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We show that, at high densities, fully variational solutions of solidlike types can be obtained from a density
functional formalism originally designed for liquid 4He. Motivated by this finding, we propose an extension of
the method that accurately describes the solid phase and the freezing transition of liquid 4He at zero tempera-
ture. The density profile of the interface between liquid and the �0001� surface of the 4He crystal is also
investigated, and its surface energy evaluated. The interfacial tension is found to be in semiquantitative
agreement with experiments and with other microscopic calculations. This opens the possibility to use unbiased
density functional �DF� methods to study highly nonhomogeneous systems, like 4He interacting with strongly
attractive impurities and/or substrates, or the nucleation of the solid phase in the metastable liquid.

DOI: 10.1103/PhysRevB.72.214522 PACS number�s�: 67.80.�s, 64.30.�t, 64.70.Dv, 68.08.De

I. INTRODUCTION

Helium crystals represent a fascinating system in which
general properties of crystalline surfaces such as the equilib-
rium crystal shape, surface phase transitions �roughening�,
and elementary mechanisms of the crystal growth can be
studied over a wide temperature range, in principle down to
absolute zero. Helium crystals can be grown chemically and
isotopically pure, and with very few lattice defects. Helium
crystal growth is fast in comparison to that of other solids
and it is characterized by the unique quantum phenomenon
of crystallization waves, i.e., melting-freezing waves which
can easily propagate on the liquid-solid interface at low tem-
peratures. This allows an accurate measurement of the sur-
face stiffness � and surface tension � and of their
anisotropy.1 The research on the surface of helium crystals
has been recently reviewed.2

A microscopic approach to the study of solid 4He and
liquid-solid coexistence at low temperature requires a fully
quantum approach. Calculations based on Green’s function
Monte Carlo3 �GFMC� at 0 K and path integral Monte
Carlo4 �PIMC� in the 5–35 K range have been used to study
solid 4He. The liquid-solid interface has been adressed
within a variational Monte Carlo �VMC� approach using
shadow wave functions.5

Density functional �DF� methods6 represent a useful com-
putational tool to study the properties of quantum inhomoge-
neous fluids, especially for large systems where DF provides
a good compromise between accuracy and computational
cost. Indeed, the properties of inhomogeneous liquid 4He at
zero temperature can be accurately described within DF
theory �DFT� by using the phenomenological functional pro-
posed in Ref. 7 and later improved in Ref. 8, and similar
ones. They have been widely used in a variety of problems
involving inhomogeneous 4He systems like, e.g., liquid-
vapor interface,7,8 pure and doped clusters,8,9 layering and
prewetting transitions in films,8 alkali atom adsorption on the
surface of liquid 4He and droplets,10 vortices in 4He
clusters,11 etc.

In view of its conceptual interest on the one hand and of
the potential applications on the other hand, we have under-
taken a fully variational study of the liquid-solid transition
and coexistence of 4He at zero temperature within DFT. A
number of versions of DFT have been developed to address
freezing in classical systems �for a review see, e.g., Refs.
12–14�. The common point of view is to relate any inhomo-
geneous configuration �such as the solid phase� to a reference
uniform liquid system. The free energy functional was first
expanded perturbatively, and later treated nonperturbatively
using the weighted density approximation. The solid phase is
investigated by first imposing a given lattice symmetry �but
not the lattice constant�, and then resorting to various de-
scriptions of the solid density; either a sum of Gaussians
centered on each lattice site, or a Fourier expansion along the
reciprocal lattice vectors �RLVs�. In the latter case, only a
few shells of RLVs were considered at first, but it was shown
later that a large number �around 100 shells� was needed to
achieve convergence. This parametrization demands more
computational effort than the Gaussian ansatz, but is able to
predict anisotropic density distributions around each site.

Other problems arise when addressing the liquid-solid in-
terface: the Fourier expansion of the density can be kept only
with coefficients varying across the interface, provided it is
wide enough to use coarse-graining methods; even in this
case, some inconsistencies appear.14 One is then limited to a
variational approach, using trial functions with a small num-
ber of parameters to represent the density profile across the
interface.

In the case of quantum systems, previous attempts on the
freezing of 4He �Refs. 15–18� or quantum hard spheres19,20 at
zero temperature have been reported. They use trial functions
�sums of Gaussians� to parametrize the solid density, and
resort to a second-order expansion of the energy around the
liquid density �the Ramakrishnan-Yussouff �RY�
approach�,15–18 or to a modified weighted density approxima-
tion exact to second order for small perturbations of the
liquid.19,20 These methods need the density-density static lin-
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ear response function � of the liquid as input. In helium,
these approaches have been found to be, at most, a reason-
able starting point to qualitatively describe the freezing
transition;15 moreover, some of these attempts always give
the liquid16 or the solid17,18 as the stable phase. Furthermore,
the liquid-solid interface is found to be too narrow to allow
the use of coarse-graining methods.18

Instead of limiting the study to a small set of trial func-
tions, we attempt here a fully variational DF description of
both liquid and solid phases on the same footing. We first
present a simple DF able to predict a liquid-solid transition.
Then we show how it can be modified to obtain quantitative
agreement with the experimental solid equation of state and
freezing parameters. Finally we use the modified DF to study
the liquid-solid interface, and determine the corresponding
surface energy and interfacial width.

II. THE DENSITY FUNCTIONAL FOR SOLID HELIUM 4

Our starting point is a simplified version of the Orsay-
Trento �OT� functional,8 where the energy of the 4He system
is written as

E��� =
�2

2m
� dr�����2 +

1

2
� drdr���r���r��VLJ��r − r���

+
c2

2
� dr��r��̄2�r� +

c3

3
� dr��r��̄3�r� . �1�

The first term is the usual quantum kinetic energy term, the
second term contains a Lennard-Jones He-He pair potential
VLJ�r� screened at distances shorter than a characteristic
length h. In the third and fourth terms, the weighted density

�̄ is the average of the density over a sphere of radius h̄.
These terms account phenomenologically for short range
correlations. The parameters h, c2, and c3 �in the original

formulation, h= h̄� are fixed to reproduce the experimental
density, energy per atom, and compressibility for the liquid
at zero temperature and pressure.8 The original nonlocal ki-
netic energy term proportional to ���r� ·����r��8 has been
dropped because, as one might expect, it leads to unavoid-
able instabilities in the solid phase. Its neglecting causes the
static response function � of the liquid to be only qualita-
tively described. We should mention the existence of an al-
ternative parametrization of this term that still reproduces the
experimental static function, while being free from
instabilities.21 As the resulting DF stems from a somewhat
different strategy than current DF’s do, we have preferred to
keep using an OT-like functional, introducing the changes
mentioned below.

The equilibrium density ��r� is obtained by minimizing
E��� with respect to density variations, subject to the con-
straint of a constant number of 4He atoms N. This is
achieved by evolving in the imaginary time a nonlinear
Schrödinger equation for the order parameter ��r�����r�,
where the Hamiltonian is given by H=−�2�2 / �2m�+U���.
The effective potential U is defined in terms of the varia-
tional derivative of the last three terms in the energy func-
tional Eq. �1� with respect to �.8

The calculations are performed in a periodically repeated
supercell containing a fixed number of 4He atoms, and the
starting configuration is a superposition of Gaussian profiles
with arbitrary but small width, placed in the positions of the
hcp structure, which is the experimental solid structure of
4He. Interestingly, for average densities corresponding to the
stable liquid phase, the equilibrium density obtained is ho-
mogeneous, whereas for higher densities—those roughly
corresponding to the solid—a solid 4He structure, character-
ized by a periodic density distribution with helium atoms at
the lattice sites of an hcp crystal, is found to be the stable
phase. “Solid” means here a highly inhomogeneous configu-
ration characterized by regions, called “atoms” for brevity in
the following, where the density is very large. Such atoms
are only slightly overlapping with the density tails of neigh-
boring atoms. As an example, we show in Fig. 1 the calcu-
lated density profile for one such solid structure, computed at
the experimental freezing density � f =0.0287 Å−3.

We have studied other ordered structures as well. A fcc
lattice is also found to be a stable phase at typical solid
densities, its energy being only slightly higher than that of
the hcp phase �by 0.02 K per atom�. A simple cubic struc-
ture, at the same densities, is found instead to be unstable
towards the homogeneous �liquid� phase. We want to point
out that the correct solid structure is found even if the initial
Gaussian superposition has not the correct parameters. For
instance, we found that by starting with Gaussians, placed on
an hcp lattice with a lattice constant twice the equilibrium
one, but such that the total normalization gives the correct
4He density, the equilibrium hcp structure is eventually re-
covered at the end of the minimization process.

In spite of this encouraging result, a close analysis of the
density dependence of the total energy of the hcp solid 4He,
calculated using Eq. �1�, shows that it largely deviates from

FIG. 1. �Color online� Surfaces of constant 4He density
��=0.029 Å−3� of a 4He hcp crystal, viewed along the c axis.
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the experimental result. The reason is an unphysical, large
density pile-up in the core region of the 4He atoms, such that
the resulting solid is too dense. To fix this unrealistic behav-
ior, we need a mechanism that makes such a density pile-up
energetically costly. The simplest one is to add a “penalty”
energy term to the functional, which has the following form:

Ep��� = C� ��r�f���r��dr . �2�

Here f���r�� is a “switch” function which becomes apprecia-
bly different from zero only when the density is larger than a
predefined value �m. One such function is

f���r�� = 1 + tanh		���r� − �m�
 , �3�

where C, 	, and �m are DF parameters. The effect of Ep��� is
to add to the effective potential U��� the term

Vp�r� = C	f���r�� + 	��r��1 − tanh2�	„��r� − �m…��
 .

�4�

If C
0 and when ��r���m, this term acts as a repulsive
barrier, which forbids extra pile-up of the density. We can
thus use C, 	, and �m as adjustable parameters in such a way
to get agreement with the experimental equation of state
�EOS� for the solid phase. Note that there is a large freedom
in the choice of the penalty term since, by construction, it has
no effect whatsoever on the liquid structure, even in a highly
structured liquid, because in practice �m is a factor �10 than
typical liquid densities. We have found that the choice
C=0.1 Hartree, 	=40 Å3, and �m=0.37 Å−3 �Ref. 22�,
yields an EOS for the solid in good agreement with the
experiments,23 as shown in Fig. 2.

III. THE FREEZING TRANSITION AND THE LIQUID-
SOLID INTERFACE

Once the EOS of the homogeneous liquid and the EOS of
the solid are determined, one can easily locate the freezing
transition by means of a double-tangent Maxwell construc-
tion, as illustrated in Fig. 2. We find a freezing pressure
Pf=26.1 bar and a chemical potential at coexistence
�f=0.69 K. Our calculated values for Pf and the solid and
liquid densities at coexistence are reported in Table I, to-
gether with those obtained by other authors.

We now turn to the liquid-solid interface of 4He, charac-
terized by the interfacial tension � and width . 4He is
among the rare examples of a system for which � has been
directly measured, thanks to the possibility of propagating
crystallization waves at its surface. The value of � is
0.17�10−3 N/m, �Ref. 1� but  is not known experimentally.

The 4He liquid-solid interface is an example of a system
whose direct simulations by means of exact Monte Carlo
methods can be computationally very expensive. Recently, it
has been tackled by means of shadow wave functions VMC,5

and also one of the previous DFT.18 We have used the modi-
fied DF, Eqs. �1� and �2�, to study the liquid-solid interface.
To describe the coexisting phases, we start from a slab of hcp

TABLE I. Freezing transition parameters ��=2.556 Å�.

Method �l�
3 �s�

3 Pf �bar�

Experimenta 0.434 0.479 25.3

GFMCb 0.438 0.491 27.0

VMCc 0.449 0.456 27.0

RYd 0.459 0.515 41.5

RYe 0.435 0.513 25.7

Present work 0.437 0.490 26.1

aReference 24.
bReference 3.
cReference 5.
dReference 15.
eReference 18.

FIG. 2. Solid lines, calculated solid and liquid EOS; dashed line,
double tangent construction. Solid circles are the experimental data
for the solid EOS �Ref. 23�. The experimental EOS for the liquid is
not shown since it coincides, by construction, with that of the OT
functional, whose agreement with the experiment is excellent
�Ref. 8�.

FIG. 3. �Color online� Liquid-solid interface shown by means of
equal density contour lines �drawn between �=0.02 Å−3 and
�=0.05 Å−3� in a plane perpendicular to the interface plane. Con-
stant density surfaces �at �=0.08 Å−3� are also shown to identify
the atoms in the solid slab.
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crystal 4He in contact with a region of liquid 4He, and mini-
mize the energy functional to find the equilibrium configura-
tion, imposing that during the minimization the chemical po-
tential is constant and equal to the value �f=0.69 K found
from the double-tangent construction illustrated in Fig. 2. We
consider explicitly the interface between liquid 4He and the
�0001� surface of the crystal �basal plane�.

Figure 3 shows a view of the equilibrium density configu-
ration at the liquid-solid interface. A related quantity, the 4He
density averaged over a plane parallel to the basal plane, is
shown in Fig. 4. The thickness  of the liquid-solid interface
has been estimated by evaluating the 10–90% width of the
curve interpolating the maxima in the density profile shown
in Fig. 4. We find 9.3 Å, in close agreement with the VMC
results. Our findings are compared in Table II with other
experimental and theoretical results.

From the calculated density profiles we estimate the
liquid-solid surface tension as �= �E−�fN+ PfV� / �2A�. Here
V is the volume of the supercell, and A is the surface area of
the exposed �0001� face. A factor 1 /2 appears in the equation
to account for the two free surfaces delimiting the solid film
in our slab geometry. Our calculations, which are three di-
mensional in nature, have been done by using a supercell

accomodating �6 layers of solid 4He and a thick liquid layer
in contact with it. We find that the convergence with respect
to the amount of liquid present in the supercell is rather slow
�to obtain � accurately, one should have two very wide
liquid and solid regions in contact�. Our estimated value is
�=0.1�10−3 N/m,25 which is a rather good result, of qual-
ity similar to the VMC value.5

IV. CONCLUSIONS

We have shown that DFs currently used for liquid 4He
admit fully variational solutions of a highly inhomogeneous
type that may represent localized helium atoms. With a
simple modification, one such DF is found to accurately de-
scribe both liquid and solid phases of 4He and their coexist-
ence. Our scheme does not rely on any specific trial function
density profile for the solid phase, but gives an unbiased
description of both phases on the same footing. This broad-
ens the range of applicability of current DF, permitting one
to study in an unbiased way highly nonhomogeneous 4He
systems, like droplets doped with strongly attractive impuri-
ties, for instance, alkali ions,26 or 4He on strongly attractive
substrates, such as graphite or carbon nanotubes.27 Another
potentially useful application is the study of the nucleation of
the solid phase in the metastable superfluid.28
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