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Spanning avalanches in the three-dimensional Gaussian random-field Ising model
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Spanning avalanches in the 3D Gaussian Random Field Ising Ni®ideGRFIM) with metastable dynamics
at T=0 have been studied. Statistical analysis of the field values for which avalanches occur has enabled a
Finite-Size ScalindFS9 study of the avalanche density to be performed. Furthermore, a direct measurement
of the geometrical properties of the avalanches has confirmed an earlier hypothesis that several types of
spanning avalanches with two different fractal dimensions coexist at the critical point. We finally compare the
phase diagram of the 3D-GRFIM with metastable dynamics with the same model in equilibritmDat
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I. INTRODUCTION a “disorder” in a real system is simplified into a series of

According to classical equilibrium thermodynamics, first- duénched random fields, Gaussian distributed with zero
order phase transitions occur on a transition line on thdn€an and standard deviation which act on every spin ofa
temperature-field phase diagram. The field here is generi%D Ising model. In addltlon, One assumes that temperature is
and represents the conjugated intensive force of the relevagg (T=0) and provides the model with a particular meta-
extensive order parameter that displays a macroscopic di§table dynamics in order to study the evolution of the mag-
continuity when the transition line is crossed. In real system#&€tizationm when the external fielth is swept. The details
with intrinsic disorder, however, first-order phase transitionsof dynamics of these systems were introduced a decade
do not really obey such a paradigm. First of all, due to theago**>**The basic assumption is that the driving field rate is
existence of metastability, the transition line splits into twoslow enough so that system relaxation can be considered
transition lines corresponding to the forward and reversénstantaneougadiabatic driving. Such relaxations are the
transitions. This hysteresis, which may extend over manypo-called magnetization avalanches.
degrees in temperature, is sometimes caused by the fact that After the introduction of the model, several wotks*!
the system is driven too fast and equilibrium cannot bedescribed the basic associated phenomenol@ythe exis-
reached. In other cases, nevertheless, hysteresis cannot teace of a disorder-induced critical point@t o, associated
avoided (rate-independent hysteresisdicating the exis- with the change from a continuous to a discontinuous hys-
tence of enormous energy barriers in the system usuallieresis loop angb) the fact that within a large region around
caused by the interplay of disorder and long-range forcethe critical point the distribution of avalanche siZets) ex-
(elastic, dipolar, etg. Besides hysteresis, a second interesthibits almost power-law behavior. Nevertheless, several
ing phenomenon is the fact that the metastable transition iquestions remain unsolved, mostly related to the properties
some cases splits into many consecutive small jumps thaif the spanning avalanches which are responsible for the
occur over a broad regiofand not a ling on the phase dia- observed macroscopic discontinuities in tHem hysteresis
gram. Such steps, which correspond to changes from oneop and in theo-H phase diagram.
metastable state to another, are often called avalardimes. More recently, a FSS analysis of the number of ava-
many cases the avalanches do not show any characteristanches and avalanche size distributfohas revealed that
size (energy, duration, etgbut range from microscopic to the scenario is quite complex. This study was restricted to
macroscopic scales, distributed according to a power lawthe statistical analysis of the full set of avalanches recorded
The exponents characterizing such distributions have been a half loop, irrespective of the field valueswhere such
called critical exponents given the parallelism with standarcavalanches occutThe obtained statistical distributions are
equilibrium critical phenomena. often called integrated distributionsA detailed study as a

This out-of-equilibrium phenomenon has been found tofunction of H has not been done before. An initial attempt
be associated with magnetic transitidn$, ferroelectric ~ was presentéd but any dependence on system size was ne-
transitions;  capillary  condensatioh! = martensitic  glected.
transformation$,and other$.A crucial ingredient in order to Let us summarize here the main results presented in Ref.
observe such avalanches is that thermal fluctuations are veB2, in order to introduce the notation. By numerically simu-
small compared with the energy barriers that separate trantating systems of sizé X L XL, avalanches were recorded
formed and untransformed domains. For this reason, sucbver the half loops by sweeping the field fromto —c.
first-order phase transitions have been called “athedfal”  Classification of the avalanches starts by checking whether
“fluctuation-less .12 the avalanches span the system in 1, 2, or 3 spatial

Within this context the 3D-GRFIM with metastable dy- directions?® The three types of spanning avalanches are in-
namics is a prototype model: the complexity of what we calldicated by the subscript=1,2, 3,respectively and nonspan-
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TABLE I. Classification of the different types of avalanches in the 3D-GRFIM according to their geometrical properties and their
finite-size scaling behavior. Nonspanning avalanches and 3D-spanning avalanches exhibit mixed scaling (iediaaied in square
bracket$. They can be separated into two subcategories.

Avalanche type a Average number Size distribution
Nonspanning ns Nys(0, L) [Nps=Npsc+ Nngo] Dy«(s; o, L) [NnsDns=NnsDnsct NngoDnso]
Critical nonspanning nsc anc(U,L):La”Sq\lnsc(ULl/V) Dnsc(s;0-'L):L_Tnscdesc(sL_df’uLl/V)
Noncritical nonspanning ns0 ano(g,L):L3ano(g)

1D spanning 1 N, (o, L) =LoN, (uL?) Dy(s;o,L) =L "D, (sL™% uL)

2D spanning 2 Ny(or, L) =LN,(uL?) Dy(s; o, L) =L "9D,(sL 79, uL)

3D spanning 3 N3(o,L) [N3=Ngc+N3-] D3(s; o, L) [N3D3=NzD3c+N3-D3-]
critical 3D spanning 8 Nac(or, L) =LNao(uL2?) Dag(s; o, L) =L %D4u(sL7%, uLL)
Subcritical 3D spanning 3- N3_(U,L):N3_(UL1/V) D5(s; (T,L):L_d3-53_(SL_d3-,uL1/”)

ning avalanches are indicated by=ns. The finite-size scal- ticular, this assumption indirectly leads to the conclusion that
ing analysis was performed by measuring two basidhey must have different fractal dimensionls. and d;.
quantities as a function of: the average number of ava- Moreover, nonspanning avalanch@s=ns) should also be
lanches N, (o,L) and the integrated size distribution separated into two subcategories: noncriticatns0) and
D,(s;o,L). Table | shows the scaling hypothesis of thesecritical (¢=nsg, depending on whether their number and
two quantities for the different kinds of avalanches. The dat&ize distribution scales with distance to the critical pairatr
collapses in order to check such a hypothesis were obtain®Pt. _

by choosing an appropriate scaling variablevhich mea- Figure 1 presents a summéatpf the scaling functionsl,,
sures the distance to the critical value of the disoradgr according to the results in Ref. 22. From the behavior of such
=2.21+0.02. Its precise definition is given as a second-ordescaling functions whemL*”— + one can sketch out the

expansion: scenario in the thermodynamic limit. Below one subcriti-
cal 3D-spanning avalanche exists, which is responsible for
-0, o-0.\? the observed discontinuity of the magnetization in the ther-
u= pu A pu , (1) modynamic limit. Such a discontinuity is the order parameter
Cc C

and vanishes when approaching according toAma (o,

with A=-0.2. This expression was found to be the best @)% With an exponentfs =1(3-d;)=0.024+0.012.

L. The values of the critical exponents are summarized iffimulations of finite systems since the contributions from

Table II, together with the new exponents that will be com-critical spanning avalancheg=1,2 and &) may lead to

puted in the present work. quite good(but incorrect scaling collapses of the order pa-
To obtain good scaling collapses of the 3D-spanning avat@meter using3.=v(3-6-d;)=0.15+0.08.

lanches, an extra hypothesis was introduced: they can be Alarge number of noncritical nonspanning avalanches ex-

separated into two subcategories, subcriticat3-) and  ist for the whole range oé. They cannot contribute to any

critical («=3c) that scale with different exponents. In par- 1.2 , ,
LN (o.Ly
TABLE II. A summary of the values of the critical exponents of 1.0 L“’NZ((T,L)'
the 3D-GRFIM with metastable dynamics, obtained in Ref. 22 and Z 08 N L")
in the present work, as indicated in the last column. 2 I
2 06 Nyl J
e
Exponent Best value Ref. 50
g o4 .
=
v 1.2+0.1 22 S oo 1
0 0.10+0.02 22
Brsc 2.02+0.04 22 0.0 ey
d; 2.78+0.05 22, this work & 8
ds- 2.98+0.02 22, this work
Tnsc 1.65£0.02 22 FIG. 1. Scaling functions corresponding to the number of 1D-,
Be 0.15+0.08 22 2D-, critical 3D- and subcritical 3D-spanning avalanches in the 3D-
Bs- 0.024+0.012 22 GRFIM as found in Ref. 22. The symbols show the overlap of the
M 1.5+0.1 This work data corresponding to numerical simulations with many different

system sizes ranging froin=5 to L=48.
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observed macroscopic jump since their size is vanishingly 6

small in the thermodynamic limit. At-=o the 6 categories h+H+ E S, (3
of avalanches exist. On average, one finds 0.79+0.02 sub- =1

critical 3D-spanning avalanches and an infinite nhumber o
the five other types of avalanches. At the critical pdiott
close enough to )t the distribution of avalanche sizes is
dominated by critical nonspanning avalanches and exhibit
an approximate power-law behavior with an exponent

= Theet (83— 6,50 /d;=2.00+£0.06. This power law behavior is
restricted to the central part of the avalanche size distributiogpondS to the number of spins flipped until a new stable

< < 3 . . . . .
1<Is<hL ) i he 4 diff situation is reached. Note that the corresponding magnetiza-
n the present paper we will concentrate on the 4 di eren(lion change is\m=2s/L3,

types of spanning avalanches, extending the finite-size scal- 1,5 merical algorithm we have used is the so-called
ing analysis and focusing i the study of the values of the ﬁrute force algorithm which propagates one avalanche at a

(Nhere the sum extends over the 6 nearest-neighboring spins
of 5. Avalanches occur when a spin flip changes the sign of
the local field of some of the neighbors. This may start a
gequence of spin flips which occur at a fixed value of the
external fieldH, until a new stable situation is reachétlis

then decreased again. The size of the avalarslerre-

external field for which the spanning avalanches occur an me2° We have studied system sizes ranging froms(L3

(i) the direct measurement of the geometrical properties ot _ 3_ i
the avalanches. This will enable the critical expongnte- 125 fo L=180L"=5832000. The measured properties

lated to the renormalization grol®G) flow along the field are always averaged over a large number of realizations of

S . he random field configuration for each value ®&f which
direction, to be found and to have a direct test of the Fséfanges between more than “16or L<80 to 300 for L

hypothesis that leads to the separation of the two types of 180
3D-spanning avalanchésritical and subcriticglwith differ- Wé have recorded the sequence of avalanche sizes during
ent fractal dimensionsd;=2.78+0.05 andl;_=2.98+0.02.

. : half a hysteresis loop, i.e. decreasiHdrom +» to —o. We
In Sec. I.l we summarize the 3D-GRFIM and th_e details Ofhave determined not only the sizeof each individual ava-
our numerical simulations. In Sec. Ill raw numerical results

. ) lanche, but also the field at which each avalanche occurs.
are presented. In Sec. IV we discuss the main FSS hypoth- o .
he avalanches have been classified as nonspanning, 1D-

esis, as an extension of those presented previously. These

hypotheses are checked in Sec. V. In Sec. VI we determinépe?nggg’ 2D-spanning, and 3D-spanning as explained in

the geometrical properties of the avalanches. In Sec._VII we By performing statistics, we obtain the average density of
discuss the consequences of the present study and, finally, in

. ot avalanches for each type occurring within an interité|H
Sec. VIII we summarize and conclude our findings. +dH)25 We will call this quantity the number density

n,(H;o,L). It satisfies

1. MODEL *

f dHn,(H;o,L) =N (o,L), (4)
The 3D-GRFIM is defined on a cubic lattice of sike e
XL XL with periodic boundary conditions. On each lattice
site(i=1, ... L3 there is a spin variabl§ taking values +1.
The Hamiltonian is

where N(o,L) are the average number of avalanches of
each typé& defined in Table I. We have also measured the
bivariate size distributionD,(s,H;o,L). This probability
density is normalized so that

L3

n.n. L3 (IR
H:—ZSS,—Elhis—Hle, 2) S | dHD.(sH;oL)=1. (5)
i, i= i= =1 J -

Note that by projecting®, we can obtain the two marginal
where the first sum extends over all nearest-neiglthor)  distributions:
pairs, H is the external applied field anld are quenched
random fields, which are independent and are distributed ac- n,(H;o,L)
cording to a Gaussian probability density with zero mean and 2 D(sHiol)= NAoL) (6)
standard deviatiow. =1 @

The equilibrium ground stat€T=0) of this Hamiltonian 54
has been recently studiéd.In this work we focus on the
metastable version of the 3D-GRFIM proposed for the analy- *
sis of the behavior af=0 when the system is driven by the f dHD(s,H;0,L) =D,(s;05L), (7)
external fieldH. For H=+ the state of the system which -
minimizes } is the state with maximum magnetization  which represent the probability density of finding an ava-
=EiL:13/L3=1. When the external fieltl is decreased, the lanche of typea within (H,H+dH) and the probabilityin-
system evolves following local relaxation dynamics. Thetegrated distributionthat an avalanche of type has a sizes
spins flip according to the sign of the local field: (after the half loop, respectively.

L3
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§ FIG. 3. Point clouds corresponding to 1D-, 2D-, and 3D-

FIG. 2. Point clouds corresponding to 3D-spanning avalanche§Panning avalanches at=o. for L=48. The inset shows, on a
for a system with sizé.=48. Each point corresponds to an indi- '09-linear scale, the same data together with the cloud correspond-
vidual avalanche and indicates the siend the field where it ing to nonspanning avalanches.
occurredH. Clouds corresponding to different valueswmfre indi-
cated by different symbols. Data have been averaged over maril.=-1.42 and span almost all possible sizes. Aboyé¢he
realizations of disorder. The dashed line indicates the maximunfew existing 3D-spanning avalanches are small. In fact, they
values=L°. are smaller than the mean size of a percolating cluster in a

3D cubic lattice(s=0.311.3).

In the following sections bivariate distributions will be Figure 3 shows the point clouds corresponding to non-
presented as point clouds and the marginal distributions agpanning, 1D-, 2D-, and 3D-spanning avalanches aw.
histograms. Point clouds provide qualitative understandingNonspanning avalanches are suppressed from the main plot,
of the distributions. A quantitative analysis is much betterbut are shown in the inset on a log-linear scale. As expected,
performed from the marginal distributions and their mo-spanning avalanches concentrate aroithd 3D-spanning
ments. The average field where the different types of avaavalanches exhibit a larger size than 2D-spanning avalanches

lanches occur will be particularly interesting: and the latter show a size larger than 1D-spanning ava-
lanches. Moreover, one can see that 3D-spanning avalanches
(HY,(orL) = f dHHn o«HjoL) (8) are distributed in a double cloud. As will be seen, these two
N, (o,L) ' clouds correspond to the two types of 3D-spanning ava-
. o lanches predicted in Ref. 22.
and its standard deviation: The dependence on the system dizis illustrated in Fig.
o';'(a,L):«Hz)a—(H)i)l’z. 9) 4. The point clouds represent the distribution of spanning

avalanches av =0 for increasing values of. The three
In order to have a direct determination of the fractal di-
mension of the spanning avalanches we have performed a 1.0 Frrr—rrr——rr——r

sand box counting analysté.This is a standard method for 1D-spanning () |
the analysis of a random fractal that allows a statistical char- R ¢ -
acterization of the spatial distribution of the mg&sember of n 15r ]
sping of the avalanches. The method consists of considering ] © L=l2 o [=24.
boxes of linear sizd [ranging from 1X1X1,3X3X3,5 20 %MWH—W 1.0
X5xX5,...,upto(L-1) X (L-1) X (L-1)] centered near the . 2D-spanning (b)

spin that triggered each spanning avalanche. We determine
the number of spins that belong to the avalanche for each
box. By averaging over all the avalanches of the same type
(occurring during a half logpand over many disorder real-
izations, we obtain the average mads(l;o,L) as a func-

tion of the box lengtH for different values ofo andL.

III. NUMERICAL RESULTS

Figure 2 shows a point cloud corresponding to
Ds(s,H;o,L) for L=48 and different values af. As can be
seen, belows, 3D-spanning avalanches are large, close t0 FIG. 4. Point clouds corresponding to 1@a), 2D- (b) and
s=L3 and exhibit a certain spread around a valuélafhich  3D-spanning avalanchés) at o= o, for increasing system sizes, as
shifts upwards wheru, is approached from below. A  indicated by the legend. The same horizontal scale is used on the
=0, the avalanches concentrate around a critical field valughree plots. The dashed line indicates the critical figlg-—1.425.
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plots correspond tg¢a) 1D-, (b) 2D-, and(c) 3D-spanning qafF T T T T T T '(a ]
avalanches. The dashed line corresponds to our estimated C T T TSRt TIE T RTmmAmm
value ofH.=-1.425 that will be obtained from the fit below. S T ]
Note that all types of spanning avalanches tend to concen- 151 %" s
trate around such a field value for increasing system sizes. P
The shape of the cloud corresponding to 3D-spanning ava-
lanches remains asymmetric, whllegrows.

To obtain a quantitative measure Hf, we have com-
puted the field averagési);, (H),, and{H);. Their behavior
as a function oL ato=o is plotted in Fig. $a). In the next '1-70‘ 2'0 : 4'0 ‘ elo : 8'0 00
sections an FSS analysis will be formally proposed. Never- L
theless, from the behavior in Fig(& one can already guess
the following scaling hypothesis:

> (H) (0,0 |

a6k ° (H) (o.L) ]

Cc

a

(H) (o,L)

o (H)(0.L) ]

(H)o(og, L) =He~ = C, L7Vx, (10

~
where u will be the exponent governing the divergence of )
the correlation length when the field approache#d. at o <~
=g.. Afirst check of this hypothesis is performed in Figbp 5 E e e
by a 3-parametgiH., u«, andC,) least-squares fit to the three ' I
sets of data corresponding to system sizes ftoa8 to L T I
=80. We have consistently obtained the same values of 1o b N
1/pu=1.5+0.1 andH,=-1.425+0.010 for(H);, (H),, and 10 100
(H)5 for the three fits. Results are indicated by dotted lines in L

Figs. 5a) and %b).

FIG. 5. (a) Average fieldgH),(o¢,L) where avalanches of each
kind «=1,2,3occur. The dashed line indicatels=-1.425 and the
IV. FINITE-SIZE SCALING HYPOTHESIS dotted lines correspond to power-law fi) The same data repre-
sented on log-log scales. The lines indicate the power-law behavior.
Note that the 3 types of spanning avalanches exhibit the same ex-
To proceed with the analysis of the numerical data ondPonent. Data correspond to simulations of systems with sizes rang-
must postulate thad-hocFSS hypothesis. As done in Ref. ing fromL=8 to L=80.
22, we follow standard RG arguments. The distance to the
critical point(o.,H,) is measured with two scaling variables D (sH:oL)= L—da+1/,u./ba(sl_—da,uLl/v,ULl/,u), (16)
u(o,H) andv(o,H), which depend on the externally tunable
parametersr andH. After a renormalization step that trans- where d,, is d;=2.78 for the 1D-, 2D-, and critical 3D-

A. Scaling of distributions

forms the system sizk as spanning avalanches amj_=2.98 for the subcritical 3D-
spanning avalanches, as found in Ref. 22.
Lp=b™lL. (11) The number densities,(H;o,L) will behave as
u, v, and the sizes of an avalanche of type will behave as Na(H;oL) = L% YVrq (ult, pLMw), (17)
Up = bY*U, vy = bl 5, = b s, (12) where 6, is 6,=0.1 for the 1D-, 2D-, and critical 3D-

spanning avalanches and,=0 for the subcritical 3D-

whered, are the fractal dimensions of the avalanches and th§P2nning avalanches. The FSS hypoth€s and (17) ex-
exponentss and . control the divergence of the correlation €Nd the hypothesis presented in Table I including the
length when approaching the critical point along the twod€Pendence on the external fi¢id

directionsu andv. Consequently, in order to formulate the

FSS hypothesis, we will consider the following three main B. Detailed scaling variables

RG invariants: The proper dependence of the scaling variablaadv on

the tunable model parametessand H is unknown, but it

v — 1/v
UL = uely (13 should be analytié®2°Keeping this in mind, we consider the
following second-order expansion aroune o, andH=H_:
LYk =y Ll 14
v Ubtb ( ) U:ul+AU§+A,UJ_+A’,U1U1+AWU%, (18)
SL_dOI = L_d”‘ (15) _ 2 ’ " m, .2
Sobp - v =vy +Bvf+B'u; + B"ujv, + B"Uf, (19

Therefore, close enough to the critical point the bivariatewhereu;=(o—o0.)/ o andv,=(H—-H.)/H, are the first-order
distributionsD,(s,H; o, L) will behave as scaling variables. These variables represent the simplest
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choice to measure.the distange to the critigal point. Now.we v’ :v1+Bv§+ B'u, + B"U1U1+B'"Uf (24)
want to check which corrections to the first-order scaling R
variables are really important for large system sizes. ConThe difference between F(u'LY”,v'LY#) and

sider a functiorF(H; o, L) that can be written as é(u/Ll/V,v,Luﬂ,L) can be obtained usin@2) and a second
F(H:o.L) = L (ULM L VA, (20) order Taylor expansion. The result is

when the correct scaling variables are considered. In the casB(U/LMY,v L) = G(u'LMY,v LY, L) = LYF (Lt oL )

e A S ML o

ol B e -

F(H o L) = LaG(u'Lj'/V,U’Lll'u’L)' (21) + %LZ/}LIEZZ(UL]./V,UL:U}L)(U! _ U)2
where we have introduced a “non”-scaling functi@Gnthat
depends explicitly orL.. From (20) and (21), for a given + |_1/V+1/ﬂ|312(u|_1/V,ULlfﬂ)(u' -u)(v' -v), (25)
value of o andL: .
R R where the subindex 1 and 2 in the scaling functiéndi-
FULY” uLY*) = G(u'LY”,v'LY# L). (22)  cate the partial derivatives with respectub” and vLY*,
respectively. Introducing the expansiaiis), (19), (23), and
(24) in Eq. (25), defining an appropriate set of eleven func-

tions f;(uLY,uLY#) from the derivatives ofF, and re-
U =up+ AU+ A'vg + A'upg + A3, (23)  ordering the terms ii25) we can write

The effective scaling variablas andv’ can be expanded up
to second order:

IE(ur L]'/V, v’ Ll/,u) _ é(u/ Ll/V, v’ Ll/’U“, L)

2 2 .
+ (Ar _ Ar)2L2lv—2/,u<ﬂ> f9+ (Br _ B!)ZLZ/}L‘Z/V(%) f10+ (Ar —A')(B' _ B/)(%)(ﬁ)fll, (26)
v 1%

2 2
f1+ (B/ _ B/)Lllﬁ—llv<%1>f2+ (A _A)L—llu(%> f3+ (B— B)L—l/;t(ﬁ) f4

- (A/ _A/)Lllv—l/;;(ﬂ
v v

2 2
+ (.A” _ A’,)L_]'/M(% <ﬁ>f5 + (B// _ B”)L_lhl(%> <ﬂ>f6 + (Am _ Arr/)Ll/v—ZI,u(ﬂ) f7 + (Bm _ BH/)Ll/,u—Zlv(%> f8
v v v

where the dependence of the functidnen uL” andy LY« v=vy+B'U. (28)

is not written for simplicity. The correction(28) associated with the distance k, was
Given that 14=0.8(Table I) and 1/u=1.5(Fig. 9), and ¢ introduce:jl(in)Ref. 30 where the parameter akrfglogous to
noting that only the terms multiplying positive powerslof g/ \ya5 called the “tilting” constant. We should mention that
will be important in the thermodynamic limit, we conclude the authors demonstrate the importance of such a correction
that only terms in whicl8’ —B" appears represent an explicit \jth arguments that are slightly different to those proposed
dependence oB(u’'LY",v’'LY* L) on L. Therefore, only the here.
B’ term is relevant in the thermodynamic limit and thus must
be considered in the expansiqi28) and(24). The remaining
coefficients may be neglected. In particular, a term propor- One is now ready to deduce the scaling behavior corre-
tional to u? is not necessary if we consider large systemsponding to the field averages defined in E).and to the
sizes. Such an irrelevance was in fact observed in Fig. 8 oftandard deviations defined in E§). On the one hand, mul-
Ref. 22. Nevertheless, we will retain the quadratic correctiorfiplying the marginal distributiom,/N, by H, integrating
Au% in order to compare appropriately with previous Over the fullH range, and using the relatig@8), we find
results?? In summary, we will use the following approxima- , i ,
tions for the scalingyvariables: 9 PP Ho(1 ~B'uy) = (H)o(o,L) =L Hh, (ULt (29)

C. Scaling of the field averages and standard deviations

It is useful to define an “effective” disorder-dependent criti-
u=ug+ A, (27 cal fieldH(o) as
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Hz(a) =H/(1-B'uy). (30) TABLE lll. A summary of the classification of a given 3D-

spanning avalanche according to the two methods proposed in the
For o=0 we recover the scaling hypothesis proposed intext.

Eq. (10) with Ca=ﬁu(0). In this case we obtain an estimate

of 1/u that is unaffected by the tilting constaBt. 1D-, 2D-, or smaller 3D-  Larger 3D-
On the other hand, by performing similar calculations, it ~SPanning avalanche spanning
is easy to writeo™ (o, L) as exist avalanche exist Method 1 Method 2
O'S(O',L) — L_ll’ua‘g(ULllv). (31) no no 3- 3-

) ] ) o yes no 3- 3c
Notice that this scaling expression is also unaffected by the o yes 3c 3c
tilting constant.

yes yes 3c 3c

D. Separation of the two types of 3D-spanning avalanches

From the FSS analysis of the integrated distributions, "spanning avalanches found in the half loop are 1D, 2D or 3D
was suggested in Ref. 22 that two types of 3D-spanning avaspanning. In this latter case the fact that the other 3D-
Ignches exist with different fractal dlmen5|ons: This assUmpspanning avalanck® found are smaller or larger than the
tion allowed for excellent collapses of the scaling plots. Nev-gya1anche being classified must be taken into account. The
ertheless, the separation of the scaling functionsyo methods only differ in the case in which the 3D-
corresponding to the two types of avalanches was possiblgyanning avalanche being classified is the largest, but other

data corresponding to three or more different system sizegye |oop.

The propagation of the statistical errors within such compli- Figure 6 shows an example of the separation of 3D-
cated computations rendered large error bars in the scalinghanning avalanches into subcritical and critical, using the
functions and exponents. _ _ . two methods. It corresponds k=48 ando,=2.21. One can
Given the two different fractal dimensions, it would be gppreciate that the original double-shaped cloud is separated
desirable to be able to perform a direct classification of thgnto two. The cloud corresponding to critical 3D-spanning
3- and ¥ avalanches during simulations. Nevertheless, thigyalanches is similar in shape to the clouds corresponding to
desirable idea is not possible since, in a finite system, a googp. gnd 2D-spanning avalanches. Note that Method 2 clas-
determination of a fractal dimension is only possible aftergjfies a certain number of large avalanches, occurring at very

performing statistics of many avalanches of the same type.negative fields, as being critical that Method 1 classifies as
In this work we propose two separation methods thatyeing subcritical.

although being approximat@ small fraction of avalanches
are not well classifiedgive enough bias to the statistical

analysis to allow for a determination of the different proper- 140 (@) Method 1 ) 1
ties of subcritical and critical 3D-spanning avalanches. ' L tua i :

The idea behind the methods is that for a finite system R
that is belowo,, one basically finds one subcritical 3D- “ &

spanning avalanche. The other types of spanning avalanches T4l
may occur only close t@.. Moreover, given their different

fractal dimension, we expect subcritical 3D-spanning ava-

lanches to be larger. Thus, we propose the following two

methods, which will be applied only belowy,. AE5 bt ,

Method 1 The larger 3D-spanning avalanche in a half (b) Method 2
loop is classified as subcritical. The other 3D-spanning ava- -
lanches will be considered critical 3D-spanning avalanches.
(We have checked that the larger 3D-spanning avalanche is
also the last 3D-spanning avalanche found when decreasing
the field fromH=+ to H=-% in almost all the studied -
cases.

Method 2 We classify a 3D-spanning avalanche as sub-
critical only when no other spanning avalanches occur dur-
ing the half loop. If other spanning avalanches occur, we -t : ettt 111,50
classify them as critical 3D spanning. The idea behind this
method(which we will discuss in Sec. VJlis the conjecture
that the subcritical 3D-spanning avalanche, close to, but be- FIG. 6. An example of separation of the cloud corresponding to
low o, fills a large fraction of the system and does not allow3D-spanning avalanches into two clouds corresponding to subcriti-
other spanning avalanches to exist. cal and critical avalanches, using Methods 1 and 2 explained in the

Table Il shows how the two methods classify a certaintext. Note that the number of avalanches classified as subcritical by
3D-spanning avalanche depending on whether the othevethod 2 is smaller than the same number obtained by Method 1.

®  Subcritical 3D-spanning

4 Critical 3D-spanning .
1 + +

T

4{-1.40
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EQ (H(o)-H), (LY =0 e H(o)
T . ; — 0 1 2 O
0.1 c
7] . .
N B , FIG. 8. A representation ofH)3-(0) [Eq. (32)], H.(o) [Eq.
=~ 10° _ b) ° I=8 o I=12 <>‘_ (30)], and ch. Symbols cor'respond to.thelz numerical estimatg of
~ E s I=16 s I=04 0 (H)s- from simulations for different, as indicated by the legend in
9 o I=32 ¢ [=48 _p* 1 the previous figure.
\b: ] . .Q"‘
< 1 o a% " ] computing the averages corresponding{kt;_ and (H)s..
@ 10 ¢ pow® 3 By fixing 1/x=1.5 and takingv=1.2 from Ref. 22 we get
' r . ] the best collapses foB’=0.25+0.10(unique free param-
° 3 3 eten. We would like to emphasize that the four sets of data
Eb : . scale extremely well with the same valuesigfv, andB’.
~ 10" e — The asymptotic behavior dfi;_ [the dotted line in Fig.
0.1 1 L™ 10 7(b)] for large values ofulLY" is 2.4|u|L")'® The expo-
u nent 1.8 equalg/ . within statistical error. This means that,
FIG. 7. Scaling plots corresponding to the difference betweer" the thermodynamic limit,
(H), and the effective critical disordet (o) for (a) 1D-, 2D-, and (H)s (o) = HZ(o-) _ 2_44U|V/M_ (32)

critical 3D-spanning avalanches affij the subcritical 3D-spanning
avalanches. We present only datadox o.. The four data collapses Figure 8 shows this behavior, which finishes at the critical
are obtained simultaneously by a single free param@erfit. The  point (o.,H.) because no subcritical 3D-spanning ava-
dotted lines correspond in each case to the asymptotic behavior @inches exist above. The disorder-dependent critical field
h, when Ju|LY”"— oo, The scaling plots corresponding to the 1D- HZ(cr) and the critical fieldH; are indicated by dashed and
and 2D-spanning avalanches have been displaced one decade @tted lines, respectively. We have also plotted the numerical
wards for clarity. Statistical error bars are smaller than symbolestimates ofH)5_ for different system sizes in order to show
Slzes. that Eq. (32) is the limiting behavior forL—«. The
_ _ asymptotic behavior o, for the 1D-, 2D-, and critical 3D-

The two separation methods will be used throughout th%panning avalanches is proportional(fo|L*")%°. This im-
rest of the text to separately analyze the data correspondir&ies that in the thermodynamic limit
to subcritical 3D-spanning avalanches and critical 3D- ’
spanning avalanches. In some of the statistical analysis pre- (Hyo(0) = Hy(0), (33
sented below we will consider only the 3D-spanning ava- " .
lanches which are equally classifieo)I/by the twopmethogds anfpr the 1D-, 2D-, and critical 3D-spanning avalanches.
discard those which are classified differently from the analy- _Similar finite-size scaling analysis can be done for the

sis. Although this procedure reduces the size of the statisticéﬁtanqard deviations of th?] mafg”.‘a' distrlilbuticmgNa ac-
sample, it ensures that we do not introduce any bias due to iff°rding to Eq.(31). From the obtained collapses we deduce

classification of some of the avalanches. the following behavior for large values ofulL'"(a
<0g): o8 (ULY") ~ (JulLY")0 for the subcritical 3D-
spanning avalanches, aatf(uL”) ~ (Ju[L*)%2 for the 1D-,
2D-, and critical 3D-spanning avalanches. Similar behavior
A. Field averages and standard deviations is observed folor> o,.. These result§see Eq.(31)] indicate
ttgat the standard deviation of the marginal distributighN,,

Figure 7 presents the scaling collapses corresponding corresponding to any type of spanning avalanche vanishes in
the field averages foor<o,. Data is presented on log-log P g to any typ P 9
the thermodynamic limit for any value @f.

scales in order to analyze the power-law behavior for
|ulLY”— 0. Figure 7a) shows data corresponding tél),,
(H),, and(H)s., whereas Fig. (b) shows data corresponding B. Number density

to (H)s—. We remark that only the 3D-spanning avalanches The number density corresponding to the 1D-spanning
equally classified by Methods 1 and 2 have been used fasvalanches at the critical amount of disorde(H; o,L) is

V. SCALING COLLAPSES

214422-8
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FIG. 10. (8 Number density of spanning avalanches in two

dimensions at the critical amount of disordén) A scaling plot
corresponding to the data @) according to Eq(17) with §=0.1
and 1/u=1.5. The continuous line itb) shows a Gaussian fit. No
free parameters are used in this collapse.

FIG. 9. (@) Number density of spanning avalanches in one di-
mension at the critical amount of disordén) Scaling plot corre-
sponding to the data ifa) according to Eq(17) with 6=0.1 and
1/p=1.5. The continuous line ithb) shows a Gaussian fit. No free

arameters are used in this collapse. L . .
P used in ti P — +o0, This indicates that, in the thermodynamic limit, irre-

shown in Fig. 9a) as a function of the applied field for spective of the value dfl, n, is zero foro # o.. In contrast,
different system sizes. The number density shows a peak thathen o=0, n; diverges atH=H_; and is zero for other val-
increases and shifts for increasihgSimilar behavior is ob-  ues of the field. This scenario foy is also applicable to,.
served forny(H; o, L) [Fig. 1Q@]. An FSS analysis is per- To obtainng. andn,_ we have used Method 2 of separa-
formed using the scaling assumption for the number densiton described in Sec. IV D. The results for=o, are pre-
Fies_[Eq. (17)]. The results of such an analysis are presentedented in Figs. 12 and 13 fog.(H; o.,L) andny_(H; o, L),
in Figs. 9b) and 1@b) for ny(H; o, L) andny(H;o¢,L), re-  respectively. We have also tried to separate the two types of
spectively. To obtain these collapses we have wse@l 1 and
1/u=1.5 as in the preceding sections. The scaling functions
in Figs. 9b) and 1@b) are well approximated by Gaussian
functions (indicated by continuous lings When vLY*
— 0 both scaling functions go exponentially to zero. This
behavior indicates that, in the thermodynamic limit fer
=0, 1D- and 2D-spanning avalanches only exisHatH..
Figure 11 shows several cuts corresponding to the scaling
surfacef;(uLY”,vLY*). From the collapses we confiri®’
=0.25+0.10 in total agreement with previous estimates.
From a qualitative point of view, the collapses indicate that
the scaling surface shows a crest with amplitude depending
on uL”. More quantitatively, the scaling collapses for each
cut can be well approximated by Gaussian functions, whose
amplitude, peak position, and width depend wn””. Fur-
thermore, the dependence ah'” of the fitted amplitudes
also adjusts very well to a Gaussian function that follows the FIG. 11. Collapses corresponding (UL L), The cuts

rofile of the cresi{a continuous line on the back plane in :
P ( P of the scaling surface are taken @t’”=-0.58, 0, 1.22, 2.7, 3.8,

Fig. 11). The dashed line on the bottom plane indicates th%nd 5.0. Symbols correspond to the sizes indicated in the legend of

position of the crestyL¥#);(uL**) =hy(uL*")/H, which has  the previous figure. The dashed line on the horizontal plane indi-
already been shown in Fig(&. cates the tendency of the crest of the scaling surface. The projection

All these considerations imply that, for any valuetdf  of the crestGaussian fitis depicted with a continuous line on the
the scaling functiond; decays exponentially whenl'”  planeulL”"-f,. No free parameters are used in this collapse.

214422-9



F. J. PEREZ-RECHE AND E. VIVES PHYSICAL REVIEW BO, 214422(2004)

25 T T g T d T

- (a)

20 } —o—L=8 A 4

P~~~
~ 004
b
T
&
=" 0.02
7
R
|
~ 0.00 o
. 1 . 1 . 1 . 1 cnarsrell'y ——
-15 -10 -5 0 5 A 1 . 1 R ) , )
1/ 15 10 -5 0 5
ol

lin
vL

FIG. 12. (a) Number density of critical 3D-spanning avalanches _ N _
at the critical amount of disorder obtained using Method(l8. FIG. 13. (8) Number density of subcritical 3D-spanning ava-
Scaling plot corresponding to the data(a according to Eq(17) lanches at the critical amount of disorder obtained using Method 2.

with 6=0.1 and 14=1.5. No free parameters are used in this (b) The scaling plot corresponding to the data(@ according to
collapse. Eq. (17) with #=0 and 1j«=1.5. No free parameters are used in

this collapse.

avalanches by Method 1, but the collapses are not as good as

those obtained with Method 2. This result indicates that infractal dimension. In this way, the larger the typical size of
the set of avalanches nonequally classified by the two mettihe gaps, the higher the lacunarity. For many fracta$as
ods, there are more critical 3D-spanning avalanches thal@cunarity increases, the prefacthr,, decreases since the
subcritical 3D-spanning avalanches. average mass inside a box of linear diztecreases.

As in the case of; andn, at o=0,, the behavior of the For finite systems it is necessary to translate the (Bdy
scaling functions in Figs. 1B) and 13b) indicate that both into a finite-size scaling hypothesis. As usually done, we
ns. andng_ diverge atH=H, and are zero for fields different Propose the following:
to H.. The detailed study of the bivariate collapses corre- P N
sponding tons.(H; o,L) andns_(H; o,L) for o # oy is diffi- My(l;o,L) =L%M (uL™"I/L); =L, (35
cult and tedious. In particular, far> o, we do not expect \yhere the conditiog= L stands for the fact that scaling only
the separation methods to work and fe< o, the analysis  no|ds in the critical zone. Equatiai35) allows the data cor-

would require a lot of statistics. responding to the average massésto be collapsed and, in
this way, to obtain the fractal dimensiods. We can predict
V1. DIRECT DETERMINATION OF THE FRACTAL the shape oM, in two limiting cases: on the one hand, the
DIMENSIONS scaling functionl\?la(uLl’”,I/L) should behave as

In the thermodynamic limit we assume the standard frac- - v ] o
tal behavior, i.e. that the average mass belonging to a certain M (UL, 1/L) = M, (uL™) L/ (36)

avalanche type inside a box of linear sizis given by
in the limit /L <£/L <1 to recover the expressi@84) from

M, (l;0) = M (a)1%, (34)  (35). On the other hand, in the limltL> &/L, the scaling
- function corresponding to the subcritical 3D-spanning ava-

in the limit | < h is th lation length. Th
in the limi & where¢ is the correlation leng e pre lanche should behave as

actorM;(o) is related to the concept of lacunariyln gen-
eral there can be fractals sharing the same fractal dimension, A )3

but with different lacunarities. The fractal dimension is re- M- (uL™,I/L) ~ (|U|L1/V)33‘<[) : (37)
lated to the rate of change of the average mass when the size

of the box is changed. In contrast, the lacunarity is related tdf this avalanche fills a finite fractiofu|#s- of the system for
the size of the gaps of the fractal and is independent of the< o, in the thermodynamic lim# in such a way that
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10°F (b) & L=24 & L=32 1 (/L

;_ & L=48 » L=60 1 A
~ LF > L=80 o+ L=120 FIG. 15. Collapses corresponding @idL)=3Mg_(uL",1/L) for
"19 10°F * L=180 3 uLY»=-3.73, -7.41, and -13.18 on log-log scales. The dashed line
.Q r 1 indicates the slopd;_-3=0.02. Continuous lines are a guide to the
C\./I 1045_ 1 eye. No free parameters are used in these collapses. Typical statis-
gm tical error bars are smaller than symbol sizes.
; 3 E
- 10°f 1 quence, the space filled locally by these avalanches is not as
cot high as one would priori think given the proximity ofd;_
10°® 107 10° to 3.
JL To study the behavior df1;_ for <o it is convenient to

multiply the scaling functioMS_ by the factor(l/L)™3. From

FIG. 14. (a) Scaling collapses corresponding to the averageEds.(36) and(37), it should behave as
mass of the 1D-, 2D-, and critical 3D-spanning avalanches at

d3 -3
=0, The collapses corresponding k; and M, have been dis- M;_(uLl/V)<I_) ’ , l_ < é,
placed two decades upwards for clarity) Scaling ofM5_ also at |_ 3. _ L L L
o=0¢. In all cases the asymptotic behavior for small values/bf Ms-= | & (39
has been indicated by continuous lines. Their slopes are self- ~(|u|L1/”)B3-, —>E,

consistent checks of the proposed scaling behaviors. The dashed
line in (b) corresponds to the asymptotic behavior\df, to com-  in such a way that, for a given value of*<0, the func-
pare it withMs_. Note that for this analysis we have used systemstion (/L) 3M3_ approaches a constant value for large values
with sizes up toL=180, and that there is a unique free parameterof | /L if the correlation length is finite. Figure 15 shows the
(fractal dimensiopnfor each data collapse. Statistical error bars areScaling collapses om/L)’3l\7I3_ for three cuts of the scaling

smaller than symbol sizes. surface taken anlLY*=-3.73, -7.41, and -13.18. Note that
such cuts are limited from below atL=1/80. In spite of

Ms_(I;0) ~ |u[Ps13. (38 this limitation, the results clearly indicate th@y for small
Such behavior can be obtained from E@) and(35) using ~ Values ofl/L, the behavior of(l/L)Ms_ is a power law
the hyperscaling relatio;_=v(3-d,_). with an exponent approachinds-—3=0.02 (indicated by

Figure 14 shows the scaled average mass for all types dhe dotted ling and (ii) for large valuesl/L the function
spanning avalanches from simulations performedav,.  (I1/L)"3M5_ tends to a constant value and confirms the hy-
We have only considered the average mass of those 3Dpothesis in Eq(39). (The latter tendency can only be ob-
spanning avalanches that are equally classified by the tweerved for negative enough valuesuif'’”.) Therefore, one
proposed methods. Note that collapses are performed with @an deduce that/L is finite for o< o, and it decreases when
single free parametdwhich is the corresponding fractal di- uLY” becomes more negative. In addition, the results confirm
mension. The best collapses givg=2.78+0.05 for the 1D-, the compact character of the subcritical 3D-spanning ava-

2D-, and critical 3D-spanning avalanches andh.  lanche for length scales larger thanas proposed in Ref. 24
=2.98+0.02 for the subcritical 3D-spanning avalanchespy a different method.

Both values are in total agreement with those obtained inde-
pendently in Ref. 22. Moreover, the slope of each collapse in
the limit | <L (left-hand side of the collapsesoincides with

the fractal dimension used to obtain the collapses, so that the The results presented so far together with the results ob-
behavior (36) is confirmed. The prefactors ar®y(oo)  tained in Ref. 22 provide a clear scenario for the phase dia-
=0.95+0.07,M3(0)=0.93+0.07,M3(0)=0.90+0.07, and gram of theT=0 3D-GRFIM with metastable dynamics in
M;_(ac):0.6510.07. The low value of the prefactor corre- the thermodynamic limit.

sponding to the subcritical 3D-spanning avalanches indicates We have numerically deduced that the subcritical 3D-
that the gaps of these avalanches are large. As a consgpanning avalanche occurring on the transition line given by

VII. DISCUSSION
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3D-GRFIM. Exact 3D-GRFIM. Mean Field TABLE IV. Coordinates of the critical point in the-H plane
2Ha) Metastable | 2 ) Metastable 4 and critical exponents for the 3D-GRFIM in equilibrium and with
ol ol (4.7873,0) 1 metastable dynamics corresponding to the MF approximation and
(221,-1.425) L the exact models.
oL P 1 -2
= N Ny (o) ] 4l 3D-GRFIM mean field 3D-GRFIM
v 3- L
6 4 -6

Equilibrium Metastable Equilibrium Metastable
Magnitude (Ref. 3) (Ref. 28 (Ref. 249  (This work

ob — — —— — — ] o 22/m  z2im  2.270+0.004 2.21+0.02

aw ol @01 o1 4.7873.0) 1 H 0 0 0 1.425+0.010
. : —— e a0 iE v 1/2 1/2 1.37£0.09  1.2+0.1
p o 1/u 3 3 1.498+0.034 1.5%0.1

1/2 1/2  0.017+0.005 0.024+0.012

FIG. 16. Phase diagram corresponding to the exact 3D-GRFIM
with metastable dynamic&) and in equilibrium(b). The phase
diagrams corresponding to the mean field approximation of the 3DH () for z=6. The spinodal transition is characterized by a
GRFIM with metastable dynamicg) and in equilibrium(d) are  givergence of the fluctuations and the correlation length on
also shown. The thick continuous line (o) indicates the spinodal {0 lineHy(o’) where the discontinuity of the order parameter
transition in the metastable solution and the dashed linés),iiib), AM oceurs
and (d) indicate the first-order transitions. In all cases we have In the pl;esent work we have shown that when comparing
indicated the coordinates of the critical point, the exact solutiongnon-MF) of both the equilibrium model

Eq. (32) is compact and is thus responsible for the macro2nd the metastable model, the character of the transition line

scopic jump of the magnetizati@A Therefore we are facing does not change. In both cases the transitions are standard

a standard first-order phase transition scenario with no divergrns(;'?irgifer t(:iprzllt;i?nsn Vl\gtnh t(r)]rd_er;]isparr:g(r_tte; (rjtl,?a(:sowi?#l?ﬁz
gence of the correlation length far<o,.. At the critical gth. 9

T A
point, this subcritical 3D-spanning avalanche becomes fracpred'Ct'Oﬁ that the transition is abrupt faf<8 as deduced

tal at all length scales, and does not fill any finite fraction offm? a_ncej_extpaéngog_anig/ssdatlt_)ubn:ﬂzl& S92 970+0.004
the system. The end poifd,H,) is a standard critical point. . S '.?.b'(.:a N 'r:j 41%,'_2 2?'10 Oa2 © t\r?C - t ¢ E)I :
Figure 16a) shows the obtained phase diagram. Thell SquIIbnum ando==22222.92 1N e metastable case.

dashed line represents the first-order transition line given bﬁeeg;igggmtgg ;/ta;lglee (r)riotgsl (;rr;t(ljcgle:‘l)eli(ril, tgsjséi;égziilli%rium
Eqg. (32) and the large dot the critical point. Note that this q

transition line is only approximate because it has been deéma?de;'ir;ihilgséwl:]iﬁgrfgﬁ]egggé3%’?3)';'2? d'; ﬁﬁﬂ'?gétthfoggf
duced from scaling arguments close to the critical point. P d

Nevertheless it is remarkable that E2) for =0 renders sponding to metastable dynamics. Nevertheless, the critical
(H),_(0)=-5.113 which is close to the value -4 which can exponents are the same within statistical errors. The values
3_ - .

e ) . are indicated in Table IV¥® In fact, Dahmenet all” have
be computed by gnot s9 trivial analysis of the coercive ’

. : . . already pointed out this similitude between the critical expo-
field of the hystere$|s loop of the .Gaussw:nSSSD-GRFIM Wlthnents for both models. These authors argue that agreement
metastable dynamics correspondingote 0.

In Fia. 16b | how f ) the ph di between the two sets of exponents is rather unexpected since

n 'gf' tf( )QNSSSEHS(A ow gr ;:qmparlgﬁg the p ,?E% '3 the two models are very different. Nevertheless, one can pro-
gram 3 ; te25 | i dditi mo ?:. n fqun r:jurr11 3 - vide a plausible argument based on renormalization group
(ground-statg N addition, in Fgs. ) an . Gd) we theory that suggests that the critical points in the two models
show the mean fieldVIF) solutions corresponding to both  3n, GREIM in equilibrium and the 3D-GRFIM with meta-
the metastablé anq quhbnurﬁ cases. stable dynamigscorrespond to the same fixed point in a

The MF scenario indicates that the equilibrium apd_meta—more general parameter space. Within the framework of RG
S_}_atl;lle f”t'carz pomt's %ccur foa'the'same value«lygtz@/ 7r| theory the critical surfacéor critical line) is defined as the
(—a6 € \g w e_rizg; 3ef co:)hr Igg“%nerl:LIII\T gr'l nparticular, qot of 4 points in the parameter space that flow to a certain
Z=0 fenderso,=4.7/o /5 for the S /. BEIOWe, NEV-  (iitical fixed point when the renormalization group transfor-
ertheless, the transition in equilibrium is a standard first

. > o : : ‘mation is applied. The variation of the tunable parameters of
order transitionat H=0), whereas it is a spinodal lirtdy(o) a model describes a “physical” trajectory in the parameter

in the metastable case. From the equations in Refs. 13 and L, e according to these definitions, the critical point cor-
it can be found that the metastability limit is responds to the point where the “physical” trajectory inter-
o o sects the critical surface. The two models discussed here can
Hy(o)=0o4/2In—= _Zq)err( \/In —c)- (40)  be considered as particular cases of a more general model
7 7 with the same 3D-GRFIM Hamiltonian and the following

when the external field is decreased,, is the error T=0 adiabatic dynamics: whe is varied, blocks of neigh-
function3® The continuous line in Fig. 16) corresponds to boring spins of sizé<n,,,, flip when such a flip represents
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g

scaling collapses. For instance, this is illustrated by Fig. 7 in
this work and by Figs. 8-10 in Ref. 22. Thus the behavior of
the correlation length is unique:

E=UVE(UTH), (42)

with Z(x) ~x+O(x?). The fluctuations then can “choose”
between two different mechanisms for propagation either
(- with fractal dimensiond;=2.78 or with fractal dimension
d;-=2.98. The second point to be considered is theannot
be related to the size of the subcritical 3D-spanning ava-
lanche since we have found théis finite belowo... Keeping
these two observations in mind we propose that the correla-
tion length is related to the average radius of the largest

FIG. 17. Schematic phase diagram of the proposed model in thBOnspanning avalanche. Belaw o the existence of a com-
space(H,n;L . o) in the adiabatic limit andr=0. Arrows indicate ~Pact subcritical 3D-spanning avalanche does not allow for
the RG flow. The different acronyms stand for Equilibrium Critical the nonspanning avalanches to overcome a certain finite
Point(ECP), Metastable Critical PoirtMCP), Equilibrium Discon-  length and thug is finite. Only at the critical point does the
tinuity Fixed Point(EDFP), Metastable Discontinuity Fixed Point subcritical 3D-spanning avalanche become fractal and allows
(MDFP), Critical Surface(CS), and Discontinuity SurfacgDS). for other spanning avalanches to exist ghtiecomes infi-
The grey lines correspond to projections of the critical surface omite. This behavior is much similar to what has been recently
the vertical planes. found in percolatior$®3° We conjecture that some of the
theorems that have been rigorously proven concerning the

niqueness of the infinite percolating cluster should be appli-

¥ble to our case concerning the compact subcritical 3D-
spanning avalanche. The present results should be considered
as an interesting stimulus to proceed with the analysis of
gercolation theory. For instance, we propose checking

; - . . . whether the fractal dimension of the spanning clusters is the
Since a critical pointcharacterized with the same exponents P !
same as that of the infinite cluster at distances lower than the

ywthm error bar} s found both yvlthnmaxz'l andnpa,= e, it correlation length at the percolation threshold.
is plausible to assume that this is an irrelevant parameter.

Thus, we propose the scenario presented in Fig. 17. Chang-

iNg nnay alters the position of the critical point, but not the VIIl. SUMMARY AND CONCLUSIONS
critical exponents which correspond to the same critical fixed
point. Numerical simulations of the 3D-GRFIM withy,,

H

an energy decrease. The metastable dynamics introduced
Sethna corresponds ig,,,=1 (only single spin flips are con-
sidered and the equilibrium model at=0 (exact ground
statg corresponds ta,,,=*. The parameten,,,, is a new
parameter that must be considered in the RG equation

The results presented in this paper are mainly related to
> 1 dynamics will help in clarifying this picture. At present two topics in the 3D-GRFIM: first, the field dependence of

we guess that the RG flow follows the arrows schematicall)}he spanning avalanches, and second, the geometrical prop-
indicated in Fig. 17. Both the equilibrium critical point erties of the avalanches. We have extended the FSS hypoth-

(ECP) and the metastable critical poitbCP) lie on the esis proposed in Ref. 22 to properly take into account the

same critical surfaceCS). In general a first-order phase tran- fi€/d dependence of the number densitigéH, o, L) and of
sition occurs at the points in the parameter space that g€ Pivariate distribution®,(s,H; o",L). When carrying out
towards a discontinuity fixed point when the RG transforma-SUch an extension, it is necessary to introduce a new scaling
tion is applied” We assume the existence of two disconti- variablev angl a new exponent related to the divergence of
nuity fixed points: the equilibrium discontinuity fixed point the correlation length wherH approachesH. (&~ (H
(EDFP and the metastable discontinuity fixed point -H.)™). We have also introduced a scaling hypothesis for
(MDEP). The EDFP controls the first-order phase transitionthe field (H),(c,L) at which the different avalanches con-
in the equilibrium casén;.,=0 ando < ¢%% and the MDFP  centrate and their standard deviatigf(o,L). From the scal-
controls the first-order phase transition whgp, > 0. Allthe  ing collapses corresponding to the 1D- and 2D-spanning ava-
points that flow towards any of the discontinuity fixed pointslanches we have found AF1.5. The study of the 3D-
define the discontinuity surfacgS) where the first-order spanning avalanches is more intricate as already shown in
phase transition occurs. Ref. 22, where we propose the existence of two different
Another interesting question to be discussed is the detetypes of 3D-spanning avalanches. In this paper we have pro-
mination of the correlation lengthi in the 3D-GRFIM with  posed two approximate separation methods for classifying
metastable dynamics. Avalanches can be understood as tHeese avalanches as subcritical or critical. Using these meth-
zero temperature fluctuations in the driven system. Is theipds we have found that L/~1.5 for both cases. Scaling
average linear size related 8 The first thing to note is that enables the following behavior to be sketched in the thermo-
we have found that avalanches display two different fractatlynamic limit: The 1D-, 2D-, and critical 3D-spanning ava-
dimensiongand thus different associatglexponents The  lanches only exist at the critical pointo,,Hc)=(2.21,
v and u exponents, nevertheless, are the same for all thel.429, where their number densities are infinite. In con-
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trast, one subcritical 3D-spanning avalanche exists betow
and it occurs on the linéH); (o) [Eqg. (32)].
From the average madd (l; o) we have obtained the

fractal dimensions corresponding to each of the types of

PHYSICAL REVIEW BO, 214422(2004)

curs, corresponds to a standard first-order phase transition
line and¢ only diverges at the critical point.
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