〉〉

straight = γ̃
δij
t4

(3.4)

In fact, the coefficient γ̃ will be found in this limit for any generic smooth timelike
path. In this sense γ̃ is a “universal” characteristic of each type of particle in a CFT. In
fact, it is not independent of other important coefficients with similar universality1. Let
me digress on this idea by explaining how γ̃ is directly related with the Bremsstrahlung
function, the leading angular dependence of the cusp anomalous dimension at low angles,
the radiative properties of the particle and the coefficient hW. The authors of [12] used
there the conformal mapping between R4 and S3 × R1 to rewrite a cusp of angle φ
between straight lines to a geometric configuration where two static particles sit across
S3 with a π − φ angular separation between them (a similar construction was considered
in [85]). Then, expanding around the φ = 0 (straight line) case, they provided a relation
between the quadratic coefficient B on the Taylor expansion for the cusp with γ̃:

Γ ∼ −φ2B = −φ2 γ̃

12 (3.5)

This relation will be verified holographically in section 3.3. In the same paper, it was
argued that B coincides with the Bremsstrahlung function, by studying the probability
that a Wilson loop absorbs or emits a quantum of energy. To this end, they computed
the probability that a static quark absorbs in the interval t ∈ (0, T ) a quantum of energy
associated to the displacement δx = η (eiωt + e−iωt), which is given by the Born amplitude
rule,

pabs =
∥∥∥∥∥η

ˆ
dte−iωtD |Wstatic〉

∥∥∥∥∥
2

= T ‖η‖2
ˆ
dteiωt 〈〈D (t)D (0)〉〉 = πω3

3 T ‖η‖2 .

(3.6)

The argument is completed by the fact that the total acceleration caused by this mode is
ˆ T

0
dt ‖δẍ‖2 = 2ω4T ‖η‖2 , (3.7)

1For the coefficients hW and hW we have additional reasons to believe that the coefficient for an
accelerated loop matches the coefficient for the straight line, besides the matching at τ � 2R: For
any Euclidean CFT, a conformal transformation maps the straight Wilson line to a circular one.
It is well-known that there is a conformal anomaly associated with this mapping, and the vacuum
expectation values of these two operators do not coincide [74, 75]. Nevertheless, the contribution
of this anomaly is localized on the Wilson line, so it is reasonable to expect that it cancels in a
normalized two-point function like the one above, and the same coefficient f also appears in a
similarly normalized two-point function with the circular Wilson loop. This expectation is borne out
by explicit computations [88, 89, 90, 57].
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and by identifying ω with the amount of energy absorbed in this particular process:

〈∆E〉 = ωpabs = −π6 γ̃
ˆ
dtaµaµ . (3.8)

Intuition dictates that this radiative property should be intimately linked to the hW
coefficient controlling 〈WTµν〉 for conformal defects, and indeed, Lewkowycz and Mal-
dacena observed in section 6 of [91] that one could evaluate 〈∆E〉 as a Larmor-like
formula characterized by hW. The only subtlety in the relation is that not all the
energy-momentum tensor contribution to the energy flux corresponds to radiated energy,
in general self-energy contributions have a contribution as well. In [91] the self energy
subtraction was implemented for supersymmetric theories of generic dimensionality D,
and it was argued that, for them

BR = 4πD+1
2

Γ
(
D−1

2

)D − 1
D − 2

hWR
4π2 (3.9)

For D = 4, this relation simply reads BR = 3hWR and is totally consistent with the
results found in the literature [92, 93].

In what follows, a more detailed study of the thermodynamic equilibrium between the
background and the transverse displacement fluctuations will reveal yet another physical
observable that is fully determined by the function BR in generic CFTs: the momentum
dissipation coefficient κ. It is in general defined from the Fourier-transformed retarded
green function GR

ij (ω) through a conventional Kubo formula [94]:

κij = − lim
ω→0

2T
ω

ImGR
ij (ω) . (3.10)

Nonetheless, in our transversely isotropic and thermodynamically equilibrated system
[10, 87]

G (ω) = − coth ω

2T ImGR (ω) , (3.11)

and therefore

κij = lim
ω→0

Gij (ω) = lim
ω→0

ˆ ∞
−∞

e−iωτGij (τ) dτ = κδij (3.12)

A straightforward complex integral along the path shown in figure 3.1 gives us

G (ω) = γ̃δij
2π

3!R2
ω +R2ω3

e2πωR − 1 (3.13)

and therefore,

κ = γ̃

6R3 = 2B
R3 (3.14)
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0

2πRi

Re (τ)

Im (τ)

Figure 3.1: The Fourier transform of sinh−4 ( τ
2R
)
can be evaluated using the depicted circuit

in C.

for any generic CFT.

Observe that (3.13) displays a thermal behavior, where we identify the usual Unruh
temperature [95, 96]

β = T−1 = 2πR (3.15)

Through the Unruh effect, our accelerated particle perceives a thermal bath in its
comoving frame, and its momentum fluctuations are controlled by this temperature:

κ = 16π3BT 3 . (3.16)

Although the properties of this bath are known to be quantitatively different from those
felt by static probes in a thermal bath (see for instance [96] and the review [97] for a
discussion on this point), the two types of thermal fluctuations source cause qualitative
behavior. In section 3.4 we will discuss up to which point the findings for the particle
in hyperbolic motion can be extrapolated to the properties of a heavy particle moving
through a thermal bath, and in particular to a charm or bottom quark moving through
the quark-gluon plasma in LHC and RHIC colliders.
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3.2 Field theoretical computation of the Bremsstrahlung
coefficient

In the previous section, we presented a versatile radiative coefficient BR and illustrated
many of its applications, included its relation with the coefficients controlling the linearized
response of a particle (γ), the energy and momentum sourced by a particle (hW ), and
the transverse momentum dissipation caused by the background (κ).

We will now turn to the evaluation of these quantities using localization techniques
in N = 4 SYM. In fact, the methods we will review here are specific of N = 4 SYM. For
theories with less supersymmetry it is still possible to evaluate hW , as we will discuss
in chapter 5, but N = 4 SYM theories enjoy additional symmetries that simplify this
computation. More specifically, in this maximally supersymmetric 4-dimensional theory
the coefficients hW and fW are related because Tµν and L lie at the same supermultiplet.
This relation was used to extract fW from B in [90] and indirectly checked in [12] when
the conjecture of [65] was used to obtain the N = 4 Bremsstrahlung function. In practice,
this identity implies that the Bremsstrahlung function can be evaluated using

BR = 4fW = 1
2π2λ∂λ ln 〈WR〉 . (3.17)

The last identity can be justified following [4]: Since, schematically,

〈W〉 =
´
DφWe

− 1
g2

´
d4xL

´
Dφe−

1
g2

´
d4xL

, (3.18)

g2∂g2 ln 〈W〉 = − 1
g2

ˆ
d4x
〈WL〉
〈W〉 (3.19)

For conformal loops the integrand becomes fWr
−4, and after discarding a pole for the

short distance regularization of the integral 2 in the conformal loop case we obtain the
last identity of (3.17), which is valid for any Lagrangian 4d CFT, supersymmetric or not,
as opposed to the first equality in the same expression.

But, what is the v.e.v. for a generic hyperbolic Wilson line? By analytic continuation
of the equation for its trajectory, it can be related to the v.e.v. of a circular Wilson
loop of the “maximal circle” half-BPS DGRT family. It is worth emphasizing that this
argument would in principle require the starting Lorentzian description to include both
branches of the hyperbolic Wilson line. In other words, an antiparticle should be added

2A convenient regularization was used in [91]. It consists of mapping the space to S1 ×H3,

ds2 = dτ2 + dρ2 + sinh2ρ
(
dθ2 + sin2 θdφ2) (3.20)

and introducing a short distance cut-off ρc for the coordinate ρ. The divergence appears then as a
pole 1/ρc, which is discarded.
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to the picture with a complementary motion to that of the particle. This issue will
reappear in the holographic analysis in the next chapter. Nonetheless, in both cases
this fact should not affect our conclusions: a straightforward analysis demonstrates that
the particle-antiparticle pair under concern is causally disentangled, and therefore, the
presence of the antiparticle should not affect in any way the local fluctuation properties
of the particle and vice versa.

As we discussed in 2.4 the v.e.v. for half-BPS circular Wilson loops can be obtained
using localization. From equation 2.61, we derive

BU(N) = λ

16π2N

L2
N−1

(
− λ

4N

)
+ L2

N−2

(
− λ

4N

)
L1
N−1

(
− λ

4N

) (3.21)

where Lαn are generalized Laguerre Polynomials. It is worth emphasizing that this formula
is valid for any value of λ and N . In various limits, it can be checked using the AdS/CFT
correspondence [92, 98] or Bethe ansatz techniques [99, 100, 101, 102]. To obtain the
result for the SU (N) theory, we have to subtract the U (1) contribution [12]

BSU(N) = BU(N) −
λ

16π2N2 (3.22)

This results will be revisited and extended to other simple Lie groups and representations
in chapter 4.
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3.3 Holographic computation of momentum fluctuations

In the large N and large λ limits, the heavy Wilson loop of the previous section can be
analysed using semiclassical holography with probe defects. The first step for this study
is to identify the worldspaces corresponding to the classical solutions of the holographic
objects that are dual to the hyperbolic BPS Wilson loop. Fortunately, for both strings
and branes the relevant solution can be obtained from the simpler case of the static
particle. In the boundary any hyperbolic Wilson line is related to the straight Wilson
line through a special conformal transformation. Its extension to the bulk, given by the
6-dimensional isometry Kµ in the terminology of (2.33), defines an isometry on AdS5
as well [55], and therefore when applied to the straight line solution produces an object
that not only satisfies the boundary conditions set by the quark hyperbolic motion at
z → 0, but also stays an extremal area3, and therefore a solution of the NG or DBI-WZ
equations of motion.

The solution obtained in this manner describes a particle following the desired classical
path, but this boundary condition alone does not make the problem well-posed in the
bulk: other classical supergravitational solutions end up in the same trajectory. The full
specification of the solution needs additional boundary conditions for the endpoints of the
strings or branes in full AdS, or equivalently boundary conditions in the Poincaré horizon.
How do we know that the solution obtained this way is the physical one? The answer in
this case is that generic boundary conditions would break supersymmetry, and therefore
the half-BPS preserving solution obtained by the special conformal transformation is the
appropriate choice.

As an aside, let me point out that there is a specific type of boundary conditions
at the Poincaré horizon for which the general solution of the problem is known for an
arbitrary timelike Wilson line: purely infalling (or, with a change of sign, purely outgoing)
propagation at this horizon. The problem was originally solved for strings [92], and
has recently been extended to D3-brane stacks [103]. Nonetheless, as far as I am aware
of, it is less clear that these solutions are always the right ones for a probe in thermal
equilibrium in the generic case. The half-BPS case is invariant under timer reversal,
and both infalling and outgoing boundary conditions lead to the right result. In fact,
any mixed combination of infalling and outgoing conditions at the horizon would also
reproduce the BPS solution. If the right prescription to take to describe a physical
particle in thermal equilibrium was of this hybrid type, i.e., a combination of infalling
and outgoing modes, we would not be able to obtain the defect shape for an arbitrary
ending path using the known outgoing and infalling solutions: the problem is nonlinear.
This objection does not apply to the linearized fluctuations around the half-BPS solution.

The problem ill-posedness is absent in the Euclidean version of this Wilson loops.
In this case we obtain a string [58] or brane [38] of finite area solving a minimal area

3This argument is not generally true for DBI actions, but it will hold in the cases we are interested
in because the nonzero flux for the Drukker-Fiol solution does not contribute to the spacetime
dependence of the g + F determinant.
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problem and ending at the prescribed circle at z → 0 (except for the straight Wilson
line, which can be thought as the infinite radius limit of this construction). However,
the connection between these Euclidean solutions and the Lorentzian solutions that we
will address below is established through the direct analytic continuation of the quadric
equations of the Wilson line and the string/brane. This type of continuation in generic
surfaces involves the complexification of embeddings, which makes it at first sight not
suitable to solve the issue.

Another important question has been discussed in the literature about the purely
infalling/outgoing constructions, and it concerns the hyperbolic half-BPS solution as a
particular case. The issue is the following: for Wilson lines that asymptote a light-speed
motion at t→ ±∞, the only way to avoid a singular behavior (or a “mid-air” ending)
for the holographic dual object is to include a fully entangled antiparticle to the one
described by the original Wilson line [104, 105, 106]. We have already discussed that this
antiparticle is present in the half-BPS construction under study. From the holographic
point of view, these two particles are connected through a worldspace whose induced
metric reproduces a wormhole. The duality between a fully entangled (Einstein-Podolsky-
Rosen) particle-antiparticle pair and a holographic wormhole (Einstein-Rosen bridge)
has been thoroughly studied in the literature, under the name ER=EPR [107, 108, 109],
after the seminal paper of Susskind and Maldacena [110]. The fact that in the hyperbolic
construction under study the EPR pair in question is causally disconnected makes this
interesting question irrelevant for the study of fluctuations, and it will not be further
examined in this thesis.

Having clarified that the holographically extended special conformal transformation
will lead us to the desired solution from the static case, let us proceed by constructing
these static and hyperbolic solutions in the probe approximation explicitly.

• String solutions: In the coordinates of the Poincaré patch, whose metric we
reproduce here for convenience,

ds2
AdS5×S5 = R2

(
dxµdxµ
z2 − dz2

z2 − dΩ5

)
(3.23)

the static string solution corresponds to a string extending only in t and z, i.e.,
given by

static string: ~x = 0 (3.24)

and a fixed static location on the S5 [70]. The result of the conformal transformation
is better expressed in terms of Rindler coordinates, which in terms of the original
AdS5 variables are defined as t = ρ sinhψ, x1 = ρ coshψ, hence

ds2
AdS5×S5 = R2

z2

(
ρ2dψ2 − dρ2 − d

(
x2
)2
− d

(
x3
)2
− dz2

)
−R2dΩ5 (3.25)
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In the Rindler patch where these coordinates are valid, the hyperbolic solution
reads simply

hyperbolic string: ρ =
√
L2 − z2; x2 = x3 = 0 (3.26)

The Euclidean version of the hyperbolic string was first considered in [58], see also
[92, 111, 112, 113] for the Lorentzian construction. Recall that from these string
solutions, it is straightforward to obtain a solution for a D5 brane stack wrapping
an S4 hyperplane in the compact S5 space [114].

• Static D3 brane stack solution: Although the relevant static D3-brane solution was
found in [70, 38] it is better expressed in the coordinates introduced in [115, 73, 116],
which are obtained by expressing ~x in terms of a radius r̃ and a solid angle {θ, φ}
and redefining z = rsechu and r̃ = r tanh u to decouple the S2 and AdS2 manifest
structures in the metric that we will use to build a worldspace with this structure:

ds2
AdS5 = R2

(
cosh2 u ds2

H (t, r)− du2 − sinh2 udΩ2
2 (θ, φ)− dΩ2

5

)
ds2

H = dt2−dr2

r2 ; dΩ2
2 = dθ2 + sin2 θdφ2

(3.27)

Using a static gauge with t, r, θ and φ as the worldspace coordinates, the solution
for the D3-brane of flux N is given by

static brane: sinh u = k
√
λ

4N ≡ K; Ftr =
√
λ

2π

√
1 +K2

r2 (3.28)

For the hyperbolic solution in this case it is convenient to rewrite:

ds2
H = sinh2 ζdψ2 − dζ2 (3.29)

which makes the solution transformed under the extended special conformal sym-
metry

hyperbolic brane: sinh u = K; Fζψ =
√
λ

2π

√
1 +K2 sinh ζ (3.30)

It is possible to analyze the string solutions in the coordinates adapted to the branes,
but in what follows the notation will be kept referred to the Poincaré-Rindler sliced
coordinates to make the connection to the field theoretical coordinates more explicit for
them.

We now turn to the study of fluctuations of the string (NG) and brane (DBI+WZ) ac-
tions4. In our holographic construction, the S2 part of the D3 worldspace (or equivalently

4A crucial identity in the expansion of the NG and DBI terms is

√
|M | =

√
|M0|

(
1 +

tr
(
M−1

0 δM
)

2 +
tr2
(
M−1

0 δM
)

8 −
tr
(
M−1

0 δM
)2

4 +O (δM)3

)
(3.31)
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the S4 part of the D5 worldsheet in the extension à la Hartnoll of the string solution) is
independent of the holographic coordinate and does not appear parametrically in the
Wilson line path. Consequently, the excitations in this subspace will be interpreted as
modes for the point particle. The optimal way to analyze them is through their spherical
harmonic expansion.

The quadratic expansion of string and brane actions is in general involved. Around
arbitrary string/brane solutions in generic backgrounds, the quadratic expansion of
the corresponding action includes tangled fluctuating modes (∼ ∂δx∂dy) with massive
(∼ δxδy) and drag (∼ δx∂δy) terms in curved backgrounds. However, for the half-BPS
objects presented above and in the adapted coordinate systems in which we wrote them,
the the full spectrum of fluctuations for strings [117, 37, 118] and D-branes [119, 116]
has been studied in the literature, S5 and fermionic parts included.

Since we are expanding around solutions of the equations of motion, the linear terms
will vanish and therefore the Lagrangian becomes quadratic. When we use the appropriate
parametrization, additionally, the quadratic Lagrangian describe pure fluctuations, i.e.,
Lfluc ∼

1
2G

ij∂ix
a∂jx

b, where a and b denote transverse directions and Gij is a symmetric
tensor that plays the role of the inverse of an “effective worldspace metric” and should not
be confused with the induced metric. We obtain from the expansion of the Lagrangian:

Lstat strfluc = 1
2πα′

R2

z2

(
(∂t~x)2 − (∂z~x)2

2

)
(3.32)

Lhyp str
fluc = 1

2πα′
R2

z2

∑
i=2,3

(1
2

L

L2 − z2

(
∂ψx̃

i
)2
− 1

2L
(
L2 − z2

) (
∂zx̃

i
)2
)

(3.33)

Lbranesfluc = TD3R
2

√
|G |
2

(
G ab∂au∂bu

)
; G = R2K

√
1 +K2

(
ds2

H − dΩ2
2

)
(3.34)

where x̃2,3 ≡ x2,3, but we have defined x̃1 ≡
√

12 − z2L−2 to avoid drag terms for
the hyperbolic string fluctuations in the “longitudinal” direction5. Observe that the
fluctuating Lagrangian for the branes is optimally written in terms of an auxiliary metric
G , which is neither the fluctuating metric G for the modes we want to study, nor the
induced metric.

Let us check that the fluctuating modes of the strings match the ∆ = 2 displacement
operators we introduced in the previous section: for the static string, the equations of

which follows from arithmetic manipulations of [exp ln] det (I +A) in the basis where the nonsingular
matrix I +A is diagonal.

5The term “longitudinal” is here potentially confusing. The coordinates x1,2,3 or x̃1,2,3are equally valid
to describe the three types of physical deformations of the loop path, which are all “transverse”.
However, the motion in the 1 direction makes the x1 and x̃1 coordinates not directly normal to the
worldline, that’s why we call them “longitudinal” and need a specific treatment to hide the drag
terms that appear for x1.
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Static: Hyperbolic (define ẑ ≡ z
L
)

2
z
∂z~x− ∂2

z~x = ω2~x 2
ẑ

(1− ẑ2) ∂ẑx2,3 − (1− ẑ2)2
∂2
ẑx

2,3 = ω2x2,3

~x = ~x0 (ω) eiω(z−t) (1− iωz) ~x = ~x0 (ω) eiω(arctanhẑ−t) (1− iωẑ)

GR (ω) = − R2

2πα′
(
�
�ω
2

z
+ iω3

)
G (ω) = −signωGR (ω) =

√
λ

2π |ω|
3

G (t) = 3
√
λ

π2t4
→ γ = 3

√
λ

π2

GR = − R2

2πα′
(
�
�ω
2

z
+ iω

(
1
L2 + ω2

))
κ = limω→0

2T
ω
ImGR = 4π

√
λT 3

Table 3.1: Summary of results for the physics of the quadratic fluctuations of a string dual
to a particle static (left) and hyperbolic (right) motion. In both cases the first line
displays the equations of motion for the explicitly transverse modes, the second
line presents its solution with outgoing boundary conditions and the last line
contains the retarded propagator of the displacement operators of the dual particle,
extracted from the near-boundary behaviour of the outgoing solution. From this
propagator some linear response coefficients are inferred.

motion read

∂2
t ~x− z2∂z

∂z~x

z2 = 0⇒ ∂2
t
~φ− ∂2

z
~φ+ 2

z2
~φ = 0; ~φ ≡ R

z
~x (3.35)

and thus we learn that these three transverse modes are massive m2 = 2L−2 scalars in
the worldsheet. The usual relation __, which can harmlessly be extended to operators
on a defect (it is usually stated that “holography acts twice”, see [120]), determines that,
as we expected, these fluctuating modes correspond to ∆ = 2 CFT operators. In the
z � L the equations of motion for the hyperbolic motion become identical to (3.35),
and therefore, the identification with the displacement operators works identically. For
the D3 branes, we identify the corresponding ∆ = 2 modes in the ` = 1 triplet in the
spherical harmonic expansion.

We are now in position to solve for the modes describing the transverse fluctuations of
the string or the brane. Following [37, 87] we solve the corresponding equations of motion
using Fourier transformation methods in the temporal coordinate and keep the outgoing
solution at the Poincaré horizon. From this solution we can obtain the displacement
propagator [87] for the fluctuating variable x̃ through

ImGR
~x = − lim

z→0
Gzβ∂β ln x̃ , (3.36)

which follows from the GKPW prescription. Table 3.1 summarizes the results for the
static and hyperbolic strings, first derived in [87] and [111], respectively.
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It is not necessary to reproduce the full computation for the D3 brane analogs: it
suffices to observe that the fluctuation Lagrangian for the kinetic triplet of interest is
k
√

1 +K2 times the one computed with the corresponding string. Therefore, we obtain,
for k-symmetric representations,

γ̃Sk = 3
√
λ

π2 k
√

1 + k2λ
16N2

κSk = 4π
√
λk
√

1 + k2λ
16N2T

3
(3.37)

These results for the string and brane match the holographic predictions obtained for
the other coefficients. For completeness, let me briefly present these results and comment
on how to obtain them:

• The half-BPS Wilson loop v.e.v. (or, more precisely, its logarithm), can be obtained
in the supergravity and probe approximation limits simply from the evaluation
of the defect action in the classical solution. In other words, we can make use of
the Eulerian solutions of the minimal area problems for the string and the brane
[58, 38] and compute

string: ln 〈W 〉 =
√
λ

brane: ln 〈W 〉 =
√
λ
√

1 + k2λ
16N2

k
2 + 2Narcsinhk

√
λ

4N

(3.38)

• The hW and fW coefficients of N = 4 SYM can be computed holographically in
more than one way: One option is to take an Euclidean circular half-BPS Wilson
loops and compute its correlator with the conformal primary O2, which is in the
supermultiplet of both Tµν and L. This can be done in the probe semiclassical
approximation by evaluating the propagation of supergravity states between the
worldspace of the holographic representative of the loop and the O2 operator. In the
limit where the distance between the loop and the primary is large in comparison to
the circle of the loop one can extract from this quantity the second OPE coefficient,
which is directly related to hW and fW. Alternatively, one can study the specific O2
channel in the correlation of two circular Wilson loops separated a large distance.
This computation was done for strings in [58], and later extended to D3-branes
in [88]. The direct computation of the Lorentzian fW coefficient can be done
instead studying the near-boundary decay of the dilaton sourced by the holographic
representative of the loop. It was performed originally in [37] for strings and
extended for D3-branes in [90].

• The Bremsstrahlung function can be evaluated in terms of the worldspace energy
flowing through the causal horizon that the string or brane worldspace develops
when for an accelerated Lorentzian Wilson line. This idea was used to compute
the B function for strings in [92], and then extended to branes in [98].
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There is another result matching that deserves a mention: Although at k = 1 the defect
action of DBI develops large F gradients that should break down its validity, we still
recover the string result at k → 1, N �

√
λ in the previous expressions [38, 98, 90].

Furthermore, at finite
√
λ/4N the extrapolation of the brane results to k = 1 happen

to reproduce the correct N � 1 limit of the localization results for these observables.
Conjecturally, the high amount of symmetry in this situation protects the probe solution
from corrections beyond the regime of applicability of supergravity. To my knowledge,
there is still not a clear understanding of this effect.
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3.4 Lessons for thermal plasmas?

In section 3.2 we have used the results of supersymmetric localization for the Bremsstrahlung
function to obtain exact predictions for the momentum fluctuations of accelerated heavy
quarks at zero temperature. As expected, the two-point function of displacement opera-
tors presents thermal behavior due to the Unruh effect. A question arises: Can we use
our results to learn something about momentum fluctuations of heavy probes immersed
in a thermal bath (at a finite temperature) of the same conformal field theory?

Besides its intrinsic interest, this question has broader relevance since it is expected
that at finite temperature, conformal theories (even superconformal ones) share some
properties with the high-temperature deconfined phase of confining gauge theories. More
specifically, a particular CFT, N = 4 SYM at T 6= 0, has been used by means of the
AdS/CFT correspondence to model the quark-gluon plasma experimentally observed at
RHIC and at the LHC (see [121, 122, 123] for reviews). In particular, the momentum
fluctuations of a heavy quark (either static or moving at constant velocity) in the quark-
gluon plasma have been estimated by considering a dual trailing string in the background
of a black Schwarzschild brane in an asymptotically AdS5 background [124, 10, 125, 126].
The applicability of the holographic correspondence for the study of heavy quarks in
strongly coupled plasmas is nonetheless currently limited to the large λ and large N
regime of supergravity, and although some subleading corrections can be computed (see
[127, 128] for a computation of the λ−1/2 and λ−3/2 corrections to the jet quenching
parameter in N = 4 SYM, for example) it seems extremely hard to reach finite N and λ
in such computations. For this reason, it would be very interesting if the study of an
accelerated quarks in the vacuum of a conformal field theory, which as we have seen can
be tackled at finite λ and N , can become an indirect route to the study of conformal
T 6= 0 plasma.

However, as we anticipated in 3.1, while a probe accelerated in vacuum and a static
probe in a thermal bath experience a non-zero temperature, the details of their response
are not identical quantitatively, and under some circumstances even qualitatively [96, 97].
We can see this explicitly for the N = 4 SYM plasma, by comparing known expressions
of the momentum diffusion coecients in various regimes:

• Weakly coupled field theory: the momentum diffusion coefficient of a heavy quark
in a weakly coupled N = 4 SU(N) SYM plasma has been computed at leading and
next-to-leading orders [129, 130]

κThermal = λT 3N
2 − 1
N2

λ

6π

(
log 1√

λ
+ c1 + c2

√
λ+O (λ)

)
(3.39)

where c1 and c2 are known coefficients [130]. Observe that the thermal series
starts with an O (λ2 log λ) term. This feature comes from the non-trivial coupling
dependence of the Debye mass in the thermal bath [131]. Conversely, the weak
coupling expansion of the result (3.16) with the Bremsstrahlung function presented
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in 3.2 for SU (N) reads

κUnruh = λT 3N
2 − 1
N2 π

(
1− λ

24 +O
(
λ2
))

(3.40)

and presents a qualitatively different behavior, with a leading term of O (λ).

• Strongly coupled field theory: The holographic picture describing an accelerated
probe in a thermal bath is rather different from the strings reaching the boundary
at a hyperbola discussed in 3.3. The former consists of a string in the Schwarzschild-
AdS background, and is characterized by qualitatively different retarded Green
functions (see [132] for a discussion on this point. The result obtained for these
correlators in [124, 10] is

κSUGRAThermal = π
√
λT 3 (3.41)

which is four times smaller than the supergravity result (or the localization result at
λ→∞ with N ∼ λ) for the similar transport coefficient for the Unruh background,
which we reproduce here for convenience:

κSUGRAUnruh = 4π
√
λT 3 (3.42)

This difference might be surprising at first, since it can be argued that transport
coefficients can be read from the world-sheet horizon [133], and the two classical
world-sheet metrics (i.e. accelerated string in AdS5 versus hanging/trailing string in
Schwarzschild-AdS5) while clearly different, have the same near-horizon metric, 1+1
Rindler space. However, the different change of variables used to write these near-
horizon metrics imply different normalizations of the corresponding wavefunctions,
giving rise to this factor of four discrepancy between the respective transport
coefficients.

Keeping these differences in mind, we nevertheless propose to use our exact results to
make an educated guess of the impact of using SUGRA instead of the exact results for
computing the momentum diffusion coefficient of a static heavy quark, κThermal, in
N = 4 SYM at finite temperature. To that end, we start by evaluating the difference
between the SUGRA (large λ, large N) and the exact (finite λ, N = 3) computations of
the coefficient for the accelerated probe in vacuum. For the latter, we obtain simply by
combining equations (3.21), (3.22) and (3.16),

κSU(3) = 4π λ18
λ2 + 144λ+ 3456
λ2 + 72λ+ 864 T 3 (3.43)

Observe that the linear growth in λ of the Bremsstrahlung function at finite N and large
λ, is very different from the ∼

√
λ dependence observed in (3.42), which describes the

λ limit of the same function but when N scales with N ∼ λ. In fact, for generic N we



Momentum fluctuations of strongly coupled particles 65

“Obvious” scheme TN=4 = TQCD λ = g2
N=4N = 12παs ∼ 6π

“Alternative” scheme TN=4 = 3−1/4TQCD λ = g2
N=4N = 5.5

Table 3.2: The different underlying physics of N = 4 SYM and QCD makes the numerical
comparison of their phenomena ambiguous. The two prescriptions listed here
correspond to a direct matching of parameters (“obvious” scheme) and a correc-
tion proposed to account for the difference in the number of degrees of freedom
(“alternative” scheme).

obtain a similar asymptotic λ linear growth,

κλ�1
SU(N) = N − 1

N2 πλT 3 (3.44)

which does not match at N ∼ λ the result (3.42). The limits of large N and large λ do
not commute, and therefore, we should a priori mistrust the extrapolations to finite N of
the λ→∞ holographic prediction.

That being said, observe that the quotient between (3.42) and (3.43),

κEXACTUnruh
κSUGRAUnruh

=
√
λ

18
λ2 + 144λ+ 3456
λ2 + 72λ+ 864 (3.45)

which reflects the λ → ∞ discrepancy clearly, becomes finite and of O (1) for a large
parametric range around λ ∼ 182.45, i.e., the point where this monotonic function
becomes exactly one. The parametric regime that has been considered when modeling
the QCD quark-gluon plasma by N = 4 SYM lies precisely in the regime where the
holographic and exact predictions are of the same order.

Given the differences between N = 4 SYM and QCD there are inherent ambiguities
in choosing the parameters of the former that might best model the real world QCD
plasma. A first choice [134] is to equate the temperature and coupling constant of both
theories, but other prescriptions have been proposed in the literature. In particular, in
order to ameliorate the impact of the obvious difference in the number of degrees of
freedom, Gubser proposed to take an alternative scheme [135, 87], rescaling both the
temperature and the coupling constant as indicated in the table 3.2, although this choice
comes with its own limitations. Without entering the discussion about the adequacy of
each scheme, let us take their two parametric setups as indicators of the values between
which the best fit of N = 4 to QCD should reside.

Within the interval λ ∈ [5.5, 6π] the ratio (3.45) increases from 0.43 to 0.61, see figure
3.2. Roughly speaking, in this range of values for the ’t Hooft coupling supergravity
overestimates κ by a factor of about two.
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Figure 3.2: The relation between the exact momentum diffusion coefficient and the supergrav-
ity approximation for an accelerated quark in vacuum. The range of λ displayed
corresponds to the one considered when modelling the quark-gluon plasma.

Clearly, we are not in a position to estimate κThermal for N = 4 SYM at arbitrary λ
andN : the qualitative differences observed in the perturbative regime and the quantitative
overall discrepancy in the supergravity regime are convincingly dissuasive in that regard.
A more modest goal is to estimate it in the range of values singled out above, that appear
when modeling the QCD quark-gluon plasma. Moving across the (λ,N) plane towards
the region of validity of supergravity, the ratio (3.45) will uneventfully evolve from the
values of ∼ 0.5 found above to 1. In order to proceed, we are going to assume that
roughly the same is true for κThermal, so, along that path,

κEXACTThermal
κSUGRAThermal

≈
κEXACTUnruh
κSUGRAUnruh

(3.46)

If this assumption is true it means that the supergravity computations [10, 124, 125] for
κThermal give an answer that is about twice the exact one. While we currently lack
the solid arguments to substantiate this speculation, let’s end by noting that if true, it
would in turn imply that the diffusion constant D = 2T 2/κ for the N = 4 SYM plasma
would be about twice the one obtained in supergravity, pushing it in the right direction
to match the range of values suggested by RHIC [136].



Chapter 4

Generic line probes and orientifolded
geometries
Predictions of localization for finite N and λ N = 4 SYM

The previous chapter illustrates the relations between the v.e.v. of ciruclar half-BPS
Wilson loops and the radiative and thermal properties of a particle in 4D N = 4 SYM in
semiclassical holography. The picture presented there is valid (up to small modifications
for SO (N) and SP (N) groups) in the parametric configurations with a simple Lie gauge
group of large rank and when the coupling is strong. Perturbative corrections in N−1

and λ−1/2 are sometimes sufficient to extend the holographical description to finite N
and λ, but, as perturbative series, their accuracy is limited, and they eventually break
down.

In contrast, the results of supersymmetric localization keep their validity in the whole
parametrical range of λ and N . In this chapter we will discuss the lessons we can
extract from them about the holographic regimes that lie beyond supergravity, both
perturbatively and nonperturbatively, following closely the discussions of [2] and [3].
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4.1 Circular Wilson loops of arbitrary R and G

Let us in first place derive the exact results that will serve us as guiding principles in
the rest of the chapter. In what follows, we systematically study the v.e.v.s of half-BPS
circular Wilson loops for particles of generic representation R in N = 4 SYM theories
of simple nonexceptional compact gauge algebra G. All the results presented below are
exact at any N and λ. Before proceeding, I should display here a warning message: this
section is rather technically involved and exempt of physical discussions. The reader
might prefer to skip it and proceed to the other section of this chapter, which elaborates
on the implications of the main results found here (equations (4.17), (4.29), (4.39) and
table 4.2), for field theory and holography.

The fact that we can analyse the aforementioned family of Wilson loop observables
in full generality is a direct consequence of the fact that the obtention of (2.65) in [76]
is independent of G and R. Additionally, this result becomes specially simple when
the theory under consideration is N = 4 SYM: the instantonic contribution identically
vanishes (Zinst = 1), and the 1-loop determinant includes the very same factors in
the numerator and denominator (and therefore Z1-loop = 1). As a result, in this case,
equivariant observables are computed in the matrix model using

〈f (x)〉 = 1
Z

ˆ
dNx∆FP (x) e−

2
g2

(x,x)
f (x) . (4.1)

Then, the v.e.v. of a generic half-BPS circular Wilson loop reads simply

〈WR〉 = 1
dimR

〈 ∑
ω∈Λω(G)

nR (ω) eω(x)
〉
. (4.2)

Notice that for convenience we have redefined in (4.1) and (4.2) the integration variable
x = 2πrΦ0 with respect to (2.65) and (2.67).

The trace over the representation R of the Wilson loop is implemented in (4.2) as a
sum over the weights ω of the weight lattice Λω (G) with their corresponding multiplicity
in R, nR (ω).

4.1.1 Perturbative expansion for arbitrary representations of U(N)

Let us first turn our attention to the case where the gauge group is U (N). Recall that,
for this case, (x, x) = ∑

n x
2
n, the Weyl group of the Cartan subalgebra is the permutation

group SN , and the weight lattice is RN in the orthonormalized coordinates of the Cartan
subalgebra. The traces over generic representations can be implemented with a useful
combinatorial tool: Young tableaux.

Let me briefly elaborate on the connexion between representations of U (N) and
Young tableaux: Consider first the Young diagram Yµ, where µ denotes a sequence
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Figure 4.1: Left: Young diagrams (black) of U (N) are labeled by a sequence of N weakly
decreasing numbers µ that indicate the number of squares they contain in every
row. Observe here the (6, 4, 4, 1, 0, 0) diagram of U (6). For each square in the
diagram it is useful to define the x-content (red) and the hook length (blue). The
maximum N -content of each row defines the shifted sequence µ̄. The hook length
is obtained by adding 1 to the sum of the squares either purely at the right of
purely below of the considered square.
Right: A semistandard Young tableau is obtained by filling the squares of a
Young diagram with integers in [1, N ] that are weakly and explicitly increasing
along rows and columns, respectively. The tableau represented here represents
the (2, 1, 2, 4, 3, 3) weight, or a monomial x2

1x2x
2
3x

4
4x

3
5x

3
6 in a Schur polynomial.

of weakly decreasing row lengths µ = (µ1, . . . , µN). We will denote by |µ| the total
number of squares in the diagram, or, equivalently, if this number of squares is k, we will
write µ ` k. Any tableau in this diagram Y ↪→ Yµ with entries in {1, . . . , N} defines a
weight: in the orthonormal basis of the Cartan subalgebra, the k-th component of the
1-form ω is taken as the number of instances of k in the tableau, Ck [Y ] (see figure 4.1.
Each representation of U (N) can be univoquely implemented with the correct weight
multiplicity by a diagram Yµ, provided we consider all semistandard Young tableaux (i.e.,
weakly increasing along rows and strictly increasing down each column) we can write on
Yµ. In other words, the function implementing the trace over Rµ, is given by

trRµ (f (x)) =
∑
ω

nRµ (ω) f
(
ωkxk

)
=

∑
Y ↪→Yµ

f

(∑
n

Cn [Y ]xn
)
. (4.3)

For our specific interests, where f (x) = ex, the function implementing the trace becomes
a Schur polynomial:

Sµ (exn) ≡
∑

Y ↪→Yµ

N∏
n=1

eCn[Y ]xn (4.4)
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Figure 4.2: Observe how the transposition of a Young diagram encodes in its sequence the
multiplicity of the entries in the original sequence of row lengths.

These polynomials are the characters of polynomial irreducible representations of GL (N)
groups. They form a basis of the space of symmetric functions of N variables.

Before addressing the explicit computation at hand, let us define two operations on
sequences that will significantly simplify the notation on what follows:

• The shifting operation µ → µ̄ acts on the sequence µ of N elements as µ̄n ≡
µn +N − n. The resulting sequence µ̄ is strictly decreasing and it coincides with
the maximal N -content1 in every row of its diagram.

• The diagramatic transposition µ → µT , which converts the sequence µ into the
sequence describing the Young diagram (Yµ)T , i.e., the Young diagram where
the rows and columns have been interchanged. Notice that αn (µ) ≡ µTn − µTn+1
(with µTN+1 = 0) counts the number of instances of number n in the µ sequence.
Additionally, we define α0 (µ) ≡ N −∑N

n=1 αn = N − µT1 , which counts the number
of zeroes at the end of the partition. This operation is represented in figure 4.2.

Observe that one has to be careful with the length N of any sequence µ: the
corresponding Schur polynomial and the sequence µ̄ will depend on this quantity, and
we will seldom make it explicit.

Our first approach to the v.e.v. of U (N) loops in the matrix model will be the scrutiny
of its perturbative series in g. A helpful property for this purpose is the translation

1The x-shifted content, or x-content for short, of the n-th square in the m-th row of a Young diagram is
given by x+n−m. This quantity defined for the squares of a diagram, which should not be confused
with the content Cn [Y ] of a Young tableaux, is a very useful quantity in the study of combinatorics
of Young diagrams and tableaux.
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identity for Schur polynomials:
Sµ (1 + y1, . . . , 1 + yN) = ∑

ν bµνSν (y1, . . . , yN)

bµν ≡ det

 µ̄n

ν̄m




. (4.5)

Here, and in the rest of this chapter, we will work with the understanding that 1
a! = 0

for −a ∈ N to simplify the expressions. For this specific study it is also useful to rescale
the integrating variables (the eigenvalues) of the matrix model as xi → gx̂i/2 in order to
make the power series in g more transparent in the expansion and make the Gaussian
exponent canonical. The translation identity becomes

〈
Sµ
(
ex̂i
)〉

= bµ∅ + g
2 bµ

 N

1

 〈x̂n〉+
+
(
g
2

)2 ( bµ
2 + bµ

) N

1

 〈x̂2
n〉+

(
g
2

)2
(
bµ + bµ

) N

2

 〈x̂nx̂m 6=n〉+ . . . .

(4.6)

The v.e.v.s in this series can be evaluated easily, using for instance orthogonal polynomials
and their recurrence properties, as we discussed in 2.4.3. The terms of odd order in x̂n
will all vanish from the expansion because the simultaneous change of sign of all the x̂n
is a symmetry of the integral. Consequently, the expansion (4.6) is a perturbative series
in g2, not in g.

In order to express the power series in a representation-independent way, it is conve-
nient to evaluate the bµν coefficients in terms of the Casimirs of the representation Rµ,
C (µ), which for U (N) can be read directly from their generating functions

Gµ (t) =
∑
k

Ck (µ) tk = 1
t

[
1−

N∏
n=1

(
1− t

1− µnt

)]
. (4.7)

At the linear order in g2, the coefficients are easilly evaluated (see table 4.1),

〈
WRµ

〉
= 〈Sµ〉

dimRµ

= 1 + C2 (µ)
8 g2 + . . . . (4.8)

As one increases the computed order, however, these equations become more involved
(and far from illuminating). Although there is no obvious way to rewrite generally the
coefficients bµν in terms of Casimir invariants, we will now observe that the highest power
of µ in every coefficient is a direct power of the second Casimir. Let us first notice that
the Casimir Cp has degree p in µ and that the term g2k contains at most terms of total
degree 2k. Furthermore, only those terms where ν is a partition of 2k can generate the
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bµ∅ = dimRµ

bµ = dimRµ
C1(µ)
N

〈x̂i〉 = 0

bµ = dimRµ
2N(N+1)

(
C2 (µ) + C1 (µ)2 − (N + 1)C1 (µ)

)
〈x̂2

i 〉 = N

bµ = dimRµ
2N(N−1)

(
−C2 (µ) + C1 (µ)2 + (N − 1)C1 (µ)

)
〈x̂ix̂j 6=i〉 = −1

Table 4.1: Binomial determinants and monomial correlators involved in the evaluation of the
linear term in the Taylor series for the Wilson loop in representation R.

maximal degree in µ at order g2k. With this fact in mind we now make use of the relation
between the bµν coefficients and shifted Schur polynomials [137] S?µ,

bµν
bµ∅

=
N∏
n=1

∅̄n!
ν̄n!S

?
ν (µ) =

N∏
n=1

(N − n)!
ν̄n! (Sν (µ) + . . .) . (4.9)

In the last identity, we used the expansion of shifted Schur polynomials as ordinary Schur
functions Sµ plus lower degree polynomials 2 that don’t contribute to the term we are
considering [137]. To recapitulate, we have argued that the term with degree 2k in µ in
the expansion of WRµ is, at order (g/2)2k, given by

∑
ν`2k

N∏
n=1

(N − n)!
ν̄n! Sµ (ν) 〈Sν (x̂)〉 . (4.11)

We will now make use of the fact that Schur polynomials can be rephrased in terms of
power sum polynomials, which makes their connection with permutation groups explicit.
In short, power sum polynomials are an alternative to Schur polynomials as a basis of
symmetric polynomials of N variables, defined on a partition λ by

pρ (x) =
N∏
i=1

 N∑
j=1

xρij

 . (4.12)

The linear change of basis between Schur and power sum polynomials is given by

Sµ (ν) = 1
(2k)!

∑
ρ`2k

# [ρ]χµ [ρ] pρ (ν) , (4.13)

2This property is easier to see comparing (4.9) to the textbook definition of Schur polynomials:

S?ν ≡ det [µ̄n!/ (µ̄n − ν̄m)!] / det
[
µ̄n!/

(
µ̄n − ∅̄m

)
!
]

Sν ≡ detµν̄m
n / det µ̄∅̄m

n

(4.10)
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where # [ρ] denotes the number of elements in the conjugacy class of ρ in S2k, which can
be counted as

# (ρ) = (2k)!∏
n ρn!nρn , (4.14)

and χµ denotes the character. In this form, 〈Sν (x̂)〉 can be exactly evaluated in the
Gaussian matrix model, where only the conjugacy class 2k, with k disjoint 2-cycles,
contributes to the expected value. One thus obtains [138]

〈Sν (x̂)〉 = 1
(2k)!#

[
2k
]
χµ
[
2k
] N∏
n=1

ν̄n!
(N − n)! (4.15)

The substitution of (4.13) and (4.15) into (4.11), and subsequent application of the
orthogonality of characters, transforms it into

dimRµ

(2k)! #
[
2k
]
p[2k] (µ) (4.16)

Now, p[2k] differs from C2 only in lower degree terms, so for the purpose of computing
the highest degree term, we can replace p[2k] → C2 and arrive at the first main result of
this section:

〈
WRµ

〉
=
∞∑
k=0

1
k!

(C2 (Rµ)
2

)k
+ . . .

(g
2

)2k
(4.17)

To reiterate, the dots stand for terms that we are missing at every order in g2k, that are
of lower degree in Casimirs than the maximal 2k. These terms we haven’t computed
come from different sources:

• Contributions from shifterd Schurs with |µ| < 2k.

• Contributions from S?µ`2k that we omitted when we replaced this functions with
ordinary Schur polynomials.

4.1.2 Exact results for arbitrary representations of U(N)

Without departing the U (N) algebra yet, let us now go back to (4.2) and consider the
problem of the exact evaluation of

〈
WRµ

〉
from a different perspective that will take us to

a closed expression for the result. We will apply the method of orthogonal polynomials,
and, as we anticipated in 2.4.3, for this task we will make use of the unnormalized
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Hermite orthogonal polynomials
pn (x) ≡

(
g2

8

)n
2 Hn

(√
2x
g

)
; Hn (x) = (−1)n ex2 dn

dxn

(
e−x

2
)

´
dxpm (x) pn (x) e−

2
g2
x2

=
√

2πn!
(
g
2

)2n+1
δmn ≡ hnδmn

 . (4.18)

For this algebra, the Faddeev-Popov determinant is simply the square of the Vandermonde
determinant, and therefore, in (4.2) we can replace

∆FP = ∆2
V =

 ∑
σ∈SN

(−1)ε(σ)
N∏
n=1

pσ(n)−1 (xn)
2

≡
∑
σ,ρ

(−1)ε(σ+ρ) ∆σ (x) ∆ρ (x) (4.19)

With these expressions we can already evaluate the partition function:

Z = N !
N−1∏
n=0

hn , (4.20)

since the orthogonality of the polynomials implies that only ρ = σ will have a nonvanishing
contribution, and all the terms that remain are identical up to relabelling of integration
variables.

In order to compute Wilson loop v.e.v.s we need to work further. It is convenient to
observe an appealing property of Hermite polynomials:

d

dx
pn (x) = npn−1 (x) (4.21)

With the help of this expression, it is no longer needed to expand the exponentials coming
from the Wilson loop in power series to evaluate them, because we can use instead

ˆ
dxpn (x) pm (x) eτxe−

2
g2
x2

= 2hnhmτn+m
√

2πg
e
g2
8 τ

2
∞∑

k=−∞

(gτ/2)−2k

k! (m− k)! (n− k)! , (4.22)

which is a finite polynomial despite the appearances: in practice the factorials in the
denominator truncate the infinite sum. An equivalent but more familiar [139] way of
writing this expression is

ˆ
dxpn (x) pm (x) eτxe−

2
g2
x2

=
√

2π
(
g

2

)2m+1
n!τm−nLm−nn

(
−
(
gτ

2

)2
)
e
g2
8 τ

2
, (4.23)

where we identified the extended Laguerre polynomial

Lm−nn (−x) =
n∑
k=0

m!
(n− k)! (m− n+ k)!k!x

k . (4.24)

The advantage of (4.22) over (4.23) is the fact that the symmetry between n and m
remains explicit. Additionally, in (4.22) the dependences on n and m are explicitly
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factorized term by term. Notice, in any case, that for τ → 0 we recover the appropriate
limit (4.18).

Before we can apply (4.22) (or (4.23)) onto (4.2) it is convenient to first organize the
Schur polynomial appropriately. Not all of its summands are on equal footing in this
computation: only those monomials related by a permutation of x labels are in principle
reduced to the same value. It is therefore convenient to refer the Schur polynomials to
yet another basis of the space of symmetric functions of N variables, the monomial basis,
whose elements are labelled by a weakly decreasing partition µ, and which are defined by

mµ (x) ≡
∑
σ∈SN

∏
n

x
µσ(n)
n . (4.25)

The coefficients Kµν relating the Sµ and mµ functions,

Sµ (x) =
∑
ν≤µ

Kµνmν (x) , (4.26)

are positive integers known as the Kostka numbers. In this expression ν ≤ µ means that
either µ = ν, or the first non-zero µi − νi is positive3.

We are now in position of facing (4.2) head-on, which after the translation to the
monomial basis has become

〈
WRµ

〉
= ∑

ν≤µ
Kµν

dimRµ 〈mν (ex)〉

〈mν (ex)〉 = 1
Z

∑
ρ,σ,β∈SN

(−1)ε(ρ+σ) ´ dNx∆ρ (x) ∆σ (x) exp∑n

(
νβ (n)xn − 2

g2x
2
n

)
∆ρ (x) ≡ ∏n pρ(n)−1 (xn)


(4.27)

Using the results we presented for orthogonal polynomials the v.e.v. of the monomial
element can be straightforwardly computed:

〈mν (ex)〉 = (g/2)N(N−1)

N !
∏N−1
i=0 i!

(∑
β∈SN

∑
~k∈NN

(
g
2

)−2
∑

n
kn ∏N

n=1 kn!D2
~kβ

)
e
g2
8
∑

n
ν2
n

D~kβ = det


 j − 1

ki

 νj−1−ki
β(i)




.

(4.28)

Notice that the expression for the matrix elements entering D~kβ is indeterminate for
ν = 0 and j − 1− ki ≤ 0. A detailed analysis of the origin of this expression makes clear
that they should be taken to be 0 except in the j − 1 = ki case, where they evaluate to 1.

3This order relation is usually called the reverse lexicographic ordering
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The structure of (4.28) can be summarized as

〈
WRµ

〉
= 1

dimRµ

∑
ν≤µ

KµνPν

(
g2

4

)
e
g2
8
∑

n
ν2
n , (4.29)

A relevant question concerning this observable, already answered in [140], is what is the
largest exponent in (4.29), and it is immediate to see that it corresponds to ∑i ν

2
i where

ν is the highest weight of the representation Rµ.

The properties of the Pν (x) polynomials can be inferred from the combinatorics in
(4.28). From its explicit form, for instance, we conclude that the coefficients dν;k in its
series expansion,

Pν (x) =
∑
k≥0

dν;k
xj

j! , (4.30)

are always positive. Although these combinatorics are in general involved, there is an
efficient and tidy way to present them: If one defines the infinite family of N×N matrices
labelled by k ∈ N

A(k)
nm (x) = km−nLm−nn

(
−k2x

)
. (4.31)

The v.e.v.s 〈mν (x)〉 can be obtained from the generating function〈
N∏
n=1

(
t+

∞∑
k=1

yke
kxn

)〉
= det

(
tδmn +

∞∑
k=1

ykA
(k)
mn

(
g2

4

)
ek

2 g2
8

)
(4.32)

Combining these v.e.v.s with the basis transformation matrix defined by the Kostka
numbers, equation (4.26), we recover the form (4.29).

To gain further insight into the properties of Pν (g) we will promptly explore the
simplest nontrivial case, i.e., the case where ν contains a single nonzero entry. For
this particular case, the monomial basis elements coincide with Schur polynomials
corresponding to the same partition, so from this study we will obtain directly the results
for antisymmetric Wilson loops.

4.1.3 Exact results for antisymmetric U(N) representations

The study of Wilson loops in an antisymmetric representation is particularly simple and
its results are most explicit, so we will focus our attention on it. For the k-antisymmetric
representation, the Schur polynomial concides with a very specific element in the monomial
basis, m1k , which is known as the k-th elementary symmetric function

〈WAk(g)〉 = 1
Z

ˆ N∏
i=1

dxi
2π

∏
i<j

|xi − xj|2ex1+···+xke
− 2
g2
∑N

k=1 x
2
k . (4.33)
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From this integral (4.33), it is straightforward to relate the vevs of the Wilson loops for
the k-th and the (N-k)-th antisymmetric representations. To do so, complete the squares
for the x1, . . . , xk eigenvalues in (4.33), and then change variables x̃i = xi − g. Except
for the xi-independent exponents generated by completing squares, the resulting integral
is the one that yields the vev of the Wilson loop in the (N − k)-th representation, so we
arrive at the relation

〈WAk〉 e−
kg2

8 =
〈
WAN−k

〉
e−

(N−k)g2
8 . (4.34)

From this expression a first property of the corresponding Pk polynomials that is not
obvious at all4 in (4.28) is their palindromy: Pk (x) = PN−k (x).

Let us now analyse these observables in more detail. We will first look at them from
the generating functional language. Observe that if we want to restrict ourselves to the
antisymmetric sector it suffices to consider the generating function (4.32) with a single
nonzero yk variable5,

FA(t) = ∑N
k=0 ekt

N−k = ∏N
i=1 (t+ exi)

〈FA(t)〉 = ∑N
k=0 t

N−k
(
N
k

)
〈WAk〉 = det

(
tδnm + Lm−nn−1

(
−g2

4

)
e
g2
8

)
 . (4.35)

This generating functional can be interpreted from the point of view of a more formal
framework: Its parametric continuation to the complex plane, i.e., the result of promoting
t and x to complex variables, can be regarded as a spectral curve [141] for the set of of
Wilson loop operators under consideration. The results for

〈
WA‖

〉
are referred to contour

integrals of tk−1−NFA around the origin in the complex plane of t. Thus, their study can
be rephrased in terms of the analytic structure in t of the det (t+ A (x)) determinant.
Although the full analysis of this framework is well beyond the scope of the present
dissertation, let us make some observations concerning this structure: The observed
palindromy in in t for this determinant implies that roots come in pairs ti, 1/ti (except
ti = −1, that appears unpaired for N odd)6. For x real, if ti is a root, so is t∗i . From the
fact that all coefficients in Pk(x) are real and positive, we learn that for x > 0, the roots
of |t + Lex/2| can’t be positive real numbers. Numerical experimentation suggests the
following picture: for x > 0 all roots are real and negative; at x = 0 all eigenvalues are
equal to -1, and as x→ +∞, half of them tend to −∞ as powers of x, while the other
half are their pairs 1/ti and tend to zero. This is consistent with the observation of [141]
that at large N, the discrete zeros coalesce on a branch cut along the negative real axis.

It is nonetheless also possible in our construction to evade this complex calculus
machinery and evaluate any specific antisimetric representation loop directly from (4.35),

4A proof of this property from the explicit combinatorics is provided in appendix C of [2]
5This generating function is closely related to the usual one, E(t) =

∑N
k=0 ek(y)tk =

∏N
i=1(1 + yit).

Indeed, FA(t) = tNE(1/t).
6If, in analogy with the analysis of the spectral curve of classical strings in AdS5 × S5 (see [142] for a
review), we define quasimomenta pj by tj = eipj , this Z2 involution translates into the quasi-momenta
coming in pairs (pj ,−pj).
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by computing the appropriate minors of the determinant:

〈WAk〉 = e
kg2

8

N !
∑
σ∈SN

∑
µ∈Sk

(−1)ε(µ)
k∏

m=1
L
µ(σ(m))−σ(m)
σ(m)−1 (−g2/8) . (4.36)

As a check, this result permits us to recover at k = 1

〈WAk〉 = e
kg2

8

N ! (N − 1)!
N−1∑
n=0

L0
n(−g2/4) = 1

N
L1
N−1(−g2/4)e

g2
8 ; (4.37)

the result for the fundamental Wilson loop derived by [75], equation (2.61). Additional
information can be extracted from 4.35: it allows us to determine that the coefficients
dk;i in the series expansion of Pk is an integer, for instance. To prove this, observe
that Lm−nn−1 (x) is a linear combination of terms xi/i! and that in the computation of the
determinant products, sums and subtractions of these terms keep the coefficients integer
because

gi

i!
gj

j! =
(
i+ j

i

)
gi+j

(i+ j)! . (4.38)

Another property easily derived from (4.35) is the particularization of (4.8) to antisym-
metric loops: The dependence on k predicted by (4.8) is straightforward to reproduce by
evaluating the appropriate minors of the determinant of the generating function.

In turn, the casuistics on (4.28) is also simplified considerably when we restrict
ourselves to antisymmetric representations, i.e., when ν has a single nonzero row. The
crucial points in the argument are the following:

• The determinants D~kβ vanish if two identical entries in νβ(i) are assigned identical
values of ki. In other words, the k entries for ki corresponding to νβ(i) = 1 form a
strictly decreasing sequence of integers confined to the interval [0, N − 1].

• Similarly, the choices of ki for the rows with νβ(i) = 0 are mutually exclusive. In
addition, those rows will be made of zeroes, except for a single one at j − 1 = ki.
In practice this implies that for this choice of ki in any nonzero contribution to the
determinant the column j − 1 satisfying this condition has to be paired with row i
and therefore antisymmetry forbids the pairing of this column to any other row
in the determinant. Since we have N − k exclusions of this type, we are left with
a strictly decreasing sequence of j − 1 values that can get paired with the ν = 1
rows, which are of course also contained in [0, N − 1].

• The previous two strictly decreasing sequences of k elements can be viewed as
shifted sequences of partitions of k entries, with the first value restricted to be at
most N − k. We denote these two sequences σ and τ in order to distinguish them
from the sequences of N entries µ, ν, λ, ... that we have encountered up to this
point. Notice that the determinant D~kβ becomes the coefficient bστ defined in (4.5),
i.e., the shifted binomial determinant, of the partitions defined in this fashion.
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From these considerations, we obtain

Pk (x) =
∑

τ,σ∈L(k,N−k)
x
∑

n
(σn−τn)

k∏
n=1

τ̄n!
σ̄n!b

2
στ (4.39)

where L (k,N − k) designates the set of Young diagrams drawin in a rectangle of
(N − k) × (k) boxes. Collecting all the terms with gn, we arrive then at a formula
for the coefficients dk,n:

dk;n = n!
∑

τ,σ∈L(k,N−k)
b2
στ

k∏
m=1

τ̄m!
σ̄m!δ

∑
(σm−τm),n . (4.40)

As a check, if we set k = 1 we arrive at

d1,n =
N−1∑
σ̄=n

(
σ̄

σ̄ − n

)
=
(

N

n+ 1

)
(4.41)

reproducing the expansion of P1(x) = L1
N−1(−x).

Let us close this analysis with two brief remarks on the result (4.39):

Combinatorial interpretation: Observe that the simple expression of (4.39) is written
exclusively in terms of combinatorial quantities. It is tantalizing to look for a physical
interpretation for them. Without venturing any guess, let us list here some well-known
counting problems where bστ and related quantities appear naturally.

Before, let us make an important observation: the sums above can be restricted to
pairs of k-tuples such that σi ≥ τi for i = 1, . . . , k. The reason is that if for some j it
happens that σj < τj, the matrix with binomial coefficients in (4.40) has a zero block in
the upper right corner. The full determinant is then the product of determinants of the
diagonal blocks, but the determinant of the lower diagonal block is zero, since it has a
zero row.

A first example of combinatorial problem resembling the counting in dk;n appears in
the enumeration of nonintersecting paths on a two dimensional lattice with boundary
condtions given by the k-tuples σ̄ and τ̄ [143]: the number of paths satisfying all
conditions is precisely given by a combinatorial determinant. A second possibility that
connects to our problem is to map each Young diagram to a configuration of fermions
in a 1-dimensional lattice(see e.g. [144]). Time-dependent processes for the evolution
from a diagram τ to a diagram σ are described by standard (i.e., strictly decreasing in
both directions) tableaus we can draw on the squares of σ − τ , i.e., the complement of τ
inside σ; the so-called skew Young diagram. The number of standard tableaux in a skew
young diagram is precisely given by

fσ/τ = (|σ| − |τ |)! det
(

1
(σ̄i − τ̄j)!

)
, (4.42)
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which is useful to recast in terms of a binomial determinant bστ (a direct way to establish
their relation is by pulling common factors out of the binomial determinant to keep only
its σ̄ − τ̄ part). One can write, for instance,

dk;n = 1
n!

∑
τ⊆σ∈L(k,N−k),
|σ|−|τ |=n

k∏
m=1

σ̄!
τ̄ !f

2
σ/τ =

∑
τ⊆σ∈L(k,N−k),
|σ|−|τ |=n

fσ/τbστ (4.43)

Notice that each of the expressions in (4.43) and (4.40) suggestively points at a different
combinatorial interpretation in terms of fermions and paths.

Evaluating the coefficients: The index n in dk;n runs from 0 to k(N − k), and, when it
takes arbitrary values, it seems doubtful that the sum can carried out explicitly. We will
now evaluate these coefficients for a few values of j, close to the endpoints of its range.

• For n = 0, both k-tuples have to be identical to contribute: σ̄i = τ̄i. In this case
the matrix with entries

(
σ̄i
τ̄j

)
is triangular, and its determinant is one. The prefactor

cancels as well, so d0 is given by the number of k-tuples,

dk;0 =
(
N

k

)
(4.44)

Alternatively, in the language of skew Young diagrams, n = 0 corresponds to the
case of σ̄ = τ̄ and dk;0 is just counting the number of Young diagrams that fit into a
rectangle with (N − k)× k boxes, which is precisely

(
N
k

)
(proposition 6.3 in [145]).

• For n = 1, given a k-tuple τ̄i, the only k-tuples σ̄i that contribute are those where
all the σ̄i = τ̄i, except for precisely one element σ̄j = τ̄j + 1. For each of those
cases the matrix with entries

(
σ̄i
τ̄j

)
is triangular, the determinant is σ̄j and the

contribution in each case is σ̄j . It remains to count how many such pairs of k-tuples
there are, which is easily seen to be

(
N−2
k−1

)
. Adding all contributions we obtain

dk;1 =
(
N

2

)(
N − 2
k − 1

)
(4.45)

The two computations presented so far are sufficient to reproduce the result 4.8.

• For n = 2, there are two types of contributions. There are contributions from
pairs of k-tuples when all σ̄i = τ̄i except for a single σ̄j = τ̄j + 2. There are also
contributions from pairs of k-tuples when σ̄m = τ̄m except for two σ̄s, σ̄i = τi + 1
and σ̄j = τj + 1, with i < j. It is convenient to treat separately the cases where
τ̄j = ¯̄σi (in which case the matrix fails to be lower triangular) and the case τ̄j > ¯̄σi.
By arguments very similar to the ones in the previous cases we arrive at

dk;2 = N !
12(k − 1)!(N − k − 1)! (3k(N − k)−N − 1)
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This coefficient allows us to write the perturbative expansion of the antisymmetric
Wilson loop to order g4,

〈WAk〉 = 1 + C2g
2(Ak)
8 +

(1
4C2(Ak)2 − N + 1

12 (C2(Ak)− C1(Ak))
)
g4

32 + . . .

(4.46)

• Having computed the first three coefficients dk,j (k,N), we turn to the opposite
end of the range, when j is close to k(N − k). For n = k(N − k), there is only one
term that contributes: σ̄i = N − k − 1 + i, τj = j − 1. The determinant is 1, as
can be proven by induction on k, for N fixed. Therefore

dk,k(N−k) (k,N) = (k(N − k))! 0!1! . . . (k − 1)!
(N − 1)!(N − 2)! . . . (N − k)! (4.47)

• For n = k(N − k) − 1, there are two terms that contribute. The first one has
σ̄i = N − k − 1 + i, τj = 0, 1, . . . , k − 2, k; the corresponding determinant is N − k.
The second term has σ̄i = N − k − 1, N − k + 1, . . . , N − 1 and τ̄j = j − 1; the
corresponding determinant is k. Adding these two terms one obtains

dk,k(N−k)−1 (k,N) = (k(N − k))! 0!1! . . . (k − 1)!
(N − 1)!(N − 2)! . . . (N − k)!N (4.48)

As a consistency check, all the explicit results we obtain satisfy dk;n (k,N) = dk;n (N − k,N).

4.1.4 Exact results for nonexceptional simple Lie algebras

In this chapter we have so far considered Wilson loops in theories with U (N) algebra.
Although this is an interesting case of study and possibly the simplest nonabelian example
at hand in many regards, this type of theory is actually not part of the list of theories
we want to address: its U (1) diagonal subsector is not reproduced by the holographic
constructions we are considering. As we discussed in 2.2, the low energy description
of a D-brane is an SU (N) theory if this stack is in a trivial background, and an ADE
quiver field theory with semisimple algebra if it is located at a singular spacetime folding.
Therefore, in consonance with the goals of this thesis, our next step will be to extend the
results obtained with the methods of localization so far to a sample of Wilson loops in
theories with SU , SO and SP algebras, without considering quiver constructions. These
algebraic choice corresponds to the specific cases where the large N limit is unique and
well defined.

In many aspects, the analysis of these Wilson loops proceeds in the same fashion as
in 4.1.2 and its results can be rewritten in the language we used so far:
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• Since the Weyl group of the Cartan subalgebra of these cases contains an SN
subgroup (along with additional reflections for SO and SP groups), it is still
convenient to decompose the weight sum of the trace on a generic representation
in the monomial basis (4.25).

• The matrix model for SU (N) can be built directly within the U (N) framework:
Let us rewrite the matrix model in variables where the decomposition of the latter
in SU (N) and U (1) is explicit,

´
dNxi∆FP (x) e−k

∑
i
x2
i

´
dxDδ (∑i xi − xD) =

=
´
dN x̃iδ (∑i x̃i) ∆FP (x̃) e−k

∑
x̃2
i ·
´
dxDe

− k
N2 x

2
D

← x̃i ≡ xi −
1
N
xD . (4.49)

The part for U (1) can be integrated out, though for any observable of SU (N) we
express in the U (N) terminology we will have to explicitly subtract the contribution
of the trace to obtain its v.e.v. in the SU (N) theory. For our Wilson loops, for
instance, we have to modify the insertion to [75, 146]

trReX → e−
|R|
N
trX trReX (4.50)

• As we discussed in 2.4.3, for SO and SP we can rewrite the full Faddeev-Popov
determinant as det pj−1 (xi). Despite the appearances this does not make these
matrix models identical to the U (N) case and among them: In U (N) the polynomial
pj has to be of order j, while for SO (2N) the argument in 2.4.3 restricts it to be
an even polynomial of degree 2j, while for SO (2N + 1) and SP (2N) we argued
that it must to odd and of degree 2j + 1. Fortunately, Hermite polynomials have
defined parity, pn(−x) = (−1)npn(x), and by virtue of this property we can still
choose the appropriate polynomials in the Faddeev-Popov determinant from their
list, and conveniently make use of (4.18) and (4.22). From this fact we conclude
that the expressions for

〈
mν

(
ex/2

)〉
(where the additional quocient by two has

been introduced here to account for generic representations of SO algebras, we
will soon come back to this point) resembles (4.28), or, equivalently, follow from a
generating function in the shape of (4.32). However, for SO and SP groups, the
analogues of the matrices D and Akmn are built only from Hermite polynomials of
defined parity, and therefore, they carry only the even or odd columns (for the case
of Akmn, also only the even or odd rows) of the original matrices.

Despite all this facts, one should not be to hasty in extending the expressions for U (N)
Wilson loops, specially for the SO and SP examples. One should take care with the fact
that the representation structure is very different for every algebra:

• This fact is of special notoriety in SO (2N + 1) and SP (2N): for these two
theories matrix model observables are computed in exactly the same fashion (the
discrepancy in factors of two in their Faddeev-Popov determinants disappears when
we normalize), and all the differences between these theories (in the localizable
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sector) comes from the different weight structures. The Wilson loop in fundamental
representation for SO (2N + 1), for instance, includes a zero weight contribution
that is absent in SP (2N).

• The decomposition in terms of the monomial basis is no longer given by Kostka
numbers; the weight structure and multiplicity of SO and SP algebras is no longer
implemented by Schur polynomials and Young tableaux.

• For SO and SP groups , the weight lattice is symmetrical under the specular
reflections x↔ −x. The invariance of the matrix model under this transformation
implies that this fact can simply be encoded in the multiplicity of each instance of
a monomial term in a specific representation, i.e., the generalization of the Kostka
numbers.

• SO groups contain spinor representations. We should consider in general
〈
mµ

(
ex/2

)〉
with some restrictions on the parity of the µ partition to account for the refined
Weight lattice that this fact endows the theory with. In addition, the matrix model
action acquires an additional factor of 2 coming from the fact that the fundamental
trace (x, x) contains weights of both signs. Therefore, the precise implementation
aforementioned (4.28) and (4.32) correspondents for SO and SP should include a
shift g2 → g2/2 if we wish to respect the normalization of (2.65) for the coupling
constant.

The difference in the representation structure will always be apparent in the results,
but the normalization on the coupling constant can be absorbed in the definition of the
coupling constant. For the sake of comparability it is often appropriate to define the

Algebra G Fundamental weights monomial v.e.v.

SU (N) ∑k
n=1 xn exp

(
−g2k2

8N2

)
· {SU (N) result}

SO (2N)

∑k≤N−2
n=1 xn Generated by det

(
tδnm + L2n−2n

2m−2

(
−g2

8

)
eg

2/16
)

1
2
∑N
n=1 (−1)δnN xn det

(
L2m−2n

2n−2

(
−g2

32

)
eg

2/64
)

1
2
∑N
n=1 xn det

(
L2m−2n

2n−2

(
−g2

32

)
eg

2/64
)

SP (2N) ∑k
n=1 xn Generated by det

(
tδnm + L2n−1

2m−1

(
−g2

8

)
eg

2/16
)

SO (2N + 1)
∑k≤N−1
n=1 xn Generated by det

(
tδnm + L2n−1

2m−1

(
−g2

8

)
eg

2/16
)

1
2
∑N
n=1 xn det

(
L2m−2n

2n−1

(
−g2

32

)
eg

2/64
)

Table 4.2: Fundamental weights and the v.e.v. of the monomial element that contains them
for generic simple nonexceptional algebras.
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Algebra G 〈W 〉

U (N) 〈W 〉U(N) = 1
N
L1
N−1 (−g̃) eg̃/2

SU (N) 〈W 〉SU(N) = exp
(
− g̃

2N2

)
〈W (g̃)〉U(N)

SO (2N) 〈W 〉SO(2N) = 1
N

∑N−1
k=0 L2k (−g̃) eg̃/2

SP (2N) 〈W 〉SP (2N) = 1
N

∑N−1
k=0 L2k+1 (−g̃) eg̃/2

SO (2N + 1) 〈W 〉SO(2N+1) = 1
2N+1

(
1 + 2∑N−1

k=0 L2k+1 (−g̃) eg̃/2
)

Table 4.3: V.e.v.s of fundamental Wilson loop operators for SU , SP and SO algebras

canonical Gaussian coupling g̃ as

g̃ ≡


g2/4 if G ∈ U, SU

g2/8 if G ∈ SO, SP
(4.51)

Table 4.2 presents the v.e.v.s of the monomial including every fundamental weight in
the considered theories7. The results on this table are sufficient to compute the v.e.v. of
Wilson loops in antisymmetric or spinorial representations, though in general they are
no longer given by a single monomial contribution.

In order to exemplify this, observe in table 4.3 the v.e.v. of the Wilson loops
in the fundamental representation of the considered groups. Since the fundamental
representation of SO (2N + 1) contains an instance of the weight zero, its v.e.v. averages
the contribution of two elements of the monomial basis.

7These monomials play here the role of the monomial elements with a single nonzero entry in U (N),
because the fundamental weights are the highest weights of that span the weight lattice via linear
combinations of integer coefficients. The representations with a fundamental weight as a highest
weight are often called fundamental in some contexts, though in Physics, the concept of fundamental
representation often refers only to the representation with highest weight ω · x = x1. For SU and
SP the other representations with fundamental highest weight coincide with the antisymmetric
representations, while for SO groups the antisymmetric representations of higher order are relegated
from this role by the spinorial representations.
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4.2 Learning from exact N=4 localization results

With the exact results obtained in the previous section at our disposal, we will now
proceed to examine them from more physical perspectives:

• We will start this analysis in 4.2.1 with the direct physical implications of the
Wilson loop v.e.v.s for the particles they represent. In particular, we will compute
their Bremsstrahlung function, the remarkable physical content of which has already
been discussed in 3.2.

• In 4.2.2, still within the language of field theory, we will move closer to the purpose
of this thesis by considering the ’t Hooft 1/N rearrangement of the perturbative
field theoretic series we reviewed in the beginning of 2.2, focusing our attention
to the particular case of SO and SP algebras. Without computing any specific
diagram, we will provide generic arguments relating different perturbative sectors of
the theory and comment on their implications on the putative dual string theoretic
worldsheet perturbation expansion, currently well out of reach.

• Finally, in 4.2.3 we will make an observation on the structure of the matrix model
computations that will provide us with interesting insights on the AdS/CFT
conjecture. In particular, we will observe that the dual theory to theories with
SO and SP algebras can be interpreted in the language of Lin, Lunin, Maldacena
(LLM)-like bubbling geometry constructions [147] for orientifold spacetimes [148], at
least in the supergravity limit. This connection refines and clarifies the identification
of these LLM-like geometries.

4.2.1 Lessons for the linear response of charged probes

Recall that as we argued in 3.1, for N = 4 SYM theories the Bremsstrahlung coefficient
can be computed through the formula (2.58), which we will transcribe here for convenience:
For half-BPS circular Wilson loops W,

B = 1
2π2 g

2∂g2 ln 〈W〉 . (4.52)

The argument leading to this relation is independent of the representation, so we can
put to use our results for 〈WR〉. Since they are most explicit for the antisymmetric
representation, let us start with this case. For the antisymmetric representations, the
vev of the Wilson loop is a polynomial in g times an exponential, see eqs. (4.36). From
this simple fact, it follows that the final answer is a rational function in the coupling,

B
U(N)
Ak = λ

16π2N

∑k(N−k)
j=0

2dk;j+1+kdk;j
j!

(
λ

4N

)j
∑k(N−k)
j=0

dk;j
j!

(
λ

4N

)j , (4.53)
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with the understanding that dk;k(N−k)+1 = 0. For fixed N , both at weak and at strong ’t
Hooft coupling, the Bremsstrahlung function is linear in λ

B
U(N)
Ak =


c2(Ak)
16π2N

λ λ� 1
k

16π2N
λ λ� 1

 . (4.54)

Let’s now briefly discuss the case of general representations. Now 〈WR〉 is given by
a linear combination of 〈mτ 〉, so it is a sum of polynomials times exponentials, (4.29).
Since in general the exponents in these exponentials are different, the corresponding
Bremsstrahlung functions are no longer rational in the coupling. On the other hand, it
also follows from (2.58) that it is still true that for fixed N , both at weak and at strong
’t Hooft coupling, the Bremsstrahlung function is linear in λ. The weak coupling result
can be read off from (4.8). In the large coupling limit, the coefficient of λ is given by the
largest exponent in the exponentials which as pointed out after (4.29) (see also [140]) for
a representation R with partition ν this exponent is (∑n ν

2
n)g2/8, so

B
U(N)
R =


c2(R)
16π2N

λ λ� 1∑
i
τ2
i

16π2N
λ λ� 1

 . (4.55)

4.2.2 Lessons for the topological string expansion

We already pointed out in 2.2 that gauge field theories with U (N), SO (N) and SP (N)
gauge groups could be analysed using ’t Hooft large N expansions. We mentioned as well
that the expansions for SO and SP groups contain, in addition to the terms one finds for
the U (N) case, terms coming from unoriented surfaces, which could always be reduced
to a sector with one crosscap and another with two crosscaps. Additional arguments
in the literature [149] determine that the quantities for SO (2N) are related to those of
SP (2N) by the replacement N → −N . And finally, we know that SO (N) and SP (2N)
theories can be obtained from orientifolding U (2N). All in all, these general arguments
imply that v.e.v.s in the respective fundamental representations of various groups ought
to be related by

〈W (g̃)〉SO(2N)
Sp(2N)

= 〈W (g̃)〉U(2N) ± unoriented c=1 + unoriented c=2 (4.56)

where unoriented c refers to terms that in the large N limit arrange themselves into
non-orientable surfaces with the number of crosscaps c fixed.

We are now going to show that indeed the exact results of table 4.3 follow the pattern
expressed in (4.56). In the process, we will find a couple of additional features that do
not follow from these general arguments.
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To obtain the 1/N expansion of 〈W (g̃)〉SO(2N) and 〈W(g̃)〉SP (2N), we can analyse them
separately, following the steps of [75]. The details of this procedure can be found in the
appendix C of [3]. However, it is much more efficient to consider their sum and their
difference, and expand those:

• From the sum of 〈W(g̃)〉SO(2N) and 〈W(g̃)〉SP (2N) it is immediate that

〈W(g̃)〉SO(2N) + 〈W(g̃)〉SP (2N) = 2 〈W(g̃)〉U(2N) (4.57)

• As for the difference 〈W〉SP (2N) − 〈W(g)〉SO(2N), using properties of the Laguerre
polynomials, it is not difficult to prove from the explicit results in table 4.3 that
the following exact relation holds

∂

∂g̃

(
〈W(g̃)〉SP (2N) − 〈W(g̃)〉SO(2N)

)
= 〈W(g̃)〉U(2N) (4.58)

These last two relations, eqs. (4.57) and (4.58), can we rewritten in the following
suggestive form

〈W(g̃)〉SO(2N)
SP (2N)

= 〈W(g̃)〉U(2N) ∓
1
2

ˆ g̃

0
dg′ 〈W(g′)〉U(2N) (4.59)

Recall that 〈W(g̃)〉U(2N) has a expansion in 1/N2. Furthermore, since g̃ ∼ λ
N
, the integral

brings an extra power of 1/N . Therefore, equation (4.59) neatly splits the 1/N expansions
of 〈W(g̃)〉SO(2N) and 〈W(g̃)〉SP (2N) into even and odd powers of 1/N . The 1/N2k terms
coincide for both v.e.v.s and are given 〈W(g̃)〉U(2N); they correspond to orientable surfaces.
Note in particular that since all even powers of 1/N come from orientable surfaces, there
are no contributions from world-sheets with two crosscaps, as it can be already deduced
from eqs. (4.56) and (4.57).

Turning now to the 1/N2k+1 terms in the expansion of 〈W(g̃)〉SO(2N) and 〈W(g̃)〉SP (2N),
they come from the integral in eq. (4.59), so it is manifest that they differ just by a sign;
this, together with the equality of the even terms in the expansions, proves that indeed
〈W(g̃)〉SP (2N) can be obtained from 〈W(g̃)〉SO(2N) by the substitution N → −N , as it
had to happen according to general arguments [149].

To recapitulate, the 1/N expansion of 〈W(g̃)〉SO(2N) and 〈W(g̃)〉SP (2N) could in prin-
ciple involve contributions from three kinds of surfaces, with zero, one or two crosscaps.
By a mix of generic arguments and exact field theory computations, we have found that
for these quantities, and for any number of handles, contributions from surfaces with one
crosscap are given by an integral of the contribution from surfaces without crosscaps,
while there is no contribution from surfaces with two crosscaps, eq. (4.59).

The two features that we have just uncovered for the 1/N expansion of 〈W(g̃)〉SO(2N)
and 〈W(g̃)〉SP (2N) bear certain resemblance with properties encountered in other instances
of 1/N expansion of SO and Sp gauge theories. A first example is the computation of the
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effective glueball superpotential of N = 1 SYM theories with a scalar field in the adjoint,
with an arbitrary tree-level polynomial superpotential, W(Φ). Dijkgraaf and Vafa [150]
pointed out that for G = U(N), this computation reduces to an evaluation of the planar
free energy of a one-matrix model with the matrix model potential given by the tree-level
superpotential of the gauge theory. For N = 1 SYM with gauge groups SO(N), SP (N)
the corresponding matrix models are, like in the present work, valued on the Lie algebras
[151]. It was found in [151] that the effective superpotential of the N = 1 SYM gauge
theory is fully captured by the contributions from S2 and RP2, so there is no contribution
from the world-sheet with two crosscaps (Klein bottle); furthermore, the contribution to
the free energy coming from RP2 is given by a derivative of the contribution from S2,

F1 = ±gs4
∂F0

∂S0

with S0 (half) the ’t Hooft coupling. Notice however that in this example the properties
are only established for world-sheets without any handles or boundaries, while our
arguments work for world-sheets with a single boundary and an arbitrary number of
handles. A second example comes from the large N expansion of Chern-Simons theory on
3-manifolds. It was observed in [152] that the 1/N expansion of the free energy of Chern-
Simons on S3 with gauge groups SO(N), SP (N) involves unoriented world-sheets with
one cross-cap, but again world-sheets with two cross-caps are absent in this expansion.
Moreover, the large N expansion of Chern-Simons with G = SO(N), SP (N), via its
connection with knot theory, displays non-trivial relations for the invariants of U(N) and
SO/Sp links [153].

While it is interesting that the two features we have uncovered in the 1/N expansion
of 〈W(g̃)〉SO(2N) and 〈W(g̃)〉SP (2N) have superficially similar incarnations in other gauge
theories with gauge groups SO(N), SP (N), we don’t expect these two features to be
generic for other observables of N = 4 SYM with G = SO(N), SP (N). For instance, in
the case we have studied, the absence of contributions coming from world-sheets with two
crosscaps is a consequence of the exact relation (4.57), but this relation appears to be
quite specific of vevs of Wilson loops in the respective fundamental representations, and
we don’t know of similar relations for vevs of Wilson loops in other representations. Not
surprisingly, in Chern-Simons theory with G = SO(N), SP (N), vevs of Wilson loops in
higher representations do get contributions from world-sheets with two crosscaps [154].

Turning now to string theory, reproducing the actual 1/N expansion of 〈W(g̃)〉SO(2N)
or 〈W(g̃)〉SP (2N) from world-sheet computations is as out of reach as for 〈W(g̃)〉U(2N).
On the other hand, granting the AdS/CFT duality for any value of gs and α′/L2, our
results are also exact results in string theory, even beyond the perturbative regime. It is
tantalizing to suspect that the results we have found - e.g. the absence of contributions
from world-sheets with two crosscaps and any number of handles - are in the string theory
language consequences of some symmetry enjoyed by the particular quantities we are
considering. Identifying this symmetry and the stringy argument beyond the relations
we have found appears to be a more promising and illuminating task than attempting to
reproduce them by carrying out the explicit world-sheet computations.
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Everything we have said so far follows from the exact results we have computed, and
the exact relations among them. We didn’t even have to carry out the explicit 1/N
expansion of the exact results to arrive at these conclusions. Nevertheless, it is still worth
to obtain this 1/N expansion explicitly, and this task can be accomplished with very
little effort, by combining the exact relation (4.58) with the results in [75]. Drukker and
Gross [75] obtained the following 1/N expansion of 〈W〉U(N), that we write for U(2N),

〈W〉U(2N) = 2√
2λ
I1(
√

2λ) +
∞∑
k=1

1
N2k

k−1∑
i=0

X i
k

(
λ

2

) 3k−i−1
2

I3k−i−1(
√

2λ)

where Iα(x) are modified Bessel functions of the first kind, and X i
k are coefficients

satisfying the recursion relation

4(3k − i)X i
k = X i

k−1 + (3k − i− 2)X i−1
k−1 (4.60)

with initial values X0
1 = 1/12 and Xk

k = 0. A trivial integration then yields

〈W〉SO(2N)
SP (2N)

= 〈W〉U(2N) ∓
1

4N

(I0(
√

2λ)− 1
)

+
∞∑
k=1

1
N2k

k−1∑
i=0

X i
k

(
λ

2

) 3k−i
2

I3k−i(
√

2λ)


This result is valid for any λ. We can then use it to obtain a large λ expansion at every
order in 1/N

〈W〉SO(2N) − 〈W〉SP (2N) =
∑
k

1
(2N)2k+1

e
√

2λ(2λ) 6k−1
4

96kk!
√

2π

(
1− 36k2 + 144k − 5

40
√

2λ
+ . . .

)

Perhaps the most important feature of this result is that the exponent (6k−3)/4 obtained
in [75] is now replaced by (6k − 1)/4.

4.2.3 Lessons for holographic orientifold backgrounds

Consider the analogue of the LLM geometries [147] in AdS5×RP5. Let’s recall briefly that
LLM [147] constructed an infinite family of ten dimensional IIB supergravity solutions,
corresponding to the backreaction of 1/2 BPS states associated to chiral primary operators
built out of a single chiral scalar field. These ten dimensional solutions are completely
determined by a single function u(x1, x2) of two spacetime coordinates. For regular
solutions, this function can take only the values u(x1, x2) = 0, 1 defining a "black-and-
white" pattern on the x1, x2 plane8. On the field theory side, the dynamics of this sector
of operators of N = 4 SU(N) SYM is controlled by the matrix quantum mechanics of
N fermions on a harmonic potential [155, 156]. The one-fermion phase space (q, p) gets
identified with the (x1, x2) plane displaying the "black-and-white" pattern. In particular,
the ground state of the system is given by filling the first N states of the harmonic

8This function u(x1, x2) is related to the function z(x1, x2) of the original paper [147] by u = 1/2− z.
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oscillator; in the one-fermion phase space, this corresponds to a circular droplet, which
in turn is the pattern giving rise to the AdS5 × S5 solution in supergravity. The fermion
picture can be inferred directly from the supergravity solutions [157, 158]. What is the
similar sector for N = 4 SYM with G = SO(N), SP (N)?

Before addressing this question let us make an observation on the matrix models
for SO and SP we encountered in 4.1.4: for all of them, as we explained in 2.4.3,
the Faddeev-Popov determinant can be substituted by the square of a determinant of
orthogonal polynomials. In combination with the Gaussian exponent, the square root of
this determinant is (up to a normalization factor) the Slater determinant that gives the
wave-function of an N -fermion state,

|ΨN(x1, . . . , xN)〉 = C
∣∣∣Hi(xj)e−

1
4gx

2
j

∣∣∣ . (4.61)

Consequently, in all cases the computations we perform can be thought of as normalized
matrix elements for certain N -fermion states

〈O〉mm = 〈ΨN | O |ΨN〉
〈ΨN |ΨN〉

, (4.62)

where the specific |ΨN〉 depends on the algebra G.

Observe that equation (4.62) implies that the groundstate of the LLM sector for
SU (N) is precisely the N-fermion state |ΨN〉 that appears in the matrix model obtained
from localization. This led my collaborators and me to propose in [3] that for the other
classical Lie algebras, it also holds that the corresponding |Ψg〉 in eq. (4.62) is the
groundstate of the fermionic system dual to the LLM sector. We can imagine starting
with the matrix model for U(2N), so in the ground state the fermions fill up the first
2N energy levels, and then the orientifold projects out either the even or odd parity
eigenstates, depending on the gauge group we consider. The LLM sectors are certainly
richer than just the groundstate: they are given by a matrix quantum mechanics that
allows for excitations. Our complete proposal is that the full LLM sectors are given by
any N fermion state built from one-fermion eigenstates of fixed parity: even parity for
SO(2N) and odd parity for SO(2N + 1), SP (2N),

ψ(−x) = (−1)sψ(x) (4.63)

where s = 0, 1 depending on the gauge group. This picture is especially easy to visualize
for SO(2N + 1), SP (N) since in these cases we are keeping odd-parity eigenstates,
which are the eigenstates of an elementary problem in 1d quantum mechanics: the
"half harmonic oscillator" where we place an infinite wall at the origin of a harmonic
oscillator potential. This identification between the orientifold in AdS5 × RP5 and the
projection from the harmonic oscillator to the half harmonic oscillator was pointed out
in [148], where it was suggested to hold for any SO(N), SP (2N) group. According to
our argument, this identification holds for SO(2N + 1), SP (2N), but it does not for
SO(2N), since in this case the states preserved by the orientifold action are the even
parity ones.
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We can formalize this identification as follows. In [148] it was argued that the
orientifold projection acts in the (x1, x2) plane of LLM geometries as (x1, x2) ∼ (−x1,−x2).
Since the (x1, x2) plane is identified with the one-fermion phase space, this identification
amounts to implementing a parity projection in phase space. To do so, one can define
[159] the following parity operator in phase space

Πq,p =
ˆ ∞
−∞

ds e−2ips/~ |q − s〉 〈q + s| (4.64)

and the projectors

P±q,p = 1
2 (1± Πq,p) (4.65)

In particular, Π(0,0) is the parity operator about the origin of phase space: it changes ψ(q)
into ψ(−q) and ψ̂(p) into ψ̂(−p), so the similarity with the orientifold action is apparent.
The projectors P±0,0 project on the space of wavefunctions symmetric or antisymmetric
about the origin, and the orientifold projection amounts to keeping one of these subspaces.

Going forward with the argument, we note that s = 0, 1 in eq. (4.63), depending on
the absence or presence of discrete torsion. We want to provide a new perspective on
this discrete torsion, from the phase space point of view. We start by recalling that the
function u(x1, x2) is identified with the phase space density u(p, q) of one of the fermions
in the system of N fermions in a harmonic potential. To go beyond a purely classical
description, one can consider a number of phase space quasi-distributions that replace
the phase space density, as has been discussed in the LLM context in [160, 161]. One
particular such distribution is the Wigner distribution, defined as the Wigner transform
of the density matrix,

W(p, q) = 1
π~

ˆ ∞
−∞

dy e2ipy/~ 〈q − y|ρ̂|q + y〉 (4.66)

A salient feature of Wigner quasi-distributions is that they are not positive definite
functions over phase space. For instance, if we consider a given eigenstate |n〉 of the
harmonic oscillator, the corresponding Wigner distribution is given again by a Laguerre
function [160, 161]9

Wn(p, q) = (−1)n
π~

Ln

(
2q

2 + p2

~

)
e−

q2+p2
~ (4.67)

In particular, for the eigenstate |n〉, at the origin of phase space we have

Wn(0, 0) = (−1)n 1
π~

(4.68)

9At this time, we regard the fact that Laguerre functions appear both in the vevs of circular Wilson
loops and in Wigner distributions as merely fortuitous. In particular, note that the vevs of Wilson
loops have negative argument, while for Wigner distributions the argument is positive.
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so it can have either sign. More generally, the Wigner quasi-distribution is the expectation
value of the parity operator defined in (4.64) [159]

W(p, q) = 1
π~
〈Πp,q〉 (4.69)

and in particular

W(0, 0) = 1
π~
〈Π0,0〉 (4.70)

so it is clear that the sign of W(0, 0) captures the parity properties of the wavefunction
with respect to the origin of phase space10. For a generic N fermion state with eigenstates
{j1, . . . , jN}, the Wigner function is [160, 161],

W(p, q) = 1
π~
e−(q2+p2)/~∑

{ji}
(−1)jiLji

(2
~

(q2 + p2)
)

(4.71)

For G = SO(N), SP (N), the sign (−1)ji is the same for all states, to it comes out of
the sum. In particular, for any N fermion state, at the origin of phase space we get

(−1)s = sign W(0, 0) (4.72)

10Incidentally, negative values of the Wigner function at the origin of phase space have apparently been
measured experimentally for single photon fields [162].



Chapter 5

Diagnosing holographic supergravity
Predictions of localization for large N , large λ N = 2 SYM

In this chapter, we take a step forward and extend our attention, which was up to this
point centred in N = 4 SYM, to a more general set of N = 2 conformal field theories.
We will restrict ourselves to a specific set of Lagrangian conformal field theories where
the techniques of supersymmetric localization can still be used to reduce the v.e.v. of
the appropriate observables to a matrix model. Following [4], we will discuss how the
results for this v.e.v. can be used as a diagnostic tool to characterize the corresponding
holographic dual theories.

Interestingly, the family of theories we will consider includes, besides N = 4 SYM, not
only different theories with plausibly semiclassical regimes in their holographic dual, but
also other theories where the existence of these regimes is precluded by strong arguments,
at least in any GKPW-like implementation of holography. This diversity makes the set
an ideal testing ground to identify candidate encodings of the geometrical structure of
the holographic dual in the field theory side.
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5.1 The Lagrangian 4-dimensional N=2 family of
superconformal field theories

The Lagrangian of N = 4 SYM can be written explicitly in terms of N = 2 supermul-
tiplets, as the sum of a gauge multiplet and a massless hypermultiplet in the adjoint
representation (see for instance [163] for a rewriting of N = 4 where this becomes
manifest). Any different choice for the hypermultiplet representation, or the addition of a
mass term for this matter supermultiplet would break exactly half of the supersymmetry,
leaving us with an N = 2 Lagrangian theory. The family of Lagrangians we can obtain
this way coincides with the flat space limit of the N = 2 Lagrangians on an S4 that
Pestun considered in [76].

However, not all the theories obtained with the mentioned substitution on the N = 4
Lagrangian are superconformal. The coupling will be truly marginal if and only if the
one-loop contribution to their β function is zero [164]. In other words, they have to
satisfy ∑

α∈G
(α · x)2 =

∑
ω∈ΛG

nR (ω) (ω · x)2 (5.1)

Since we are interested in superconformal field theories that admit a large N limit,
we restrict to nonexceptional gauge groups. Also, the positivity of all summands in
(5.1) leads to the conclusion that these families can only include matter content in
representations with up to two indices: fundamental, 2-symmetric, 2-antisymmetric and
adjoint. The complete list of such theories is well-known [165], and we present it in table
5.1.

The quantity

ν ≡ lim
N→∞

nf
2N (5.2)

has a very interesting role to play in what follows. It counts what fraction of the matter
in these theories belongs to the fundamental representation in the large N limit. Observe
in table 5.1 that it can only take the values ν = 0, 1/2, 1. In the next section we will
observe that theories with a semiclassical dual are expected to reside in the ν = 0 subset.
In section 5.3 we will find that this quantity ν becomes the label that classifies the three
qualitatively different behaviours that we will meet at large N and λ.
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SU(N)

(nadj, nf , nS2 , nA2) c a δ ≡ (c− a)/c ν

(1, 0, 0, 0) 1
4N

2 − 1
4

1
4N

2 − 1
4 0 0

(0, 0, 1, 1) 1
4N

2 − 1
6

1
4N

2 − 5
24

1
6N2 +O(N−4) 0

(0, 4, 0, 2) 1
4N(N + 1)− 1

6
1
4N(N + 1

2)− 5
24

1
2N +O(N−2) 0

(0, 2N, 0, 0) 1
3N

2 − 1
6

7
24N

2 − 5
24

1
8 +O(N−2) 1

(0, N + 2, 0, 1) 7
24N

2 + 1
8N −

1
6

13
48N

2 + 1
16N −

5
24

1
14 +O(N−1) 1

2

(0, N − 2, 1, 0) 7
24N

2 − 1
8N −

1
6

13
48N

2 − 1
16N −

5
24

1
14 +O(N−1) 1

2

SO(2N)

(nadj, nf , nS2) c a δ ≡ (c− a)/c ν

(1, 0, 0) 1
2N

2 − 1
4N

1
2N

2 − 1
4N 0 0

(0, 2N − 2, 0) 2
3N

2 − 1
2N

7
12N

2 − 3
8N

1
8 −

3
32N +O(N−2) 1

SO(2N + 1)

(nadj, nf , nS2) c a δ ≡ (c− a)/c ν

(1, 0, 0) 1
2N

2 + 1
4N

1
2N

2 + 1
4N 0 0

(0, 2N − 1, 0) 2
3N

2 + 1
6N −

1
12

7
12N

2 + 5
24N −

1
24

1
8 −

3
32N +O(N−2) 1

Sp(2N)

(nadj, nf , nA2) c a δ ≡ (c− a)/c ν

(1, 0, 0) 1
2N

2 + 1
4N

1
2N

2 + 1
4N 0 0

(0, 4, 1) 1
2N

2 + 3
4N −

1
12

1
2N

2 + 1
2N −

1
24

1
2N +O(N−2) 0

(0, 2N + 2, 0) 2
3N

2 + 1
2N

7
12N

2 + 3
8N

1
8 + 3

32N +O(N−2) 1

Table 5.1: List of 4d N = 2 SCFT families admitting a large N limit for each nonexceptional
simple Lie algebra. For later reference, the central charges a and c have been
explicited for every construction, together with their combination δ.
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5.2 Central charges of 4-dimensional superconformal
field theories

Before analysing the Matrix models of the theories presented in the previous section, let
me digress on why any qualitative difference observed in the exact results of localization
and correlated with the classes labelled by ν may be of interest for us. An essential role
in this discussion will be played by the 4-dimensional central charges a and c, so let me
begin by revisiting their field theoretical origin and holographic implementation.

In even dimensional conformal field theories with curved backgrounds the simultaneous
conservation of Weyl symmetry and diffeomorphism invariance is generically not consistent
at the quantum level regardless of the chosen renormalization scheme. Notice that we
already encountered this clash in 2.1.2 for d = 2.

Choosing to keep diffeomorphism invariance, the resulting Weyl anomaly is encoded
[166] in the response of the effective action for a specific background W [gµν ] (i.e., the
effective action obtained integrating out all the physics in the chosen background) to the
infinitesimal change δgµν = gµνφ (x), A ≡ δW/δφ. This quantity can be organized in the
following three types of contribution to the anomaly:

• The parity-even topologic invariants of the background metric, which come from
scale-independent terms in the effective action, and therefore satisfy

´
ddxA = 0.

In practice the only available candidate to this contribution is the Euler density
Ed. The form and properties of this type of anomaly are completely analogous to
those of the chiral anomaly.

• The contributions arising from geometric conformal invariants Id whose effective
action contains a scale, with

´
ddxA 6= 0.

• Total derivative terms, which are not significant in practice, since they can be
cancelled with the addition of local counterterms to the effective action.

Alternatively, the Weyl anomaly can be classified in terms of the cohomological charac-
terization of the Weyl 1-cocycles [167].

In four dimensional CFTs, anomalies of the the second type are uniquely sourced by
the square of the Weyl curvature. Therefore, for these theories (see for instance [168]),〈

T µµ
〉

= c

16π2 I4 −
a

16π2E4 , (5.3)

where 
E4 = RµνρλR

µνρλ − 4RµνR
µν +R2

I4 = RµνρλR
µνρλ − 2RµνR

µν + 1
3R

2

 . (5.4)
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The algebraic quantities a and c are known as the central charges of the 4-dimensional
CFT. They are the 4-dimensional analogues of the central charge of the Virasoro algebra
governing the 2-dimensional conformal anomaly.

Consistent quantum field theories cannot have arbitrary positive values for a and c.
Physical constraints on the energy flux at infinity [169], or, equivalently, on the deep
inelastic scattering amplitudes [170], or causality [171], impose that the central charges
must lie at a wedge of the positive quadrant of the a, c plane. For generic conformal field
theories,

31
18 ≥

a

c
≥ 13 , (5.5)

though for superconformal theories this locus is further reduced to the interval

3
2 ≥

a

c
≥ 12 . (5.6)

Observe that all the theories considered in table 5.1 explore only the c > a region within
this wedge.

How does conformal anomaly manifest itself in the holographic dual? This question was
first addressed by Henningson and Skenderis in [172]. According the GKPW prescription
the behaviour of the near-boundary metric is constrained by the appropriate conformal
structure on the boundary. It is possible to expand the near-boundary behaviour in
the gauge of Fefferman and Graham [173], which defines radial slices preserving this
conformal structure. The UV regularization of the theory is implemented by restricting
the path integral of the gravitational theory to exclude the contributions at depths lower
than a certain ρ = ε in this slicing. The tight relation between the RG flow and the
conformal anomaly allows then to relate the terms in the Fefferman-Graham expansion
to the central charges of the theory. In [172] this analysis was restricted to a gravitational
dual whose action has two derivatives (i.e. Einstein-Hilbert in the gravitational sector).
The result one obtains in this analysis is that in the large N limit the central charges
must satisfy

c, a� 1 , c− a = 0 +O(1/N) . (5.7)

If one relaxes the requirement that the gravitational action involves just two derivatives,
and requires only a sensible higher derivative expansion, it is always possible to redefine
the fields [174] so that the effective action at the order of the first correction reads

S = 1
2`3
P

ˆ
d5x
√
−g

[12
L2 +R + αRabcdR

abcd + . . .
]
. (5.8)



98 Diagnosing holographic supergravity

The methods of Henninson and Skenderis determine that in this case the central charges
satisfy

α = 1
8
c−a
c

L3

`3P
= c

π2 (1− 3α)
(5.9)

and therefore the constraint (5.7) on the large N value of the central charges is weakened
to [174]

c, a� 1 , |c− a|
c
� 1 . (5.10)

Going through the list of theories considered in table 5.1, we observe that this condition
is satisfied precisely by the ν = 0 theories.

In other words, ν = 0 is a direct symptom of a gravitational description with a sensible
higher derivative expansion, and any particularity developped by the field theories with
this property provides a hint on where to look for the encoding of the dual semiclassical
geometry. In the remaining sections in this chapter we will show that having a Wigner
eigenvalue density is one of these putative consequences of semiclassical gravity.
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5.3 Saddle-point equation for the localized partition
function

As in the previous chapters, half-BPS circular Wilson loops can be evaluated for the set
of theories we are considering using the matrix model derived in [76]. Nonetheless, in this
case we have to deal with an ingredient that was so far absent in our calculations: For
generic N = 2 superconformal field theories the 1-loop determinant is no longer trivial.
We will still assume, as it is costumary, that the contribution of instantons is negligible
in the large N limit.

For convenience, let us collect here the expressions from 2.4 that summarize how to
determine the circular Wilson loop v.e.v. using the localization technique in the large
N limit of N = 2 superconformal Lagrangian field theories. We will write them in the
gauge of the Cartan subalgebra

ZS4 ∝
´
dNx∆FP (x)Z1-loop (x) e−8π2(x,x)N/λ

��
��*

Large N
Zinst

∆ (x) = ∏
α∈ΛR(G)(α · x)2

Z1−loop (x) = ∏
α∈ΛR(G) H (α · x) /∏ω∈Λω(G) (H (ω · x))nR(ω)

H (x) = ∏∞
n=1

((
1 + x2

n2

)n
e−x

2/n
)

WR (x) = 1
dimRtre

2πx



, (5.11)

where ( , ) denotes the bilinear form obtained from tracing the product in the fundamental
representation. It is worth pointing out that the finiteness of the H (x) factors we obtain
for the 1-loop determinant in superconformal theories is a consequence of the artificial
introduction of the exponential factors in its definition. These factors cancel each other
in the quocient by virtue of equation 5.1.

We now proceed to derive the saddle-point equation for the partition function of
these matrix models. Following the standard procedure described in 2.4.3, we bring
the Faddeev-Popov and one-loop factors to the exponent. The products over roots and
weights become sums of logarithms, and therefore it is convenient to introduce

K(x) = −d logH(x)
d x

. (5.12)

Since H(x) is an even function under x→ −x, K(x) is odd. In the large N limit we will
use the continuum approximation (2.76), defined in the interval Γ = [−µ, µ] and unit
normalized.

Notice that the integral saddles obtained from the method described in the previous
paragraph will be valid to evaluate WR in the large N limit as long as its rank is not
comparable to N2, which is the order that dominates the partition function saddle point
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equation. This is precisely the rank at which the holographic dual object is expected to
become strongly backreacting [147].

It is straightforward to write down an integral equation for the saddle eigenvalue
density for each N=2 SCFT. We are now going to argue that all these integral equations
can be written in a unified fashion.

Let us first analyse the terms with origin in the Faddeev-Popov determinant. In the
continuum limit,

∆ (x) =


exp

(˜
x 6=y dxdyρ (x) ρ (y) log |x− y|

)
if G=SU(N)

exp
(˜

x 6=y dxdyρ (x) ρ (y) log |x2 − y2|+O (Nx)
)

if G=SO(N) or SP (N)
(5.13)

Naively, one could expect very different contributions to the integral equation from these
two types of determinants. However,

ˆ µ

−µ
dyρ(y) 2x

x2 − y2 =
ˆ µ

−µ
dyρ(y) 2

x− y
−
���

���
���

���
��:0ˆ µ

−µ
dyρ(y) 2y

(x− y)(x+ y) , (5.14)

so the Faddeev-Popov contribution to the Kernel turns out to be the same for all
nonexceptional simple algebras, up to a factor of two. A factor of two will be generated
as well in the term with λ−1 for these cases because the trace in the fundamental
representation includes both ±ai weights for SO(N) and SP (N).

What about the contributions of the 1-loop determinant? It is easy to keep track of
them in the saddle point equation in terms of the K (x) function defined in (5.12). Notice
that the x↔ −x symmetry in the problem makes K (x− y) and K (x+ y) equivalent
under

´
dyρ (y) (the parity of the eigenvalue distribution can be argued from physical

principles or proven combining the saddle point equation with the one obtained changing
x↔ −x and redefining y ↔ −y).

A straightforward analysis shows that for all the superconformal field theories of table
5.1 the singular integral equation that determines the eigenvalue distribution is

ˆ µ

−µ
dyρ(y)

(
1

x− y
− νK(x− y)

)
= 8π2

λ
x− νK(x) , (5.15)

Let us illustrate the argument for SU (N) with a hypermultiplet in the antisymmetric
representation and N + 2 hypermultiplets in the fundamental one. For this case we
obtain

ˆ µ

−µ
dyρ(y)

(
1

x− y
−K(x− y) + 1

2K(x+ y)
)

= 8π2

λ
x− 1

2K(x) , (5.16)
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where the terms inside the parenthesis in the integral come respectively from the Faddeev-
Popov determinant, the vector multiplet contribution and the hypermultiplet in the
antisymmetric representation. The K(x) term on the right hand side corresponds to
the hypermultiplets in the fundamental representation. This equation is consistent with
(5.15) with ν = 1/2.

Equation (5.15) has appeared previously in the literature for specific values of ν. For
ν = 0 it coincides of course with the integral equation for the Wigner distribution, while
for ν = 1 this equation was derived in [175] for the particular case of N = 2 SQCD. To
my knowledge, ν = 1

2 had not been explored prior to [4]
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5.4 Saddle eigenvalue distributions for the partition
function

In this section, we will revisit the methods used in [175, 176] to resolve equation (5.15)
for ν = 1. We will explicitly extend them to address generic ν, to successfully apply
them to ν = 1/2.

5.4.1 Infinite coupling limit

Let us first consider the strict limit 1
λ
→ 0, µ→∞, where equation (5.15) reduces to

ˆ ∞
−∞

dyρ(y)
(

1
x− y

− νK(x− y)
)

= −νK(x) . (5.17)

This equation can be solved analytically for ν 6= 0. Taking its Fourier transform we
arrive at

ρ̂∞(p) = 1
1 + 2

ν
sinh2 p

2
, (5.18)

which implies

ρ∞(x) = 1√
2
ν
− 1

sinh ((π − θ)x)
sinh πx , (5.19)

with

θ = cos−1(1− ν) . (5.20)

This result is just a slight generalization of the ν = 1 case, already obtained in [175].

5.4.2 Strong coupling

At finite coupling, there is, to my knowledge, no technique that allows to solve generally
the saddle-point equation, (5.15). For finite but strong ’t Hooft coupling, λ� 1, there are
a couple of works in the literature using different approximations to solve this equation.
We will follow [175] and also briefly comment on the approximation used in [176].

The first approach we will consider to solve this equation approximately will closely
follow [175], and it is based in the Wiener-Hopf method. Our computations will only
differ in the treatment of the zero-momentum mode.

Given the integral equation (5.15), one might be tempted to solve it via a Fourier
transform, after extending the definition of ρ(x) to be zero outside its support, [−µ, µ].
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This idea cannot be implemented to (5.15) as it stands, since the Fourier transforms of
K(x) and x are divergent. To arrive at an equation amenable to be Fourier transformed,
we follow [175] and make use of the integral operator P−1

x→z we defined in (2.81). Its
action onto (5.15) leads to

ρ (z)− 8π
λ

√
µ2 − z2 − ν

ˆ µ

−µ
dyρ (y) (f (y, z)− f (0, z)) = 0; z ∈ [−µ, µ] (5.21)

with

f (y, z) ≡ f (y, z) ≡ P−1
x→z [K (x− y)] = − 1

π2

 µ

−µ

dx

z − x

√
µ2 − z2

µ2 − x2K (x− y) (5.22)

Observe that the kernel does not only depend on the difference z − y anymore, so the
use of Fourier transformation would lead now to more involved integral expressions. We
observe nonetheless that by virtue of the symmetry y ↔ −y the result (5.21)) will remain
valid if we use

f̂ (y, z) ≡ P−1
x→z

[ ∞
−∞

ω coth (πω)
x− y − ω

]
= (z − y) coth (π (z − y)) + δf̂ (y, z) (5.23)

in place of f (y, z). The advantage in this replacement is that the Fourier transform of
the term δf̂ (y, z) can be argued to be small, and therefore subdominant in the saddle
point equation. This endows us with the possibility of solving the equation iteratively,
using at each step the distribution obtained in the previous iteration to improve the
estimate on the term that contains δf̂ . For our purposes the first step of the algorithm
suffices, where this subleading term is fully neglected.

Once we have reformulated the original equation in this fashion, we are finally ready
to apply the Wiener-Hopf method. The first step is to extend the definition of the
eigenvalue density ρ(y), outside the interval [−µ, µ], by defining ρ(y) = 0 outside this
interval. This is compatible with analytic methods for ρ(y) as long as it is understood
that ρ(y) admits a branch cut outside the domain of integration and we are taking the
ill-defined values on it as

ρ (|x| > µ) = 1
2 lim
ε→0

(ρ (x+ iε) + ρ (x− iε))) . (5.24)

Provided that we take the Fourier transform of the eigenvalue density with this prescrip-
tion, we obtain

´∞
−∞ e

−ipz
(
ρ̂(p)

(
1 + ν

(
2 sinh2 p

2

)−1
)
− F (p)

)
= 0; z ∈ [−µ, µ]

´∞
−∞ e

−ipzρ̂ (p) = 0; z 6∈ [−µ, µ]
(5.25)
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with

F (p) ≡ 8π2µ
J1 (µp)
λp

+ ν

2 sinh2 p
2

+ . . . , (5.26)

where the dots make reference to the terms coming from δf̂ that we are neglecting. The
general solution for the Fourier transform of the eigenvalue density should consequently
be of the form

ρ̂(p)
(

1 + ν

2 sinh2 p
2

)
= F (p)− χ− (p)− χ+ (p) , (5.27)

where the functions χ± in the position space are nonvanishing in the real line only on
one side of |x| > µ each. Their exact expressions can be determined from analiticity
constraints in momentum space.

In order to impose those constraints we should pause our calculation for a moment to
focus on the analytic structure of

1 + ν

2 sinh2 p
2
. (5.28)

This function does have double poles at p = 2πni and simple zeroes at p = 2πni± θ with
θ defined in eq. (5.20). This analytical structure is reproduced in the upper complex
semiplane by the function

G+ (p) ≡
p2Γ

(
1 + θ−ip

2π

)
Γ
(
1− θ+ip

2π

)
(p+ iθ) Γ2

(
1− ip

2π

) . (5.29)

It will turn out to be very convenient to split

1 + ν

2 sinh2 p
2
≡ 1
G+ (p)G− (p) (5.30)

because the constructions

C+ = ρ̂ (p) e−ipµ
G− (p) ; C− = p2ρ̂ (p) eipµ

G+ (p) ; (5.31)

are either totally annihilated or left invariant by the action of
´∞
−∞ (2πi)−1 (p− p0 ± iε)−1

operators. For later reference, we define

Rα ≡ Res (G+, α) ; R̃β ≡ Res (G−, β) . (5.32)
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We can straightforwardly read expressions for χ± from the aforementioned projections
of (5.31). We obtain

ρ̂ (p) =
2 sinh2 p

2
2 sinh2 p

2 + ν

F (p)− eipµ

G+ (p)
∑

α ∈poles G+

e−iαµF (α)Rα

p− α

+O
(
e−ipµ

)
(5.33)

This expression is only useful to obtain ρ (x) at x � −µ, but this covers our needs in
this case because of the x↔ −x symmetry.

The normalization condition can be applied in the momentum space as

1 = 2
ˆ ∞

0
dxρ (x) = lim

ε→0

1
iπ

ˆ ∞
−∞

dp
ρ̂ (p)
p− iε

(5.34)

Using integrals in the C plane (and in particular comparing how the results change
depending on whether the integration circuit is closed by a semicircle of infinite radius
above or below the real line), it is straightforward to argue that the term with F (p) in
(5.33) already produces the 1 needed to match the left hand side. Then, what remains
must evaluate to zero:

0 =
∑

α ∈ poles G+
β ∈ poles G−

e−i(α−β)µF (α)RαR̃β

β − α
(5.35)

Observe that F (α) has an exponential contribution that makes all α poles equally
important, but the sum in β will be dominated by the pole at β = iθ. Keeping only this
dominant contribution and using asymptotic expressions for the Bessel functions in F (p)
we obtain an equation for the dependence µ (λ), which at large λ can be summarized as

θµ = lnλ− 1
2 lnµ+O (1) (5.36)

The expression for the eigenvalue density (in momentum space), eq. (5.33) together with
the normalization (5.36) are the main result of this section.

Before we put these results to work, let’s briefly comment on a different approximation
to solve the saddle-point eq. (5.15). In [176], Bourgine solved (5.15) by truncating the
expansion of K(x) and keeping only the first terms in a large x expansion,

K(x)→ Ksc(x) = 2x ln |x|+ 2γx+ 1
6x (5.37)

This truncation simplifies the computation enormously, compared with the method we
just described. As explained in [176], when computing the vev of the Wilson loop, it
works remarkably well in capturing the exponent, but not so well with the prefactor. For
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the sake of comparison, the expressions work out to be the same, with the replacement

θB =
√√√√ 2ν

1− ν
6

(5.38)

Remarkably, this expression differs from θ = cos−1(1− ν) in less than 1,8% in the range
0 ≤ ν ≤ 1. Presumably, keeping further terms in the large x expansion of K(x) would
improve the agreement of these two methods. Nevertheless, we will stick to the results
obtained by the first method, since they capture exactly the exponent in the power law
dependence of 〈W〉.
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5.5 Bremsstrahlung coefficients: a reprise

In this section we put to use the eigenvalue densities found in the previous section, by
computing the quantities hW and fW for fundamental Wilson loops in the corresponding
theories. As we anticipated in 3.2, these two coefficients are no longer directly related
in generic N = 2 SYM theories. The relations relating the Bremsstrahlung coefficient
B to hW and κ in 3.1 remain valid, as well as the argument of [4] relating fW to the
dependence of the circular Wilson loop v.e.v. on the coupling that was introduced in 3.2.
We can therefore compute fW as

fW = 1
8π2λ∂λ ln 〈W〉 (5.39)

However, let me reiterate that the first equality in (3.17), namely, the proportionality
between BR and fW , need not hold anymore for the theories we are now considering.

It turns out, nonetheless, that it is still possible to evaluate hW from the results of the
matrix model of localization. It was recently conjectured [93] that for N = 2 SCFTs, this
coefficient can be related to the vev of a circular Wilson loop in a squashed four-sphere
S4
b [177, 178], since varying the squashing parameter will insert the stress-energy tensor,

hW = 1
12π2∂b ln 〈Wb〉 |b=1 . (5.40)

Furthermore, it was argued in [93] that this computation can be carried out by just
inserting Wb in the matrix model for S4,

〈Wb〉 =
ˆ

dx e2πbxρ(x) . (5.41)

which is a computation we can readily perform using the results derived in the previous
section.

When ν = 0, the eigenvalue density follows the semi-circle law (2.83), and the vev of
the Wilson loop displays exponential growth [58, 74]. It is easy to see that this asymptotic
behaviour extends to the operator Wb. In turn, the results at ν 6= 0 can be obtained
directly from the eigenvalue distribution in momentum space (5.33), using

〈Wb〉 = ρ̂ (−2πbi) , (5.42)

and the leading term in (5.36). The results obtained both at ν = 0 and ν 6= 0 are
summarized in table 5.2.

Notice some interesting features of this result:

• It is amusing that for the two values of ν realized by large N Lagrangian N = 2
CFTs, ν = 1/2 and ν = 1, the exponent in the power law dependence of 〈W〉
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happens to be given by integers. In particular,

2π
θ
− 1 =


5; ν = 1/2

3; ν = 1
(5.43)

I ignore whether there is any deeper reason behind this observation.

• Another suggestive property of these results is the fact that fW is independent
of λ. From its definition (2.48), we can interpret this coefficient as giving the
strength of the fields sourced by a static probe; our computation implies that
for superconformal theories with matter in the fundamental representation, this
strength reaches a limiting value in the large N , large λ limit.

• Notice that for generic N = 2 theories, the λ dependence of the coefficients hW
and fW is different. This should not come as a surprise, since for N = 2 theories
(unlike what happens in N = 4 SYM) the Lagrangian density and the stress-energy
tensor don’t belong to the same supermultiplet.

We are now in position of computing the Bremsstrahlung function for fundamental
loops in ν 6= 0 theories. Granting that the conjectured relation [91, 93]

B = 3hW . (5.44)

is true, we conclude that

B = 1
2πθ ln λ . (5.45)

One lesson of this result is the following. It has been argued in [179, 180] that a certain
class of observables of planar N = 2 superconformal gauge theories can be obtained
from the corresponding result of planar N = 4 SYM, by means of replacing the N = 4

Quantity ν = 0 ν 6= 0

〈W〉 ∼ λ−3/4 exp
√
λ ∼ λ

2π
θ
−1

ln 〈W〉b ∼ b
√
λ ∼ ln λ

(
2πb
θ
− 1

)
+O

(
(1− b)2

)
fW

√
λ

16π2
1

8π2

(
2π
θ
− 1

)
hW

√
λ

12π2
1

6πθ ln λ

Table 5.2: Dependence of W, Wb, and the coefficients hW and fW that we can infer from
them for Wilson loops of fundamental representation in N = 2 superconformal
Lagrangian theories. The results displayed in this table are only guaranteed to be
valid at the large N , large λ limit.
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coupling by a single function, universal for a given N=2 SCFT. Comparing the results
we have obtained for 〈W 〉 and B for N=4 and N=2 theories, we conclude that this
substitution rule does not apply to the computation of B, for theories with a single gauge
group.

Finally, we can use our result for hW to compute the additional entanglement entropy
of a spherical region when we add a external probe to the vacuum of the theory. According
to [91] it is given by

S = ln 〈W 〉 − 8π2hW , (5.46)

so for the probes we are considering we have

S =
(2π

3θ − 1
)

ln λ . (5.47)
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The main purpose of this dissertation has been to put forward new potential uses for the
exact predictions of supersymmetric localization, and, more precisely, to determine in
which manner they can be helpful in the refinement of the AdS/CFT correspondence. In
particular our attention has been centred on a very specific set of quantities: 1-object
correlators of half-BPS Wilson loop observables in theories with simple gauge algebras.
Even within this narrow set of operators, localization has proven itself a surprisingly
versatile tool, which conveys information for holography in numerous manners and covers
a widespread range of interests. Let me recollect in what follows the most remarkable
findings of this thesis in this regard.

One of the most fertile grounds for learning about holography, at least as far as the
comparison to exact results is concerned, is precisely the regime where the duality is
better understood, namely, N = 4 SYM theory at large N and λ. The outcome of
supersymmetric localization has already been vehemently exploited in the literature to
check holographic predictions in this regime. Subleading corrections for the field theoretic
observables are known to be efficiently replicated in the dual supergravity construction
with the help and D3 brane probes in several examples. The coincidence between the
holographic and field theoretic predictions for momentum fluctuation observed in chapter
3 provides an independent new entry to the list of these nontrivial holographic checks.
Notably, this is also the regime where the explicit identification of the matrix model
combinatorics with the fermionic phase space of the LLM description presented in 4
takes place: the bubbling geometry construction is in principle restricted to regular
semiclassical spacetimes.

Another interesting insight comes from the comparison of the results in this regime
with those of the equivalent limit in N = 2 Lagrangian field theories without a semi-
classical holographic dual. The qualitative differences observed in 5 between these two
types of theories suggest that the encoding of semiclassical geometry in field theory is
related to efficient spreading of the eigenvalue distribution at the strong coupling regime:
The absence of a plausible semiclassical dual happens in these examples whenever the
eigenvalue distribution asymptotes a limiting form, with finite density in certain zones.
This result is in consonance with several observations made in the context of bubbling
geometries explicitly relating the position of certain elements of the theory (in particular
giant gravitons) to certain patterns in the dominant eigenvalue saddle (the presence of
vacancies or outliers in the distribution). In addition, the structure at λ → ∞ of the
eigenvalue distribution repercusses directly in the functional λ dependence of the Wilson
loop v.e.v.s; observables that are known to capture important geometrical features of the
the holographic dual of the field theory when the latter is semiclassical. We should be
cautious around this point, and avoid jumping into precipitated conclusions: correlation
does not imply causality and the classification of theories proposed in 5 is certainly
too coarse to univoquely flag semiclassical duals1. However, in my opinion, it is fair to

1In other words, adding a significant amount of fundamental matter is not the only possible way of
breaking the semiclassical structure of the holographic dual of a Lagrangian N = 2 SYM theory.
None of the theories considered admits a semiclassical dual at finite λ, for instance, but they might
still fall into the ν = 0 category.
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assess that the saddle eigenvalue distribution of localizable theories is one of the most
interesting suspects to displaying an explicit encoding of the geometrical structure arising
in their AdS dual.

At finite N and λ, our control over the holographic side of the conjecture drops
significantly. An interesting issue in this limit is up to which point the parametric depen-
dences on these variables that the localization technique reveal for certain observables
can be extrapolated to less supersymmetric objects. This extension would allow us
with the possibility to squeeze information about finite N and λ from the holographic
predictions at the limit of semiclassical holography (when it exists). This idea was briefly
explored in the last section of 3. Although the discussion is full of subtleties and it is
hopeless to expect answers for arbitrary N and λ, our discussion shows that under some
considerations this path can provide qualitatively reasonable answers. A complementary
question we can ask is what can be said about the structure of a known semiclassical
dual when we reduce the rank of the gauge group to a finite N . Two observations made
in 4 are very interesting in this regard. On the one hand, the structure observed for
the fundamental Wilson loops relates the first subleading (∼ 1/N) term in the ’t Hooft
expansion of the field theory when the gauge group is SO or SP with the planar sector
of U . Indeed, when this topological expansion is observed as a perturbative string theory
series the results of 4 become of special interest. Although it is conceivable that they
could partially be deduced in string theory by symmetry arguments, they open a window
into regimes where the worldsheet calculations are currently well out of reach. On the
other hand, the fact that the fermionic wavefunction-like structure in the matrix model
remains intact at any finite N for localizable observables in N = 4 SYM theories is, in
my opinion, highly suggestive: it suggests that certain elements of the bubbling geometry
picture remain intact when spacetime becomes a quantum gravity.

Aside from all these considerations, this thesis have also produced interesting results
at a more pragmatic level. A central role in this pages has been played by Bremsstrahlung
coefficients, which have been considered for a large assortment of particle types in diverse
theories. The versatility of these quantities (restricted, I should admit, to the linear
response of the particle; they fail to account for the nonabelian broadening of the emitted
radiation), has been extensively discussed in 3, where an element was appended to the set
of their applications: their relation to the momentum diffusion coefficient for a particle
moving through a nontrivial background.
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Summary in Catalan

Resum en Català

La conjectura de Maldacena, anomenada sovint dualitat hologràfica o correspondència
AdS/CFT, proposa una equivalència entre teories gravitatòries en un espai hiperbòlic
d’una certa dimensió i teories de gauge en un espai de dimensionalitat inferior, que,
en un cert sentit, podem pensar que viuen al contorn de les primeres. Aquesta relació
ve motivada per l’estudi, en el marc de la teoria de cordes, d’una certa generalització
dels forats negres a espais de dimensió més alta que es coneix com a brana negra. En
règims diferents, els dos caps que la correspondència connecta apareixen com a descripció
física del comportament d’aquest mateix objecte a baixa energia. Hom espera doncs (i
nombrosos indicis físics semblen confirmar-ho) que cada una d’aquestes dues teories sigui
la descripció efectiva apropiada de l’altra dins el seu règim de validesa. El fet que aquests
règims de validesa siguin disjunts fa aquesta dualitat molt útil, però difícil de verificar.

Tan en un sentit com en l’altre, el formalisme descrit al paràgraf anterior podria ser
la clau per resoldre un problema clau de la física teòrica. En un cas, aquesta relació
connecta teories quàntiques fortament acoblades i de rang de gauge gran (en un límit molt
concret que es coneix com a límit de ’t Hooft) a descripcions semiclàssiques de teories
amb gravetat, permetent així una traducció de càlculs complicats al marc de les primeres
a un problema molt més assequible en el marc de la gravetat d’Einstein. En l’altre, certes
teories de cordes no semiclàssiques adquireixen una definició i implementació precisa a
través d’una teoria de camps. Aquesta relació profunda amb els problemes de les teories
de camps no pertorbatives i la gravetat quàntica han fet que aquesta conjectura despertés
un ampli interès i li han atorgat un lloc central en la recerca durant les dues darreres
dècades.

Malgrat els nombrosos esforços dedicats a la seva caracterització, la comprensió de la
dualitat hologràfica es troba, a dia d’avui, majoritàriament restringida a l’entorn dels
règims on la gravetat és semiclàssica. L’accés a aquests règims és més senzill des del
costat gravitatori, així que l’ús de la correspondència per explicar la gravetat quàntica
per mitjà de teories de gauge, tot i el seu gran pes conceptual, ha estat comparativament
molt menys explotat que la seva aplicació en sentit invers, consistent en oferir prediccions
per teories de camps gravitatòriament.

Una eina clau per tal de resoldre o pal·liar aquesta mancança és l’estudi de quantitats
peculiars a la teoria de camps, amb qualitats que les facin accessibles fins i tot a un
acoblament fort. Un exemple paradigmàtic d’aquest tipus de quantitats és el de les
magnituds protegides de renormalització, per les quals la simetria garanteix que les
correccions quàntiques de certes quantitats, almenys a nivell pertorbatiu, seran nul·les, i
per tant permet estendre a acoblament arbitrari els resultats obtinguts pertorbativament.
El seu estudi ens permet posar a prova la dualitat, refinar-ne la construcció i en última
instància estendre’n progressivament l’aplicabilitat a nous règims. Aquesta idea, però,
no està restringida als objectes protegits. Diverses tècniques desenvolupades recentment
permeten obtenir resultats exactes per a certs sectors d’observables a tot acoblament i
així participar d’aquest “apuntalament” de la conjectura hologràfica en el mateix sentit
en què ho fan les magnituds protegides.
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Aquesta tesi estudia les lliçons que hom pot extreure, des del punt de vista de la
dualitat hologràfica, de l’aplicació d’una d’aquestes tècniques, l’anomenada localització
supersimètrica, que es basa en la possibilitat de deformar un cert tipus de teoria fins a fer-
la analíticament resoluble sense variar en cap moment el valor d’un sector supersimètric
d’observables. En particular, es centra en l’aplicació d’aquesta tècnica a un tipus de
teoria concret, les teories Lagrangianes de tipus N = 2 , i per observables concrets, els
circuits de Wilson circulars que sols trenquen la meitat de la supersimetria del problema.
L’anàlisi també s’ha restringit a l’estudi dels règims on una de les peces més complexes
que involucra el procés de localització, la contribució instantònica, esdevé trivial. Això
redueix l’espectre de teories considerades a dues finestres paramètriques: D’una banda
les teories maximalment supersimètriques (N = 4 SYM), i de l’altra el límit on el rang
del grup de gauge es fa arbitràriament gran.

Aquestes dues situacions no són mútuament excloents i és precisament en la seva
intersecció en què ens fixem d’entrada, al capítol 3. Aquest règim conté el límit fortament
acoblat de la teoria N = 4 en què el dual hologràfic esdevé semiclàssic. Allà on
ambdós mètodes són aplicables, podem comparar-ne les prediccions i verificar les nostres
expectatives per les prediccions hologràfiques amb el barem rigorós establert pels resultats
supersimètrics, i de fet diversos exemples d’aquesta pràctica ja han estat estudiats
anteriorment a la literatura. Un primer resultat de la tesi és refinar la comprovació
d’aquesta mena per un observable concret al cas en què els objectes hologràfics considerats
són D3-branes supersimètriques, cas en què el càlcul hologràfic captura nombroses
correccions no planars a la teoria que fan l’encaix amb els resultats de localització no
trivial. L’observable que es considera en aquesta comprovació és el coeficient de difusió
pel moment d’una partícula pesada dins la teoria de camps. Aquesta partícula segueix
un procés de Langevin, al capdavall. Més enllà dels propòsits d’aquesta tesi, es posa
de manifest en aquesta secció que aquest coeficient de difusió es relaciona en general
amb l’anomenada funció de Bremsstrahlung de la partícula, la versatilitat de la qual es
discuteix àmpliament a les primeres seccions d’aquest capítol.

Al mateix temps, el fet que el rang de validesa dels resultats exactes de localització
arribi fins al domini on val la holografia obre una nova perspectiva: la possibilitat
d’utilitzar la dependència paramètrica a acoblament i rang arbitrari pels observables que
hem localitzat com a guia per estendre les prediccions hologràfiques fora del seu rang de
validesa. A la secció 3.4 s’explora l’aplicabilitat d’aquesta idea en termes del coefficient
de difusió del moment abans esmentat.

Al capítol 4 es discuteix la dependència paramètrica dels resultats de localització
en λ i N per càrregues genèriques inserides en teories maximalment supersimètriques
on l’àlgebra de gauge és una àlgebra de Lie clàssica. Una observació notable que
s’obté d’aquesta anàlisi és que, almenys per càrregues en representació fonamental, el
desenvolupament de ’t Hooft té una estructura subjacent que relaciona els sectors amb
diferent nombre d’inversions topològiques entre ells. De manera complementària, es
constata que els resultats obtinguts pel mètode de localització es poden visualitzar en
termes d’una mecànica quàntica de fermions, que encaixa amb l’estructura dels “universos
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de bombolles” (del tipus proposat per Lin, Lunin i Maldacena) al límit de ’t Hooft i es
manté a rang de gauge finit.

El darrer marc que s’analitza a la tesi, al capítol 5, és el d’aquelles teories Lagrangianes
N = 2 en què, malgrat la simetria conforme i la supersimetria, el límit de ’t Hooft no
converteix el dual hologràfic en semiclàssic. Això es dóna qual la quantitat de matèria en
representació fonamental de la teoria és comparable al rang del grup de gauge. Encara
que és possible aplicar la localització supersimètrica de forma universal per ambdues
classes de teories, les prediccions per als observables a l’abast d’aquesta tècnica presenten
diferències qualitatives que discriminen els dos grups. Certament, aquesta coincidència
no és prou sòlida per concloure d’entrada que l’estructura del model de matrius codifica
directament l’estructura gravitatòria del dual, però hi ha d’altres resultats a la literatura
que aporten pistes en aquest mateix sentit.

Observem, doncs, al llarg d’aquesta tesi, que, tot i haver restringit l’anàlisi a sectors i
observables específics, els resultats obtinguts per mitjà de la localització supersimètrica
ofereixen una rica gamma de suggeriments sobre l’estructura hologràfica.
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