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Integer filling factor phases of many-electron vertically coupled diatomic artificial quantum dot molecules
are investigated for different values of the interdot coupling. The experimental results are analyzed within
local-spin density functional theory for which we have determined a simple lateral confining potential law that
can be scaled for the different coupling regimes, and Hartree-Fock theory. Maximum density droplets com-
posed of electrons in both bonding and antibonding or just bonding states are revealed, and interesting isospin-
flip physics appears for weak interdot coupling when the systematic depopulation of antibonding states leads to
changes in isospin.
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I. INTRODUCTION

Semiconductor quantum dots(QD’s) are regarded as arti-
ficial atoms whose physical properties can be easily tailored
to a large extent by changing external parameters like the
confining electrostatic potential, and by applying readily at-
tainable static magnetic fields.1 High quality disk-shaped ver-
tical QD’s containing a tunable number of electrons starting
from zero have revealed a wealth of atomiclike properties.2

One of the most appealing analogies with natural atoms is
the capability of forming molecules. Artificial quantum mol-
ecules(QM’s) composed of two vertically coupled semicon-
ductor QD’s are the subject of much experimental and theo-
retical investigation.3–15 In this paper we discuss integer
filling factor phases that appear in vertical QM’s that have
different values for the thicknessb of the central barrier
separating the two QD’s when a magnetic fieldsBid is ap-
plied parallel to the drain currentId flowing through the two
QD’s (see schematic of the submicron circular mesa in the
Fig. 1 inset). We also investigate “isospin,” a useful quantum
number (effectively the bond order in molecular
physics16,17), and magnetic field induced transitions in iso-
spin. Our transistor devices incorporating the vertical QM’s4

are well suited to observe changes in the molecular ground
state(GS) configurations as a function of magnetic field.

This paper is organized as follows. In Sec. II, we describe
the quantum molecule devices and present the key experi-
mental data(phase diagrams). In Sec. III, we give details of
the principal analytical method(local-spin density-functional
theory) employed to interpret the experimental data. A de-
tailed comparison of experiment and theory(including a
supplementary and relevant Hartree-Fock calculation) is then
undertaken in Sec. IV. An extended discussion in Sec. V
covers important issues concerning weakly coupled quantum
molecules, before we summarize in Sec. VI.

II. QUANTUM MOLECULE DEVICES AND
EXPERIMENTAL PHASE DIAGRAMS

The QM’s we study are realized in a vertical geometry
transistor, as illustrated schematically in Fig. 1, by placing a
single gate around a submicron cylindrical mesa incorporat-
ing a GaAs/Al0.2Ga0.8As/ In0.05Ga0.95As triple barrier struc-
ture. Full details of the starting materials, and the mesa struc-
tures are described elsewhere.4,14 The nominally identical
quantum wells of these materials are of width 12 nm, and the
outer barriers are typically about 7 to 8 nm wide. The mol-
ecules form because the two QD’s are quantum mechanically
and electrostatically coupled. For the materials we typically
use, the energy splitting between the bonding(B) and anti-
bonding (AB) sets of single particle(s.p.) Fock-Darwin
states1,2 DSAS, one of the key parameters that determine the
electronic properties of the QM, can be varied from
,3.5 meV forb=2.5 nm(strong coupling) to ,0.3 meV for
b=6.0 nm(weak coupling).4 Each dot in the molecule can be
pictured as a circular disk of thickness,10 nm, and with an
effective diameter(,100 nm in the few-electron limit) de-
termined by the depletion region spreading from the side-
wall of the mesa, whose extent is regulated by the action of
the Schottky gate. Strong(weak) quantum mechanical cou-
pling means DSAS*"v0sDSAS!"v0d, where "v0 is the
strength of the lateral radial harmonic oscillator potential
(see Sec. III for an extended discussion of the values we use
for this important quantity). If the coupling is very strong,
the QM should behave like a single QD in the few-electron
limit where only B states are(initially at least) populated.14

In contrast, for weak coupling, the electrostatic coupling is
dominant, and the QM takes on the characteristics of two
practically separate QD’s.14 If the constituent dots of the QM
are identical, the B and AB s.p. Fock-Darwin states would be
shared 50–50 % between the two dots. In this case, the B
(AB) states are truly symmetric(antisymmetric) states.
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The two vertically coupled QD’s are located inside circu-
lar mesas of geometric diameterD,1 mm. Drain currentId
flows through the two QD’s in response to a bias voltageVd
applied between the substrate contact and grounded top con-
tact, and voltage on the single surrounding side gateVg. At-
tributes of the QM discussed in this paper are identified by
measuring the properties of the current(Coulomb) oscilla-
tions on applying a magnetic field at temperature
,100 mK2.

Figure 1 shows theBi−N phase diagrams for(a) b
=2.5 nm,(b) b=4.7 nm, and(c) b=6.0 nm QM’s. The elec-
tron numberN extends up to,40. The diagrams actually
show theBi evolution of the Coulomb oscillations(effec-
tively the GS electrochemical potentials) observed on sweep-
ing the gate voltage in the presence of a small biassVd

,0.2 mVd.
The b=2.5 nm QM phase diagram has striking similari-

ties to that of a single QD,18 so by studying the pattern of
“wiggles” for each Coulomb oscillation, we can identify two
threshold lines marking the onset of integer filling factorn,
phases(regions) labelednB=2 andnB=1. The former essen-
tially marks the end of the s.p. Fock-Darwin level crossings,
and the latter identifies the start of the spin-polarized com-
pact maximum density droplet(MDD) phase.19 HereDSAS is
sufficiently large that hardly any higher-lying AB states play

a role, so this QM clearly behaves like a single QD.20 The
nB=1 line originates from theN=2 spin singlet-triplet(S-T)
transition kink.6 Also, before(after) the MDD region, labeled
MDDB because only the B s.p. states are occupied, barely
visible kinks(weak steps) appear and are related to spin-flips
(MDD reconstructions).6,18 We point out that in addition to
identifying the phases from characteristic features of the
Coulomb oscillations, we can also identify the GS transi-
tions, particularly at smallN, by looking at the evolution
with Bi of both ground and excited states in the excitation
spectra whenVd is increased to typically 1–2 mV(the cur-
rent oscillations become current stripes). This spectroscopic
technique is comprehensively described elsewhere,21 and has
been applied to strongly coupled and intermediately coupled
QM’s for N,7.6,11

The phase diagrams forb=4.7 and 6.0 nm QM’s are
clearly different from those of theb=2.5 nm QM and a
single QD.6,18,19 We can say the following:(i) The phase
diagrams for these QM’s are more complex than the phase
diagram for theb=2.5 nm QM. This is particularly so for the
b=4.7 nm QM, but is expected since it is intermediate be-
tween the strong coupling and weak coupling limits. Even
for the b=6.0 nm QM it is not readily evident how to ex-
trapolate features in the small-N region to higherN (contrast
this with thenB=2 line, and thenB=1 line starting from the
single QD-likeN=2 S-T kink for theb=2.5 nm QM); (ii )

FIG. 1. ExperimentalBi−N phase diagrams for QM structures with(a) b=2.5 nm, (b) b=4.7 nm, and(c) b=6.0 nm. The diagrams
actually show Coulomb oscillation peaks in theBi-Vg plane. The first peak is often weak, and is indicated by a dotted line in(c). The
variations in amplitude(arbitrary scale) of the current peaks depend strongly onN, Bi, and b, but are not discussed here. Insets show
schematic of vertical QM device, and cartoons of the arrangement of electrons in B and AB s.p. states, and isospin-flips, for certain integer
filling factors.
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Nonetheless, forN exceeding,10, we can approximately
identify two lines, labelednT=4 andnT=2 (the full meaning
of these filling factor terms is given in Sec. IV). To the left
(right) of nT=4 each Coulomb oscillation, on the whole, os-
cillates weakly about a given gate voltage(shifts systemati-
cally to more positiveVg); (iii ) To the right ofnT=2, there is
a band(of width ,1 T) within which there are a series of
distinct features. For consecutive current oscillations these
features appear related, and we have drawn dashed lines to
identify related feature. Such features are not seen for the
b=2.5 nm QM, and their origin is discussed at length in Sec.
IV; and (iv). At yet higherBi, the dependence of the Cou-
lomb oscillations becomes somewhat smoother again(more
clearly for b=6.0 nm than forb=4.7 nm). Although by no
means featureless, the amplitude of the Coulomb oscillations
also fall-off, as is the case for theb=2.5 nm QM and a single
dot.6,18,19

To the best of our knowledge, no attempt has previously
been made to explain even global features of the vertical QM
Bi−N phase diagrams over a wide range ofN andb. While
the concept of isospin has often been discussed in the litera-
ture, we found that hardly any published model comes close
to adequately accounting for the observed properties of our
particular real double quantum dot system as summarized in
Fig. 1.

III. MAIN ANALYTICAL METHOD: LOCAL-SPIN
DENSITY-FUNCTIONAL THEORY

Our principle interpretation of Fig. 1 is based on local-
spin density-functional theory(LSDFT) following methods
comprehensively described in Refs. 13–15, 22, and 23. Finite
thickness effects are included, and axial symmetry is as-
sumed. A relaxation method is employed to solve the partial
differential equations arising from a high order discretization
of the Kohn-Sham equations on a spatial mesh in cylindrical
coordinates. The exchange-correlation energy has been taken
from Perdew and Zunger.22 We have used values appropriate
for GaAs for the effective gyromagnetic factorgs

* , dielectric
constante, and electron effective massm* (in units of the
bare electron massme, m=m*me): specifically,gs

* =−0.44,e
=12.4, andm* =0.067(see Refs. 13 and 15 for full details).
To span a large range ofN and reduce computational effort,
only QM’s with a number of electronsN=4M with M =3 to
9 have been comprehensively analyzed(although we did
check the LSDFT at some otherN values forb=6.0 nm as
discussed in Sec. IV). The accuracy of the LSDFT for theBi

values of interest has been assessed15 by comparing single
QD phase diagrams obtained by LSDFT and current spin-
density functional theory,24 and also with some exact QM
results.10,11

The QM is specifically modeled by stacking two equal
QD’s in the direction parallel toId (equivalentlyBi). Along
this (vertical) symmetry axis, the QM is confined by two
identical quantum wells of width 12 nm and depth 225 meV,
and separated by a distanceb. We first assume the two quan-
tum wells are identical, but consider in Sec. V, if by treating
the two quantum wells as being slightly disimilar(mis-
matched), we can stabilize one particular phasesMDDBd in

the weak coupling limit. Previously, we have shown that for
smallN slightly unequal quantum wells can alter the appear-
ance of the QM addition energy spectra at 0 T, particularly
when the coupling is weak.14 However, since in this paper
we are primarily interested in the large-N QM phase dia-
grams, and the influence of any small asymmetry is observed
to decrease withN even for weakly coupled QM’s,5 we start
with a symmetric double quantum well potential for the ver-
tical direction in the LSDFT calculation. In the lateral direc-
tion, the QM is confined by a radial symmetric harmonic
oscillator potentialmv0

2r2/2 of strength"v0.
The choice for the value of"v0 is clearly crucial to

achieve a quantitative description of the QM phases. This
can be easily seen from the expression for the s.p. energies in
the noninteracting electron model atBi=0 T, namely, for the
set of B or AB Fock-Darwin states,«="v0f2 n+ ul u+1g+«z,
where «z is the energy of the lowest B or AB state of the
double quantum well,n is the s.p. radial quantum number,
and l is the s.p. orbital angular momentum quantum number
(due to the convention commonly adopted for the s.p. wave
functions,13 the s.p. orbital angular momentum is actually
−l), with l =0, ±1, ±2, . . ., . Wenote that for an axially sym-
metric system, only the projection of the orbital angular mo-
mentum on the symmetry axis has a meaning. In a simple
picture, for a sufficiently large value ofDSASs."v0d, elec-
trons, initially at least, fill just B s.p. states, in a manner like
that for a single QD. However, forDSAS,"v0, the QM can
easily minimize its energy by populating some AB s.p. states.
Thus, the value ofDSAS relative to"v0 will have a dramatic
effect on the electronic properties of QM’s .7–10,12–14

For small-N values, "v0 is often taken to be
N-independent. We ourselves have indeed previously em-
ployed such aN-independent"v0 in such cases.8,14,15How-
ever, realistically"v0 does depend onN.6,11,25 For large-N
values of interest in this paper, anN-dependent"v0 is
justifiable.6 Retaining the simplicity of the harmonic oscilla-
tor model, the effective strength of the lateral confinement
energy we employ in the LSDFT calculations to explain the
large-N QM data here, and include screening, as simply and
realistically as possible,6 is of the form"v0=k /N1/4, where
k is an adjustable parameter(how we determine its value is
discussed in Sec. IV). Defining NB sNABd as the number of
electrons in the B(AB) states, and the isospin quantum
number17 as Iz=sNB−NABd /2, we have generalized this ex-
pression to

"v0 =
k

NB
1/4 =

k

sIz + N/2d1/4. s1d

The rationale is simple. In the strong coupling limit, the QM
behaves like a single QD, andNB=N, so we recover the
usual expression. In the weak coupling limit, one can regard
each constituent quantum dot as hosting half the total num-
ber of electrons of the QM, i.e.,NB=NAB =N/2, and so the
lateral confinement strength is fixed byN/2 and notN. For
intermediate coupling, whereNB is not knowna priori, we
“guess” its value atBi=0 T and iterate until the actualNB
value is obtained. For one single QD, it is worth mentioning
that some successful attempts have recently been made to
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obtain the confining potential from the electrostatics of
“model” devices with the aim of avoiding the more phenom-
enological point of view we adopt here.26 However, there is
still arbitrariness and uncertainty even in these calculations
for single quantum dots, because to the best of our knowl-
edge, no model yet exists to accurately include deviations
from ideality and randomness which occur in all real quan-
tum dot structures.27 To the best of our knowledge, full-
blown self-consistent models of large-N vertical QM’s in a
magnetic field have not yet been reported.

IV. DETAILED COMPARISON OF EXPERIMENT
AND THEORY

For the strongly coupled QM, from Fig. 1(a), taking k
=6.91 meV, the experimental low-Bi border of the MDDB
phase is well reproduced. We choose this border for the fit
because it is well defined(and then use the samek for the
more weakly coupled QM’s). The corresponding calculated
large-N phase diagram is displayed in Fig. 2(a). In the
LSDFT calculations here, atBi=0 T, electrons occupy only
B s.p. states, at least up toN=36, confirming the viewpoint
that this QM behaves like a single QD.20 The MDDB consists
of same spin electrons occupying just B s.p. states, such that
the total orbital angular momentumLz=NsN−1d /2, and cor-
responds to total filling factornT=nB=1.19 An experimental
feature this calculation, and indeed other calculations Refs.
9, 10, and 12, is unable to reproduce well, is theBi range of
stability, at largeN, of the MDDB compared to that of the
MDD for a single QD.6 Experimentally, the former is,40%
narrower than the latter, whereas the LSDFT yields a similar
range for both. The calculation also reveals thenT=nB=2
phase(spin unpolarized for even-N), again made of just B
s.p. states. The low-Bi border of this phase agrees well with
the distinct nB=2 line in the experiment, but the high-Bi

border, identifying the first spin-flip, is not clear in the data
shown, as is also the case for a single vertical QD.18

As discussed in Sec. II, the phase diagrams noticeably
change when the coupling is reduced, and as far as we know,
no model exists to explain all the experimental observations.

We focus first, in this Sec., on some of the more prominent
features, and in Sec. V we address other important issues. In
the weak coupling limit,NB,NAB at Bi=0 T. As the field is
applied, two cohabiting MDD’s can develop. One is made of
B s.p. statessMDDBd, and the other is made of AB s.p. states
sMDDABd. We call this phase MDDB+AB, and nT=2 (nB=1
plusnAB =1). By inspection, we can identify the onset of this
phase at sufficiently largeN in Fig. 1(c) and less clearly in
Fig. 1(b). The onset calculated by LSDFT of the MDDB+AB
phase in Figs. 2 is within,15% (on the low side) of the
marked onsets in Fig. 1. We emphasize that we used the
samek value as for theb=2.5 nm QM, and had we used the
regulark /N1/4 law instead of thek /NB

1/4 law, the calculated
MDDB+AB phase would have been shifted to still lowerBi by
,0.7 T. Lacking any better model, we have thus satisfacto-
rily reproduced the onset of the MDDB+AB.

In the LSDFT calculations forN=4M, the electrons in the
MDDB and MDDAB constituting the MDDB+AB phase in the
b=4.7 and 6.0 nm QM’s initially have s.p. orbital angular
momentum values from 0 to,N/2. As N or Bi increase,
there is a clear tendency forNB and NAB to become unbal-
anced with NB sNABd increasing (decreasing), so in the
MDDB+AB phase the QM can undergo isospin transitions
(isospin-flips). Isospin-flips can occur at weaker fields, as we
discuss in Sec. V, but they are then easily masked by s.p.
level crossings and spin-flips,12 i.e., isospin-flips should be
most visible within the MDDB+AB phase. There is only one
(dotted) DIz= +1 transition line for theN-values shown in
Fig. 2 for theb=6.0 nm QM, and two such lines for theb
=4.7 nm QM(DSAS is smaller in the former than the latter so
AB states are “harder” to depopulate). Also, the MDDB+AB
apparently reconstructs to some lower density droplet at
higherBi well beforeIz has reached the maximum possible
value ofN/2. In the experimental data, the right boundary of
the MDDB+AB phase in Figs. 1(b) and 1(c) is indeed not very
distinct, but beyond the left onset of this phase, forN.10,
there are clearly a series of features(connected by dashed
lines) that originate from thenT=2 line that have a charac-
teristic with N or Bi not seen in any features in theb
=2.5 nm QM, or in a single QD.18 We attribute these to
isospin-flips.

FIG. 2. Bi−N phase diagrams calculated by LSDFT for QM structures with(a) b=2.5 nm,(b) b=4.7 nm, and(c) b=6.0 nm. The low
(high) field boundary of each integer filling factor phase of finite width is drawn bold(feint). Only values corresponding toN
=12,16, . . . ,32,36 are meaningful here[except for extra points in(c) on the left boundary of the MDDB+AB phase as discussed in the text].
Within certain phases, regions of different isospin are separated by dotted lines. TheBi axis is broken in(b).
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We now explain why the dottedDIz= +1 transition lines
in the MDDB+AB region of the more weakly coupled QM’s
calculated by LSDFT should have the opposite trend, with
Bi, to the dashed lines joining the observed isospin-flip fea-
tures in Fig. 1. Figure 3 shows(a) an expanded view of part
of the experimental data taken from Fig. 1(c) for the b
=6.0 nm QM, and(b) the results of a relevant Hartree-Fock
(HF) model calculation showing regions of differentIz
within the MDDB+AB that complements the phase diagrams
in Figs. 2(b) and 2(c) calculated by LSDFT.

Full details of the unrestricted self-consistent HF imple-
mentation can be found in Ref. 8. The calculation shows the
B-field evolution of the GS electrochemical potentials.DSAS
is set to 0.7 meV. The calculation is only for(consecutive)
N-values from 1 to 10, and"v0 is a constant with a value of
3 meV. Thus, the region ofN is below that of the main focus
of Figs. 1 and 2, and since the lateral confinement energy is
N-independent, we do not expect this calculation to repro-
duce well the position of the integer filling factor phase
boundaries. Additionally, correlation effects are not properly
included, so one should be cautious when the spin is not
maximal, for example, in spin-flip regions below the
MDDB+AB. Nonetheless, it does shed light on the general
properties of the spin-polarized MDDB+AB region. We can
say the following which clearly extrapolate to higherN: (i)
To the right of the line marked “spin polarized” the
MDDB+AB exists, and on increasing the magnetic field AB-
states depopulate one-by-one until they are all empty. Each
isospin-flip is marked by an arrow;(ii ) For even-N (odd-N),
there are changes inIz with DIz= +1 such thatIz follows the
sequence0,1,2, . . . ,N/2 s1/2,3/2, . . . ,N/2d; (iii ) For even-
N values or odd-N values separately, regions of differentIz
are separated by dotted lines which run approximately from
bottom-right to top-left(this is also consistent with what is

shown in Figs. 2(b) and 2(c) for even-N values
12,16, . . . ,32,36); (iv) For consecutive-N values(even and
odd), the removal of an electron from a specific AB-state is
identified by a dashed line that runs from bottom-left to top-
right. There are several of these lines, since asN increases,
,N/2 AB states need to be depopulated. Such lines we ex-
pect to see in the experimental data and indeed we do see
these(dashed) lines in Figs. 1(b) and 1(c); and (v) As N
increases, for even-N, the extent of theIz=0 region decreases
steadily to zero since theIz=0→1 transition line terminates
on the “spin polarized” line. This trend seems likely to occur
for other (both even- and odd-N) Iz regions, and this would
be consistent with the LSDFT calculations.

The experimental data is for theb=6.0 nm QM and fo-
cuses on the boxed region of Fig. 1(c) near 4 T showing the
Coulomb oscillations forN-values between 14 and 20. We
can say the following:(i) Starting from the left boundary of
the MDDB+AB region, there are “wiggles,” both peaks and
troughs, in the Coulomb oscillation positions which seem not
to clearly continue beyond the right boundary. Actually these
“wiggles” too are(weakly) present in the GS electrochemical
potentials in the HF calculation;(ii ) For any given Coulomb
oscillation, we attribute each peak marked by an arrow to the
magnetic field induced transfer of an electron from a specific
AB state to an empty B state(i.e., an isospin-flip: also see
relevant cartoon in Fig. 1). In a s.p. picture, to the left(right)
of each such peak, the electron most recently added to the
QM is placed in the highest unoccupied “up-going” AB
(“down-going” B) state. To make this clear in the figure, the
“up-going” (“down-going”) part of each Coulomb oscillation
within the MDDB+AB region is artificially colored light-grey
(dark-grey). Alternatively, we have also drawn faint guide
lines on four consecutive Coulomb oscillations in the
MDDB+AB region to emphasize the underlying “honey-

FIG. 3. (a) Expanded view of phase diagram taken from Fig. 1(c) for theb=6.0 nm QM in the vicinity of the MDDB+AB for 13,N,21.
(b) Evolution of the GS electrochemical potentials(in units of the effective Rydberg constant, Ry* =5.93 meV) with magnetic field(in units
of the cyclotron energy"vc normalized by the constant lateral confinement energy"v0=3 meV) obtained by an unrestricted HF calculation
for a QM with DSAS=0.7 meV forN,10 showing regions of differentIz within the MDDB+AB. In (a), feint guide lines are drawn on four
consecutive peaks in the MDDB+AB region to emphasise the underlying “honey-comb” like structure. Within this region, the dotted and
dashed lines, and the arrows, have the same meaning in(a) and (b) as discussed in the text.
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comb” like structure arising from the pattern of alternately
filling AB and B states. Clearly the number of(arrowed)
peaks is much less thanN/2, so apparently the MDDB+AB in
reality breaks down well beforeIz reachesN/2 (again con-
sistent with the LSDFT calculation); (iii ) For consecutive-N
values(even and odd), the (arrowed) peaks marking the de-
population of a given AB state lie on a dashed line. There is
in fact a one-to-one correspondance with the three dashed
lines here in(a) with those in the boxed region of Fig. 1(c).
Such lines run from bottom-left to top-right, and they also
correspond to the dashed lines with the same trend in the HF
calculation; and(iv) Dotted lines, alternately linking peaks
and troughs in neighboring Coulomb oscillations run from
bottom-right to top-left and terminate on the left boundary of
the MDDB+AB. These lines identify the boundaries of regions
that for even-N and odd-N values separately have the sameIz
number(again consistent with both the HF and LSDFT cal-
culations). For any given Coulomb oscillation, the highest
unoccupied B and AB states are alternately filled between the
dotted lines.

We make some further comments:(i) No “exact” calcula-
tion exists for the QM physics we focus on, and both HF
theory and LSDFT are based on approximations. Nonethe-
less, the HF and LSDFT calculations we present are qualita-
tively consistent with the experimental data for MDDB+AB,
although the HF calculation clearly overestimates the num-
ber of observed isospin-flips, while the LSDFT slightly un-
derestimates the number of observed isospin-flipss!N/2d.
Quantitatively, the LSDFT with anN-dependent"v0 also
explains best the position and extent of the integer filling
factor phases;(ii ) Just in case our choice of calculating the
phase diagrams in Fig. 2 by LSDFT for just the even-N val-
ues of 12,16, . . . ,32,36 did not capture the true general pic-
ture, we additionally determined the position of the left
boundary of the MDDB+AB, and the initial value ofIz on and
just to the right of this boundary for otherN values(both
even and odd), specifically for theb=6.0 nm QM. ForN
=14, 18, 22, and 26(N=13,15,21,23), as expected, and con-
sistent with the HF picture,Iz=0 sIz=1/2d, and the left
boundary of MDDB+AB at theseN values is always within
0.1 T of the extrapolated left boundary line in Fig. 2(c).
These “extra” data points have been added to this figure(tri-
angles).

V. nT=4 PHASE AND MDDB PHASE FOR WEAKLY
COUPLED QUANTUM MOLECULES

We conclude by discussing two important topics, ad-
dressed directly by the LSDFT calculations, for the weakly
coupled QM’s: namely, the isospin properties within the ad-
jacent integer filling factor phase below the MDDB+AB phase
snT=4d, and the stability of the MDDB phasesnT=1d located
beyond the MDDB+AB phase.

For theb=4.7 and 6.0 nm QM’s, the LSDFT calculations
reveal anT=4 phase built from thenB=2 andnAB =2 phases.
In the experiment, we can currently only clearly identify the
start of this phase at aBi of about half that of the onset of the
MDDB+AB phase. Note that our original choice ofN=4M
was partly motivated by the idea that thenT=4 phase would

correspond to total spinSz=0 states as for single QD’s.28

However, due to the isospin degree of freedom, this is not
always the case, as can be seen in the rightmost panel of Fig.
2 for instance, where a “strip” ofSz=1 sIz=1d states splits
theSz=0 sIz=0,2d states of thenT=4 phase. More generally,
for N=4M, the LSDFT gives alternating regions ofSz
=1 sIz=oddd andSz=0 sIz=evend states that are separated by
dotted lines in Fig. 2. The valueSz=1 arises because there
are two unpaired electrons, one each in edge B and AB s.p.
states(seenT=4 schematic inset in Fig. 1). Defining thenT
=4 phase in a broader sense, as the last(nearly) Sz=0 phase
with occupied s.p. states whose orbital angular momenta
range froml =0 to ,N/4 in the four Bs↑ ,↓d and AB s↑ ,↓d
sub-bands, one may picture a “quasi”nT=4 phase with a rich
internal isospin structure for which, as a general rule, the
constraintN=4M implies that odd isospin regions also cor-
respond toSz=1 values. The even-to-odd isospin transitions
in the nT=4 phase for weakly coupled QM’s are achieved
simultaneously withDSz=1 jumps. Because of this, the sys-
tem acquires edge magnetization, i.e., the spins of two elec-
trons in largel B and AB s.p. states are aligned producing a
Sz=1 state, and this lifts the quasidegeneracy ofs↑ ,↓d B or
AB states(recall the Zeeman energy here is very small). This
is due to the spin dependence of the exchange-correlation
potential.15,28 One can thus regard the isospin transistions as
“spin-flip-driven.” Note the odd-to-even isospin transitions
proceed in the opposite way withDSz=−1 jumps. In contrast,
in the MDDB+AB phase, electrons are always spin polarized,
i.e., the isospin transitions here are not spin-flip driven. To
illustrate all these distinctions, we have displayed in Fig. 4
the b=6.0 nm QM s.p. energies forN=24 andBi values
corresponding tonT=4, for Iz=0, 1, and 2, and also tonT
=2 sMDDB+ABd, for Iz=1.

A delicate question is whether the MDDB phase exists or
not for weak coupling at higher magnetic fields. Experimen-

FIG. 4. Single particle energies« for the N=24 b=6.0 nm QM
as a function of the s.p. orbital angular momentuml. Boldfaced
(open) triangles correspond to B(AB) states. Upward(downward)
triangles represent↑ s↓d spin electrons. The horizontal line indicates
the Fermi level. TheBi, Sz andIz values are indicated in each panel.
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tally, we cannot identify this phase at a field approximately
twice above that of thenT=2 line in Fig. 1. Indeed, as for the
b=2.5 nm QM and a single QD, the amplitude of the current
oscillations falls-off and other as yet unexplained features
appear forBi *7 T.18 As already noted, the experimentalb
=2.5 nm MDDB has a narrower stability range than that of a
single QD, so it appears empirically that the MDDB phase
becomes less stable asDSAS is reduced(see also Ref. 9).
Turning to the calculated phases in Fig. 2, the MDDB is
identified for theb=4.7 nm QM, but the range of stability is
much reduced, and it becomes “zero” forN.28. For theb
=6.0 nm QM, if the MDDB is stable at all in any meaningful
sense, it has almost zero extent, i.e., it is a “line,” and is
located at,8.7, 8.3, and 8.0 T forN=16, 20, and 24, respec-
tively.

An interesting point is whether a slight energy mismatch
between the two weakly coupled QD’s would help to stabi-
lize the MDDB phase. This mismatch, leading to a slightly
asymmetric double dot system, is unintentionally introduced
in the fabrication of the QM’s. An offset of,1–2 meV be-
tween the two quantum wells(still small relative to the depth
of the two wells of 225 meV), has a sizeable effect on the
addition energy spectra of weakly coupled “heteronuclear”
QM’s for N,12.14 We wondered if mismatch might help
favor the existence of the MDDB phase. However, the effects
of mismatch and self-consistency, especially for the large-N
values here, are nontrivial. So in fact, the properties of the
large N MDDB phase listed above remained practically un-
changed when a realistic mismatch energy was included in
the LSDFT calculation. Only for smallN values, i.e., when
the electron interaction energy is relatively small, did we find
that the mismatch helps a little to stabilize the MDDB phase.
For example, a mismatch of 2 meV yields for theN=12, b
=6.0 nm QM a narrow MDDB phase at,9.1 T, whereas

without mismatch this phase does not appear. We note that
experimentally, from data published in Ref. 5, the influence
of mismatch and the value of the mismatch energy dimin-
ishes steadily asN increases.

VI. SUMMARY

Gated submicron vertical triple barrier structures are ideal
for studying complex and fundamental properties of coupled
quantum dots, i.e., quantum dot molecules. The inter-dot dis-
tance in our QM’s is determined at growth. This then allows
us to study how the ground state configurations(“phases”) of
QM’s whose constituent QD’s are coupled to different de-
grees change as a function of applied magnetic field. At large
N, we have clearly observed maximum density droplet states
composed of electrons in both bonding and anti-bonding
states(weak coupling case) or just bonding states(strong
coupling case), and other integer filling factor phases. For
weak interdot coupling, we have demonstrated that the exis-
tence of such phases can give rise to isospin-flip events due
to the systematic one-by-one depopulation of antibonding
states. Additionally, for weakly coupled quantum molecules,
we have also predicted the possibility of “spin-flip-driven”
isospin transistions in thenT=4 phase, and discussed the
reduced stability of the MDDB phase.
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