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Design of electron band pass filters for electrically biased finite superlattices
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We design optimal band pass filters for electrons in semiconductor heterostructures, under a uniform applied
electric field. The inner cells are chosen to provide a desired transmission window. The outer cells are then
designed to transform purely incoming or outgoing waves into Bloch states of the inner cells. The transfer
matrix is interpreted as a conformal mapping in the complex plane, which allows us to write constraints on the
outer cell parameters, from which physically useful values can be obtained.
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I. INTRODUCTION

In previous work we have studied how to modify a fini
periodic superlattice with a few additional cells so as to o
tain optimal electron transmission for most of the energies
a specific allowed miniband.1–3 The resulting device is a
band pass filter and the additional cells are called antirefl
tion coatings~ARC’s!, in analogy to optics. Improving on th
work of Pacheret al.,4,5 we showed in Ref. 1 that very
simple devices consisting of a small number of identical
ements (N>5) sandwiched between two optimally design
ARC cells could achieve transmissivities as high as 80%
the present work we extend the methods of Ref. 1 to des
band pass filters operating under the bias of a constant e
tric field. As is well known, such a field tends to strong
suppress coherent electron transmission across a superl
at most miniband energies. Recently, however, elect
transport via the Wannier-Stark resonances of four- and fi
period finite superlattices has been experimentally obse
and characterized by the Vienna group.6 These experiments
~and those in Refs. 4 and 5! hint that with similar devices it
should be possible to detect the coherent transmission ac
band pass filters like those considered here.

The study of ARC’s was proposed4 as a novel means o
arriving at better designs for the injectors of quantum c
cade lasers.7 In addition it should provide complementar
information on the transition from coherent to incohere
transport in finite superlattices8: whereas for a finite super
lattice without ARC the transmission is dominated by re
nant transport, we will show that with ARC cells transpo
proceeds by a combination of Bloch states and resonan
Since the Bloch states transmit directly across the lattice,
expected that decoherence will be less likely, due to redu
transit time, in such devices.

Other theoretical work on the design of band pass filt
for electrons in the absence of electric bias exists. Gay
and collaborators9–11 studied the problem, adapting metho
from optics and microwaves. Chang and Kuo12 took a similar
conceptual approach using the language of impedance tr
formers. Tung and Lee,13,14 as well as Gomezet al.,15 con-
sidered filters based on a Gaussian distribution of bar
strengths. Simanjuntak and Pereyra16 have explored resonan
0163-1829/2004/69~11!/115309~10!/$22.50 69 1153
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transmission in finite periodic systems. But to our know
edge, work on filters under electric bias is scarce. The fi
designs were proposed by Glytsiset al.10 These were based
on semiclassical ideas which apply to above-barrier tra
mission, whereas the experiments and designs in Re
sought to improve transmission in the first and second m
bands, both well below the barrier energy.

In Sec. II we describe the transfer matrix properties
quired for a fully quantal approach to filter design. Secti
III describes our method of determining the device para
eters, while in Sec. IV we give results for examples close
the experimental conditions for AlGaAs-GaAs devices.

II. TRANSFER MATRICES

We work in the envelope function approximation; th
stationary-state wave function for the electron is obtained
a solution of the one-dimensional Schro¨dinger equation with
an effective mass.17 We denote the potential inside the devi
asV(x),xL,x,xR , and assume it to be constant outside.
allow for the action of a nonvanishing electric field insid
these constant values are taken to be different:VL , VR . We
write the outside electron wave functions at energyE as

FL~x!5
aL

AnL

eikL(x2xL)1
bL

AnL

e2 ikL(x2xL), x<xL ,

FR~x!5
aR

AnR

eikR(x2xR)1
bR

AnR

e2 ikR(x2xR), x>xR ,

~1!

where

kL,R[A2mL,R* ~E2VL,R!/\2,

andnL,R5\kL,R /mL,R* is the velocity. The transfer matrix is
defined to relate the coefficients

S aL

bL
D 5M S aR

bR
D . ~2!
©2004 The American Physical Society09-1
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Hermiticity of the Hamiltonian and flux conservation lead
detM51 andM225M11* , M215M12* . Thus, at any energy
E, only three real quantities are required to specifyM. Also,
these relations lead to the representation forM in terms of
transmission and reflection amplitudes

M5S 1/tL r L* /tL*

r L /tL 1/tL*
D . ~3!

For an incoming wave from the leftbR50 and thentL
5aR /aL and r L5bL /aL . Finally, the transmission and re
flection probabilities are

T5utLu2 and R5ur Lu2. ~4!

Our devices are made ofN consecutive pieces, hereaft
called cells. The total transfer matrix is the product of t
transfer matrices of those cells, which we number from
to right:

M5M1M2•••MN . ~5!

Guided by experiments on electron transport in GaA
AlGaAs superlattices, we consider here devices made f
uniform layers of two materials~called well and barrier ma
terial!. The cells are chosen so as to have reflection sym
try by placing two half-well layers of the same thicknes
w/2, on either side of the barrier of thicknessb and heightVb
relative to the well. That makes the potential symmetric
the absence of external field. We call them square bar
cells, though this applies only in zero applied field. T
method employed can be applied to any shape potential
and is not limited to bilayer devices. Reflection symmetry
not essential, but reduces the number of independent pa
eters describing the transfer matrix and simplifies the des
it was used in our previous work.1–3 In the presence of an
external constant field the potential is still piecewise line
but reflection symmetry is destroyed. The explicit constr
tion of the transfer matrix, under the bias of a constant e
tric field, is explained in detail in the Appendix. Thes
single-cell transfer matrices have the same properties g
above for a general matrixM, so the following discussion
applies equally to the total transfer matrix of the device or
any component.

It is convenient to take the trace ofM as one of the three
real quantities which specify it. According to the above re
tions,

Re~M11!5 1
2 Tr M[cosf. ~6!

Values of the energy for whichuRe(M11)u<1 ~real anglesf)
define the allowed bands of an infinite periodic system. F
bidden zones correspond to the remaining values ofE. The
other two parameters will be related to the fixed points o
conformal mapping, as described in the next subsection.

Conformal mapping in the complex plane

To choose the remaining two real quantities, we note18,19

thatM allows one to define a mapping in the complex pla
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w(z), as follows: the amplitudes left and right of the cell a
related by Eq.~2! and therefore, definingz[bR /aR and w
[bL /aL , one has

w~z!5
M211M22z

M111M12z
. ~7!

This mapping is known as the bilinear or Mo¨bius mapping
and is a conformal mapping of the entire plane onto its
and which maps circles into circles.

Properties of this mapping are part of any course in co
plex variables and have recently been discussed, in
present context, in Refs. 18–20. Here we summarize th
whose physical interpretation is relevant for the pres
work.

~i! The flux of a state written as in Eq.~1!, with compo-
nents (a,b), is j 5uau22ubu2 and is conserved by the actio
of M. Therefore, waves with net flux to the right,j .0, cor-
respond to pointsuzu,1 which are mapped onto pointsuwu
,1. Reciprocally wave functions with net flux to the lef
j ,0, correspond touzu.1 and are mapped ontouwu.1. The
unit circle also maps into itself. According to Eq.~3!, the
image ofz50 is w(0)5M21/M115r L , the reflection ampli-
tude. The condition for perfect transmission isw(0)50: the
origin mapped onto the origin. In terms of the transfer m
trix,

M S aR

0 D 5S aL

0 D , ~8!

with uaRu5uaLu.
~ii ! For an infinite periodic system made of identical cel

a Bloch wave is a state such that

M S a6

b6
D 5e6 ifS a6

b6
D , ~9!

wheref is the Bloch phase: cosf5Re(M11). It then follows
that the ratiosb6 /a6 are precisely the fixed points of th
mapping. Whenf is real ~allowed band!, these two states
propagate freely in the periodic system. The fixed points s
isfy w(zf)5zf which leads to

M12zf
212i Im M11zf2M2150, ~10!

with solutions

zf5
1

M12
$2 i Im~M11!6A@Re~M11!#

221%, ~11!

where we have used detM5uM11u22uM12u251. In a forbid-
den band the square root is a real number and it is immed
that uzf u51, so that the two fixed points are on the un
circle. In an allowed band the square root is imaginary a

zf5@2Im~M11!6sinf#
eix

uM12u
. ~12!

~The phase ofM12 is written asp/22x.! Of the two Bloch
states one describes propagation with net flux to the left
9-2
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DESIGN OF ELECTRON BAND PASS FILTERS FOR . . . PHYSICAL REVIEW B69, 115309 ~2004!
the other to the right. Therefore, one of the two fixed poi
lies inside the unit circle,zf ,in , and the other outside,zf ,out ;
both have the same phasex.

Equation~11! also shows that when the energy is vari
towards a band boundary, the fixed points approach the
circle. WhenuRe(M11)u51 the two fixed points reach th
unit circle at the same pointeix. For energies in a forbidden
band the fixed points travel in opposite directions around
unit circle and they join again at the boundary of the n
allowed band. We will later show examples of this behav
which is also discussed in Ref. 20.

The above analysis suggests that we choose the rema
two real quantities definingM as uzf ,inu andx. Thus, for an
energy in the allowed band,M is completely determined
once the fixed point and the Bloch phasef are specified. In
particular, for a symmetric potential cell,M12 is pure imagi-
nary and then Eq.~12! shows that in an allowed band th
fixed points lie on the real axis, withx50. Then only two
real parameters are needed.

Although the above properties hold at a fixed energy,
have found1–3 that over most of an allowed band, the po
tion of the fixed point changes very little, whilef changes
by p. In this case, as the energy changes, the mapp
moves the system point on an arc of a circle enclosing
fixed point. When device properties are optimized near
middle of an allowed band, the performance persists ov
range of energies on either side of the Bragg energy.

~iii ! In terms of the mapping, the ARC design proposed
us in Ref. 1 can be obtained as follows. Consider a dev
made ofN identical and symmetric cells, with transfer m
tricesU, clad left and right by single ARC cells with transfe
matricesA8 and A, so that the total transfer matrix isM
5A8UNA. This corresponds to a band pass filter operatin
zero electric field. The parameters of theN inner cells are
dictated by the desired energy window for the filter. T
potential in each cell is chosen so that the desired trans
sion window corresponds to the lowest allowed band ofU.
To determine the profiles of the ARC cells, we note that
corresponding mapping is of the form

w~z!5wA8„wU~•••wU„wA~z!…••• !…, ~13!

where wU acts N times. To achieve perfect transmissio
w(0)50, one must design the ARC cells so that they fi
transform purely outgoing waves into Bloch states ofU, the
first step of the above mapping, and these into purely ingo
waves, the last step of the mapping.

Therefore we constructA so thatwA(0)5zf ,in

A21

A11
5zf ,in . ~14!

The last stepwA8(zf)50 requires that

A218 1A228 zf ,in50. ~15!

The simplest solution uses a symmetric cell forA. Using the
properties of symmetric potentials~real fixed points and
A21* 52A21), one can show that Eq.~15! follows from Eq.
~14!, so that thesameARC cell serves both purposes:A8
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5A. By writing out the matrix elements ofA andU explicitly
one sees easily that Eq.~14! is the same as Eq.~A3! in Ref.
1. We showed there that imposing condition~14! at an en-
ergy near the middle of the allowed band ofU allows one to
determine the parameters of ARC cells, and with these
obtains a transmission coefficient close to unity over mos
the lowest allowed band.

III. ARC DESIGN FOR NONZERO ELECTRIC BIAS

We now apply the mapping technique to the design
band pass filters operating under a constant electric fieldF.
The devices will be made by assembling individual squ
barrier cells as above. Following the previous example
divide the design into two stages:~i! find the individual pa-
rameters of each of the innerN cells so as to have a desire
optimal transmission window and~ii ! construct the single
cell ARC cladding.

A. Band alignment of the inner cells

Due to the bias, the central part of the potential now ha
nonsymmetric shape, and for a given incident energy, e
cell has a different transfer matrixM ( i ), i 51, . . . ,N. The
total transfer matrix for this central part will be denotedMc
and the corresponding mapping bywc(z). In order to have a
sharp cutoff of transmission at the edges of the pass b
one wants the transfer matrices of the cells forming this in
part to have~nearly! the same allowed band boundarie
Eb ,Et . However, the action of an applied field with potenti
eFx shifts the energies of the band boundaries of a cell
approximatelyeFdc , wheredc is the distance from the cen
ter of the cell to the origin. Therefore, an inner part of ide
tical cells will not work. To compensate for the shift one h
to choose different parametersw, b, andVb , for each square
barrier cell, and require that they produce the desired b
boundaries, Re@M11

( i )(Eb,t)#561, i 51, . . . ,N, whenthe ex-
ternal field is applied. However, since we wish to optimi
transmission in the middle of the energy range, and not at
boundaries, we prefer to impose one alignment at the Br
point energyEB instead. The Bragg point is defined by th
condition cosf(EB)50 and lies near the middle of an a
lowed band. In conclusion, the conditions used to determ
the inner cell parameters are

Re@M11
( i )~EB!#50,

Re@M11
( i )~Et!#521, ~16!

and, for eachF, allow one to computew( i ),b( i ), andVb
( i ) .

B. ARC cladding

Once theM ( i ) have been determined, their product giv
Mc and the corresponding fixed point ofwc(z), zf ,in . To
have perfect transmission at the chosen energy, Eqs.~14! and
~15! still apply, but because the system is no longer symm
ric, we cannot conclude that the upstream and downstre
ARC cells are the same, and indeed they are not. We
show in the applications in the following sections how Eq
9-3
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~14! and~15! allow one to compute the parameters of the t
ARC cells under a given bias,F.

IV. RESULTS

To show how this method can be applied, we will discu
devices withN53 inner cells and single-cell ARC cladding
~See the inset to Fig. 7 for an illustration.! For a narrow
barrier, the three-layer square barrier cell~for instance,
GaAs-AlGaAs-GaAs used in experiments! can be well ap-
proximated by shrinking the barrier to zero width, becomi
a d function at the center,V(x)5Cd(x2xb). This simple
potential profile has the advantage of fewer~two! param-
eters:d strength,V[m* C/\2, and cell widthd, which sim-
plifies the solution of the above equations. We shall fi
discuss this didactic case and afterwards present result
more realistic square barrier cell devices. For simplic
most of the numerical calculations have taken a constan
fective mass across all cells of the device.

A. Design and results ford cell filters

A number of exact results and accurate approximati
are available ford cells.

~i! WhenF50, the upper band boundary is exactly at

Et5
\2

2m* S p

d D 2

, ~17!

whereas, in the limit ofVd@1 ~Ref. 20!,

EB.
\2

2m* S p

d D 2S 11
1

VdD 22

. ~18!

~ii ! For a cell with center atxb , it can be proved that, to
lowest order ineF,

Et~F !5Et~0!1eFxb ,

EB~F !5EB~0!1eFxb . ~19!

We have chosen the zero of potential energy due to the e
tric field at the middle point of the middle cell. To align th
bands sufficiently, we proceed as follows: First we choo
the middle cell parameters, subindexm, so as to have the
desired allowed band boundaries atF50. This can be easily
done by using Eq.~17! of Ref. 1. The parameters of the le
cell are next determined so that

\2

2m* S p

dl
D 2

2eF
dm1dl

2
5

\2

2m* S p

dm
D 2

, ~20!

which determinesdl , while V l follows from

\2

2m* S p

dl
D 2S 11

1

V ldl
D 22

2eF
dm1dl

2

5
\2

2m* S p

dm
D 2S 11

1

Vmdm
D 22

. ~21!

The corresponding expressions allow one to determinedr
and V r . The first example that we will analyze is the on
11530
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already studied in Ref. 1 forF50. The middle cell param-
eters aredm55.55 nm andVm51.88 nm21, while m* /me
50.071. We then determine the left and right inner cell p
rameters as described above. The results are shown in T
I for several choices ofF. The resulting cosf for the three
aligned cells are plotted in Fig. 1 as a function ofk
[A2m* E/\2, and as can be seen, the band boundaries
well aligned. Also shown is the real part of the totalMc,11
matrix element (Mc[MlMmMr). Note that if the three inner
cells were identical, as whenF50, then21 Re(Mc,11)
5cos(3f), f being the Bloch angle of a single cell, and th
corresponding curve would be very similar to the solid li
in Fig. 1, but would be tangent to the dotted horizontal lin
at 61. With nonvanishing electric field we find that the ta
gent points neark.0.50 nm21 and 0.54 nm21 develop into
narrow forbidden zones. To facilitate discussion we den
the boundaries of the three allowed zones of Re(Mc,11) as

FIG. 1. Bloch phases for thed cell filter of Table I witheF5
25 meV/nm. cosf for left ~long dashed line!, middle~dotted!, and
right ~short dashed! cells. The solid line is Re(Mc,11).

TABLE I. d cell filters with middle cellVm51.88 nm21, dm

55.55 nm.d cell parameters for various electric fields,F.

eF ~meV/nm! Cell V (nm21) d ~nm!

21.0 a8 0.5839 4.8955
l 1.7753 5.6424
r 1.9810 5.4634
a 0.6294 4.5343

23.0 a8 0.5262 5.3405
l 1.5695 5.8476
r 2.1873 5.3051
a 0.6623 4.2232

25.0 a8 0.4515 5.9136
l 1.3632 6.0876
r 2.3943 5.1633
a 0.6806 3.9384

27.0 a8 0.3493 6.6364
l 1.1552 6.3754
r 2.6022 5.0351
a 0.6816 3.6572
9-4
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DESIGN OF ELECTRON BAND PASS FILTERS FOR . . . PHYSICAL REVIEW B69, 115309 ~2004!
(b8,t8), (b9,t9), and (b-,t-).
In the case ofN identical inner cells, it is known21 that for

the energies leading to cosNf561, resonant transmissio
occurs with T51. We show in Fig. 2 that similar peak
occur whenFÞ0, but that the development of forbidde
zones reduces the peak transmission. Our calculations
cate that the wave functions at the energies of these reso
peaks are related to the symmetric and antisymmetric qu
bound states supported by a three-barrier structure.

To construct the ARC cells, we use Eqs.~14! and ~15!,
choosing an energy near the middle of the allowed band—
convenience, at the Bragg energy. Each of Eqs.~14! and~15!
gives two real equations to determine two real parameter
practice, to findVa andda for the rightmost cell, we mini-
mize uA21/A112zf ,inu using a simplex subroutine from Nu
merical Recipes. By this means, we have always found
lutions that exactly fulfill Eq.~14!. Similarly we find theVa8
and da8 for the leftmost ARC cell. The resulting values a
included in Table I.

Figure 2 shows the transmission for filters with and wi
out ARC’s. Without ARC’s one sees two narrow peaks
cated near the energies of the forbidden zones of Fig. 1. A
adding the ARC, a third flat peak appears atk5kB . This
central peak is always rather wide, but the two reson
peaks remain, although shifted towards the band bounda
The net result is a rather satisfactory filter for most values
F, with abrupt jumps fromT50 to 1 and a rather flat top
covering most of the chosen allowed band. At the high
electric field shown, there is a sharp drop in the transmiss
curve, with ARC, atkmin.0.51 nm21. This value corre-
sponds closely to the condition that the incoming elect
energy,E5\2k2/(2m* ), must exceed the potential energy
the left of the device:

VL5ueFuS da81dl1
1

2
dmD5

\2kmin
2

2m*
. ~22!

For positive values ofeF a similar condition holds; the
electron must have enough energy to overcome the pote
step at the right,VR .

FIG. 2. T for the d cell filters of Table I, with~solid line! and
without ARC ~dotted line.! eF521,23,25, and29 meV/nm.
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VR5ueFuS da1dr1
1

2
dmD<

\2k̃min
2

2m*
. ~23!

These conditions will also be relevant for the example d
cussed in the next subsection.

We defined the average transmissivity in Eq.~13! of
Ref. 1:

t5
1

Et2Eb
E

Eb

Et
T~E!dE. ~24!

In Fig. 3 points marked by1 show values oft for the filters
of Table I at the electric field for which they have bee
optimized. Up toeF.27 meV/nm, the transmissivity o
these filters exceeds 70%. For comparison we also show
transmissivity computed at different electric fields, for t
filter that was optimal at zero electric field. As can be se
the decrease int is much faster for the filter with fixed
parameters.

Returning to the results in Fig. 2, depending on the in
dent energyE, transmission proceeds through two kinds
states:~i! Bloch-like states in the middle part of the tran
mission window and~ii ! resonant states like those alrea
present without the ARC’s, at either end of the energy ba
To focus on the ARC behavior, in Fig. 4 we show the traje
tory of the fixed point,zf ,in(E), when the energy varies from
the bottomb8 to the topt- of the allowed bands of the singl
cells. Corresponding to the three allowed bands of the co
posite cell,Mc , shown in Fig. 1, the fixed point describe
three arcs inside the unit circle. Starting atE5Eb8 , the fixed
point is on the unit circle~point b8 in the figure!. As the
energy increases the fixed point moves clockwise along
dotted line path up toE5Et8 ~point t8). There it rejoins the
unit circle which it follows until the energy reaches the bo
tom of the next allowed band ofMc , point b9 in the figure.
Next from Eb9 to Et9 it follows the continuous line path to
point t9. It travels again on the unit circle asE increases
towardsEb- and finally describes a second dotted path fro
b- to t- whenE increases to the upper allowed band edge
Et- . On these paths, the stars correspond to increase
momentum,k, of 5% of the differencekt-2kb8 . As can be

FIG. 3. Symbols1: transmissivities for thed cell filters of
Table I, at the electric fields for which they are optimal. The dot
line is a parabolic fit that shows the trend at moderateF ’s. The
dashed line is the transmissivity for the filter optimized at ze
electric field.
9-5
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seen, there is a sizable range of energies for which the fi
point describing the continuous path stays in the neighb
hood ofB, the Bragg energy. It is for this range of energi
that the ARC design is efficient, because at the Bragg en
the fixed point is mapped by construction to the origin. A
nearby points follow, because the mapping is conformal.
energies corresponding to the two dotted paths, transmis
is also close to 1 due to a combination of the resonant tra
mission already present without the ARC cladding and
closeness of the leftmost parts of the paths toB. ~Note that in
the figure only a small part of the unit circle is shown.!

B. Design and results for square barrier cells

As a first example, we chose the parameters of our mid
square barrier cell as those of the experiment of Pac
et al.5 The square barrier is of widthbm52.54 nm and height
Vm5290 meV. It is surrounded by half-wells of equal widt
wm/2, with wm56.50 nm. The shape of the optimal filter
shown in the inset to Fig. 7. For simplicity in the numeric

FIG. 4. Fixed-point trajectory when the energy is varied acr
the allowed band of the central cells.eF523 meV/nm. Dotted
lines: first and third allowed bands ofMc . Solid line: second al-
lowed band ofMc . The dashed line is the unit circle. The locatio
of the fixed point at the Bragg energy is at the box labeledB.

FIG. 5. Variation of the well widthw with applied electric field
for square barrier cells, with optimal parameters of the ARC fil
From bottom to top on the right-hand side:wa8 (1), wl (x), wm

~stars!, wr ~open boxes!, wa ~solid boxes!.
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work we used in this example a common effective mass
barrier and well materialsm* /me50.071 throughout.~This
will be relaxed in the second example at the end of t
section.! These choices place the lowest allowed band atkb
50.3041 nm21,k,kt50.3693 nm21, lower than in the
previous example; see Fig. 1. This reduces the range of e
tric fields for which optimal filters can be found, due to th
restriction already stated in Eqs.~22! and ~23!. To align the
bands of the left cell, we impose Eqs.~16!. To simplify the
experimental implementation of the filters, we have a
fixed the barrier height in every cell at 290 meV. This leav
two equations to determine the widthswl and bl . To solve
for them, we use a simplex method to minimize

F 2[$Re@Ml ,11~EB!#%21$Re@Ml ,11~Et!#11%2, ~25!

with the matrix elements computed as described in the
pendix. Although the equations are nonlinear, this meth
has always produced a single physically useful set ofwl , bl .
We solve similar equations for the cell on the right. T
resulting values are shown in Figs. 5 and 6; they va
smoothly witheF in the range of electric fields explored.

The second step is the cladding with ARC cells. Let
consider first the rightmost ARC cell, subindexa. We again
takeVa50.29 eV. The other two cell parameterswa andba
are determined by the condition that at the Bragg energy
ARC maps the origin to the fixed point of the three cent
cells, Eq. ~14!. We solve this equation by minimizing
uA21/A112zf ,inu. Similarly we determine the parameters f
the leftmost ARC cell by imposing Eq.~15!. The parameters
thus computed are included in Figs. 5 and 6. The resul
average transmissivities are shown in Fig. 7. The transm
sivity remains close to the optimal value at zero field f
most of the range explored. It drops sharply near the crit
limit for a positive eF. This is seen in Fig. 8, where th
transmission coefficients are for electric fields increas
from 0 to 2.1 meV/nm in steps of 0.3 meV/nm.

Finally, for completeness, we have modified the exam
considered above by allowing different effective masses
barrier,mb* /me50.092, and well,mw* /me50.067, materials.
Figure 9 shows transmission as a function of incident ene

s

.

FIG. 6. Variation of the barrier widthb with applied electric
field for square barrier cells, with optimal parameters of the AR
filter. From bottom to top in the right-hand side:ba ~solid boxes!,
ba8 (1), br ~open boxes!, bm ~stars!, bl (x).
9-6
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DESIGN OF ELECTRON BAND PASS FILTERS FOR . . . PHYSICAL REVIEW B69, 115309 ~2004!
for the optimal filters corresponding toF50 and F
51.2 mV/nm. The quality of the filters is similar to those
the previous example, with transmissivities of 0.80 and 0
for the two cases shown.

V. SUMMARY AND CONCLUSIONS

For a chosen electric fieldF, we have shown how to con
struct optimal band pass filters as finite superlattices. T
are made of~i! an inner part, made of three cells with aligne
bands, which define an energy window, and~ii ! an ARC
cladding consisting of a single cell on each side of the in
part. The design therefore is made in two stages: In the fi
the valueswc and bc for the central cell forming the inne
part are chosen so as to define the desired energy window
the filter. This is done either using expressions already gi
in Ref. 1 or choosing the values from an experiment.5 Next
the parameters of the left and right cells in that inner p
wl ,r ,bl ,r , are determined imposing band alignment, via E
~25!, and using the expressions for the transfer matrix giv
in the Appendix. With this parameter set we can then c
struct the total transfer matrix for the inner part for any e
ergy and determine its fixed pointzf ,in(E). In the second

FIG. 7. Symbols1: transmissivities for the square barrier filte
at the electric fields for which they are optimal. The solid line
drawn to guide the eye. Inset: shape of the optimal filter un
applied bias of 1.5 mV/nm.

FIG. 8. TransmissionT(k) for the square barrier cell filters op
timized for electric fields:eF50,0.3,0.6, . . . ,2.1 meV/nm.
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stage, the parameterswa,a8 ,ba,a8 for the two ARC cells are
determined imposing Eqs.~14! and ~15!. This is done at the
Bragg energy, so as to guarantee unit transmission at
chosen value, located near the center of an allowed b
Following this method, we have shown that realistic valu
can be determined for the parameters of each of these
and that the resulting filters have good transmissivities, p
vided the electric field of operation is within the range im
posed by Eqs.~22! and ~23!.

We have found that for energies in the middle part of t
transmission window the filter action is based on propaga
of Bloch states, whereas for energies near the band bo
aries part of the transmission is still resonant. We expect
the traversal times will be much longer at energies for wh
resonant transmission is significant.22 We have some prelimi-
nary numerical results, not shown here, confirming this a
also that the ARC cladding always reduces those reso
times. We therefore expect that propagation in devices w
an ARC filter will be less affected by phonon coupling
impurities, and other decoherence mechanisms. There sh
also be less of a buildup of space charge in the device
would affect the design. Work is in progress to obtain qua
titative estimates for these effects.
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APPENDIX: TRANSFER MATRIX FOR PIECEWISE
LINEAR POTENTIALS

We consider a square barrier cell extending fromx5xl to
x5xr . The barrier is located betweenx5xl ,b and x5xr ,b .
We choose the origin of energy so that the potential is
outside the barrier andVb inside, whenF50. The effective
mass for the barrier is assumed to be energy independen
constant,mb* . For the rest of the cell and outside it, we ta
a constant valuemw* . In addition there is a constant electr

r

FIG. 9. TransmissionT(k) for the square barrier cell filters op
timized for electric fields:eF50 and 1.2 meV/nm. Example with
different effective masses for barrier and well materials.
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field F, directed alongx, acting inside the cell. Furthermore
we assume that outside the cell the potential is constant
matches continuously to the cell values at the bound
V(x)5eFxl whenx,xl andV(x)5eFxr whenx.xr . For
convenience we write the wave function outside the c
including explicit flux factors, as in Eq.~1!, replacingL,R by
l ,r . In each layer of constant effective mass, the wave fu
tion satisfies

2
\2

2mb*
f9~x!1~eFx1Vb!f~x!5Ef~x!, xl ,b,x,xr ,b ,

2
\2

2mw*
f9~x!1eFxf~x!5Ef~x!, xl,x,xl ,b ,

xr ,b,x,xr . ~A1!

Introducing the constantsaw[(2mw* eF/\2)1/3, bw[
2awE/(eF) and the variable

u5awx1bw , ~A2!

the second equation in Eqs.~A1! simplifies to

fu9~u!2uf~u!50. ~A3!

This is the well-known Airy equation~Ref. 23, p. 446!. It has
two linearly independent solutions Ai(u) and Bi(u), whose
Wronskian isW„Ai( u),Bi(u)…51/p. For numerical conve-
nience, we use a different pair of solutions

h(1)~u![e2 ip/6A3@Ai ~u!2 iBi~u!#5A2uH1/3
(1)~j!,

h(2)~u![eip/6A3@Ai ~u!1 iBi~u!#5A2uH1/3
(2)~j!,

~A4!

with

j[
2

3
~2u!3/2.

The functionsH1/3
(1,2)(j) are Hankel functions, as defined

Eq. 10.4.23 of Ref. 23. The Wronskian for this new pair

w[W„h(2)~u!,h(1)~u!…526i /p. ~A5!

The solutions of the first of Eqs.~A1! can be determined
similarly, but with E replaced byE2Vb . This leads to new
constantsab[(2mb* eF/\2)1/3 and bb[2ab(E2Vb)/eF
and the variable

v5abx1bb . ~A6!

The corresponding pair of linearly independent solutions
thereforeh(1)(v) andh(2)(v). In terms of these dimension
less variables, we write the wave function as

f~x!5a1h(2)~u!1b1h(1)~u! ~xl<x,xl ,b!

5e1h(2)~v !1 f 1h(1)~v ! ~xl ,b<x,xr ,b!

5c1h(2)~u!1d1h(1)~u! ~xr ,b<x,xr !. ~A7!
11530
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By matching these solutions and their derivatives divided
the effective mass, at each boundary, we determine the tr
mission matrixM. To write the matching conditions in com
pact form, we define

U~s![S h(2)~s! h(1)~s!

as

ms
h(2)8~s!

as

ms
h(1)8~s!D , ~A8!

wheres5u or v and the corresponding subindex indicatesw
or b. The inverse is

U21~s!5 i
p

6 S h(1)8~s! 2
ms

as
h(1)~s!

2h(2)8~s!
ms

as
h(2)~s!

D . ~A9!

With this notation, the matchings atx5xl , x5xl ,b , x
5xr ,b , andx5xr give the following relations:

1

An l
S al

bl
D 5S 1/2 2 imw* /~2kl !

1/2 imw* /~2kl !
D U~ul !S a1

b1
D ,

S a1

b1
D 5U21~ul ,b!U~v l ,b!S e1

f 1
D ,

S e1

f 1
D 5U21~v r ,b!U~ur ,b!S c1

d1
D ,

An r S c1

d1
D 5U21~ur !S 1 1

ikr /mw* 2 ikr /mw*
D S ar

br
D .

~A10!

Therefore,

M5An l

n r
S 1/2 2 imw* /~2kl !

1/2 imw* /~2kl !
D U~ul !U

21~ul ,b!U~v l ,b!

3U21~v r ,b!U~ur ,b!U21~ur !S 1 1

ikr /mw* 2 ikr /mw*
D ,

~A11!

which is the desired result.
Tunneling under the barrier.Under the barrier, the value

of v may be large (.20) and positive. This makes the Air
functions either negligible, Ai(v), or very large, Bi(v). Nu-
merical calculations based on Eq.~A11! then become inac-
curate. To mitigate this we perform some parts of the prod
U(v l ,b)U21(v r ,b) analytically:
9-8



P[U~v l ,b!U21~v r ,b!5 i
p

6S h(2)~v l ,b! h(1)~v l ,b!

ab (2)8
ab (1)8 D h(1)8~v r ,b! 2

mb*

ab
h(1)~v r ,b!

*

DESIGN OF ELECTRON BAND PASS FILTERS FOR . . . PHYSICAL REVIEW B69, 115309 ~2004!
mb*
h ~v l ,b!

mb*
h ~v l ,b! S

2h(2)8~v r ,b!
mb

ab
h(2)~v r ,b!

D
5 i

p

6 S hl
(2)hr

(1)82hl
(1)hr

(2)8
mb*

ab
~2hl

(2)hr
(1)1hl

(1)hr
(2)!

ab

mb*
~hl

(2)8hr
(1)82hl

(1)8hr
(2)8! 2hl

(2)8hr
(1)1hl

(1)8hr
(2) D , ~A12!
an

d

-
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where in the third line we have simplified the notation in
obvious way. Remembering the definitions in Eqs.~A4! and
that for largev ~see Ref. 23!

Ai ~v !.
1

2Ap
v21/4e22/3v3/2

,

Ai 8~v !.2
1

2Ap
v1/4e22/3v3/2

,

Bi~v !.
1

Ap
v21/4e2/3v3/2

,

Bi8~v !.
1

Ap
v1/4e2/3v3/2

, ~A13!

we find

P115p~Ai lBir82Bi lAi r8!

[p~e22/3(v l
3/2

2vr
3/2)Ãi lB̃i r82e2/3(v l

3/2
2vr

3/2)B̃i lÃi r8!,

~A14!

where, guided by the asymptotic expressions, we have
fined

Ãi[e2/3v3/2
Ai ~v !, Ãi8[e2/3v3/2

Ai 8~v !,

B̃i[e22/3v3/2
Bi~v !, B̃i 8[e22/3v3/2

Bi8~v !. ~A15!

The advantage of Eq.~A14! is that now the exponential fac
tors that made the Ai negligibly small and the Bi very lar
are compensated leaving the remaining expressions wel
haved. Ãi and B̃i are computed using the full asymptot
series.23

The other matrix elements ofP are handled similarly, giv-

ing ~with l5e22/3(vr
3/2

2v l
3/2))
11530
e-

e-

P125p~lB̃i lÃi r2l21Ãi lB̃i r !
mb*

ab
,

P215p~lB̃i l8Ãi r82l21Ãi l8B̃i r8!
ab

mb*
,

P225p~lÃi rB̃i l82l21B̃i rÃi l8!. ~A16!

M matrix for a d cell

When the barrier has zero width,Vd(x)5Cd(x2xb), the
expression for theM matrix simplifies. Taking into accoun
that the wave function is continuous atxb while the first
derivative has a jump, one finds

lim
e→0

E
ub2e

ub1ed2f~u!

du2 du5gf~ub!, g5
2m*

\2

C

uau
.

~A17!

The matching condition atxb implies

U~ub!S a1

b1
D 5S h(2)~ub! h(1)~ub!

h(2)8~ub!2gh(2)~ub! h(1)8~ub!2gh(1)~ub!
D

3S c1

d1
D . ~A18!

Inverting, we get

S 11gh(1)~ub!h(2)~ub!/w g„h(1)~ub!…2/w

2g„h(2)~ub!…2/w 12gh(1)~ub!h(2)~ub!/wD S c1

d1
D

5S a1

b1
D , ~A19!

which replaces the second and third equations in Eqs.~A10!.
In the above,w denotes the Wronskian.
9-9
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López-Lacasta, J. Opt. Soc. Am. A19, 603 ~2002!; see also
physics/0104050~unpublished!.

19J.J. Monzo´n, T. Yonte, L.L. Sa´nchez-Soto, and J.F. Carin˜ena, J.
Opt. Soc. Am. A19, 985 ~2002!; see also physics/0202053~un-
published!.

20D.W.L. Sprung, G.V. Morozov, and J. Martorell, J. Phys. A37,
1861 ~2004!.

21D.W.L. Sprung, Hua Wu, and J. Martorell, Am. J. Phys.61, 1118
~1993!.

22R. Romo, Phys. Rev. B66, 245311~2002!.
23Handbook of Mathematical Functions, edited by M. Abramowitz

and I.A. Stegun~Dover, New York, 1970!.
9-10


