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Design of electron band pass filters for electrically biased finite superlattices
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We design optimal band pass filters for electrons in semiconductor heterostructures, under a uniform applied
electric field. The inner cells are chosen to provide a desired transmission window. The outer cells are then
designed to transform purely incoming or outgoing waves into Bloch states of the inner cells. The transfer
matrix is interpreted as a conformal mapping in the complex plane, which allows us to write constraints on the
outer cell parameters, from which physically useful values can be obtained.
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[. INTRODUCTION transmission in finite periodic systems. But to our knowl-
edge, work on filters under electric bias is scarce. The first
In previous work we have studied how to modify a finite designs were proposed by Glytsisal1° These were based
periodic superlattice with a few additional cells so as to ob-On semiclassical ideas which apply to above-barrier trans-
tain optimal electron transmission for most of the energies ofnission, whereas the experiments and designs in Ref. 4
a Speciﬁc a”owed minibanﬂ'_3 The resumng device iS a Sought to improve transmission in the first and second mini-
band pass filter and the additional cells are called antirefled?@nds, both well below the barrier energy. _
tion coatingSARC'’s), in analogy to optics. Improving on the In Sec. Il we describe the transfer matrix properties re-
work of Pacheret al,*®> we showed in Ref. 1 that very quired for a fully quantal approach to filter design. Section
simple devices consisting of a small number of identical ellll describes our method of determining the device param-
ements =5) sandwiched between two optimally designed®eters, Whl_le in Sec. IV we give results for example_s close to
ARC cells could achieve transmissivities as high as 80%. Irihe experimental conditions for AlGaAs-GaAs devices.
the present work we extend the methods of Ref. 1 to design
band pass filters operating under the bias of a constant elec- Il. TRANSFER MATRICES
tric field. As is well known, such a field tends to strongly _ _ o
suppress coherent electron transmission across a superlattice¥Ve work in the envelope function approximation; the
at most miniband energies. Recently, however, e|ectro,§tat|onary—state wave f.unct|0_n for thf—) glectron is thalned as
transport via the Wannier-Stark resonances of four- and fived solution of the c7>ne—d|men3|onal Schieger equation with
period finite superlattices has been experimentally observed effective mass’We denote the potential inside the device
and characterized by the Vienna grduphese experiments aSV(X), XL <X<Xgr, and assume it to be constant outside. To
(and those in Refs. 4 and &int that with similar devices it allow for the action of a nonvanishing Qlectnc field inside,
should be possible to detect the coherent transmission acrod¥€se constant values are taken to be differépt: Vg. We
band pass filters like those considered here. write the outside electron wave functions at eneggs
The study of ARC'’s was proposéds a novel means of
arriving at better designs for the injectors of quantum cas-
cade laser5.In addition it should provide complementary
information on the transition from coherent to incoherent
transport in finite superlatticBswhereas for a finite super-
lattice without ARC the transmission is dominated by reso- R xex) br (x—xe)
nant transport, we will show that with ARC cells transport ~ Pr(X)= 7=€ R 7R+ ——e TR, - X=Xg,
proceeds by a combination of Bloch states and resonances. VR VR (1)
Since the Bloch states transmit directly across the lattice, it is
expected that decoherence will be less likely, due to reduceghere
transit time, in such devices.
Other theoretical work on the design of band pass filters _ * — 2
for electrons in the absence of electric bias exists. Gaylord kL= \2m{ (E= VL g)/2%,
and collz_;lboratof‘!;‘_11 studied the problem, adapting methods ang,, =#k, s/m? 4 is the velocity. The transfer matrix is
from optics and microwaves. Chang and Kﬁm_)ok asimilar  Gefined to relate the coefficients
conceptual approach using the language of impedance trans-

a. . b,
O (x)= —=ek &y —e kO x<x
v 48

formers. Tung and Le¥'*as well as Gomeet al,*® con- a a
sidered filters based on a Gaussian distribution of barrier ( L= R)_ (2)
strengths. Simanjuntak and Peréyraave explored resonant by br
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Hermiticity of the Hamiltonian and flux conservation lead to w(z), as follows: the amplitudes left and right of the cell are
detM=1 andM,=M3,;, M,;=M73,. Thus, at any energy related by Eq(2) and therefore, defining=bg/ar andw

E, only three real quantities are required to speéifyAlso, =b_/a,, one has
these relations lead to the representationNbin terms of

transmission and reflection amplitudes

R rey
S\t Ay

M1+ Moz
w(z) M1+ Mooz )
€) This mapping is known as the bilinear or Bias mapping
and is a conformal mapping of the entire plane onto itself
and which maps circles into circles.

Properties of this mapping are part of any course in com-
plex variables and have recently been discussed, in the
present context, in Refs. 18—20. Here we summarize those

T=[t,)? and R=|r|2. 4) whokse physical interpretation is relevant for the present
work.
Our devices are made dfl consecutive pieces, hereafter (i) The flux of a state written as in E¢l), with compo-
called cells. The total transfer matrix is the product of thenents @,b), is j=|a|?—|b|? and is conserved by the action
transfer matrices of those cells, which we number from leftof M. Therefore, waves with net flux to the right>0, cor-
to right: respond to point$z|<1 which are mapped onto poinja|
<1. Reciprocally wave functions with net flux to the left,
M=M;M,---My. (5)  j<O0, correspond t¢z|>1 and are mapped onfw|>1. The

) ) ) unit circle also maps into itself. According to E), the
Guided by experiments on electron transport in GaAs-Image ofz=0 isw(0)=M /M, =t , the reflection ampli-

AlGaAs superlattices, we consider here devices made froq,4e. The condition for perfect transmissionig0)=0: the
um_form layers of two material&called well and bamer Ma-  origin mapped onto the origin. In terms of the transfer ma-
terial). The cells are chosen so as to have reflection symmes;,
aL
), )

try by placing two half-well layers of the same thickness,

w/2, on either side of the barrier of thickndsand height/,, ag

relative to the well. That makes the potential symmetric in ( )=

the absence of external field. We call them square barrier 0 0

cells, though this applies only in zero applied field. Theyith lag|=|a.|.

method employed can be applied to any shape potential cell (i) For an infinite periodic system made of identical cells,
and is not limited to bilayer devices. Reflection symmetry is3 Bloch wave is a state such that

not essential, but reduces the number of independent param-

eters describing the transfer matrix and simplifies the design; a. la.

it was used in our previous work? In the presence of an M(b_) =e*?¢ b_)’ 9
external constant field the potential is still piecewise linear, = =

but reflection symmetry is destroyed. The explicit construchere¢ is the Bloch phase: cas=Re(M ;). It then follows
tion of the transfer matrix, under the bias of a constant electhat the ratiosh. /a. are precisely the fixed points of the

single-cell transfer matrices have the same properties givepropagate freely in the periodic system. The fixed points sat-
above for a general matriM, so the following discussion sty w(z,)=z; which leads to

applies equally to the total transfer matrix of the device or to
It is convenient to take the trace bf as one of the three _
real quantities which specify it. According to the above rela-with solutions

tions,
1
ZfZM—lz{—i |rn(|\/|11)i [Rqul)] _1}1 (11)

Values of the energy for whiclRe(M,,)|<1 (real anglesp) ~ Where we have used det=|M 13|~ [M5*=1. In a forbid-
define the allowed bands of an infinite periodic system. Forden band the square root is a real number and it is immediate
bidden zones correspond to the remaining valueg.ofhe  that [z¢|=1, so that the two fixed points are on the unit
other two parameters will be related to the fixed points of &circle. In an allowed band the square root is imaginary and
conformal mapping, as described in the next subsection.

For an incoming wave from the lethg=0 and thent,
=ar/a, andr_ =b, /a, . Finally, the transmission and re-
flection probabilities are

ReM ;)= 3 TrM=cose. (6)

e'x
zi=[—ImM(Mip)=xsing|—. (12
Conformal mapping in the complex plane M1

To choose the remaining two real quantities, we Hoté  (The phase oM, is written asm/2— y.) Of the two Bloch
thatM allows one to define a mapping in the complex plane states one describes propagation with net flux to the left and
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the other to the right. Therefore, one of the two fixed points=A, By writing out the matrix elements @ andU explicitly

lies inside the unit circlezy i, and the other outsides out;  one sees easily that E(L4) is the same as EGA3) in Ref.

both have the same phage 1. We showed there that imposing condititi®) at an en-
Equation(11) also shows that when the energy is variedergy near the middle of the allowed bandwallows one to

towards a band boundary, the fixed points approach the unffetermine the parameters of ARC cells, and with these one

circle. When|Re(M17)|=1 the two fixed points reach the optains a transmission coefficient close to unity over most of
unit circle at the same poiX. For energies in a forbidden the lowest allowed band.

band the fixed points travel in opposite directions around the

unit circle and they join again at the boundary of the next ARC DESIGN FOR NONZERO ELECTRIC BIAS
allowed band. We will later show examples of this behavior, '
which is also discussed in Ref. 20. We now apply the mapping technique to the design of

The above analysis suggests that we choose the remainifgnd pass filters operating under a constant electric Feld
two real quantities defininyl as|z; ;,| and x. Thus, for an  The devices will be made by assembling individual square
energy in the allowed bandyl is completely determined barrier cells as above. Following the previous example we
once the fixed point and the Bloch phageare specified. In  divide the design into two stage§) find the individual pa-
particular, for a symmetric potential ceNj,, is pure imagi- rameters of each of the inn&fcells so as to have a desired
nary and then Eq(12) shows that in an allowed band the optimal transmission window angi) construct the single
fixed points lie on the real axis, witg=0. Then only two cell ARC cladding.
real parameters are needed.

Although the above properties hold at a fixed energy, we A. Band alignment of the inner cells

have found~2 that over most of an allowed band, the posi- . .
tion of the fixed point changes very little, whil¢ changes Due to th‘? bias, the central part_of th? p_otentlal now has a
by . In this case, as the energy changes, the mappinnonsymmetrl_c shape, and for a gwggl |_nC|dent energy, each
moves the system point on an arc of a circle enclosing '[hgetII lf][?snaf drlfrfr?ntar?; ;rartrﬁer mnegrlbidl 'rtlvjil}’b. ' dNn The
fixed point. When device properties are optimized near th Ogtha ster ma di or this central pa | de te hOWQ
middle of an allowed band, the performance persists over gna the corresponding mapping y(2). In order to have a
range of energies on either side of the Bragg energy. Sharp cutoff of transmission at the edges of the pass band,
(iii) In terms of the mapping, the ARC design proposed byone wants the transfer matrices of the cells forming this inner
us in Ref. 1 can be obtained ’as follows. Consider a devic®" © have(nearly the_ same aIIow_ed t_)and poundarigs:
made ofN identical and symmetric cells, with transfer ma- —P B¢ ..However, thg action of an applied f|e|d. with potential
tricesU, clad left and right by single ARC cells with transfer erx sh|.fts the energies of thg band poundarles of a cell by
matricesA’ and A, so that the total transfer matrix il approximatelye Fa, Whe_redc is the dlstan_ce from the cen-
— A’UNA. This corresponds to a band pass filter operating aer of the cell to the origin. Therefore, an inner part of iden-
tical cells will not work. To compensate for the shift one has

zero electric field. The parameters of theinner cells are o ch diff i tans b. andV. f h
dictated by the desired energy window for the filter. The 0 CNOGSE different parametars b, andvy, Tor €ach square
arrier cell, and require that they produce the desired band

potential in each cell is chosen so that the desired transmi% dari () 4 henth
sion window corresponds to the lowest allowed bandJof ~Poundaries, RMi;(Ep)]=+1,i=1,... N, whenthe ex-

To determine the profiles of the ARC cells, we note that thd€'nal field is applied. However, since we wish to optimize
corresponding mapping is of the form transmission in the middle of the energy range, and not at the

boundaries, we prefer to impose one alignment at the Bragg
W(Z)=Wa (Wy( - - - Wy(Wa(Z))- - ), (13 point energyEg instead. The Bragg point is defined by the
condition cosp(Eg)=0 and lies near the middle of an al-
where wy acts N times. To achieve perfect transmission lowed band. In conclusion, the conditions used to determine
w(0)=0, one must design the ARC cells so that they firstthe inner cell parameters are
transform purely outgoing waves into Bloch statedJofthe

first step of the above mapping, and these into purely ingoing Re[M(lil)(EB)]=0,
waves, the last step of the mapping.
Therefore we construdk so thatw,(0)=z; ;, REM(ED]=—1, (16)
A,y and, for eactF, allow one to computev(),b®, andV{" .
A Zf in - (14

B. ARC cladding

Once theM @) have been determined, their product gives
Aj+ ARz in=0. (15) M. and the corresponding fixed point ofy(2), z,. To
have perfect transmission at the chosen energy, #dsand
The simplest solution uses a symmetric cell forUsing the  (15) still apply, but because the system is no longer symmet-
properties of symmetric potentialgeal fixed points and ric, we cannot conclude that the upstream and downstream
5,=—A,1), one can show that Eq15) follows from Eq. ARC cells are the same, and indeed they are not. We will
(14), so that thesameARC cell serves both purpose8’ show in the applications in the following sections how Eqgs.

The last stepva(z;) =0 requires that
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(14) and(15) allow one to compute the parameters of the two  TABLE I. & cell filters with middle cellQ,,=1.88 nm'%, d,

ARC cells under a given bias,. =5.55 nm. § cell parameters for various electric fields,
V. RESULTS eF (meV/nm Cell Q (nm™1 d (nm)
1.0 a’ 0.5839 4.8955

To show how this method can be applied, we will discuss ™
devices withN= 3 inner cells and single-cell ARC claddings. ' 1.7753 5.6424
(See the inset to Fig. 7 for an illustratiorFor a narrow r 1.9810 5.4634
barrier, the three-layer square barrier céibr instance, a 0.6294 4.5343
GaAs-AlGaAs-GaAs used in experimentsan be well ap-

) L : . .= a' 0.5262 5.3405
proximated by shrinking the barrier to zero width, becoming | 15695 58476
a ¢ function at the centery/(x)=C&(x—Xxp). This simple ; 2'1873 5'3051
potential profile has the advantage of fewéwo) param- a 0.6623 42930

eters:s strengthQ=m* C/4?, and cell widthd, which sim-
plifies the solution of the above equations. We shall first-5.0 a’ 0.4515 5.9136
discuss this didactic case and afterwards present results for I 1.3632 6.0876
more realistic square barrier cell devices. For simplicity, r 2.3943 51633
most of the numerical calculations have taken a constant ef- a 0.6806 3.9384
fective mass across all cells of the device.

-7.0 a' 0.3493 6.6364
A. Design and results for é cell filters ' 1.1552 6.3754
A number of exact results and accurate approximations ; é:ggiz ggg?;
are available foo cells.
(i) WhenF =0, the upper band boundary is exactly at
52 ()2 already studied in Ref. 1 fdfF=0. The middle cell param-
Etz_*(_) ' (17)  eters ared,,=5.55 nm and(),,=1.88 nm , while m*/m,
2m* \d =0.071. We then determine the left and right inner cell pa-
whereas, in the limit of2d>1 (Ref. 20, rameters as described above. The results are shown in Table
| for several choices oF. The resulting cog for the three
-2 aligned cells are plotted in Fig. 1 as a function kf

2 ()2 1
Eg= om* (a) (1+ ad (18) =2m*E/#?, and as can be seen, the band boundaries are
well aligned. Also shown is the real part of the toM} ;,
(i) For a cell with center ax,, it can be proved that, to matrix element1.=M;M,M,). Note that if the three inner

lowest order ineF, cells were identical, as wher=0, thef’ Re(M c1
=cos(3p), ¢ being the Bloch angle of a single cell, and the
E«(F)=E(0) +eFx, corresponding curve would be very similar to the solid line
in Fig. 1, but would be tangent to the dotted horizontal lines
Eg(F)=Eg(0)+eFx,. (19 at+1. With nonvanishing electric field we find that the tan-

- — 71 71 .
We have chosen the zero of potential energy due to the ele@nt points neak=0.50 nm = and 0.54 nm* develop into
tric field at the middle point of the middle cell. To align the Narrow forbidden zones. To facilitate discussion we denote

bands sufficiently, we proceed as follows: First we choosdh€ boundaries of the three allowed zones of g(y) as
the middle cell parameters, subindex so as to have the

desired allowed band boundariesmat 0. This can be easily 1
done by using Eq(17) of Ref. 1. The parameters of the left
cell are next determined so that

h? [\ de+d| h? [\
2m* | d, 2 2m*ldy)’
which determinesl,, while ), follows from
12 [ \? 1+ 1
2m* d_| Q|d|
22 [ ar\2 1 |2 0.48 0.5 ﬁfg 0.54 056 058
= [ — + — . n
2 (dm £ dem) 0 | |

FIG. 1. Bloch phases for thé cell filter of Table | witheF=

The corresponding expressions allow one to deterngine —5 meV/nm. cosp for left (long dashed line middle (dotted, and
and (), . The first example that we will analyze is the one right (short dashedcells. The solid line is R ).

0.5F

(20

cos ¢
o

05}
-2 dpn+d,
_ 5 .
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1.2 . . . . . 1
1}
08} z
T 30 +
06} 5
G 04} .
0.4} = "
o2t
0.2}
0 i ST 00 > ) 3 B 10
0.48 0.5 0.52 0.54 0.56 -eF ( meV/nm)

k (nm™)

] ] o FIG. 3. Symbols+: transmissivities for thes cell filters of
FIG. 2. T for the & cell filters of Table I, with(solid line) and

Table |, at the electric fields for which they are optimal. The dotted

without ARC (dotted ling) eF=—1,—3,—5, and—9 meV/nm. line is a parabolic fit that shows the trend at modeate The
dashed line is the transmissivity for the filter optimized at zero
(b’,t"), (b",t"), and ©",t"). electric field.

In the case oN identical inner cells, it is know#? that for

the energies leading to cbigp=+1, resonant transmission 1 K2
occurs withT=1. We show in Fig. 2 that similar peaks Vr=[eF|| datdi+ 5dn | < 55— (23)

occur whenF#0, but that the development of forbidden

zones reduces the peak transmission. Our calculations ind-hese conditions will also be relevant for the example dis-
cate that the wave functions at the energies of these resonafiissed in the next subsection.

peaks are related to the symmetric and antisymmetric quasi- We defined the average transmissivity in E43) of

bound states supported by a three-barrier structure. Ref. 1:

To construct the ARC cells, we use Ed44) and (15), 1 E,
choosing an energy near the middle of the allowed band—for = f T(E)dE. (24
convenience, at the Bragg energy. Each of E@¢). and(15) S S

gives two real equations to determine two real parameters. Ith Fig. 3 points marked by show values ofr for the filters
practice, to findQ}, andd, for the rightmost cell, we mini- of Table | at the electric field for which they have been
mize |A,1/A11—Z¢ in| Using a simplex subroutine from Nu- optimized. Up toeF=—7 meV/nm, the transmissivity of
merical Recipes. By this means, we have always found sahese filters exceeds 70%. For comparison we also show the
lutions that exactly fulfill Eq(14). Similarly we find the() transmissivity computed at different electric fields, for the
andd,: for the leftmost ARC cell. The resulting values are filter that was optimal at zero electric field. As can be seen
included in Table I. the decrease imr is much faster for the filter with fixed
Figure 2 shows the transmission for filters with and with- parameters.
out ARC’s. Without ARC’s one sees two narrow peaks lo- Returning to the results in Fig. 2, depending on the inci-
cated near the energies of the forbidden zones of Fig. 1. Aftedent energyE, transmission proceeds through two kinds of
adding the ARC, a third flat peak appearskatkg. This  states:(i) Bloch-like states in the middle part of the trans-
central peak is always rather wide, but the two resonantission window andii) resonant states like those already
peaks remain, although shifted towards the band boundariepresent without the ARC’s, at either end of the energy band.
The net result is a rather satisfactory filter for most values offo focus on the ARC behavior, in Fig. 4 we show the trajec-
F, with abrupt jumps fromiT=0 to 1 and a rather flat top tory of the fixed pointz; ;,(E), when the energy varies from
covering most of the chosen allowed band. At the highesthe bottomb’ to the topt” of the allowed bands of the single
electric field shown, there is a sharp drop in the transmissiogells. Corresponding to the three allowed bands of the com-
curve, with ARC, atkn,i,=0.51 nni%. This value corre- posite cell, M., shown in Fig. 1, the fixed point describes
sponds closely to the condition that the incoming electrorthree arcs inside the unit circle. Startinggat E,,, , the fixed
energy,E=7%2k?/(2m*), must exceed the potential energy at point is on the unit circle(point b’ in the figure. As the
the left of the device: energy increases the fixed point moves clockwise along the
dotted line path up t&E=E,, (pointt’). There it rejoins the
unit circle which it follows until the energy reaches the bot-

1 7 Kyin tom of the next allowed band dfl ., pointb” in the figure.
V, =|eF||dy+d+ Edm) T omF (22 Next from E,» to E;» it follows the continuous line path to

point t”. It travels again on the unit circle &S increases
towardsE,» and finally describes a second dotted path from
For positive values o€F a similar condition holds; the b"™ tot” whenE increases to the upper allowed band edge at
electron must have enough energy to overcome the potentiéd,». On these paths, the stars correspond to increases in
step at the rightVg. momentumk, of 5% of the difference»—ky . As can be
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0.4 . . . —— . 35
03} 3}
0.2}
. y 25

01} - _
0.1} E 15}
-0.2}F » . W
-0.3 .

0.5 . . . .
-0.4 . . N s N 0 0.5 1.0 15 2.0

0.7 075 08 085 09 095 1 1.05 eF (meV/inm )
Re(z)

FIG. 6. Variation of the barrier widtlp with applied electric
FIG. 4. Fixed-point trajectory when the energy is varied acrossie|d for square barrier cells, with optimal parameters of the ARC

the allowed band of the central cellsF=—3 meV/nm. Dotted filter. From bottom to top in the right-hand side; (solid boxes,
lines: first and third allowed bands ®;. Solid line: second al- _, (+), b, (open boxes by, (stars, b; (x).
lowed band oM. The dashed line is the unit circle. The location
of the fixed point at the Bragg energy is at the box labded work we used in this example a common effective mass for

barrier and well materialsn*/m.,=0.071 throughout(This
seen, there is a sizable range of energies for which the fixegill be relaxed in the second example at the end of this
point describing the continuous path stays in the neighborsection) These choices place the lowest allowed bankat
hood of B, the Bragg energy. It is for this range of energies=0.3041 nm *<k<k,=0.3693 nm?, lower than in the
that the ARC design is efficient, because at the Bragg energyrevious example; see Fig. 1. This reduces the range of elec-
the fixed point is mapped by construction to the origin. Andtric fields for which optimal filters can be found, due to the
nearby points follow, because the mapping is conformal. Fofestriction already stated in Eq2) and (23). To align the
energies corresponding to the two dotted paths, transmissiasands of the left cell, we impose Eqd.6). To simplify the
is also close to 1 due to a combination of the resonant transsxperimental implementation of the filters, we have also
mission already present without the ARC cladding and theixed the barrier height in every cell at 290 meV. This leaves
closeness of the leftmost parts of the pathBtoNote thatin  two equations to determine the widths andb,. To solve
the figure only a small part of the unit circle is shoyn. for them, we use a simplex method to minimize

B. Design and results for square barrier cells F?={RgM, 11(Ep) ]}*+{ReM, 14(E)]+1}?, (25
As a first example, we chose the parameters of our middi@/ith the matrix elements computed as described in the Ap-
square barrier cell as those of the experiment of Pachgtendix. Although the equations are nonlinear, this method
et al® The square barrier is of width,= 2.54 nm and height has always produced a single physically useful set,ofb; .
V=290 meV. Itis surrounded by half-wells of equal width, We solve similar equations for the cell on the right. The
W,/2, with w,,=6.50 nm. The shape of the optimal filter is fesulting values are shown in Figs. 5 and 6; they vary

shown in the inset to Fig. 7. For simplicity in the numerical Smoothly witheF in the range of electric fields explored.
The second step is the cladding with ARC cells. Let us

consider first the rightmost ARC cell, subindaxWe again

" takeV,=0.29 eV. The other two cell parameterg andb,
ol 1 are determined by the condition that at the Bragg energy the
ARC maps the origin to the fixed point of the three central
st ] cells, Eq. (14). We solve this equation by minimizing
z |Ao1/A11— 24 in|. Similarly we determine the parameters for
7t : the leftmost ARC cell by imposing Eq@l15). The parameters
z thus computed are included in Figs. 5 and 6. The resulting
6 1 average transmissivities are shown in Fig. 7. The transmis-
sivity remains close to the optimal value at zero field for
5t T most of the range explored. It drops sharply near the critical
limit for a positive eF. This is seen in Fig. 8, where the
49 05 1.0 15 2.0 transmission coefficients are for electric fields increasing
eF (meV/nm})

from 0 to 2.1 meV/nm in steps of 0.3 meV/nm.

FIG. 5. Variation of the well widttw with applied electric field Finally, for completeness, we have modified the example
for square barrier cells, with optimal parameters of the ARC filter.CONsidered above by allowing different effective masses for

From bottom to top on the right-hand side;, (+), w, (x), w,  barrier,m{/me=0.092, and wellmy,/m,=0.067, materials.
(starg, w, (open boxeg w, (solid boxes. Figure 9 shows transmission as a function of incident energy
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1 1.2
T
0.8 !
E ~\\ 0.8 |
Z 06}
B |3 |
§o4} 3
S s 0.4}
0.2 0.2t
<20 -10 ] 10 20
x {nm) 0
0.3 0.31 0.32 0.33 0.34
0 0.5 1.0 15 2.0 k (nm)
eF (meV/nm)

o o FIG. 9. Transmissio (k) for the square barrier cell filters op-
FIG. 7. Symbolst: transmissivities for the square barrier filters tjmized for electric fieldseF=0 and 1.2 meV/nm. Example with

at the electric fields for which they are optimal. The solid line is yifferent effective masses for barrier and well materials.
drawn to guide the eye. Inset: shape of the optimal filter under

applied bias of 1.5 mV/nm. stage, the parametevs, ., ,b, . for the two ARC cells are

determined imposing Eq$14) and(15). This is done at the
for the optimal filters corresponding t&-=0 and F  Bragg energy, so as to guarantee unit transmission at this
=1.2 mV/nm. The quality of the filters is similar to those of chosen value, located near the center of an allowed band.
the previous example, with transmissivities of 0.80 and 0.79-ollowing this method, we have shown that realistic values
for the two cases shown. can be determined for the parameters of each of these cells
and that the resulting filters have good transmissivities, pro-
vided the electric field of operation is within the range im-
posed by Eqgs(22) and(23).

For a chosen electric fieldl, we have shown how to con- ~ We have found that for energies in the middle part of the
struct optimal band pass filters as finite superlattices. Theyransmission window the filter action is based on propagation
are made ofi) an inner part, made of three cells with aligned of Bloch states, whereas for energies near the band bound-
bands, which define an energy window, afig an ARC  aries part of the transmission is still resonant. We expect that
cladding consisting of a single cell on each side of the innethe traversal times will be much longer at energies for which
part. The design therefore is made in two stages: In the firstesonant transmission is significZAtVe have some prelimi-
the valuesw, and b, for the central cell forming the inner nary numerical results, not shown here, confirming this and
part are chosen so as to define the desired energy window f@tso that the ARC cladding always reduces those resonant
the filter. This is done either using expressions already givetimes. We therefore expect that propagation in devices with
in Ref. 1 or choosing the values from an experineNext ~ an ARC filter will be less affected by phonon couplings,
the parameters of the left and right cells in that inner partimpurities, and other decoherence mechanisms. There should
w, . ,b; ,, are determined imposing band alignment, via Eq.also be less of a buildup of space charge in the device that
(25), and using the expressions for the transfer matrix giverwould affect the design. Work is in progress to obtain quan-
in the Appendix. With this parameter set we can then confitative estimates for these effects.
struct the total transfer matrix for the inner part for any en-

V. SUMMARY AND CONCLUSIONS

ergy and determine its fixed poig ;,(E). In the second ACKNOWLEDGMENTS
12 . . . . . . . We are grateful to NSERC-Canada for Discovery Grant
No. SAPIN-3198(D.W.L.S., G.M) and to DGES-Spain for
T 1 continued support through Grant Nos. PB97-0915 and
BFM2001-3710(J.M.). This work was carried out as part of
0.8} CERION-2, EU thematic network 1ST-2001-39059.
oot APPENDIX: TRANSFER MATRIX FOR PIECEWISE
i LINEAR POTENTIALS
We consider a square barrier cell extending fromy, to
0-2r x=Xx, . The barrier is located between=x, , andx=x, .
0 We choose the origin of energy so that the potential is nil

03 031 032 033 034 035 036 037 outside the barrier andy, inside, whenF=0. The effective
k(nm™) s '
mass for the barrier is assumed to be energy independent and
FIG. 8. TransmissioT (k) for the square barrier cell filters op- constantmg . For the rest of the cell and outside it, we take
timized for electric fieldseF=0,0.3,0.6. . .,2.1 meV/nm. a constant valuen, . In addition there is a constant electric
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field F, directed along, acting inside the cell. Furthermore, By matching these solutions and their derivatives divided by
we assume that outside the cell the potential is constant arttie effective mass, at each boundary, we determine the trans-
matches continuously to the cell values at the boundarynission matrixM. To write the matching conditions in com-
V(x)=eFx whenx<x, andV(x)=eFx whenx>x,. For  pact form, we define

convenience we write the wave function outside the cell,

including explicit flux factors, as in Eq1), replacingL,R by

[,r. In each layer of constant effective mass, the wave func-

tion satisfies U(s)=

h(z)(s) h(l)(S)
Eh(z)’(s) Eh(l)'(s) ’ (A8)
2 mg mg

¢"(X) +(eFX+Vp) p(X) =Ed(X), X p<X<Xrp,

2mg wheres=u or v and the corresponding subindex indicates
) or b. The inverse is
— 5 " (X)teFxp(X)=Ed(X), X<X<Xp,
2my, ’ m
AL h'(s) = —h(s)
<X<ZX;, . m
Xr,b X Xr ( ) Uil(s):i E S . (Ag)
Introducing the constantsa,=(2m}eF/A%)13,  B,= —h@'(s) Esh(Z)(s)
—aE/(eF) and the variable s
u=ayX+ By, (A2)  with this notation, the matchings at=x,, X=X p, X
the second equation in EqgA1) simplifies to =Xr,p, andx=x give the following relations:
u(u)—ug(u)=0. (A3) 1 (a) (12 —imi(2k) ay
This is the well-known Airy equatiofRef. 23, p. 44% It has Vi \ b, |12 im*/(2k)) u) b,/
two linearly independent solutions Aif and Bi(u), whose
Wronskian isW(Ai(u),Bi(u))=1/ar. For numerical conve-
nience, we use a different pair of solutions a . e
. b =U" (U p)U(v)p) ]
h®(u)=e~"3[Ai(u) ~iBi(u)]= V= uHGi(o), ' '
h®@(u)y=e"\/3[ Ai(u)+iBi(u)]=V—uHZ)( &), e cy
(A4) f =U (Ur,b)U(ur,b) d. |’
1 1
with
2 Cy . 1 1 a,
— 5/ _ 3 =U _ . _
=30 ﬁ*(oﬁ) (“’)(Ikr/m;; ~ik, rmis | b,

(A10)
The functionsH{:;2(¢) are Hankel functions, as defined in

Eqg. 10.4.23 of Ref. 23. The Wronskian for this new pair is Tnerefore
w=W(h@(u),h®(u))=—6i/. (A5)

The solutions of the first of EqgA1) can be determined = ﬁ(
similarly, but with E replaced byE—V,. This leads to new Vr
constants ap,=(2my eF/42)Y3 and By=— ap(E—V,)/eF

112 —im*/(2k,)

1
12 imjv/(2k|))u(ul)u (U;,p)U (v p)

and the variable XU~ (v, ))U(U, ))U"X(u,) 1 1
=D Plik /mE —ik, /mE)
U:abx+ﬁb. (AG) (All)
The corresponding pair of linearly independent solutions is
thereforeh®(v) andh®(v). In terms of these dimension- which is the desired result.
less variables, we write the wave function as Tunneling under the barrietJnder the barrier, the values
@ ) of v may be large £20) and positive. This makes the Airy
¢(x)=ash'=(u) +bhtP(u)  (}=X<X) ) functions either negligible, Ai(), or very large, Bi¢). Nu-
=e,h® () +f,hV(0) (X p<X<X p) merical calculations based on E@\11) then become inac-

curate. To mitigate this we perform some parts of the product
=c;h@A(u)+d;hM(u) (%, p=<x<x). (A7)  U(v,p)U (v, ) analytically:
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h®@(v; p)

ar
P=U(v;,)U v p)=i=| @ oy
' 6 Wh(z) (v1p)

b

*

h|(2)h$l), _ hl(l)hSZ)’

PHYSICAL REVIEW@, 115309 (2004

: mp
h(l) (Ur,b) __h(l)(vr,b)
ap

my
—h@ (v, ) a_bh(z)(vr,b)

M h@h® 1 hOh)
ap

ap ’ ’ ’ ’ ’ ’
S (B HUHO") b2 B+
|
where in the third line we have simplified the notation in an o . mE
obvious way. Remembering the definitions in EGs4) and Po= w(thAir—)\‘lAi,Bi,)a—,
that for largev (see Ref. 2B b
. il Al AR mi YD
Ai(v)= ——pHg=22%, P,.= m(ABi Ai; —\ 'Ai] Bl )
a
A (o) I P,,=m(MAI,Bi] —\ "BiAi/). (A16)
i"(v)=——=v""% ,
v

1
. _ 3/2
Bi ( v ) _ v 1/4e2/3v

T
. 1 3/2
Bi'(v)= —=v ¥ (A13)
o

we find
3/2 32~ . ~ 32 32~ ~
= (e 2B v A} Bi] — 30 v IBI A,

(A14)

M matrix for a & cell

When the barrier has zero widt¥s(x) = Cd(x—X,), the
expression for théVl matrix simplifies. Taking into account
that the wave function is continuous &f while the first
derivative has a jump, one finds

up+ed?¢(u) 2m* C
einofub—s gz du=réu), v= =2 Tal’
(A17)
The matching condition at, implies
a; h(z)(ub) h(l)(Ub)
U(“b)( bl) - ( h@' (up) — yh(up) h () - yhm(ub))

where, guided by the asymptotic expressions, we have de-

fined
Ri=e?**pi(v), Ai'=e?**Ai"(v),

Bi=e 2*™Bi(v), Bi'=e 2*"Bi'(v). (A15)

The advantage of EqA14) is that now the exponential fac-
tors that made the Ai negligibly small and the Bi very large
are compensated leaving the remaining expressions well be-

haved. A and B are computed using the full asymptotic

series?®

The other matrix elements & are handled similarly, giv-

Ing (W|th A=e 2/3(Ur3/2,v|3/2))

C1

x|
dy

(A18)

Inverting, we get

1+ yh®(up)h@(up)/w y(h M (up))?w )(01)

— y(h®(up))*w 1—yh®(up)h@(up)/w/ \ dy
a
=\p. | (A19)
1

which replaces the second and third equations in BE)).

In the abovew denotes the Wronskian.

115309-9



J. MARTORELL, D. W. L. SPRUNG, AND G. V. MOROZQOV

1G.V. Morozov, D.W.L. Sprung, and J. Martorell, J. Phys.3B,
2091(2002.

2G.V. Morozov, D.W.L. Sprung, and J. Martorell, J. Phys.3B,
3052(2002.

3D.W.L. Sprung, G.V. Morozov, and J. Martorell, J. Appl. Phys.
93, 4395(2003.

PHYSICAL REVIEW B9, 115309 (2004

12¢.c. chang and C.S. Kuo, J. Phys.3D, 139(1999.

BH.H. Tung and C.P. Lee, IEEE J. Quantum Electr8@, 507
(1996.

¥H.H. Tung and C.P. Lee, IEEE J. Quantum Electrdg, 2122
(1996.

15, Gomez, F. Dominguez-Adame, E. Diez, and V. Bellani, J. Appl.

4C. Pacher, C. Rauch, G. Strasser, E. Gornik, F. Elsholz, A. Phys.85, 3916(1999.

Wacker, G. Kiesslich, and E. SdhAppl. Phys. Lett.79, 1486
(2002.

5C. Pacher, G. Strasser, E. Gornik, F. Elsholz, G. Kiesslich, A.

Wacker, and E. Schip Physica E12, 285 (2002.

6M. Kast, C. Pacher, G. Strasser, E. Gornik, and W.S.M. Werner,

Phys. Rev. Lett89, 136803(2002.

184 P. Simanjuntak and P. Pereyra, Phys. Re§7R045301(2003.

D.F. Nelson, R.C. Miller, and D.A. Kleinman, Phys. Rev.3B,
7770(1987).

18T, Yonte, J.J. Monzo, L.L. Smichez-Soto, J.F. Caéma, and C.

Lopez-Lacasta, J. Opt. Soc. Am. 29, 603 (2002; see also

physics/0104050unpublished

7C. Gmachl, F. Capasso, D.L. Sivco, and A.Y. Cho, Rep. Prog!®J.J. MonZa, T. Yonte, L.L. Sachez-Soto, and J.F. Caena, J.

Phys.64, 1533(2001).

8C. Rauch, G. Strasser, K. Unterrainer, W. Boxleitner, and E.

Gornik, Phys. Rev. Lett81, 3495(1998.

9T.K. Gaylord, E.N. Glytsis, and K.F. Brennan, J. Appl. Phgs,
2535(1989.

10E.N. Glytsis, T.K. Gaylord, and K.F. Brennan, J. Appl. Ph§8,
1494(1989.

1T K. Gaylord, E.N. Glytsis, and K.F. Brennan, J. Appl. Ph§3,
2623(1990.

Opt. Soc. Am. A19, 985(2002); see also physics/02020%3n-
published.

20p.W.L. Sprung, G.V. Morozov, and J. Martorell, J. Phys3#A
1861 (2004.

21p.W.L. Sprung, Hua Wu, and J. Martorell, Am. J. Phg4, 1118
(1993.

22R. Romo, Phys. Rev. B6, 245311(2002.

ZHandbook of Mathematical Functionsdited by M. Abramowitz
and I.A. Stegur(Dover, New York, 1970

115309-10



