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The edge excitations and related topological orders of correlated states of a fast rotating Bose gas are
studied. Using exact diagonalization of small systems, we compute the energies and number of edge excita-
tions, as well as the boson occupancy near the edge for various states. The chiral Luttinger-liquid theory of
Wen is found to be a good description of the edges of the bosonic Laughlin and other states identified as
members of the principal Jain sequence for bosons. However, we find that in a harmonic trap the edge of the
state identified as the Moore-ReadsPfaffiand state shows a number of anomalies. An experimental way of
detecting these correlated states is also discussed.
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It has been argued1–3 that quantum fluctuations can de-
stroy a Bose-Einstein condensatesBECd if it rotates very
fast. Since large amounts of angular momentum can be im-
parted to a cold atomic gas, experimentalists have been able
to create systems with a large number of vortices,Nv.

3–5

Thus, the question of what happens whenNv eventually be-
comes comparable to the number of particles,N, has been
raised.1,2 In Ref. 2, it was shown that forn=N/Nv,10, the
BEC and the Abrikosov vortex lattice are destroyed and re-
placed by a series of “vortex liquid” states, some of which
are incompressibleand exhibit good overlap with bosonic
versions of wave functions known from fractional quantum
Hall effect sFQHEd.

Good overlap is usually a strong indication that some of
the correlations of a state obtained from exact diagonaliza-
tion are captured by a model wave function. However, Wen6

has emphasized that FQHE states possess a unique type of
quantumorder, which he dubbed “topological order,” that
provides a better way to classify them. In a deep sense, to-
pological order can be regarded as a measure of the quantum
entanglement existing between the particles in a correlated
quantum HallsQHd state.7

In this paper we study the topological order of the vortex
liquids as reflected in their edge properties.6 In the rotating
frame, edge excitations are the low-lying excitations of the
vortex liquid8 and, contrary to the ground states,1,2,9,10so far
they have received little attention. Based on the strong simi-
larities with electron FQHE physics, chiral Luttinger
liquids11 and similar edge excitations6 are expected, but an
explicit demonstration is lacking for a harmonically confined
gas of bosons under rotation. This is provided here by nu-
merically diagonalizing the Hamiltonian of small systems.

The topological order can be studied at the edge of fairly
small droplets of QH liquid.6,11,12 In what follows, we shall
focus on three types of states that have been identified in
previous works on small droplets.1,9 In the high angular mo-
mentum end, we study the edge properties of the Laughlin
statescorresponding to a bulk filling fractionn= 1

2d. By de-
creasing the total angular momentum, we come across the
compact composite-fermion states discussed in Ref. 9.

Amongst these states, we find evidence for the topological
order sand related edge structuresd that correspond to bulk
states with filling fractionsn= 2

3 and n= 3
4 of the principal

Jain sequence. At even lower angular momentum, we study
the edge properties of the state identified1 as the finite-sized
Moore-Readsor Pfaffiand state13 sn=1d. We observe a num-
ber of anomalies that persist up to the largest sizes studied
heresN=13d. The bulk properties of the states at these filling
fractions have also been studied in exact diagonalizations in
edgeless geometries2,10 which have established their interpre-
tation in terms of the Laughlinsn= 1

2
d, composite fermion

sn= 2
3 , 3

4
d, and Moore-Readsn=1d states. For the latter, cal-

culations on the sphere10 and on the torus2 found the correct
shift and ground-state degeneracyswhich are also a conse-
quence of the topological order6d.

An ultracold gas that rotates rapidly in a cylindrically
symmetric harmonic trap acquires a pancake shape and even-
tually becomes quasi-two-dimensionalsquasi-2Dd when the
chemical potentialm,"vi, wherevi is the axial trapping
frequency.15 Furthermore, the Coriolis force acts as an effec-
tive Lorentz force, which in a quasi-2D system leads to Lan-
dau levelssLL’s d separated by an energy 2"v'.15 For m
,2"v', all atoms lie in the lowest Landau levelsLLL d, and
the total single-particle energy is proportionalsup to a con-
stantd to the angular momentum. Here we shall be interested
in this limit, which has been already achieved in the
experiments.4 In the rotating frame, the Hamiltoniansrelative
to the zero-point energyd is

HLLL = T + U2 = "sv' − VdL + go
i, j

dsr i − r jd, s1d

with "L being the total axial angular momentum andg
=Î8p"v'sas/,id,2 the effective coupling for a gas harmoni-
cally confined to two dimensionssas,,i being the scattering
length that characterizes the atom-atom interaction in three
dimensions,,i=Î" /Mvi the axial oscillator length, and,
=Î" /Mv', M being the atom massd.

Laughlin state. For L=L0=NsN−1d, the ground state of
HLLL is1,8,9
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F0sz1,…,zNd = Hp
i, j

szi − zjd2Je−o
i=1

N
uziu

2/2, s2d

where zj ;sxj + i yjd /,. This wave function vanishes when
any two particles coincide and thereforeU2uF0l=0. This
property is maintained if it is multiplied by an arbitrary sym-
metric polynomial of thezi. Edge excitations of the above
state are generated8,11 by elementary symmetric polynomials
of the formsm=oi1,i2,¯,im

zi1
zi2

¯zim
. Thus,L is increased

by m units and, according tos1d, the excitation energy is
"sv'−Vdm. In the rotating frame, the edge excitations are
the lowest energy excitations of a rotating Bose gas in the
Laughlin state.8 Their degeneracy forL=L0+m is given by
the number of distinct waysm can be written as a sum of
smaller non-negative integersfi.e., partitions ofm,psmdg.
For example, form=4 there are five degenerate states:
fs4,s3s1,ss2d2,s2ss1d2,ss1d4g3F0. The properties of these
wave functions are captured by an effective-field theory,8,11

which treats these excitations as a noninteracting phonon
system with HamiltonianHedge="sv'−VdL, where L=L0

+om.0mbm
† bm, and fbm,bn

†g=dmn, commuting otherwise.
Hence, the number of edge statessNoSd for a givenm can be
obtained from a generatingsor partitiond function: Zsqd
=Tr qL−L0=pm.0s1−qmd−1=om.0psmdqm. In Table I, we
compare the theoretical NoSsN→`d with the numerical re-
sults, finding excellent agreement formøN. The deviations
are due to finite-size effects and can be accounted by a “trun-
cated” functionZNsqd, where the product is restricted to 0
,møN.

Another prediction of the theory11,8 is the form of the
ground-state boson occupancy,nsld, just below the highest
occupied orbital, lmax=2sN−1d. The following ratios of
nsld /nslmaxd are predicted: 1:2:3:4 forl = lmax,… , lmax−3. For
N=7 bosons in the Laughlin state, we find 1.0:2.0:2.9:3.5,
which is in good agreement with the theory given that its
validity is limited to lmax− l &ÎN,3 sRef. 11d Similar agree-
ment was found for the fermion Laughlin state in Ref. 11.

Principal Jain sequence. The incompressibility of the

Laughlin droplet can be regarded as a consequence of a sta-
tistical transmutation: at largeNv, a boson binds one vortex
and becomes a composite objectscalled composite fermion,
CFd23 that behaves as aspinlessfermion. In a Laughlin drop-
let, the CF’s fill up theN lowest angular momentum orbitals
in the LLL. Compressing the droplet and therefore decreas-
ing L requires promoting CF’s to higher LL’s and costs a
finite amount of energy. Thus, states with lower angular mo-
mentum will contain CF’s in higher CF LL’s, and this leads
to the ansatz9,23

Fsz1,…,zNd = PFp
i, j

szi − zjdFCF
fhNijgsr 1,…,r NdG , s3d

whereP projects onto the LLLsRef. 9d andFCF
fhNijg is a Slater

determinant withhNiji=1
p CF’s filling the lowest angular mo-

mentum orbitals ofpù1 CF LL’s, and L=L0=NsN−1d /2
+oi=0

p−1NifNi −s2i +1dg /2 sN0=N and Ni =0 for i .0 in the
Laughlin stated. In what follows, we focus on the CF states
h4, 2j and h5, 2j, which have been shown9 to have good
overlap with the exact states atL0=20sN=6d and L0=30sN
=7d, respectively. For a relatively large range ofL−L0.0 s3
for h4, 2j and 4 forh5, 2jd the lowest energy state is a center-
of-mass excitation of the state atL=L0, and the interaction
energy is unchanged. Edge excitations are those states with
energy lower than the bulk gapsD, cf. Fig. 1d.12,14According
to Refs. 8,11, these states exhibit two branches of edge
phonons described by.

Hedge= E0 + o
m.0

"fvm
sbdbm

† bm + vm
sdddm

† dmg, s4d

and L=L0+om.0mfbm
† bm+dm

† dmg, with fdm,dn
†g=fbm,bn

†g
=dnm, commuting otherwise. Note that the edge excitations
are not degenerate in energy. However, one can still compute
the NoS fromzsqd=Tr qL−L0=pm.0s1−qmd−2. In Table I we
compare the numerical results to the theoretical predictions
for the NoS, finding perfect agreement form=1,2. For
higherm the results are affected by finite-size effects. How-
ever, in the stateh5, 2j the NoS form=3 is quite close to its

TABLE I. Number of edge statessNoSd vs excitation angular momentumm. In the data for the Moore-
ReadsPfaffiand statel=0 for a pure three-body interaction andl=1 for a pure two-body interaction.

m=L−L0 0 1 2 3 4 5 6

Laughlin sN=5, L=20d 1 1 2 3 5 7 10

Laughlin sN=6, L=30d 1 1 2 3 5 7 11

Laughlin sN→`d 1 1 2 3 5 7 11

h4, 2j CF sN=6, L=20d 1 2 5 8

h5, 2j CF sN=7, L=30d 1 2 5 9 15

Jainn= 2
3sN→`d 1 2 5 10 20 36 65

Moore-Readsl=0, N=8, L=24d 1 1 3 5 10 15

Moore-Readsl=0, evenN→`d 1 1 3 5 10 16 28

Moore-Readsl=1, N=12, L=60d 1 4 10 21

Moore-Readsl=0, N=7, L=18d 1 2 4 7 12

Moore-Readsl=0, oddN→`d 1 2 4 7 13 21 35

Moore-Readsl=1, N=13, L=72d 1 6 14 29
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N→` value, and therefore we concentrate on this state for
further analysis. We next try to reproduce the energies of the
16 edge states ofh5, 2j from m=1 to 3 usingvm=2

sbd andvm=1,2
sdd

as the only fitting parametersfv1
sbd has only a kinetic-energy

contribution by Kohn’s theorem8g. The interaction part of
"v1

sdd can be extracted from them=1 data: "v1
sdd

=0.015g/,2. For m=2, there are the five following states:
2−1/2sb1

†d2u0l ,b2
†u0l ,d1

†b1
†u0l ,2−1/2sd1

†d2u0l ,d2
†u0l, whose ener-

gies can be obtained from Eq.s4d. For m=3 the states and
energies can be written down in a similar fashion. The com-
parison with numerics form=2,3 isgiven in Table II. Thus,
these states are good representatives of the topological order
of the filling n= 2

3 from the principal Jain sequence for
bosons.6,8

Finally, we also find evidencesto be reported elsewhere16d
for the edge structuressthree phonon branchesd correspond-
ing to n= 3

4 However, the NoS form.1 is affected by finite-
size effects forN=6,7.

Moore-Read (MR) or Pfaffian state. Ground states of CF’s
with lower angular momentum are obtained by placing CF’s
in higher effective LL’s. Eventually, when the number of
occupied levelsp→ +`, the CF’s would not feel any effec-
tive Coriolis force and the resulting state should be com-
pressible. However, in such a state the CF’s can pair and
condense into a BCS state, which would render the state

incompressible again.17 Since CF’s are spinless, the pairing
takes place inp wave and the BCS wave function is a
Pfaffian,13,17 which must be multiplied bypi, jszi −zjd to
yield a bosonic wave function,

FMR = p
i, j

szi − zjdAF 1

z1 − z2
¯

1

zN−1 − zN
G , s5d

whereA stands for antisymmetrizationssee, e.g., Refs. 1,18d
of the bracketed product, which is the Moore-ReadsMRd
wave function.13 Soon after the MR state was introduced, it
was pointed out19 that it is a zero interaction-energy eigen-
state of a three-body potential,U3=g3oi, j,kdsr i −r jddsr i

−r kd. Thus, it is convenient to work with a modified Hamil-
tonian,HLLL8 =T+lU2+s1−ldU3, so that forl=0 the ground
state at angular momentumL0

MR=NsN−2d /2 seven Nd or
L0

MR=sN−1d2/2 soddNd is exactlythe MR state. Indeed, this
modification is not entirely artificial as the MR state can
describe the exact ground state close to a Feshbach
resonance.20

For theexactMR statesi.e., l=0d besides the polynomi-
als sm introduced above, Wen,6 and Milovanovic and Read18

found a branch of fermionic edge excitations which are gen-
erated by replacing the Pfaffian inFMR by Afz1

n1
¯zF

nFszF+1

−zF+2d−1
¯ szN−1−zNd−1g, where n1,… ,nF are non-negative

integers. Thus the angular momentum is increased byL
−L0

MR=ok=1
F snk+ 1

2
d. This spectrum, together with the phonon

branch related to sm is described6 by L=L0
MR

+om.0fm bm
† bm+ sm− 1

2
dcm−1/2

† cm−1/2g, where bm,bm
† are the

phonon operators, and the fermionshcm−1/2,cn−1/2
† j=dmn, an-

ticommuting otherwise. However, due to the paired nature of
the state, even and oddN are different. For instance, to
compute the NoS, one must define6 Zevensqd= 1

2Trf1
+s−1dFgqL−L0 andZoddsqd= 1

2Trf1−s−1dFgqL−L0, since the par-
ity s−1dF, with F=om.0cm−1/2

† cm−1/2, is a good quantum
number.6 The numerical results are compared with the NoS
for N→` in Table I. Perfect agreement is found form
ø fN/2g. Higher values ofm are shown to illustrate the ef-
fects of finite size; the observed differences from theN→`
values can be also accounted for by the theory.21 Further-
more, using the effective-field theory,16 we have also ob-
tained the behavior ofnsld near the edge. ForN even the
predicted ratios of nsld /nslmaxd, where lmax=N−2, are
1:2:3:… . For N=8, we numerically find 1.0:2.2:3.4. How-
ever, for N odd the ratios ofnsl ø lmaxd /nslmaxdslmax=N−1d
behave differentlysRef. 16d: 1:1:2:3. ForN=9 we numeri-
cally find 1.0:1.0:2.5:4.1, and the scaling observed from
smaller systems shows a trend of convergence to the pre-
dicted ratios. Althoughnsld had been analyzed in Ref. 6 for a
fermion MR state, the different behavior ofnsld for odd N
had not been described.

As soon as the two-body interaction is turned on, i.e.,
already for smalll.0, we observe that theplateau at L
.L0

MR is lost for smallL−L0
MR. For pure two-body interac-

tion sl=1d, the states atL0
MR+1 for N=5,9,11,13 and at

L0
MR+2 for N=6,7,8,10,12 have lower interaction energy

than the ground state atL0
MR. Thus,U2 strongly perturbs the

plateau of the exact MR state by favoring states with angular

FIG. 1. Spectrum of the stateL=30 with N=7. The gapD
=0.091g/,2. Below the gap, we observe two phonon branches
along with their multiphonon excitations.

TABLE II. Interaction energiessin units of g/,2d of the edge
excitations of theh5, 2j statesN=7, L=30, see Fig. 1d. The predic-
tions for multiphonon states are given in brackets. Deviations are
due to nonlinear terms not included in Eq.s4d.

State No. m=2 sth.d m=3 sth.d State No. m=3 sth.d

1 0 s0d 0 s0d 6 0.034s0.030d
2 0.002f"v2

sbdg 0.002s0.002d 7 0.047s0.045d
3 0.015s0.015d 0.006f"v3

sbdg 8 0.069s0.069d
4 0.034s0.030d 0.015s0.015d 9 0.088s0.084d
5 0.069f"v2

sddg 0.020s0.017d 10 f"v3
sdd

ùDg
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momenta of compact CF states. If, regardless of this fact, one
counts the number of states atL.L0

MR with interaction en-
ergies less than the first excited state atL0

MR, the results do
not seem to converge and disagree with the NoS expected for
the MR statessee Table I for the observed NoS atl=1 for
N=12, 13d. We also observe a rapid deterioration of the over-
lap of the state atL0

MR with the exact MR state: from 0.91
sN=5d and 0.90 sN=6d to 0.68 sN=8d and 0.74 sN=9d.
These discrepancies might be due to a very slow conver-
gence asN grows towards a well-defined bulk MR state.
However, we note that for very largeN, local-density
arguments22 show that the edge of the MR state will recon-
struct. The anomalies in the edge of the small systems ob-
served here are striking in view of the good behavior exhib-
ited by the Jain states, which are also approximate wave
functions.

Experimental consequences. It is possible to excite the
surface modes by inducing a small time-dependent deforma-
tion of the harmonic trap. Within linear response, the energy
injected by anm-polar deformation is proportional to the
oscillator strengthfm=oaukL0+m,auOmuL0lu2, sOm=oi=1

N zi
md,

wherea runs over all edge excitations. The theory predicts
sRef. 8d fm=mnR2m, whereR=ÎN/n is the droplet radius.
For the dipole,f1=N, as required by Kohn’s theorem,8 and
confirmed by our numerics. For the quadrupolesm=2d f2

=2N2/n. We have numerically tested the accuracy of this
formula for them=2 modes of the states in Table Isexcept
the MR state atl=1d, finding that already forN=5, 6 the
deviations are no larger than 7%. This result suggests an
experimental way of estimating the filling fraction, provided
f2 andN sor f1d can be measured:nexp

−1 = f2/2N2. More details
will be provided elsewhere.16
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