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Low-energy excitations of double quantum dots in the lowest Landau level regime

N. Barbera´n and J. Soto
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Catalonia, Spain
~Received 18 April 2002; published 27 November 2002!

We study the spectrum and magnetic properties of double quantum dots in the lowest Landau level for
different values of the hopping and Zeeman parameters by means of exact diagonalization techniques in
systems ofN56 and 7 electrons and a filling factor close to 2. We compare our results with those obtained in
double quantum layers and single quantum dots. The Kohn theorem is also discussed.
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I. INTRODUCTION

The understanding of the structure and properties
double quantum dots~DQD’s! grown on the perpendicula
direction to their plane, and subject to an external cons
magnetic fieldBW , has attracted special interest due to t
wealth of quantum states that are actually realized. T
wealth does not only refer to the ground states~GS’s!, which
provide a quite intricate phase diagram,1,2 but also to the
variety of different excited states. This allows one to hav
large quantity of different sets of properties of the DQD s
tem that can model, for instance, point contacts within
device built for electron transport.

Special interest is given to the regime for which the ma
netic field is so strong that only the lowest Landau le
~LLL ! is occupied but not strong enough to prevent any s
polarization. We will always assume that the second Lan
level is far enough away that we can ignore any mixtu
between Landau levels. In the symmetric gauge, the pro
tion of the DQD Hamiltonian to the LLL is given by3

H5aM1bN2DzSz2D tX1Hint , ~1!

where

a5
\

2
@Avc

214v0
22vc# ~2!

and

b5
\

2
Avc

214v0
2. ~3!

vc5eB/cm* is the cyclotron frequency,m* being the effec-
tive electron mass in the semiconductor host, ande andc are
the electron charge and the speed of light in vacuum, res
tively. The frequency associated with the parabolic confin
potential in both dots is given byv0 , M is the total angular
momentum andN is the total number of electrons. The Ze
man coupling is given byDz5gmBB, with g the Lande´ g
factor andmB the Bohr magneton~for the free electron mass
mB5e\/2mc). The single particle energy gap between sy
metric ~s! and antisymmetric~a! states, combinations ofur &
andu l & single particle states of electrons confined in the ri
and left dot, respectively~see below!, is given by 2D t , and
X5Ns2Na is the balance between symmetric and antisy
0163-1829/2002/66~20!/205325~7!/$20.00 66 2053
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metric single particle states. Finally,Hint is the Coulomb
interaction term. Hereafter all distances will be given in un
of the magnetic length, defined as

l B5F \

m* ~vc
214v0

2!1/2G 1/2

, ~4!

and all energies in units ofe2/(e l B), e being the dielectric
constant of the semiconductor host. The Zeeman energy
tunneling term scaled byD t , the kinetic contribution given
by a andb and the Coulomb interaction provide the ingr
dients of the system. The applied magnetic field can be
rected in any direction in space in such a way that its act
has different effects on the kinetic contribution in which on
the component along theZ direction plays a role and in the
Zeeman effect to which the total magnetic field contribut
The eigenstates of the Hamiltonian are characterized by
total angular momentumM, the total spin along theBW direc-
tion given bySz , and the parityP.1,4 These parameters ar
related to the invariance of the Hamiltonian under space
tations along theZ direction, rotations of spin and specula
reflection in the plane interdots, respectively.1 We will denote
by (M ,Sz ,P) the configuration that determines each se
rated subspace of eigenstates.

Previous studies in DQD’s based on exact diagonali
tions, on the one hand,1,2 and the large experience extracte
from mean field~MF! approximations and effective field
theories in double layer~DL! systems, on the other hand,5–9

have provided a quite complete picture of the GS phase
gram. It is well established in both DL~Ref. 7! and DQD
~Ref. 1! systems that the variation ofD t , leaving all the other
parameters fixed, induces several changes in the GS.
Dz@D t the GS is ferromagneticuFM& with symmetric and
antisymmetric single particle states equally populated
with all the electrons in spin up states. In contrast forDz
!D t the GS is symmetricuSYM& with all the electrons oc-
cupying symmetric single particle states with up and do
spins equally populated. In between, for comparable val
of Zeeman and tunneling energies, intermediate states o
type called canted states (uC&) become GS’s. The cante
state is the GS solution between theuFM& and uSYM& in a
MF calculation for a DL system and it is characterized by
ferromagnetic order in the direction perpendicular to the l
ers and antiferromagnetic order in plane7.
©2002 The American Physical Society25-1
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A remarkable result of the Hartree-Fock~HF! approxima-
tion for DL quantum Hall systems at a filling factorn52 is
that there are only three possible different GS’s:uFM&, uC&,
anduSYM& distributed over a universal phase diagram wh
boundaries depend only on three energy scales whereas
Hamiltonian depends on four independent energy scales7

Certain ground states obtained from exact diagonaliza
in DQD’s have also been identified as canted states s
their overlap with the MF canted GS’s for finite system
projected on the appropriate subspace with well definedSz ,
is nearly 1.1 The total number of different canted states b
tweenuFM& anduSYM& in a DQD depends on the number
electrons. As a general rule, keeping fixedDz and increasing
D t , the GS evolves as

uFM&→~M ,Sz ,P!→~M ,Sz21,2P!

→~M ,Sz22,P!, . . . ,uSYM&. ~5!

A simultaneous change of spin and parity occurs for the
in each phase transition, whereas the total angular mom
tum remains unchanged.1

No direct information about the in-plane order has be
obtained so far from the exact solutions due to the fact
they have quantum numbers (M ,Sz ,P) that are well defined.
No information can be directly obtained from order para
eters that depend on single operators of the typeSx

R or Sx
L ,

since their expectation values vanish. However, indirect
formation about the order in plane can be obtained from
properties of the excited states as we will show in the d
cussion of Figs. 1 and 2 below. Within the great number
possible low energy excitations that provide informati
about the properties of the system, we will draw our attent
to those related to three main different points.

First, we search for particlelike excitations independen
the electron-electron interaction and so independent of
number of electrons. We discuss when the Kohn theore10

holds in a parabolic DQD system~as is always the case for
single parabolic QD!.

Second, we look for the types of excitations that soften
they come close to a GS transition that takes place with
variation of some input parameter. These excitations prov
a clear and easy way to map the GS phase diagram.

Third, in the last point we concentrate on the dispers
relation v( l ) of two different type of excitations, one with
and the other without a simultaneous spin and isospin
~see below!. In a single QD the Coulomb contribution to th
dispersion relation of excitations over a ferromagnetic
decreases with angular momentum due to expansion. Th
the general behavior, except at ‘‘magic’’ values ofl * ,11 for
which the system increases in angular momentum froml * to
l * 11 but does not increase in size; hence the Coulomb c
tribution remains constant. These magic values ofl are re-
lated to the incompressible states. Our aim is to see if the
a similar behavior in the DQD system.

This paper is organized as follows: In Sec. II we make
brief account of the exact diagonalization used in our cal
lations. In Sec. III we present the outstanding features
some excited states of different multipolarity over differe
GS’s, paying special attention to the different behavior
20532
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even and odd systems. We will follow the three main poi
previously mentioned. Finally in Sec. IV we draw our co
clusions.

II. EXACT DIAGONALIZATION

Exact diagonalization can be performed in separate bo
for different configurations characterized by (M ,Sz ,P).
Each configuration determines a finite-eigenstate subsp
Within the LLL regime, in all expansions we will use non
interacting single particle wave functions, which do not ha
nodes along the radius and are given by

Fm~rW,s,L!5fm~rW !usL&, ~6!

wherem is the single particle angular momentum,L5r ,l ,
s5↑, ↓, rW5(x,y), and fm(rW) are the Fock Darwin wave
functions given by11

fm~rW !5
1

A2pm!2m
e2 imur me2r 2/4. ~7!

Along the Z direction we assume delta charge distributio
separated byd, the distance between the dots~we consider
d51 in all numerical performances!.

Within our calculations we will use symmetricus& and
antisymmetricua& single particle states, related byur & andu l &
by

us&5
1

A2
~ ur &1u l &) ~8!

and

ua&5
1

A2
~ ur &2u l &); ~9!

we will use the term isospin referred to this degree of fre
dom~sometimes referred as pseudospin in literature; see
5!. None of the parametersr andl or s anda are well defined
quantum numbers since the Coulomb interaction mixess and
a and the tunneling process mixesr and l. The well estab-
lished restriction is that parity must be preserved; this me
that the change in symmetry (s→a or a→s) due to electron
interaction must take place by pairs of electrons, and ne
by one alone~see below!.

We will consider excited states over the three possi
types of GS’s, and choose the parameters in such a way
for an even number of electrons in the ferromagnetic GS
have a filling factorn52. We proceed as follows. Once th
input parameters are fixed, we determine first the finite nu
ber of Slater determinants built up from single particle wa
functions of the type given by Eq.~6! which provide bases
for each subspace configuration (M ,Sz ,P). Then the diago-
nalization of the Hamiltonian given by Eq.~1! is straightfor-
ward, except for the Coulomb term. Although the Coulom
interaction does not mixur & and u l & single particle states
some manipulations must be done in order to operate o
us& and ua& wave functions. In a second quantization, t
interaction Hamiltonian is given by
5-2
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Hint5
1

2 (
i jkl

^f if j uVufkf l&ai
1aj

1alak , ~10!

whereV is the Coulomb interaction and the subindexes
note angular momentumm50,1,2, . . . , spin5↑,↓, and isos-
pin t5a, s. Taking into account that the single particle wa
functions are related by Eqs.~8! and ~9! and that the right
and left single states ared distributions of typesd(z) and
d(z2d), respectively, it is easy to show that

fa* fa5fs* fs;
1

2
@d~z!1d~z2d!# ~11!

and

fs* fa;
1

2
@d~z!2d~z2d!# ~12!

for each electron. As a consequence, there are only t
possibilities for the expectation values ofV: ~i! the interact-
ing electrons do not change their isospin as in

^fsfsuVufsfs&5
1

2
~^Vrr &1^Vrl &!, ~13!

~ii ! only one electron changes its isospin as in

^fsfauVufafa&50, ~14!

and ~iii ! both electrons change their isospin index as in

^fsfauVufafs&5
1

2
~^Vrr &2^Vrl &!. ~15!

In the brackets on the right hand side of these equations
integral over theZ coordinate has been performed, and t
potentials are given by

Vrr 5Vll 5
e2

er
, Vrl 5Vlr 5

e2

e~r 21d2!1/2
~16!

with r 5urW12rW2u, 1 and 2 being the two interacting electron
That is to say the Coulomb interaction either leaves the is
pin of the electrons unchanged, if it operates with

V05
1

2
~Vrr 1Vrl !, ~17!

or changes the isospin of two electrons if it operates with

V15
1

2
~Vrr 2Vrl !, ~18!

in such a way that parityP, given by P5(21)X/2 is pre-
served (X5Ns2Na).1 The change of isospin of a singl
electron is forbidden.

III. MULTIPOLAR EXCITATIONS

Guided by an interest in the properties of the multipo
mode excitations and also by an interest in those excitat
that soften at the boundaries of the phase transitions wi
20532
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the phase diagram, we explored the eigenenergies and e
states coming out of exact diagonalizations. We conside
general, the multipolar excitations characterized byv( l )
with or without a simultaneous change of spin and/or par
and in some cases we concentrate onl 50 or 1.

Before focusing on the first point, that is, within th
search of excitations which keep the internal Coulomb
ergy constant, let us briefly comment on the Kohn theor
for a DQD. The Kohn theorem for a single QD states12 that
in the process of absorption~or emission! of a photon of
wavelength much larger than the radius of the dot confin
by a parabolic potential, the initial and final electronic sta
can differ from one another only by the center of mass~CM!
excitation. The number of confined electrons and the in
action between them has no influence on the values of r
nance energies. For a DQD, however, qualifications to
statement may be required for different directions of the
cident electric field with respect to the plane of the dots. I
easy to see that for homogeneous in-plane electric fields
Kohn theorem also holds for DQD’s. However, this is not t
case for homogeneous electric fields along theZ direction, as
we argue below.

Taking into account Eqs.~8! and~9! and the expression o
the exciting potential~associated withE' directed along the
Z direction!,

HE'
;(

i 51

N

ziE' , ~19!

it is easy to see that^fsuHE'
ufa&;dÞ0. That is to say, the

operator HE'
changes the parity of the system and

@HE'
,Hint#Þ0 since the eigenstates ofHint have a well de-

fined parity. The part of the Hamiltonian which depends
the relative coordinates only receives other contributio
aside from the interaction Hamiltonian~coming from the ki-
netic and from the tunneling terms11 within the first quan-
tized expression!; however, the possibility that the las
bracket can be compensated for by the brackets of the o
terms can be disregarded as they depend on different i
pendent parameters. An alternative reasoning is presente
the Appendix. In the analysis of the exact diagonalizat
results which follows, we will verify, among other things, th
applicability of the Kohn theorem.

Let us begin with theN57 electron system, and conside
first the excitations of theuFM& GS that increase the angula
momentum in one unit and leave all the other parameter
the configuration unchanged; that is to say, we consider,

~M ,Sz ,P!→~M11,Sz ,P!. ~20!

The system jumps from a one-dimensional~1D! space con-
figuration to a 2D space. The result is the excitation of
CM by a leaving the internal Coulomb energy unchange
This is the well known intra-Landau-level dipole excitatio
whose energy decreases when the magnetic field incre
that is, thev25a far-infrared resonance.11 No inter-Landau-
level transition of energy given by

v15
1

2
@Avc

214v0
21vc# ~21!
5-3
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is possible within the LLL considered in our calculatio
Other Coulomb-independent interaction excitations are p
sible in theN57 system. If we also allow changes in parit
that is to say if we consider

~M ,Sz ,P!→~M11,Sz ,2P!, ~22!

the CM is excited with an energya1D t ~it is a CM excita-
tion since the same result would be obtained forN51). The
previous case~of energya) would correspond to the excita
tion made by a nearly constant electric field~we are assum-
ing dipole approximation! directed along theX direction (Ei)
and the last one~of energya1D t) would correspond to an
electric field with an additional nonvanishing compone
along theZ direction ~let us call it Exz). Incidentally, this
result can be used to determine experimentally the rela
orientation of the DQD respect to the incident beam. T
system absorbs a photon of energya1D t with a maximum
probability when the angle between the direction of the in
dent electric field and the normal to the plane of the DQD
u5p/4.

For both excitations, with and without parity change, t
system goes from a 1D space (uFM&) to a 2D space of ex-
cited states. The CM excitation leaves the system in
higher energy state within the excited 2D configuration
such a way that

E2~M11,Sz ,6P!5E1~M ,Sz ,P!1a1~171!D t/2
~23!

and

E1~M11,Sz ,6P!,E2~M11,Sz ,6P! ~24!

where the eigenenergiesEi have been ordered from lower t
higher energy within each subspace. See Table I~casesA and
B). The difference in energies in the excited configuratio
come from the decrease of Coulomb interaction due to
expansion of the eigenstate of lower energy. The highest
ergy eigenstate is a compact state and does not chang
size. The two excitations of caseA with and without Cou-
lomb contribution are equivalent to the ‘‘sum mode’’ and t
‘‘difference mode’’ found by Girvin and MacDonald6 for DL
~without tunneling or Zeeman terms and for filling factorn
51/2) within a single-mode approximation. Once one kno
the decrease of energy of Coulomb origin fro
E2(10,7/2,0)2E1(10,7/2,0)5Ec50.0998, one can distin
guish in the (11,7/2,0) configuration the double dipoleE6
5E1(9,7/2,0)12a516.0802 (a50.2) from a quadrupole
excitation given by E45E1(9,7/2,0)12a2Ec515.9803.
Surprisingly, the appearance of this eigenenergy in the ou
means that an eigenstate which is not a compact state n
fully expanded state is a possible realization. The full exp
sion would imply a larger value ofEc asDM52.

However, not all the previous scenario is reproduced
the N56 system. If by analogy we consider the excitatio
(M ,Sz ,P)→(M11,Sz ,6P) from the uFM& GS, the energy
E2(M11,Sz ,P)5E1(M ,Sz ,P)1a is obtained according to
the behavior of theN57 system but no trace of theD t en-
ergy (D t50.06) is present inE2(M11, Sz ,2P).
20532
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From the analysis of the results of theN57 system, one
would suspect that the CM excitations~of energiesa or a
1D t) are a consequence of the Kohn theorem in the D
system, in agreement with our assumption of a parab
confining potential and the dipole-excitation approximatio
However, if this were the case, theN56 system would be-
have in the same way. The reason for the difference is p
vided by the different action of the electric fields that exc
the system. The in-plane field produces a global shift of
system which does not affect the internal electron-elect
interaction, and the CM absorbs the total energya. In con-
trast, if the external field has a nonvanishing compon
along theZ direction, aside from the global absorptions
energya, an extra amount of energy is involved in the tu
neling process. In the odd electron system, the unpaired e
tron tunnels from one dot to the other. This change, howe
does not modify the electronic distribution asymmetry whi
was already present in the GS, and consequently does
modify the Coulomb interaction. On the other hand, in t
even electron system due to the electronic jump, a chang
produced between a symmetric distribution to a nonsymm
ric one, necessarily giving a Coulomb contribution to t
final energy. That is to say, the excitations induced byE' on
an odd number of electrons do not modify the Coulomb
ergy. However, this is not a consequence of the Kohn th
rem, as one may erroneously conclude.

Within the second main point, the search of excitatio
that mark the phase transitions, we concentrate on the
lution of the system asD t increases, leaving all the othe
parameters unchanged. The appropriate excitations tu

TABLE I. Eigenenergies obtained from different configuration
We consideredD t50.07 and 0.06 forN57 and 6, respectively; in
both casesa50.2, b51.4, andDz50.02 and the GS is ferromag

netic. A is the excitation due to an electric field given byEW 5Ei î ,

andB due toEW 5EW xz being î the unitary vector along theX axis.C
is due to an electric field expanded up to the quadrupolar appr
mation and directed along theX axis.

N56
GS A B C

~6,3,0! ~7,3,0! ~7,3,1! ~8,3,0!
E1512.6802 E1512.7868 E1512.7232 E1512.8804

E2512.8802 E2512.8434 E2512.8915
E3512.9438
E4512.9868
E5513.0802

N57
GS A B C

~9,7/2,0! ~10,7/2,0! ~10,7/2,1! ~11,7/2,0!
E1515.6802 E1515.7803 E1515.8503 E1515.8700

E2515.8802 E2515.9502 E2515.8906
E3515.9523
E4515.9803
E5516.0231
E6516.0802
5-4
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out to be the lowest energy excitations. Figures 1 and 2 s
the excitation energy as a function ofD t for the four different
GS phases existing along theD t energy variation line forN
56 and 7. In all the cases the angular momentum is p
served, and a simultaneous spin and parity flip takes pl
That is to say,

v5E1~M ,Sz61,2P!2E1~M ,Sz ,P!, ~25!

where E1(M ,Sz ,P) is the GS energy atD t and E1(M ,Sz
61,2P) is the lowest eigenenergy within the excited co
figuration at the sameD t . These excitations provide the low
est value (DM5 l 50) of the multipole dispersion relatio
v( l ) given below.

Figures 3 and 4 show the dispersion relation of the t
different types of multipole modesv( l ) mentioned previ-
ously within the third main point. In both cases, the lowe
energy eigenstate within each subspace is considered.

FIG. 1. Lowest energy excitation forN56 as a function ofD t

for different regions of the phase diagram. The excited configu
tions are~from left to right! (6, 3, 0), (6, 2, 1), and (6, 1, 0) for th
positive-gradient curves and (6, 2, 1), (6, 1, 0) and (6, 0, 1) for
negative-gradient curves. The valuesa50.2, Dz50.02, andb
51.4 have been considered.

FIG. 2. The same as Fig. 1 forN57. The excited configurations
are~from left to right! (9, 7/2, 0), (9, 5/2, 1), and (9, 3/2, 0) for th
positive-gradient curves and (9, 5/2, 1), (9, 3/2, 0), and (9, 1/2
for the negative-gradient curves.
20532
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values ofD t were chosen in such a way that for the tw
systems the GS is the first canted state:~6, 2, 1! for N56 and
~9, 5/2, 1! for N57. The general trend is given by the dash
line which corresponds to

v5E1~M1 l ,Sz ,P!2E1~M ,Sz ,P!. ~26!

The increase of the angular momentum in one unit increa
the kinetic energy of the system bya (a50.2). This in-
crease is partially compensated for by a decrease of the C
lomb energy due to expansion. For both systems, the C
lomb contribution is numerically, for the particular values
the parameters that we have taken, about 2a/3, in such a
way that the total amount of energy gained in each ste
abouta/3. This gives a quite monotonic behavior.

In contrast, unexpected features were obtained for exc
tions of the type~solid line!,

v5E1~M1 l ,Sz11,2P!2E1~M ,Sz ,P!, ~27!

-

e

)

FIG. 3. Dispersion relationv( l ) of two different excited states
(61 l , 3, 0) ~solid line! and (61 l , 2, 1) ~dashed line! for N56 and
D t50.07. The GS is the first canted state. The same values ofa, b,
andDz as in Fig. 1 have been used.

FIG. 4. The same as in Fig. 3 for the excited states:
1 l , 7/2, 0) ~solid line! and (91 l , 5/2, 1) ~dashed line! for N57 and
D t50.085.
5-5
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N. BARBERÁN AND J. SOTO PHYSICAL REVIEW B66, 205325 ~2002!
where spin and parity flips take place simultaneously.
low values ofl, the contribution of the Coulomb energy tov
is given by a more or less constant amount of, numerica
a/2. However, after several steps, four forN56 and six for
N57 the system suffers a sudden expansion that drastic
reduces the Coulomb interaction. In theN57 case, due to
the presence of an unpaired electron, the amount of the C
lomb contribution is so large that the total energy decrea
Looking at the occupancies of the single particle states of
excited systems, the nature of the sudden change beco
clear. For ferromagnetic excited states of the type
1 l , 3, 0) forN56 and (91 l , 7/2, 0) forN57, only spin-up
states can exist. The occupied single particle states areus↑&
and ua↑&. As l increases froml 50, there is a slow transfe
of electrons fromua↑& to us↑&. The sudden change take
place when the following structure is possible:N21 elec-
trons inus↑& with m50, . . . ,N22 and one electron inua↑&
with m50, which meansM510 ~614! for N56 and M
515 ~916! for N57. For this eigenstate almost all th
weight is in a single Slater determinant which means that
system is nearly uncorrelated.

The unexpected result is in clear contrast with the re
obtained for a single QD at the magic values of the angu
momentum, where all the energy is absorbed by the CM
the DQD most of the absorbed energy is transformed
internal energy releasing the electrons from their interact

IV. DISCUSSION AND CONCLUSIONS

We have analyzed several types of low energy excitati
over the three possible GS’s of a DQD confined by parab
potentials in each plane and separated by a distanced. The
LLL regime was considered, and the input parameters w
chosen in such a way that the filling factor of the grou
states and some of the excited states is close ton52.

From the study of several dipole excitations (DM5 l
51) we verify that the Kohn theorem is preserved in a DQ
if the incident homogeneous electric field is directed alo
the plane of the dots. For systems with an odd numbe
electrons, additional excitations independent of the Coulo
interaction, such as the one induced byE' , are possible.
This last possibility is due to the fact that, in this case,
isospin change for a single electron does not change the C
lomb energy of the system, although it is not a conseque
of the Kohn theorem.

The lowest energy excitations are characterized by a
multaneous spin and parity flip keeping the angular mom
tum unchanged@spin-density-waves~SDW’s! for l 50, with
energy defined byv; see Figs. 1 and 2#. They turn out to be
the appropriate excitations which become degenerated
the GS at the transition boundaries in the phase diagram

Due to the extra degree of freedom~as compared with a
single dot or a single layer!, represented by the isospin stat
and due to the interplay between tunneling and Coulo
interaction, the energyv has a Coulomb contribution. This i
in contrast to the case of a single layer for which, in the lim
k→0 the noninteracting contribution given byDz is recov-
ered.
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The softening of thev modes with the variation ofD t

shows phase instabilities previously detected in the dete
nation of the GS phase diagram from exact diagonalizatio1

There are some similarities and some differences betw
our results and those reported by Das Sarmaet al.7 within a
HF calculation for a double layer system. We will follow th
arguments given by these authors to analyze our res
Within the uFM& and uSYM& phases, the structure of th
curvesv/D t is similar, in both cases thev mode softens as i
approaches the phase transition fromuFM& to uC& and from
uSYM& to uC&, respectively. In addition, the increase ofv as
it moves away from the boundary is larger in the symme
phase in both calculations. However, within the canted s
we obtain finite values ofv, albeit much smaller than thos
in the uFM& or uSYM& phases, in contrast to the results o
tained in the DL for whichv50 over the full canted phase
Aside from the previous outcomings, there is another m
difference: the canted state in our calculation is an eigens
of the Sz operator, whereas this is not the case for the
canted phase. At the boundaries separating different pha
however, due to energy degeneracy, the superposition
states of different well defined spin gives rise to states wh
are not eigenstates ofSz . Das Sarmaet al.7 proved that the
existence of a gapless mode is directly due to the can
antiferromagnetic spin ordering. As a consequence, e
though the canted states in a DQD may be interpreted
having antiferromagnetic order in the plain of the dots,1 the
order is not complete, producing gapped excitations proba
due to edge effects. The exceptions are at the bounda
separating different phases where due to degeneracy, the
less mode is recovered.

Finally, unexpected nearly uncorrelated states have b
found~see Figs. 3 and 4!, produced by SDW excitations ove
the canted ground states, that develop a sudden expan
leaving the system in a ferromagnetic state close ton51. In
addition, the structure developed by the sudden expansio
the dispersion relation at a particular value ofl is understood
as a consequence of the existence of an intrinsic length s
in the system, related to the antiferromagnetic spin order
in plane. The structure is well defined in the SDW dispers
relation~solid line in Figs. 3 and 4!, and only slightly appar-
ent in the charge-density-wave curve~dashed line in Figs. 3
and 4! due to the fact that within the LLL, a local variatio
of the spin is coupled to a variation of the density,5 produc-
ing a larger effect when spin and charge density fluctuati
are induced simultaneously by the excitation. No struct
was found in similar dispersion relations of SDW’s over t
ferromagnetic or symmetric phases. In these last cases
dispersion is given by nearly parabolic smooth curv
whereas, over the canted states, in the long-wavelength li
the dispersion relation is found to be linear, consistent w
the fact that it describes antiferromagnetic fluctuations.

Within the HF calculation performed by Das Sarma f
DL systems, the SDW dispersion relation does not have
type of structure. This difference may be related to the d
ferent role that the kinetic contribution to the energy plays
extended and in confined systems.

Finally, in the limit l→` the dispersion relation of the
5-6
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SDW does not approach asymptotically a constant value
is the case for a single layer~SL! or DL systems due to the
fact that at this limit the excitation energy always recov
the single particle value. For SL or DL systems this energ
given byv81Vex , wherev8 is the noninteracting excitation
value~a combination ofDz andD t) andVex is the exchange
single particle energy of an electron in the GS, independ
of the linear momentumk due to the degeneracy existing
extended systems. In contrast, in a DQD the parabolic po
tial breaks the degeneracy producing an increase of en
with increasing angular momentum. This gives a nearly
ear curve asl→` typical of a single particle.

No total spin or space correlations in the ground sta
have been investigated through the density-correlation fu
tions, which may signal additional symmetry breaking
fects. Symmetry breaking effects of this kind have be
found previously in the literature for QD’s, DQD’s~a vertical
arrangement!, and QD molecules~a horizontal arrangement!
within unrestricted Hartree-Fock calculations for low ma
netic fields,13,14 and within Hamiltonian diagonalization fo
high magnetic fields15. Whereas a comparison with the ca
of low magnetic fields is not possible because we h
strong magnetic fields which project the system to the LL
it would be interesting to see if our method, which includ
spin degrees of freedom and does not require any trunca
shows symmetry breaking effects similar to Ref. 15. This
left for future investigations.
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APPENDIX

For simplicity we neglect spin indices since they are
relevant for the following discussion. We characterize
no

.
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first quantized wave function of theN particle system as
Ca1 , . . . ,aN

(x1 , . . . ,xN), whereai51, 2 are layer indexes in

dicating the dot in which thei th electron sits. Hence the firs
quantized Hamiltonian is a matrix in layer-index spaceH
5Hb1a1 ; . . . ;bNaN

.
An in-plane homogeneous electric field clearly produce

contribution proportional to the identity matrix in the laye
space,

HEi
;(

i 51

N

xi EiS )
i 51

N

dbiai D ,

and hence the interaction depends only on the center of m
coordinates, namely the Kohn theorem applies. A homo
neous electric field perpendicular to the planeE' produces a
contribution diagonal in layer space~but not proportional to
the identity matrix! which reads

HE'
;(

i 51

N
d

2
~dai1

2dai2
!E'S )

i 51

N

dbiai D ,

whered is the distance between the two dots.
The hopping term is not diagonal in layer space,

Hhop;D t (
i 51

N S )
j 51

i 21

dbjaj D sbiaiS )
j 5 i 11

N

dbjaj D ,

wheres115s2250 ands125s2151. Then it is easy to check
that

@HE'
,Hhop#;D t

d

2
E'(

i 51

N S )
j 51

i 21

dbjaj D ebiaiS )
j 5 i 11

N

dbjaj D ,

where ebiai
is the antisymmetric tensor. Hence a homog

neous electric field perpendicular to the plane changes
dynamics in the layer space in a nontrivial way. Since
latter is entangled with the relative motion through the Co
lomb term, we conclude that a homogeneous electric fi
perpendicular to the plane may produce transitions betw
different states with the same center of mass quantum n
bers; that is, the Kohn theorem does not apply.
yi,

ys.
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