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Spanning avalanches in the 3D Gaussian Random Field Ising Model(3D-GRFIM) with metastable dynamics
at T=0 have been studied. Statistical analysis of the field values for which avalanches occur has enabled a
Finite-Size Scaling(FSS) study of the avalanche density to be performed. Furthermore, a direct measurement
of the geometrical properties of the avalanches has confirmed an earlier hypothesis that several types of
spanning avalanches with two different fractal dimensions coexist at the critical point. We finally compare the
phase diagram of the 3D-GRFIM with metastable dynamics with the same model in equilibrium atT=0.
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I. INTRODUCTION

According to classical equilibrium thermodynamics, first-
order phase transitions occur on a transition line on the
temperature-field phase diagram. The field here is generic
and represents the conjugated intensive force of the relevant
extensive order parameter that displays a macroscopic dis-
continuity when the transition line is crossed. In real systems
with intrinsic disorder, however, first-order phase transitions
do not really obey such a paradigm. First of all, due to the
existence of metastability, the transition line splits into two
transition lines corresponding to the forward and reverse
transitions. This hysteresis, which may extend over many
degrees in temperature, is sometimes caused by the fact that
the system is driven too fast and equilibrium cannot be
reached. In other cases, nevertheless, hysteresis cannot be
avoided (rate-independent hysteresis) indicating the exis-
tence of enormous energy barriers in the system usually
caused by the interplay of disorder and long-range forces
(elastic, dipolar, etc.). Besides hysteresis, a second interest-
ing phenomenon is the fact that the metastable transition in
some cases splits into many consecutive small jumps that
occur over a broad region(and not a line) on the phase dia-
gram. Such steps, which correspond to changes from one
metastable state to another, are often called avalanches.1 In
many cases the avalanches do not show any characteristic
size (energy, duration, etc.) but range from microscopic to
macroscopic scales, distributed according to a power law.
The exponents characterizing such distributions have been
called critical exponents given the parallelism with standard
equilibrium critical phenomena.

This out-of-equilibrium phenomenon has been found to
be associated with magnetic transitions,2–4 ferroelectric
transitions,5 capillary condensation,6,7 martensitic
transformations,8 and others.9 A crucial ingredient in order to
observe such avalanches is that thermal fluctuations are very
small compared with the energy barriers that separate trans-
formed and untransformed domains. For this reason, such
first-order phase transitions have been called “athermal”10 or
“fluctuation-less.”11,12

Within this context the 3D-GRFIM with metastable dy-
namics is a prototype model: the complexity of what we call

a “disorder” in a real system is simplified into a series of
quenched random fields, Gaussian distributed with zero
mean and standard deviations, which act on every spin of a
3D Ising model. In addition, one assumes that temperature is
zero sT=0d and provides the model with a particular meta-
stable dynamics in order to study the evolution of the mag-
netizationm when the external fieldH is swept. The details
of dynamics of these systems were introduced a decade
ago.13–15The basic assumption is that the driving field rate is
slow enough so that system relaxation can be considered
instantaneous(adiabatic driving). Such relaxations are the
so-called magnetization avalanches.

After the introduction of the model, several works16–21

described the basic associated phenomenology:(a) the exis-
tence of a disorder-induced critical point ats=sc associated
with the change from a continuous to a discontinuous hys-
teresis loop and(b) the fact that within a large region around
the critical point the distribution of avalanche sizesDssd ex-
hibits almost power-law behavior. Nevertheless, several
questions remain unsolved, mostly related to the properties
of the spanning avalanches which are responsible for the
observed macroscopic discontinuities in theH-m hysteresis
loop and in thes-H phase diagram.

More recently, a FSS analysis of the number of ava-
lanches and avalanche size distribution22 has revealed that
the scenario is quite complex. This study was restricted to
the statistical analysis of the full set of avalanches recorded
in a half loop, irrespective of the field valuesH where such
avalanches occur.(The obtained statistical distributions are
often called integrated distributions). A detailed study as a
function of H has not been done before. An initial attempt
was presented19 but any dependence on system size was ne-
glected.

Let us summarize here the main results presented in Ref.
22, in order to introduce the notation. By numerically simu-
lating systems of sizeL3L3L, avalanches were recorded
over the half loops by sweeping the field from̀ to −`.
Classification of the avalanches starts by checking whether
the avalanches span the system in 1, 2, or 3 spatial
directions.23 The three types of spanning avalanches are in-
dicated by the subscripta=1,2,3,respectively and nonspan-

PHYSICAL REVIEW B 70, 214422(2004)

1098-0121/2004/70(21)/214422(14)/$22.50 ©2004 The American Physical Society214422-1



ning avalanches are indicated bya=ns. The finite-size scal-
ing analysis was performed by measuring two basic
quantities as a function ofs: the average number of ava-
lanches Nass ,Ld and the integrated size distribution
Dass;s ,Ld. Table I shows the scaling hypothesis of these
two quantities for the different kinds of avalanches. The data
collapses in order to check such a hypothesis were obtained
by choosing an appropriate scaling variableu which mea-
sures the distance to the critical value of the disordersc
=2.21±0.02. Its precise definition is given as a second-order
expansion:

u =
s − sc

sc
+ ASs − sc

sc
D2

, s1d

with A=−0.2. This expression was found to be the best
choice for the collapse of the data corresponding to different
L. The values of the critical exponents are summarized in
Table II, together with the new exponents that will be com-
puted in the present work.

To obtain good scaling collapses of the 3D-spanning ava-
lanches, an extra hypothesis was introduced: they can be
separated into two subcategories, subcriticalsa=3−d and
critical sa=3cd that scale with different exponents. In par-

ticular, this assumption indirectly leads to the conclusion that
they must have different fractal dimensionsd3− and df.
Moreover, nonspanning avalanchessa=nsd should also be
separated into two subcategories: noncriticalsa=ns0d and
critical sa=nscd, depending on whether their number and
size distribution scales with distance to the critical pointu or
not.

Figure 1 presents a summary24 of the scaling functionsÑa
according to the results in Ref. 22. From the behavior of such
scaling functions whenuL1/n→ ±` one can sketch out the
scenario in the thermodynamic limit. Belowsc one subcriti-
cal 3D-spanning avalanche exists, which is responsible for
the observed discontinuity of the magnetization in the ther-
modynamic limit. Such a discontinuity is the order parameter
and vanishes when approachingsc

− according toDm~ ssc

−sdb3−, with an exponentb3−=ns3−d3−d=0.024±0.012.
Nevertheless, it is difficult to find this critical behavior from
simulations of finite systems since the contributions from
critical spanning avalanches(a=1,2 and 3c) may lead to
quite good(but incorrect) scaling collapses of the order pa-
rameter usingbc=ns3−u−dfd=0.15±0.08.

A large number of noncritical nonspanning avalanches ex-
ist for the whole range ofs. They cannot contribute to any

TABLE I. Classification of the different types of avalanches in the 3D-GRFIM according to their geometrical properties and their
finite-size scaling behavior. Nonspanning avalanches and 3D-spanning avalanches exhibit mixed scaling behavior(indicated in square
brackets). They can be separated into two subcategories.

Avalanche type a Average number Size distribution

Nonspanning ns Nnsss ,Ld fNns=Nnsc+Nns0g Dnsss;s ,Ld fNnsDns=NnscDnsc+Nns0Dns0g
Critical nonspanning nsc Nnscss ,Ld=LunscÑnscsuL1/nd Dnscss;s ,Ld=L−tnscdfD̃3cssL−df ,uL1/nd
Noncritical nonspanning ns0 Nns0ss ,Ld=L3Ñns0ssd
1D spanning 1 N1ss ,Ld=LuÑ1suL1/nd D1ss;s ,Ld=L−dfD̃1ssL−df ,uL1/nd
2D spanning 2 N2ss ,Ld=LuÑ2suL1/nd D2ss;s ,Ld=L−dfD̃2ssL−df ,uL1/nd
3D spanning 3 N3ss ,Ld fN3=N3c+N3−g D3ss;s ,Ld fN3D3=N3cD3c+N3−D3−g
critical 3D spanning 3c N3css ,Ld=LuÑ3csuL1/nd D3css;s ,Ld=L−dfD̃3cssL−df ,uL1/nd
Subcritical 3D spanning 3− N3−ss ,Ld=Ñ3−suL1/nd D3−ss;s ,Ld=L−d3−D̃3−ssL−d3−,uL1/nd

TABLE II. A summary of the values of the critical exponents of
the 3D-GRFIM with metastable dynamics, obtained in Ref. 22 and
in the present work, as indicated in the last column.

Exponent Best value Ref.

n 1.2±0.1 22

u 0.10±0.02 22

unsc 2.02±0.04 22

df 2.78±0.05 22, this work

d3− 2.98±0.02 22, this work

tnsc 1.65±0.02 22

bc 0.15±0.08 22

b3− 0.024±0.012 22

1/m 1.5±0.1 This work

FIG. 1. Scaling functions corresponding to the number of 1D-,
2D-, critical 3D- and subcritical 3D-spanning avalanches in the 3D-
GRFIM as found in Ref. 22. The symbols show the overlap of the
data corresponding to numerical simulations with many different
system sizes ranging fromL=5 to L=48.
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observed macroscopic jump since their size is vanishingly
small in the thermodynamic limit. Ats=sc the 6 categories
of avalanches exist. On average, one finds 0.79±0.02 sub-
critical 3D-spanning avalanches and an infinite number of
the five other types of avalanches. At the critical point(or
close enough to it), the distribution of avalanche sizes is
dominated by critical nonspanning avalanches and exhibits
an approximate power-law behavior with an exponenttef f
=tnsc+s3−unscd /df =2.00±0.06. This power law behavior is
restricted to the central part of the avalanche size distribution
1!s!L3.

In the present paper we will concentrate on the 4 different
types of spanning avalanches, extending the finite-size scal-
ing analysis and focusing on(i) the study of the values of the
external field for which the spanning avalanches occur and
(ii ) the direct measurement of the geometrical properties of
the avalanches. This will enable the critical exponentm, re-
lated to the renormalization group(RG) flow along the field
direction, to be found and to have a direct test of the FSS
hypothesis that leads to the separation of the two types of
3D-spanning avalanches(critical and subcritical) with differ-
ent fractal dimensions:df =2.78±0.05 andd3−=2.98±0.02.

In Sec. II we summarize the 3D-GRFIM and the details of
our numerical simulations. In Sec. III raw numerical results
are presented. In Sec. IV we discuss the main FSS hypoth-
esis, as an extension of those presented previously. These
hypotheses are checked in Sec. V. In Sec. VI we determine
the geometrical properties of the avalanches. In Sec. VII we
discuss the consequences of the present study and, finally, in
Sec. VIII we summarize and conclude our findings.

II. MODEL

The 3D-GRFIM is defined on a cubic lattice of sizeL
3L3L with periodic boundary conditions. On each lattice
site si =1, . . . ,L3d there is a spin variableSi taking values ±1.
The Hamiltonian is

H = − o
i,j

n.n.

SiSj − o
i=1

L3

hiSi − Ho
i=1

L3

Si , s2d

where the first sum extends over all nearest-neighbor(n.n.)
pairs, H is the external applied field andhi are quenched
random fields, which are independent and are distributed ac-
cording to a Gaussian probability density with zero mean and
standard deviations.

The equilibrium ground statesT=0d of this Hamiltonian
has been recently studied.25 In this work we focus on the
metastable version of the 3D-GRFIM proposed for the analy-
sis of the behavior atT=0 when the system is driven by the
external fieldH. For H= +` the state of the system which
minimizes H is the state with maximum magnetizationm

=oi=1
L3

Si /L
3=1. When the external fieldH is decreased, the

system evolves following local relaxation dynamics. The
spins flip according to the sign of the local field:

hi + H + o
j=1

6

Sj , s3d

where the sum extends over the 6 nearest-neighboring spins
of si. Avalanches occur when a spin flip changes the sign of
the local field of some of the neighbors. This may start a
sequence of spin flips which occur at a fixed value of the
external fieldH, until a new stable situation is reached.H is
then decreased again. The size of the avalanches corre-
sponds to the number of spins flipped until a new stable
situation is reached. Note that the corresponding magnetiza-
tion change isDm=2s/L3.

The numerical algorithm we have used is the so-called
brute force algorithm which propagates one avalanche at a
time.20 We have studied system sizes ranging fromL=5sL3

=125d to L=180sL3=5832000d. The measured properties
are always averaged over a large number of realizations of
the random field configuration for each value ofs, which
ranges between more than 104 for Lø80 to 300 for L
=180.

We have recorded the sequence of avalanche sizes during
half a hysteresis loop, i.e. decreasingH from +` to −`. We
have determined not only the sizes of each individual ava-
lanche, but also the fieldH at which each avalanche occurs.
The avalanches have been classified as nonspanning, 1D-
spanning, 2D-spanning, and 3D-spanning as explained in
Ref. 22.

By performing statistics, we obtain the average density of
avalanches for each type occurring within an intervalsH ,H
+dHd.26 We will call this quantity the number density
nasH ;s ,Ld. It satisfies

E
−`

`

dHnasH;s,Ld = Nass,Ld, s4d

where Nass ,Ld are the average number of avalanches of
each type22 defined in Table I. We have also measured the
bivariate size distributionDass,H ;s ,Ld. This probability
density is normalized so that

o
s=1

L3

E
−`

`

dHDass,H;s,Ld = 1. s5d

Note that by projectingDa we can obtain the two marginal
distributions:

o
s=1

L3

Dass,H;s,Ld =
nasH;s,Ld
Nass,Ld

s6d

and

E
−`

`

dHDass,H;s,Ld = Dass;s,Ld, s7d

which represent the probability density of finding an ava-
lanche of typea within sH ,H+dHd and the probability(in-
tegrated distribution) that an avalanche of typea has a sizes
(after the half loop), respectively.
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In the following sections bivariate distributions will be
presented as point clouds and the marginal distributions as
histograms. Point clouds provide qualitative understanding
of the distributions. A quantitative analysis is much better
performed from the marginal distributions and their mo-
ments. The average field where the different types of ava-
lanches occur will be particularly interesting:

kHlass,Ld =E
−`

`

dHH
nasH;s,Ld
Nass,Ld

, s8d

and its standard deviation:

sa
Hss,Ld = skH2la − kHla

2d1/2. s9d

In order to have a direct determination of the fractal di-
mension of the spanning avalanches we have performed a
sand box counting analysis.27 This is a standard method for
the analysis of a random fractal that allows a statistical char-
acterization of the spatial distribution of the mass(number of
spins) of the avalanches. The method consists of considering
boxes of linear sizel [ranging from 13131,33333,5
3535, . . ., up tosL−1d3 sL−1d3 sL−1d] centered near the
spin that triggered each spanning avalanche. We determine
the number of spins that belong to the avalanche for each
box. By averaging over all the avalanches of the same type
(occurring during a half loop) and over many disorder real-
izations, we obtain the average massMasl ;s ,Ld as a func-
tion of the box lengthl for different values ofs andL.

III. NUMERICAL RESULTS

Figure 2 shows a point cloud corresponding to
D3ss,H ;s ,Ld for L=48 and different values ofs. As can be
seen, belowsc 3D-spanning avalanches are large, close to
s=L3 and exhibit a certain spread around a value ofH which
shifts upwards whensc is approached from below. Ats
=sc the avalanches concentrate around a critical field value

Hc.−1.42 and span almost all possible sizes. Abovesc the
few existing 3D-spanning avalanches are small. In fact, they
are smaller than the mean size of a percolating cluster in a
3D cubic latticess=0.311L3d.

Figure 3 shows the point clouds corresponding to non-
spanning, 1D-, 2D-, and 3D-spanning avalanches ats=sc.
Nonspanning avalanches are suppressed from the main plot,
but are shown in the inset on a log-linear scale. As expected,
spanning avalanches concentrate aroundHc. 3D-spanning
avalanches exhibit a larger size than 2D-spanning avalanches
and the latter show a size larger than 1D-spanning ava-
lanches. Moreover, one can see that 3D-spanning avalanches
are distributed in a double cloud. As will be seen, these two
clouds correspond to the two types of 3D-spanning ava-
lanches predicted in Ref. 22.

The dependence on the system sizeL is illustrated in Fig.
4. The point clouds represent the distribution of spanning
avalanches ats=sc for increasing values ofL. The three

FIG. 2. Point clouds corresponding to 3D-spanning avalanches
for a system with sizeL=48. Each point corresponds to an indi-
vidual avalanche and indicates the sizes and the field where it
occurredH. Clouds corresponding to different values ofs are indi-
cated by different symbols. Data have been averaged over many
realizations of disorder. The dashed line indicates the maximum
values=L3.

FIG. 3. Point clouds corresponding to 1D-, 2D-, and 3D-
spanning avalanches ats=sc for L=48. The inset shows, on a
log-linear scale, the same data together with the cloud correspond-
ing to nonspanning avalanches.

FIG. 4. Point clouds corresponding to 1D-(a), 2D- (b) and
3D-spanning avalanches(c) at s=sc for increasing system sizes, as
indicated by the legend. The same horizontal scale is used on the
three plots. The dashed line indicates the critical fieldHc=−1.425.
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plots correspond to(a) 1D-, (b) 2D-, and (c) 3D-spanning
avalanches. The dashed line corresponds to our estimated
value ofHc=−1.425 that will be obtained from the fit below.
Note that all types of spanning avalanches tend to concen-
trate around such a field value for increasing system sizes.
The shape of the cloud corresponding to 3D-spanning ava-
lanches remains asymmetric, whileL grows.

To obtain a quantitative measure ofHc, we have com-
puted the field averageskHl1, kHl2, andkHl3. Their behavior
as a function ofL at s=sc is plotted in Fig. 5(a). In the next
sections an FSS analysis will be formally proposed. Never-
theless, from the behavior in Fig. 5(a) one can already guess
the following scaling hypothesis:

kHlassc,Ld − Hc , − CaL−1/m, s10d

wherem will be the exponent governing the divergence of
the correlation length when the fieldH approachesHc at s
=sc. A first check of this hypothesis is performed in Fig. 5(b)
by a 3-parameter(Hc, m, andCa) least-squares fit to the three
sets of data corresponding to system sizes fromL=8 to L
=80. We have consistently obtained the same values of
1/m=1.5±0.1 andHc=−1.425±0.010 forkHl1, kHl2, and
kHl3 for the three fits. Results are indicated by dotted lines in
Figs. 5(a) and 5(b).

IV. FINITE-SIZE SCALING HYPOTHESIS

A. Scaling of distributions

To proceed with the analysis of the numerical data one
must postulate thead-hocFSS hypothesis. As done in Ref.
22, we follow standard RG arguments. The distance to the
critical point ssc,Hcd is measured with two scaling variables
uss ,Hd andvss ,Hd, which depend on the externally tunable
parameterss andH. After a renormalization step that trans-
forms the system sizeL as

Lb = b−1L. s11d

u, v, and the sizes of an avalanche of typea will behave as

ub = b1/nu, vb = b1/mv, sb = b−das, s12d

whereda are the fractal dimensions of the avalanches and the
exponentsn andm control the divergence of the correlation
length when approaching the critical point along the two
directionsu and v. Consequently, in order to formulate the
FSS hypothesis, we will consider the following three main
RG invariants:

uL1/n = ubLb
1/n, s13d

vL1/m = vbLb
1/m, s14d

sL−da = sbLb
−da. s15d

Therefore, close enough to the critical point the bivariate
distributionsDass,H ;s ,Ld will behave as

Dass,H;s,Ld = L−da+1/mD̂assL−da,uL1/n,vL1/md, s16d

where da is df =2.78 for the 1D-, 2D-, and critical 3D-
spanning avalanches andd3−=2.98 for the subcritical 3D-
spanning avalanches, as found in Ref. 22.

The number densitiesnasH ;s ,Ld will behave as

nasH;s,Ld = Lua+1/mn̂asuL1/n,vL1/md, s17d

where ua is uc=0.1 for the 1D-, 2D-, and critical 3D-
spanning avalanches andua=0 for the subcritical 3D-
spanning avalanches. The FSS hypothesis(16) and (17) ex-
tend the hypothesis presented in Table I including the
dependence on the external fieldH.

B. Detailed scaling variables

The proper dependence of the scaling variablesu andv on
the tunable model parameterss and H is unknown, but it
should be analytic.28,29Keeping this in mind, we consider the
following second-order expansion arounds=sc andH=Hc:

u = u1 + Au1
2 + A8v1 + A9u1v1 + A-v1

2, s18d

v = v1 + Bv1
2 + B8u1 + B9u1v1 + B-u1

2, s19d

whereu1=ss−scd /sc andv1=sH−Hcd /Hc are the first-order
scaling variables. These variables represent the simplest

FIG. 5. (a) Average fieldskHlassc,Ld where avalanches of each
kind a=1,2,3occur. The dashed line indicatesHc=−1.425 and the
dotted lines correspond to power-law fits.(b) The same data repre-
sented on log-log scales. The lines indicate the power-law behavior.
Note that the 3 types of spanning avalanches exhibit the same ex-
ponent. Data correspond to simulations of systems with sizes rang-
ing from L=8 to L=80.
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choice to measure the distance to the critical point. Now we
want to check which corrections to the first-order scaling
variables are really important for large system sizes. Con-
sider a functionFsH ;s ,Ld that can be written as

FsH;s,Ld = LaF̂suL1/n,vL1/md, s20d

when the correct scaling variables are considered. In the case
in which we try to obtain scaling collapses with two incor-
rect scaling variablesu8 andv8, an explicit dependence onL
may appear, which makes the collapseL−aF impossible for
different system sizes. In such a situation,

FsH;s,Ld = LaĜsu8L1/n,v8L1/m,Ld, s21d

where we have introduced a “non”-scaling functionĜ that
depends explicitly onL. From (20) and (21), for a given
value ofs andL:

F̂suL1/n,vL1/md = Ĝsu8L1/n,v8L1/m,Ld. s22d

The effective scaling variablesu8 andv8 can be expanded up
to second order:

u8 = u1 + Au1
2 + A8v1 + A9u1v1 + A-v1

2, s23d

v8 = v1 + Bv1
2 + B8u1 + B9u1v1 + B-u1

2. s24d

The difference between F̂su8L1/n ,v8L1/md and

Ĝsu8L1/n ,v8L1/m ,Ld can be obtained using(22) and a second
order Taylor expansion. The result is

F̂su8L1/n,v8L1/md − Ĝsu8L1/n,v8L1/m,Ld = L1/nF̂1suL1/n,vL1/md

3su8 − ud + L1/mF̂2suL1/n,vL1/mdsv8 − vd

+
1

2
L2/nF̂11suL1/n,vL1/mdsu8 − ud2

+
1

2
L2/mF̂22suL1/n,vL1/mdsv8 − vd2

+ L1/n+1/mF̂12suL1/n,vL1/mdsu8 − udsv8 − vd, s25d

where the subindex 1 and 2 in the scaling functionsF̂ indi-
cate the partial derivatives with respect touL1/n and vL1/m,
respectively. Introducing the expansions(18), (19), (23), and
(24) in Eq. (25), defining an appropriate set of eleven func-

tions f̂ isuL1/n ,vL1/md from the derivatives ofF̂, and re-
ordering the terms in(25) we can write

F̂su8L1/n,v8L1/md − Ĝsu8L1/n,v8L1/m,Ld

= sA8 − A8dL1/n−1/mSv1

v
D f̂1 + sB8 − B8dL1/m−1/nSu1

u
D f̂2 + sA − AdL−1/nSu1

u
D2

f̂3 + sB − BdL−1/mSv1

v
D2

f̂4

+ sA9 − A9dL−1/mSu1

u
DSv1

v
D f̂5 + sB9 − B9dL−1/nSu1

u
DSv1

v
D f̂6 + sA- − A-dL1/n−2/mSv1

v
D2

f̂7 + sB- − B-dL1/m−2/nSu1

u
D2

f̂8

+ sA8 − A8d2L2/n−2/mSv1

v
D2

f̂9 + sB8 − B8d2L2/m−2/nSu1

u
D2

f̂10 + sA8 − A8dsB8 − B8dSu1

u
DSv1

v
D f̂11, s26d

where the dependence of the functionsf̂ i on uL1/n andvL1/m

is not written for simplicity.
Given that 1/n=0.8 (Table II) and 1/m=1.5 (Fig. 5), and

noting that only the terms multiplying positive powers ofL
will be important in the thermodynamic limit, we conclude
that only terms in whichB8−B8 appears represent an explicit

dependence ofĜsu8L1/n ,v8L1/m ,Ld on L. Therefore, only the
B8 term is relevant in the thermodynamic limit and thus must
be considered in the expansions(23) and(24). The remaining
coefficients may be neglected. In particular, a term propor-
tional to u1

2 is not necessary if we consider large system
sizes. Such an irrelevance was in fact observed in Fig. 8 of
Ref. 22. Nevertheless, we will retain the quadratic correction
Au1

2 in order to compare appropriately with previous
results.22 In summary, we will use the following approxima-
tions for the scaling variables:

u = u1 + Au1
2, s27d

v = v1 + B8u1. s28d

The correction(28) associated with the distance toHc was
first introduced in Ref. 30 where the parameter analogous to
B8 was called the “tilting” constant. We should mention that
the authors demonstrate the importance of such a correction
with arguments that are slightly different to those proposed
here.

C. Scaling of the field averages and standard deviations

One is now ready to deduce the scaling behavior corre-
sponding to the field averages defined in Eq.(8) and to the
standard deviations defined in Eq.(9). On the one hand, mul-
tiplying the marginal distributionna /Na by H, integrating
over the fullH range, and using the relation(28), we find

Hcs1 − B8u1d − kHlass,Ld = L−1/mĥasuL1/nd. s29d

It is useful to define an “effective” disorder-dependent criti-
cal field Hc

*ssd as
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Hc
*ssd = Hcs1 − B8u1d. s30d

For s=sc we recover the scaling hypothesis proposed in

Eq. (10) with Ca= ĥas0d. In this case we obtain an estimate
of 1/m that is unaffected by the tilting constantB8.

On the other hand, by performing similar calculations, it
is easy to writesa

Hss ,Ld as

sa
Hss,Ld = L−1/mŝa

HsuL1/nd. s31d

Notice that this scaling expression is also unaffected by the
tilting constant.

D. Separation of the two types of 3D-spanning avalanches

From the FSS analysis of the integrated distributions, it
was suggested in Ref. 22 that two types of 3D-spanning ava-
lanches exist with different fractal dimensions. This assump-
tion allowed for excellent collapses of the scaling plots. Nev-
ertheless, the separation of the scaling functions
corresponding to the two types of avalanches was possible
by using a double FSS technique involving the collapse of
data corresponding to three or more different system sizes.
The propagation of the statistical errors within such compli-
cated computations rendered large error bars in the scaling
functions and exponents.

Given the two different fractal dimensions, it would be
desirable to be able to perform a direct classification of the
3− and 3c avalanches during simulations. Nevertheless, this
desirable idea is not possible since, in a finite system, a good
determination of a fractal dimension is only possible after
performing statistics of many avalanches of the same type.

In this work we propose two separation methods that,
although being approximate(a small fraction of avalanches
are not well classified) give enough bias to the statistical
analysis to allow for a determination of the different proper-
ties of subcritical and critical 3D-spanning avalanches.

The idea behind the methods is that for a finite system
that is belowsc, one basically finds one subcritical 3D-
spanning avalanche. The other types of spanning avalanches
may occur only close tosc. Moreover, given their different
fractal dimension, we expect subcritical 3D-spanning ava-
lanches to be larger. Thus, we propose the following two
methods, which will be applied only belowsc.

Method 1: The larger 3D-spanning avalanche in a half
loop is classified as subcritical. The other 3D-spanning ava-
lanches will be considered critical 3D-spanning avalanches.
(We have checked that the larger 3D-spanning avalanche is
also the last 3D-spanning avalanche found when decreasing
the field from H= +` to H=−` in almost all the studied
cases.)

Method 2: We classify a 3D-spanning avalanche as sub-
critical only when no other spanning avalanches occur dur-
ing the half loop. If other spanning avalanches occur, we
classify them as critical 3D spanning. The idea behind this
method(which we will discuss in Sec. VII) is the conjecture
that the subcritical 3D-spanning avalanche, close to, but be-
low sc, fills a large fraction of the system and does not allow
other spanning avalanches to exist.

Table III shows how the two methods classify a certain
3D-spanning avalanche depending on whether the other

spanning avalanches found in the half loop are 1D, 2D or 3D
spanning. In this latter case the fact that the other 3D-
spanning avalanche(s) found are smaller or larger than the
avalanche being classified must be taken into account. The
two methods only differ in the case in which the 3D-
spanning avalanche being classified is the largest, but other
spanning avalanches(either 1D, 2D or smaller 3D) exist in
the loop.

Figure 6 shows an example of the separation of 3D-
spanning avalanches into subcritical and critical, using the
two methods. It corresponds toL=48 andsc=2.21. One can
appreciate that the original double-shaped cloud is separated
into two. The cloud corresponding to critical 3D-spanning
avalanches is similar in shape to the clouds corresponding to
1D- and 2D-spanning avalanches. Note that Method 2 clas-
sifies a certain number of large avalanches, occurring at very
negative fields, as being critical that Method 1 classifies as
being subcritical.

TABLE III. A summary of the classification of a given 3D-
spanning avalanche according to the two methods proposed in the
text.

1D-, 2D-, or smaller 3D-
spanning avalanche

exist

Larger 3D-
spanning

avalanche exist Method 1 Method 2

no no 3- 3-

yes no 3- 3c

no yes 3c 3c

yes yes 3c 3c

FIG. 6. An example of separation of the cloud corresponding to
3D-spanning avalanches into two clouds corresponding to subcriti-
cal and critical avalanches, using Methods 1 and 2 explained in the
text. Note that the number of avalanches classified as subcritical by
Method 2 is smaller than the same number obtained by Method 1.
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The two separation methods will be used throughout the
rest of the text to separately analyze the data corresponding
to subcritical 3D-spanning avalanches and critical 3D-
spanning avalanches. In some of the statistical analysis pre-
sented below we will consider only the 3D-spanning ava-
lanches which are equally classified by the two methods and
discard those which are classified differently from the analy-
sis. Although this procedure reduces the size of the statistical
sample, it ensures that we do not introduce any bias due to ill
classification of some of the avalanches.

V. SCALING COLLAPSES

A. Field averages and standard deviations

Figure 7 presents the scaling collapses corresponding to
the field averages forsøsc. Data is presented on log–log
scales in order to analyze the power-law behavior for
uuuL1/n→`. Figure 7(a) shows data corresponding tokHl1,
kHl2, andkHl3c, whereas Fig. 7(b) shows data corresponding
to kHl3−. We remark that only the 3D-spanning avalanches
equally classified by Methods 1 and 2 have been used for

computing the averages corresponding tokHl3− and kHl3c.
By fixing 1/m=1.5 and takingn=1.2 from Ref. 22 we get
the best collapses forB8=0.25±0.10(unique free param-
eter). We would like to emphasize that the four sets of data
scale extremely well with the same values ofm, n, andB8.

The asymptotic behavior ofĥ3− [the dotted line in Fig.
7(b)] for large values ofuuuL1/n is 2.4suuuL1/nd1.8. The expo-
nent 1.8 equalsn /m within statistical error. This means that,
in the thermodynamic limit,

kHl3−ssd = Hc
*ssd − 2.4uuun/m. s32d

Figure 8 shows this behavior, which finishes at the critical
point ssc,Hcd because no subcritical 3D-spanning ava-
lanches exist above. The disorder-dependent critical field
Hc

*ssd and the critical fieldHc are indicated by dashed and
dotted lines, respectively. We have also plotted the numerical
estimates ofkHl3− for different system sizes in order to show
that Eq. (32) is the limiting behavior for L→`. The

asymptotic behavior ofĥa for the 1D-, 2D-, and critical 3D-
spanning avalanches is proportional tosuuuL1/nd0.9. This im-
plies that in the thermodynamic limit,

kHlassd = Hc
*ssd, s33d

for the 1D-, 2D-, and critical 3D-spanning avalanches.
Similar finite-size scaling analysis can be done for the

standard deviations of the marginal distributionsna /Na ac-
cording to Eq.(31). From the obtained collapses we deduce
the following behavior for large values ofuuuL1/nss
,scd : ŝ3−

H suL1/nd,suuuL1/nd1.0 for the subcritical 3D-
spanning avalanches, andŝa

HsuL1/nd,suuuL1/nd0.2 for the 1D-,
2D-, and critical 3D-spanning avalanches. Similar behavior
is observed fors.sc. These results[see Eq.(31)] indicate
that the standard deviation of the marginal distributionna /Na

corresponding to any type of spanning avalanche vanishes in
the thermodynamic limit for any value ofs.

B. Number density

The number density corresponding to the 1D-spanning
avalanches at the critical amount of disordern1sH ;sc,Ld is

FIG. 7. Scaling plots corresponding to the difference between
kHla and the effective critical disorderHc

*ssd for (a) 1D-, 2D-, and
critical 3D-spanning avalanches and(b) the subcritical 3D-spanning
avalanches. We present only data fors,sc. The four data collapses
are obtained simultaneously by a single free parametersB8d fit. The
dotted lines correspond in each case to the asymptotic behavior of

ĥa when uuuL1/n→`. The scaling plots corresponding to the 1D-
and 2D-spanning avalanches have been displaced one decade up-
wards for clarity. Statistical error bars are smaller than symbol
sizes.

FIG. 8. A representation ofkHl3−ssd [Eq. (32)], Hc
*ssd [Eq.

(30)], and Hc. Symbols correspond to the numerical estimate of
kHl3− from simulations for differentL, as indicated by the legend in
the previous figure.

F. J. PÉREZ-RECHE AND E. VIVES PHYSICAL REVIEW B70, 214422(2004)

214422-8



shown in Fig. 9(a) as a function of the applied field for
different system sizes. The number density shows a peak that
increases and shifts for increasingL. Similar behavior is ob-
served forn2sH ;sc,Ld [Fig. 10(a)]. An FSS analysis is per-
formed using the scaling assumption for the number densi-
ties [Eq. (17)]. The results of such an analysis are presented
in Figs. 9(b) and 10(b) for n1sH ;sc,Ld andn2sH ;sc,Ld, re-
spectively. To obtain these collapses we have usedu=0.1 and
1/m=1.5 as in the preceding sections. The scaling functions
in Figs. 9(b) and 10(b) are well approximated by Gaussian
functions (indicated by continuous lines). When vL1/m

→ ±` both scaling functions go exponentially to zero. This
behavior indicates that, in the thermodynamic limit fors
=sc, 1D- and 2D-spanning avalanches only exist atH=Hc.

Figure 11 shows several cuts corresponding to the scaling
surfacen̂1suL1/n ,vL1/md. From the collapses we confirmB8
=0.25±0.10 in total agreement with previous estimates.
From a qualitative point of view, the collapses indicate that
the scaling surface shows a crest with amplitude depending
on uL1/n. More quantitatively, the scaling collapses for each
cut can be well approximated by Gaussian functions, whose
amplitude, peak position, and width depend onuL1/n. Fur-
thermore, the dependence onuL1/n of the fitted amplitudes
also adjusts very well to a Gaussian function that follows the
profile of the crest(a continuous line on the back plane in
Fig. 11). The dashed line on the bottom plane indicates the

position of the crestkvL1/ml1suL1/nd= ĥ1suL1/nd /Hc, which has
already been shown in Fig. 7(a).

All these considerations imply that, for any value ofH,
the scaling functionn̂1 decays exponentially whenuL1/n

→ ±`. This indicates that, in the thermodynamic limit, irre-
spective of the value ofH, n1 is zero forsÞsc. In contrast,
whens=sc, n1 diverges atH=Hc and is zero for other val-
ues of the field. This scenario forn1 is also applicable ton2.

To obtainn3c andn3− we have used Method 2 of separa-
tion described in Sec. IV D. The results fors=sc are pre-
sented in Figs. 12 and 13 forn3csH ;sc,Ld andn3−sH ;sc,Ld,
respectively. We have also tried to separate the two types of

FIG. 10. (a) Number density of spanning avalanches in two
dimensions at the critical amount of disorder.(b) A scaling plot
corresponding to the data in(a) according to Eq.(17) with u=0.1
and 1/m=1.5. The continuous line in(b) shows a Gaussian fit. No
free parameters are used in this collapse.

FIG. 11. Collapses corresponding ton̂1suL1/n ,vL1/md. The cuts
of the scaling surface are taken atuL1/n=−0.58, 0, 1.22, 2.7, 3.8,
and 5.0. Symbols correspond to the sizes indicated in the legend of
the previous figure. The dashed line on the horizontal plane indi-
cates the tendency of the crest of the scaling surface. The projection
of the crest(Gaussian fit) is depicted with a continuous line on the
planeuL1/n− n̂1. No free parameters are used in this collapse.

FIG. 9. (a) Number density of spanning avalanches in one di-
mension at the critical amount of disorder.(b) Scaling plot corre-
sponding to the data in(a) according to Eq.(17) with u=0.1 and
1/m=1.5. The continuous line in(b) shows a Gaussian fit. No free
parameters are used in this collapse.
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avalanches by Method 1, but the collapses are not as good as
those obtained with Method 2. This result indicates that in
the set of avalanches nonequally classified by the two meth-
ods, there are more critical 3D-spanning avalanches than
subcritical 3D-spanning avalanches.

As in the case ofn1 andn2 at s=sc, the behavior of the
scaling functions in Figs. 12(b) and 13(b) indicate that both
n3c andn3− diverge atH=Hc and are zero for fields different
to Hc. The detailed study of the bivariate collapses corre-
sponding ton3csH ;s ,Ld andn3−sH ;s ,Ld for sÞsc is diffi-
cult and tedious. In particular, fors.sc we do not expect
the separation methods to work and fors,sc, the analysis
would require a lot of statistics.

VI. DIRECT DETERMINATION OF THE FRACTAL
DIMENSIONS

In the thermodynamic limit we assume the standard frac-
tal behavior, i.e. that the average mass belonging to a certain
avalanche type inside a box of linear sizel is given by

Masl ;sd = Ma
* ssdlda, s34d

in the limit l !j, wherej is the correlation length. The pref-
actorMa

* ssd is related to the concept of lacunarity.31 In gen-
eral there can be fractals sharing the same fractal dimension,
but with different lacunarities. The fractal dimension is re-
lated to the rate of change of the average mass when the size
of the box is changed. In contrast, the lacunarity is related to
the size of the gaps of the fractal and is independent of the

fractal dimension. In this way, the larger the typical size of
the gaps, the higher the lacunarity. For many fractals,31,32 as
lacunarity increases, the prefactorMa

* , decreases since the
average mass inside a box of linear sizel decreases.

For finite systems it is necessary to translate the law(34)
into a finite-size scaling hypothesis. As usually done, we
propose the following:

Masl ;s,Ld = LdaM̂asuL1/n,l/Ld; j & L, s35d

where the conditionj&L stands for the fact that scaling only
holds in the critical zone. Equation(35) allows the data cor-
responding to the average massesMa to be collapsed and, in
this way, to obtain the fractal dimensionsda. We can predict

the shape ofM̂a in two limiting cases: on the one hand, the

scaling functionM̂asuL1/n , l /Ld should behave as

M̂asuL1/n, l/Ld = Ma
* suL1/ndS l

L
Dda

, s36d

in the limit l /L!j /L&1 to recover the expression(34) from
(35). On the other hand, in the limitl /L@j /L, the scaling
function corresponding to the subcritical 3D-spanning ava-
lanche should behave as

M̂3−suL1/n,l/Ld , suuuL1/ndb3−S l

L
D3

, s37d

if this avalanche fills a finite fractionuuub3− of the system for
s,sc in the thermodynamic limit23 in such a way that

FIG. 12. (a) Number density of critical 3D-spanning avalanches
at the critical amount of disorder obtained using Method 2.(b)
Scaling plot corresponding to the data in(a) according to Eq.(17)
with u=0.1 and 1/m=1.5. No free parameters are used in this
collapse.

FIG. 13. (a) Number density of subcritical 3D-spanning ava-
lanches at the critical amount of disorder obtained using Method 2.
(b) The scaling plot corresponding to the data in(a) according to
Eq. (17) with u=0 and 1/m=1.5. No free parameters are used in
this collapse.
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M3−sl ;sd , uuub3−l3. s38d

Such behavior can be obtained from Eqs.(37) and(35) using
the hyperscaling relationb3−=ns3−d3−d.

Figure 14 shows the scaled average mass for all types of
spanning avalanches from simulations performed ats=sc.
We have only considered the average mass of those 3D-
spanning avalanches that are equally classified by the two
proposed methods. Note that collapses are performed with a
single free parameter(which is the corresponding fractal di-
mension). The best collapses givedf =2.78±0.05 for the 1D-,
2D-, and critical 3D-spanning avalanches andd3−
=2.98±0.02 for the subcritical 3D-spanning avalanches.
Both values are in total agreement with those obtained inde-
pendently in Ref. 22. Moreover, the slope of each collapse in
the limit l !L (left-hand side of the collapses) coincides with
the fractal dimension used to obtain the collapses, so that the
behavior (36) is confirmed. The prefactors areM1

*sscd
=0.95±0.07,M2

*sscd=0.93±0.07,M3c
* sscd=0.90±0.07, and

M3−
* sscd=0.65±0.07. The low value of the prefactor corre-

sponding to the subcritical 3D-spanning avalanches indicates
that the gaps of these avalanches are large. As a conse-

quence, the space filled locally by these avalanches is not as
high as one woulda priori think given the proximity ofd3−
to 3.

To study the behavior ofM3− for s,sc it is convenient to

multiply the scaling functionM̂3− by the factorsl /Ld−3. From
Eqs.(36) and (37), it should behave as

S l

L
D−3

M̂3− =5M3−
* suL1/ndS l

L
Dd3−−3

,
l

L
!

j

L
,

,suuuL1/ndb3−,
l

L
@

j

L
,6 s39d

in such a way that, for a given value ofuL1/n,0, the func-

tion sl /Ld−3M̂3− approaches a constant value for large values
of l /L if the correlation length is finite. Figure 15 shows the

scaling collapses ofsl /Ld−3M̂3− for three cuts of the scaling
surface taken atuL1/n=−3.73, −7.41, and −13.18. Note that
such cuts are limited from below atl /L=1/80. In spite of
this limitation, the results clearly indicate that(i) for small

values of l /L, the behavior ofsl /Ld−3M̂3− is a power law
with an exponent approachingd3−−3.0.02 (indicated by
the dotted line) and (ii ) for large valuesl /L the function

sl /Ld−3M̂3− tends to a constant value and confirms the hy-
pothesis in Eq.(39). (The latter tendency can only be ob-
served for negative enough values ofuL1/n.) Therefore, one
can deduce thatj /L is finite for s,sc and it decreases when
uL1/n becomes more negative. In addition, the results confirm
the compact character of the subcritical 3D-spanning ava-
lanche for length scales larger thanj, as proposed in Ref. 24
by a different method.

VII. DISCUSSION

The results presented so far together with the results ob-
tained in Ref. 22 provide a clear scenario for the phase dia-
gram of theT=0 3D-GRFIM with metastable dynamics in
the thermodynamic limit.

We have numerically deduced that the subcritical 3D-
spanning avalanche occurring on the transition line given by

FIG. 14. (a) Scaling collapses corresponding to the average
mass of the 1D-, 2D-, and critical 3D-spanning avalanches ats
=sc. The collapses corresponding toM1 and M2 have been dis-
placed two decades upwards for clarity.(b) Scaling ofM3− also at
s=sc. In all cases the asymptotic behavior for small values ofl /L
has been indicated by continuous lines. Their slopes are self-
consistent checks of the proposed scaling behaviors. The dashed

line in (b) corresponds to the asymptotic behavior ofM̂3c to com-

pare it withM̂3−. Note that for this analysis we have used systems
with sizes up toL=180, and that there is a unique free parameter
(fractal dimension) for each data collapse. Statistical error bars are
smaller than symbol sizes.

FIG. 15. Collapses corresponding tosl /Ld−3M̂3−suL1/n , l /Ld for
uL1/n=−3.73, −7.41, and −13.18 on log–log scales. The dashed line
indicates the sloped3−−3=0.02. Continuous lines are a guide to the
eye. No free parameters are used in these collapses. Typical statis-
tical error bars are smaller than symbol sizes.
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Eq. (32) is compact and is thus responsible for the macro-
scopic jump of the magnetization.22 Therefore we are facing
a standard first-order phase transition scenario with no diver-
gence of the correlation length fors,sc. At the critical
point, this subcritical 3D-spanning avalanche becomes frac-
tal at all length scales, and does not fill any finite fraction of
the system. The end pointssc,Hcd is a standard critical point.

Figure 16(a) shows the obtained phase diagram. The
dashed line represents the first-order transition line given by
Eq. (32) and the large dot the critical point. Note that this
transition line is only approximate because it has been de-
duced from scaling arguments close to the critical point.
Nevertheless it is remarkable that Eq.(32) for s=0 renders
kHl3−s0d=−5.113 which is close to the value −4 which can
be computed by a(not so) trivial analysis of the coercive
field of the hysteresis loop of the Gaussian 3D-GRFIM with
metastable dynamics corresponding tos→0+.33

In Fig. 16(b) we also show for comparison the phase dia-
gram of the 3D-GRFIM model in equilibrium atT=0
(ground-state).25 In addition, in Figs. 16(c) and 16(d) we
show the mean field(MF) solutions corresponding to both
the metastable13 and equilibrium34 cases.

The MF scenario indicates that the equilibrium and meta-
stable critical points occur for the same value ofsc=zÎ2/p
(Table IV), wherez is the coordination number. In particular,
z=6 renderssc=4.7873 for the 3D-GRFIM. Belowsc, nev-
ertheless, the transition in equilibrium is a standard first-
order transition(at H=0), whereas it is a spinodal lineHsssd
in the metastable case. From the equations in Refs. 13 and 17
it can be found that the metastability limit is

Hsssd = sÎ2 ln
sc

s
− zFerrSÎln

sc

s
D , s40d

when the external field is decreased.Ferr is the error
function.35 The continuous line in Fig. 16(c) corresponds to

Hsssd for z=6. The spinodal transition is characterized by a
divergence of the fluctuations and the correlation length on
the lineHsssd where the discontinuity of the order parameter
Dm occurs.

In the present work we have shown that when comparing
the exact solutions(non-MF) of both the equilibrium model
and the metastable model, the character of the transition line
does not change. In both cases the transitions are standard
first-order transitions with order parameter discontinuities
and finite correlation length. This result agrees with the
prediction17 that the transition is abrupt ford,8 as deduced
from ane expansion analysis aroundd=8.

As indicated in Fig. 16 and Table IV,sc
eq=2.270±0.004

in equilibrium andsc
met=2.21±0.02 in the metastable case.

Regarding the value of the critical field, it isuHcu=1.425 in
the exact metastable model and zero in the exact equilibrium
model. Thus, when the exact 3D-GRFIM is studied, the criti-
cal point in equilibrium does not coincide with that corre-
sponding to metastable dynamics. Nevertheless, the critical
exponents are the same within statistical errors. The values
are indicated in Table IV.36 In fact, Dahmenet al.17 have
already pointed out this similitude between the critical expo-
nents for both models. These authors argue that agreement
between the two sets of exponents is rather unexpected since
the two models are very different. Nevertheless, one can pro-
vide a plausible argument based on renormalization group
theory that suggests that the critical points in the two models
(3D-GRFIM in equilibrium and the 3D-GRFIM with meta-
stable dynamics) correspond to the same fixed point in a
more general parameter space. Within the framework of RG
theory the critical surface(or critical line) is defined as the
set of all points in the parameter space that flow to a certain
critical fixed point when the renormalization group transfor-
mation is applied. The variation of the tunable parameters of
a model describes a “physical” trajectory in the parameter
space. According to these definitions, the critical point cor-
responds to the point where the “physical” trajectory inter-
sects the critical surface. The two models discussed here can
be considered as particular cases of a more general model
with the same 3D-GRFIM Hamiltonian and the following
T=0 adiabatic dynamics: whenH is varied, blocks of neigh-
boring spins of sizenønmax flip when such a flip represents

FIG. 16. Phase diagram corresponding to the exact 3D-GRFIM
with metastable dynamics(a) and in equilibrium(b). The phase
diagrams corresponding to the mean field approximation of the 3D-
GRFIM with metastable dynamics(c) and in equilibrium(d) are
also shown. The thick continuous line in(c) indicates the spinodal
transition in the metastable solution and the dashed lines in(a), (b),
and (d) indicate the first-order transitions. In all cases we have
indicated the coordinates of the critical point.

TABLE IV. Coordinates of the critical point in thes-H plane
and critical exponents for the 3D-GRFIM in equilibrium and with
metastable dynamics corresponding to the MF approximation and
the exact models.

Magnitude

3D-GRFIM mean field 3D-GRFIM

Equilibrium
(Ref. 31)

Metastable
(Ref. 28)

Equilibrium
(Ref. 24)

Metastable
(This work)

sc zÎ2/p zÎ2/p 2.270±0.004 2.21±0.02

uHcu 0 0 0 1.425±0.010

n 1/2 1/2 1.37±0.09 1.2±0.1

1/m 3 3 1.498±0.034 1.5±0.1

b 1/2 1/2 0.017±0.005 0.024±0.012
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an energy decrease. The metastable dynamics introduced by
Sethna corresponds tonmax=1 (only single spin flips are con-
sidered) and the equilibrium model atT=0 (exact ground
state) corresponds tonmax=`. The parameternmax is a new
parameter that must be considered in the RG equations.
Since a critical point(characterized with the same exponents
within error bars) is found both withnmax=1 andnmax=`, it
is plausible to assume that this is an irrelevant parameter.
Thus, we propose the scenario presented in Fig. 17. Chang-
ing nmax alters the position of the critical point, but not the
critical exponents which correspond to the same critical fixed
point. Numerical simulations of the 3D-GRFIM withnmax
.1 dynamics will help in clarifying this picture. At present
we guess that the RG flow follows the arrows schematically
indicated in Fig. 17. Both the equilibrium critical point
(ECP) and the metastable critical point(MCP) lie on the
same critical surface(CS). In general a first-order phase tran-
sition occurs at the points in the parameter space that go
towards a discontinuity fixed point when the RG transforma-
tion is applied.37 We assume the existence of two disconti-
nuity fixed points: the equilibrium discontinuity fixed point
(EDFP) and the metastable discontinuity fixed point
(MDFP). The EDFP controls the first-order phase transition
in the equilibrium case(nmax

−1 =0 ands,sc
eq) and the MDFP

controls the first-order phase transition whennmax
−1 .0. All the

points that flow towards any of the discontinuity fixed points
define the discontinuity surface(DS) where the first-order
phase transition occurs.

Another interesting question to be discussed is the deter-
mination of the correlation lengthj in the 3D-GRFIM with
metastable dynamics. Avalanches can be understood as the
zero temperature fluctuations in the driven system. Is their
average linear size related toj? The first thing to note is that
we have found that avalanches display two different fractal
dimensions(and thus different associatedb exponents). The
n and m exponents, nevertheless, are the same for all the

scaling collapses. For instance, this is illustrated by Fig. 7 in
this work and by Figs. 8–10 in Ref. 22. Thus the behavior of
the correlation length is unique:

j = u−nĴsunv−md, s41d

with Ĵsxd,x+Osx2d. The fluctuations then can “choose”
between two different mechanisms for propagation either
with fractal dimensiondf =2.78 or with fractal dimension
d3−=2.98. The second point to be considered is thatj cannot
be related to the size of the subcritical 3D-spanning ava-
lanche since we have found thatj is finite belowsc. Keeping
these two observations in mind we propose that the correla-
tion length is related to the average radius of the largest
nonspanning avalanche. Belows=sc the existence of a com-
pact subcritical 3D-spanning avalanche does not allow for
the nonspanning avalanches to overcome a certain finite
length and thusj is finite. Only at the critical point does the
subcritical 3D-spanning avalanche become fractal and allows
for other spanning avalanches to exist andj becomes infi-
nite. This behavior is much similar to what has been recently
found in percolation.38,39 We conjecture that some of the
theorems that have been rigorously proven concerning the
uniqueness of the infinite percolating cluster should be appli-
cable to our case concerning the compact subcritical 3D-
spanning avalanche. The present results should be considered
as an interesting stimulus to proceed with the analysis of
percolation theory. For instance, we propose checking
whether the fractal dimension of the spanning clusters is the
same as that of the infinite cluster at distances lower than the
correlation length at the percolation threshold.

VIII. SUMMARY AND CONCLUSIONS

The results presented in this paper are mainly related to
two topics in the 3D-GRFIM: first, the field dependence of
the spanning avalanches, and second, the geometrical prop-
erties of the avalanches. We have extended the FSS hypoth-
esis proposed in Ref. 22 to properly take into account the
field dependence of the number densitiesnasH ,s ,Ld and of
the bivariate distributionsDass,H ;s ,Ld. When carrying out
such an extension, it is necessary to introduce a new scaling
variablev and a new exponentm related to the divergence of
the correlation length whenH approachesHc sj,sH
−Hcd−md. We have also introduced a scaling hypothesis for
the field kHlass ,Ld at which the different avalanches con-
centrate and their standard deviationsa

Hss ,Ld. From the scal-
ing collapses corresponding to the 1D- and 2D-spanning ava-
lanches we have found 1/m=1.5. The study of the 3D-
spanning avalanches is more intricate as already shown in
Ref. 22, where we propose the existence of two different
types of 3D-spanning avalanches. In this paper we have pro-
posed two approximate separation methods for classifying
these avalanches as subcritical or critical. Using these meth-
ods we have found that 1/m=1.5 for both cases. Scaling
enables the following behavior to be sketched in the thermo-
dynamic limit: The 1D-, 2D-, and critical 3D-spanning ava-
lanches only exist at the critical pointssc,Hcd=s2.21,
−1.425d, where their number densities are infinite. In con-

FIG. 17. Schematic phase diagram of the proposed model in the
spacesH ,nmax

−1 ,sd in the adiabatic limit andT=0. Arrows indicate
the RG flow. The different acronyms stand for Equilibrium Critical
Point (ECP), Metastable Critical Point(MCP), Equilibrium Discon-
tinuity Fixed Point(EDFP), Metastable Discontinuity Fixed Point
(MDFP), Critical Surface(CS), and Discontinuity Surface(DS).
The grey lines correspond to projections of the critical surface on
the vertical planes.
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trast, one subcritical 3D-spanning avalanche exists belowsc
and it occurs on the linekHl3−ssd [Eq. (32)].

From the average massMasl ;sd we have obtained the
fractal dimensions corresponding to each of the types of
spanning avalanches. This has allowed us to confirm inde-
pendently the results in Ref. 22:df =2.78±0.05 for the 1D-,
2D-, and critical 3D-spanning avalanches andd3−
=2.98±0.02. Furthermore, the behavior fors,sc of the av-
erage mass corresponding to the subcritical 3D-spanning
avalanches indicates that the correlation lengthj is finite
below sc. As a consequence, we conclude that the line
kHl3−ssd, where the discontinuity in the order parameter oc-

curs, corresponds to a standard first-order phase transition
line andj only diverges at the critical point.
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