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Low-energy excitations of double quantum dots in the lowest Landau level regime
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We study the spectrum and magnetic properties of double quantum dots in the lowest Landau level for
different values of the hopping and Zeeman parameters by means of exact diagonalization techniques in
systems oN=6 and 7 electrons and a filling factor close to 2. We compare our results with those obtained in
double quantum layers and single quantum dots. The Kohn theorem is also discussed.
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[. INTRODUCTION metric single particle states. Finalli;,, is the Coulomb
interaction term. Hereafter all distances will be given in units
The understanding of the structure and properties obf the magnetic length, defined as
double quantum dotéDQD’s) grown on the perpendicular
direction to their plane, and subject to an external constant

magnetic fieldB, has attracted special interest due to the lg=
wealth of quantum states that are actually realized. This

wealth does not only refer to the ground sta8s’s), which Lo . 5 . . .
provide a quite intricate phase diagramput also to the and all en$r?]|es In '_“'n'tsd&f /(GIhB)' sTkr)]eang the dielectric o
variety of different excited states. This allows one to have aconst?nt of the senlwlgotr)] uct(;]r E.St' e ee_t;na_n energy, the
large quantity of different sets of properties of the DQD sys-\Unneling term scaled bi,, the kinetic contribution given

tem that can model, for instance, point contacts within &Y ¢ @nd and the Coulomb interaction provide the ingre-
device built for electron transport. dients of the system. The applied magnetic field can be di-

Special interest is given to the regime for which the mag- rected in any direction in space in such a way that its action
netic field is so strong that only the lowest Landau leve|nas different effects on the kinetic contribution in which only

(LLL ) is occupied but not strong enough to prevent any spirf"€ component along thé direction plays a role and in the
polarization. We will always assume that the second Landageeman effect to which the total magnetic field contributes.
level is far enough away that we can ignore any mixture! N€ eigenstates of the Hamiltonian are characterized by the
between Landau levels. In the symmetric gauge, the projedotal angular momenturi, the total spm along th8 direc-

tion of the DQD Hamiltonian to the LLL is given By tion given byS,, and the parity?."* These parameters are
related to the invariance of the Hamiltonian under space ro-

H=aM+BN—A,S,— A X+Hj,, (1) tations along theZ direction, rotations of spin and specular
reflection in the plane interdots, respectivelie will denote
by (M,S,,P) the configuration that determines each sepa-
% rated subspace of eigenstates.
a=§[~/w§+4w§—wc] 2 ~ Previous studies in DQD’s based on exact diagonaliza-
tions, on the one hantf and the large experience extracted
and from mean field(MF) approximations and effective field
theories in double laygiDL) systems, on the other hand’
h have provided a quite complete picture of the GS phase dia-
B= 5\/wg+4w5- (3 gram. It is well established in both D(Ref. 7 and DQD
(Ref. 1) systems that the variation af; , leaving all the other
w.=eB/cm* is the cyclotron frequencyn* being the effec- parameters fixed, induces several changes in the GS. For
tive electron mass in the semiconductor host, @addc are  A,>A, the GS is ferromagnetitFM) with symmetric and
the electron charge and the speed of light in vacuum, respeantisymmetric single particle states equally populated and
tively. The frequency associated with the parabolic confiningwith all the electrons in spin up states. In contrast Agr
potential in both dots is given by,, M is the total angular <A, the GS is symmetri¢SYM) with all the electrons oc-
momentum andN is the total number of electrons. The Zee- cupying symmetric single particle states with up and down
man coupling is given byA,=gugB, with g the Landeg  spins equally populated. In between, for comparable values
factor andug the Bohr magnetoffor the free electron mass, of Zeeman and tunneling energies, intermediate states of the
ug=e€f/2mc). The single particle energy gap between sym-type called canted state$Q)) become GS's. The canted
metric (s) and antisymmetri¢a) states, combinations ¢f)  state is the GS solution between M) and|SYM) in a
and|l) single particle states of electrons confined in the rightMF calculation for a DL system and it is characterized by a
and left dot, respectivelysee below, is given by 2\;, and  ferromagnetic order in the direction perpendicular to the lay-
X=N,—N, is the balance between symmetric and antisym-ers and antiferromagnetic order in pléne

1/2
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h
(w2 + 4a) 2

where
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A remarkable result of the Hartree-Fo@kF) approxima-  even and odd systems. We will follow the three main points
tion for DL quantum Hall systems at a filling facter=2 is  previously mentioned. Finally in Sec. IV we draw our con-
that there are only three possible different GEaM), |C),  clusions.
and|SYM) distributed over a universal phase diagram which
boundaries depend only on three energy scales whereas, the Il. EXACT DIAGONALIZATION

Hamiltonian depends on four independent energy scales. ) o ,
Certain ground states obtained from exact diagonalization EXact diagonalization can be performed in separate boxes

in DQD’s have also been identified as canted states sinc®" different configurations characterized bM(S,,P).
their overlap with the MF canted GS’s for finite systems, Each configuration determines a finite-eigenstate subspace.
projected on the appropriate subspace with well defaed ~ Within the LLL regime, in all expansions we will use non-
is nearly 1! The total number of different canted states be-Intéracting single particle wave functions, which do not have
tween|FM) and|SYM) in a DQD depends on the number of N0des along the radius and are given by
electrons. As a general rule, keeping fixedand increasin - -

) Ping foeed . oF,7,0)= (D oA, ©

A, the GS evolves as
wherem is the single particle angular momenturhz=r,I,
[FM)=(M.S;,P)~(M.$,~1,-P) o=1, |, r=(xy), and ¢(r) are the Fock Darwin wave
—(M,S,—2,P), ... |SYM). (5)  functions given by*

A simultaneous change of spin and parity occurs for the GS

in each phase transition, whereas the total angular momen- bm(r)= —
tum remains unchanged. V2mm!2

No direct information about the in-plane order has beemjong the Z direction we assume delta charge distributions

obtained so far from the exact solutions due to the fact thageparated bwl the distance between the dQWe consider
they have quantum nUmberM(SZ,P) that are well defined. d=1 in all numerical performanc}gs

No information can be directly obtained from order param- \within our calculations we will use symmetris) and
eters that depend on single operators of the §p@r S;,  antisymmetrida) single particle states, related by and|l)
since their expectation values vanish. However, indirect inpy

formation about the order in plane can be obtained from the

properties of the excited states as we will show in the dis- 1

cussion of Figs. 1 and 2 below. Within the great number of |s)= E(“H 1)) (8
possible low energy excitations that provide information

about the properties of the system, we will draw our attentiorand

to those related to three main different points.

First, we search for particlelike excitations independent of 1
the electron-electron interaction and so independent of the &)= E(“)_“»?
number of electrons. We discuss when the Kohn thettem
holds in a parabolic DQD systefas is always the case for a we will use the term isospin referred to this degree of free-
single parabolic QI dom (sometimes referred as pseudospin in literature; see Ref.

Second, we look for the types of excitations that soften a%). None of the parametersand| or sanda are well defined
they come close to a GS transition that takes place with thguantum numbers since the Coulomb interaction measd
variation of some input parameter. These excitations provide and the tunneling process mixesandl. The well estab-

a clear and easy way to map the GS phase diagram. lished restriction is that parity must be preserved; this means
Third, in the last point we concentrate on the dispersiorthat the change in symmetrg-{~a or a—s) due to electron
relation w(l) of two different type of excitations, one with interaction must take place by pairs of electrons, and never

and the other without a simultaneous spin and isospin fligpy one alongsee below.

(see below In a single QD the Coulomb contribution to the ~ We will consider excited states over the three possible
dispersion relation of excitations over a ferromagnetic GSypes of GS'’s, and choose the parameters in such a way that
decreases with angular momentum due to expansion. This fer an even number of electrons in the ferromagnetic GS we
the general behavior, except at “magic” values|éf! for  have a filling factorr=2. We proceed as follows. Once the
which the system increases in angular momentum frbrio  input parameters are fixed, we determine first the finite num-
[* +1 but does not increase in size; hence the Coulomb corber of Slater determinants built up from single particle wave
tribution remains constant. These magic valued afe re- functions of the type given by Eq6) which provide bases
lated to the incompressible states. Our aim is to see if there i®r each subspace configuratioll (S,,P). Then the diago-

a similar behavior in the DQD system. nalization of the Hamiltonian given by E¢l) is straightfor-

This paper is organized as follows: In Sec. Il we make award, except for the Coulomb term. Although the Coulomb
brief account of the exact diagonalization used in our calcuinteraction does not mixr) and |l) single particle states,
lations. In Sec. Ill we present the outstanding features ofome manipulations must be done in order to operate over
some excited states of different multipolarity over different|s) and |a) wave functions. In a second quantization, the
GS'’s, paying special attention to the different behavior ofinteraction Hamiltonian is given by

; 2
e—|m0r ma—r /4. (7)

9
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1 the phase diagram, we explored the eigenenergies and eigen-
Hine=5 > (didi V] duep)a a ajay, (100  states coming out of exact diagonalizations. We consider, in
1kl general, the multipolar excitations characterized dbgl)
whereV is the Coulomb interaction and the subindexes dewith or without a simultaneous change of spin and/or parity,
note angular momentum=0,1,2 . ..,spin=1,], and isos- and in some cases we concentratel er® or 1.
pin =a, s. Taking into account that the single particle wave Before focusing on the first point, that is, within the
functions are related by Eq$8) and (9) and that the right search of excitations which keep the internal Coulomb en-
and left single states aré distributions of typess(z) and  €rgy constant, let us briefly comment on the Kohn theorem
5(z—d), respectively, it is easy to show that for a DQD. The Kohn theorem for a single QD stafehat
in the process of absorptiofor emission of a photon of
N . 1 wavelength much larger than the radius of the dot confined
ba ba=bs b~ E[a(Z)JF 8(z—d)] (12) by a parabolic potential, the initial and final electronic states
can differ from one another only by the center of meSM)
and excitation. The number of confined electrons and the inter-
action between them has no influence on the values of reso-
1 . o ;
B pa~ =[8(2)— 8(z—d)] (12  hance energies. For a DQD, however, qualifications to this
2 statement may be required for different directions of the in-
e(‘é’dent electric field with respect to the plane of the dots. It is
easy to see that for homogeneous in-plane electric fields the
Kohn theorem also holds for DQD’s. However, this is not the
case for homogeneous electric fields alongZttbrection, as

for each electron. As a consequence, there are only thr
possibilities for the expectation values éf (i) the interact-
ing electrons do not change their isospin as in

1 we argue below.
(sl V| ¢s¢s>:§(<vrr>+<Vr|>), (13 Taking into account Eq¢8) and(9) and the expression of
the exciting potentialassociated withe, directed along the
(i) only one electron changes its isospin as in Z direction),
v =0, 14 N
(bsbalV| patbe) (14 T 9
and (iii ) both electrons change their isospin index as in L=
1 it is easy to see thdpHe |#a)~d+0. That is to say, the
<¢s¢a|v|¢a¢s>=§(<v,,>—<vr|>). (15  operator Hg ~changes the parity of the system and so

[HEL,Him]#O since the eigenstates bif,,; have a well de-

In the brackets on the right hand side of these equations, the, o parity. The part of the Hamiltonian which depends on
integral over theZ coordinate has been performed, and they,e rejative coordinates only receives other contributions
potentials are given by aside from the interaction Hamiltonignoming from the ki-
netic and from the tunneling terfiswithin the first quan-
(16) tized expression however, the possibility that the last
e(r’+d?)*? bracket can be compensated for by the brackets of the other
. terms can be disregarded as they depend on different inde-
withr=[r;—r,|, 1 and 2 being the two interacting electrons. pendent parameters. An alternative reasoning is presented in
That is to say the Coulomb interaction either leaves the isoshe Appendix. In the analysis of the exact diagonalization

eZ 2
Vi =V :E' V=V =

pin of the electrons unchanged, if it operates with results which follows, we will verify, among other things, the
applicability of the Kohn theorem.
vV :l V.. +V 1 Let us begin with théN=7 electron system, and consider
0 ( et rl)- ( 7) ; itati i
2 first the excitations of theFM) GS that increase the angular

momentum in one unit and leave all the other parameters of

or changes the isospin of two electrons if it operates with . . . .
g P P the configuration unchanged; that is to say, we consider,

vlzg(v”—v”), 18 (M,S,,P)—(M+1S,,P). (20)

The system jumps from a one-dimensio(BD) space con-
in such a way that parit, given by P=(—1)*? is pre- figuration to a 2D space. The result is the excitation of the
served K=N,—N_).! The change of isospin of a single CM by « leaving the internal Coulomb energy unchanged.

electron is forbidden. This is the well known intra-Landau-level dipole excitation
whose energy decreases when the magnetic field increases
IIl. MULTIPOLAR EXCITATIONS that is, thew _ = « far-infrared resonance.No inter-Landau-

level transition of energy given by
Guided by an interest in the properties of the multipole

mode excitations and also by an interest in those excitations _ E Wi
that soften at the boundaries of the phase transitions within w+_2[ wetdwpt o] @)
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is possible within the LLL considered in our calculation.  TABLE I. Eigenenergies obtained from different configurations.
Other Coulomb-independent interaction excitations are posde considered\;=0.07 and 0.06 foN=7 and 6, respectively; in
sible in theN=7 system. If we also allow changes in parity, both casesr=0.2, 5=1.4, andA,=0.02 and the GS is ferromag-

that is to say if we consider netic. A is the excitation due to an electric field given By E”iA,
andB due toE=E,, beingi the unitary vector along th¥ axis.C
(M,S,,P)=(M+1S,,—P), (22 is due to an electric field expanded up to the quadrupolar approxi-

mation and directed along thé¢axis.

the CM is excited with an energy+ A, (it is a CM excita-

tion since the same result would be obtainedNier1). The N=6
previous caséof energya) would correspond to the excita- gs A B C
tion made by a nearly constant electric fi¢lde are assum-
ing dipole approximationdirected along th& direction €)) ~ (6.3.0 (73,0 (7.3 (830
and the last on¢of energya+ A,) would correspond to an E:=12.6802  E,=12.7868 E,=12.7232 E;=12.8804
electric field with an additional nonvanishing component E,=12.8802 E,=12.8434 E,=12.8915
along theZ direction (let us call itE,,). Incidentally, this E3=12.9438
result can be used to determine experimentally the relative E,=12.9868
orientation of the DQD respect to the incident beam. The E;=13.0802
system absorbs a photon of eneigy A, with a maximum
probability when the angle between the direction of the inci- N=7
dent electric field and the normal to the plane of the DQD isGS A B C
0=ml4.

For both excitations, with and without parity change, the(9:7/2,0 (10,7/2,0 (10,7/2,3 (11,7/2,0

system goes from a 1D spacd i) to a 2D space of ex- E1=15.6802  E,=15.7803 E,=15.8503 E,;=15.8700

cited states. The CM excitation leaves the system in the E,=15.8802 E,=15.9502 E,=15.8906
higher energy state within the excited 2D configuration in E3=15.9523
such a way that E,=15.9803
Es=16.0231
Ex(M+1S,,+P)=E;(M,S,,P)+a+(1F1)A/2 Ee=16.0802
(23)
and From the analysis of the results of thie=7 system, one

would suspect that the CM excitatiofsf energiesa or «
E/(M+1S,,£P)<E,(M+1S,,£P) (24  +A,) are a consequence of the Kohn theorem in the DQD
system, in agreement with our assumption of a parabolic
where the eigenenergi&s have been ordered from lower to confining potential and the dipole-excitation approximation.
higher energy within each subspace. See TalitasesA and  However, if this were the case, tiN=6 system would be-
B). The difference in energies in the excited configurationshave in the same way. The reason for the difference is pro-
come from the decrease of Coulomb interaction due to thgided by the different action of the electric fields that excite
expansion of the eigenstate of lower energy. The highest eRhe system. The in-plane field produces a global shift of the
ergy eigenstate is a compact state and does not change dpstem which does not affect the internal electron-electron
size. The two excitations of cage with and without Cou- interaction, and the CM absorbs the total enesgyin con-
lomb contribution are equivalent to the “sum mode” and thetrast, if the external field has a nonvanishing component
“difference mode” found by Girvin and MacDondldor DL ajong theZ direction, aside from the global absorptions of
(without tunneling or Zeeman terms and for fl”lng factor energya, an extra amount of energy is involved in the tun-
=1/2) within a single-mode approximation. Once one knowsneling process. In the odd electron system, the unpaired elec-
the decrease of energy of Coulomb origin from tron tunnels from one dot to the other. This change, however,
E»(10,7/2,0)-E4(10,7/2,0)=E.=0.0998, one can distin- does not modify the electronic distribution asymmetry which
guish in the (11,7/2,0) configuration the double dip&lg  was already present in the GS, and consequently does not
=E1(9,7/2,0+22=16.0802 @=0.2) from a quadrupole modify the Coulomb interaction. On the other hand, in the
excitation given byE,=E;(9,7/2,0+2a—E.=15.9803. even electron system due to the electronic jump, a change is
Surprisingly, the appearance of this eigenenergy in the outpyroduced between a symmetric distribution to a nonsymmet-
means that an eigenstate which is not a compact state norriz one, necessarily giving a Coulomb contribution to the
fully expanded state is a possible realization. The full expanfinal energy. That is to say, the excitations induced=hyon
sion would imply a larger value dE, asAM=2. an odd number of electrons do not modify the Coulomb en-
However, not all the previous scenario is reproduced irergy. However, this is not a consequence of the Kohn theo-
the N=6 system. If by analogy we consider the excitationsrem, as one may erroneously conclude.
(M,S,,P)—(M+1S,,=P) from the|FM) GS, the energy Within the second main point, the search of excitations
E,(M+1S,,P)=E;(M,S,,P)+ « is obtained according to that mark the phase transitions, we concentrate on the evo-
the behavior of thdN=7 system but no trace of th&® en-  |ution of the system a4, increases, leaving all the other
ergy (A;=0.06) is present iE,(M+1,S,,—P). parameters unchanged. The appropriate excitations turned

205325-4



LOW-ENERGY EXCITATIONS OF DOUBLE QUANTUM. .. PHYSICAL REVIEW B566, 205325 (2002

0‘08 T T T T I T T T T l T T T T I T T T T 080 T T T T l T T T T I T T T T l T T T T

- /-l- -
7

L A i
0.06 0.60 < _
L / i
L P i
3 0.04 3 040 | & =
L // -
- 7z .
0.02 0.20 __ ,/"( __
L g i
L // -
L A 4

0.00 oo 11 by e L
0.00 0.05 0.10 0.15 0.20 0 1 2 3 4 5 6 7 8 9

A2 /
FIG. 1. Lowest energy excitation f&d=6 as a function ofA, FIG. 3. Dispersion relatiom(l) of two different excited states:

for different regions of the phase diagram. The excited configura{6+1, 3, 0) (solid line) and (6+1, 2, 1) (dashed lingfor N=6 and
tions are(from left to right (6, 3,0), (6,2,1), and (6, 1,0) forthe A,;=0.07. The GS is the first canted state. The same valuas 5f
positive-gradient curves and (6, 2, 1), (6,1,0) and (6,0, 1) for theandA, as in Fig. 1 have been used.

negative-gradient curves. The valuas=0.2, A,=0.02, andg

=1.4 have been considered. values of A, were chosen in such a way that for the two

systems the GS is the first canted stéfe2, 1) for N=6 and
,5/2, ) for N=7. The general trend is given by the dashed
line which corresponds to

out to be the lowest energy excitations. Figures 1 and 2 sho
the excitation energy as a function &f for the four different
GS phases existing along tlde energy variation line foN
=6 and 7. In all the cases the angular momentum is pre-
served, and a simultaneous spin and parity flip takes place.
That is to say,

w=E{(M+1,S,,P)—E{(M,S,,P). (26)

The increase of the angular momentum in one unit increases
w=E{(M,S,=1,—-P)—E«(M,S,,P), (25 the kinetic energy of the system hy («=0.2). This in-
. crease is partially compensated for by a decrease of the Cou-
where El(M’SZ’P) IS th‘? GS energy_aa_&t and El(_M'SZ lomb energy due to expansion. For both systems, the Cou-
+1,—P) is the lowest eigenenergy within the excited con-

fi . h A Th . ide the | lomb contribution is numerically, for the particular values of
guration at the sama, . These excitations provide the low- parameters that we have taken, abowt3?2 in such a
est value AM=1=0) of the multipole dispersion relation

N ai bel way that the total amount of energy gained in each step is
w(l) given below. abouta/3. This gives a quite monotonic behavior.

. Figures 3 and 4 ShQW the dispersion rela_Ltion of the_two In contrast, unexpected features were obtained for excita-
different types of multipole mode&(l) mentioned previ- oo of the type(solid line)

ously within the third main point. In both cases, the lowest

energy eigenstate within each subspace is considered. The
w=E1(M+|,SZ+1,*P)*E1(M,SZ,P), (27)

0.08 ———————————————————

080 T T T T l T T T T I T T T T l T T T T
0.06 i , i
0.60 | / ]
- P .
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3 004 i - |
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/

FIG. 2. The same as Fig. 1 fdt=7. The excited configurations
are(from left to right (9, 7/2, 0), (9,5/2, 1), and (9, 3/2, 0) for the FIG. 4. The same as in Fig. 3 for the excited states: (9
positive-gradient curves and (9, 5/2, 1), (9, 3/2,0), and (9, 1/2, 1)+1, 7/2, 0)(solid line) and (9+1, 5/2, 1) (dashed lingfor N=7 and
for the negative-gradient curves. A;=0.085.
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where spin and parity flips take place simultaneously. For The softening of thaw modes with the variation oA,

low values ofl, the contribution of the Coulomb energydéo  shows phase instabilities previously detected in the determi-
is given by a more or less constant amount of, numericallynation of the GS phase diagram from exact diagonalization.
al2. However, after several steps, four fd=6 and six for There are some similarities and some differences between
N=7 the system suffers a sudden expansion that drasticallgur results and those reported by Das Saenal.’” within a
reduces the Coulomb interaction. In the=7 case, due to HF calculation for a double layer system. We will follow the
the presence of an unpaired electron, the amount of the Coarguments given by these authors to analyze our results.
lomb contribution is so large that the total energy decreasedVvithin the |[FM) and |[SYM) phases, the structure of the
Looking at the occupancies of the single particle states of theurvesw/A, is similar, in both cases the mode softens as it
excited systems, the nature of the sudden change becomggproaches the phase transition frifV) to |C) and from
clear. For ferromagnetic excited states of the type (6SYM) to|C), respectively. In addition, the increaseofs
+1,3,0) forN=6 and (9+1, 7/2,0) forN=7, only spin-up it moves away from the boundary is larger in the symmetric
states can exist. The occupied single particle statessaje  phase in both calculations. However, within the canted state
and|af). As| increases froni=0, there is a slow transfer \ye gbtain finite values o, albeit much smaller than those
of electrons fromlaf) to [sT). The sudden change takes i, he |[FM) or [SYM) phases, in contrast to the results ob-
place when the following structure is possible:-1 elec-  aineq in the DL for whichw=0 over the full canted phase.
trgns in[st) W't.h m=0, ... N—2 and one electron ifa) Aside from the previous outcomings, there is another main
with m=0, which meansM =10 (6+4) for N=6 andM  yigrerance: the canted state in our calculation is an eigenstate
=15 (3+6) for N=7. For this eigenstate almost all the of the S, operator, whereas this is not the case for the HF

weight ISina single Slater determinant which means that th%anted phase. At the boundaries separating different phases,
system is nearly uncorrelated.

The unexpected result is in clear contrast with the resulpowever, due to energy degeneracy, the superposition of

obtained for a single QD at the magic values of the angula?tates of Qiﬁerent well defined spin gives7 rise to states which
momentum, where all the energy is absorbed by the CM. I/27€ Not eigenstates &,. Das Sarmet al.” proved that the
the DQD most of the absorbed energy is transformed int&Xistence of a gapless mode is directly due to the canted

internal energy releasing the electrons from their interaction@ntiferromagnetic spin ord_ering. As a consequence, even
though the canted states in a DQD may be interpreted as

having antiferromagnetic order in the plain of the dothe
IV. DISCUSSION AND CONCLUSIONS order is not complete, producing gapped excitations probably
due to edge effects. The exceptions are at the boundaries
We have analyzed several types of low energy excitationseparating different phases where due to degeneracy, the gap-
over the three possible GS’s of a DQD confined by parabolidess mode is recovered.
potentials in each plane and separated by a distdn@ée Finally, unexpected nearly uncorrelated states have been
LLL regime was considered, and the input parameters weréound (see Figs. 3 and)4produced by SDW excitations over
chosen in such a way that the filling factor of the groundthe canted ground states, that develop a sudden expansion,
states and some of the excited states is close@. leaving the system in a ferromagnetic state close#d.. In
From the study of several dipole excitationAN =| addition, the structure developed by the sudden expansion on
=1) we verify that the Kohn theorem is preserved in a DQDthe dispersion relation at a particular valud &f understood
if the incident homogeneous electric field is directed alongas a consequence of the existence of an intrinsic length scale
the plane of the dots. For systems with an odd number oiih the system, related to the antiferromagnetic spin ordering
electrons, additional excitations independent of the Coulomiin plane. The structure is well defined in the SDW dispersion
interaction, such as the one induced By, are possible. relation(solid line in Figs. 3 and ¥} and only slightly appar-
This last possibility is due to the fact that, in this case, theent in the charge-density-wave cur(@ashed line in Figs. 3
isospin change for a single electron does not change the Coand 4 due to the fact that within the LLL, a local variation
lomb energy of the system, although it is not a consequencef the spin is coupled to a variation of the densityroduc-
of the Kohn theorem. ing a larger effect when spin and charge density fluctuations
The lowest energy excitations are characterized by a siare induced simultaneously by the excitation. No structure
multaneous spin and parity flip keeping the angular momenwas found in similar dispersion relations of SDW'’s over the
tum unchangedspin-density-wave$SDW's) for | =0, with  ferromagnetic or symmetric phases. In these last cases the
energy defined by; see Figs. 1 and]2They turn out to be dispersion is given by nearly parabolic smooth curves
the appropriate excitations which become degenerated witvhereas, over the canted states, in the long-wavelength limit,
the GS at the transition boundaries in the phase diagram. the dispersion relation is found to be linear, consistent with
Due to the extra degree of freeddias compared with a the fact that it describes antiferromagnetic fluctuations.
single dot or a single laygrrepresented by the isospin states ~ Within the HF calculation performed by Das Sarma for
and due to the interplay between tunneling and CoulomiDL systems, the SDW dispersion relation does not have this
interaction, the energy has a Coulomb contribution. This is type of structure. This difference may be related to the dif-
in contrast to the case of a single layer for which, in the limitferent role that the kinetic contribution to the energy plays in
k—0 the noninteracting contribution given ki, is recov- extended and in confined systems.
ered. Finally, in the limit | —oo the dispersion relation of the
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SDW does not approach asymptotically a constant value asfirst quantized wave function of thll particle system as
is the case for a single layé6L) or DL systems due to the W, o (X, ... Xy), wherea;=1,2 are layer indexes in-

fact that at this limit the excitation energy always recoversgicating the dot in which théth electron sits. Hence the first

the single particle value. For SL or DL systems this energy igyyantized Hamiltonian is a matrix in layer-index spdde
given byw’ +\./ex,.wherew’ is the noninter.acting excitation — Hpa ;.. byay:
vglue(a cqmbma’uon oA, andA,) and_Vex is the gxchange An in-plane homogeneous electric field clearly produces a
single partlcle energy of an electron in the GS, 'nqepenqenéontribution proportional to the identity matrix in the layer
of the linear momenturk due to the degeneracy existing in space
extended systems. In contrast, in a DQD the parabolic poten- '
tial breaks the degeneracy producing an increase of energy N N
with increasing angular momentum. This gives a nearly lin- HEHNZ Xi E( H 5biai)’
ear curve as— oo typical of a single particle. =1 =1

No total spin or space correlations in the ground stategnd hence the interaction depends only on the center of mass
have been investigated through the density-correlation funccoordinates, namely the Kohn theorem applies. A homoge-
tions, which may signal additional symmetry breaking ef-neous electric field perpendicular to the pl@heproduces a
fects. Symmetry breaking effects of this kind have beercontribution diagonal in layer spagbut not proportional to
found previously in the literature for QD’s, DQD(a vertical  the identity matrix which reads
arrangement and QD moleculega horizontal arrangement

within unrestricted Hartree-Fock calculations for low mag- N

netic fields>** and within Hamiltonian diagonalization for He ~2 E(aail_aaiZ)EJ_( I1 5biai)a

high magnetic fieldS. Whereas a comparison with the case =t =t

of low magnetic fields is not possible because we havevhered is the distance between the two dots.
strong magnetic fields which project the system to the LLL, The hopping term is not diagonal in layer space,

N

it would be interesting to see if our method, which includes N i1 N
spin degrees of freedom and does not require any truncation, _
shows symmetry breaking effects similar to Ref. 15. This is Hhop AHZl ,1:[ Objay | Soia j:iHH Objay |

left for future investigations. L
wheres;;=s,,=0 ands;,=s,;=1. Then it is easy to check
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APPENDIX lomb term, we conclude that a homogeneous electric field

perpendicular to the plane may produce transitions between
For simplicity we neglect spin indices since they are ir-different states with the same center of mass quantum num-
relevant for the following discussion. We characterize thebers; that is, the Kohn theorem does not apply.
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