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Replicator dynamics with diffusion on multiplex networks
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In this study we present an extension of the dynamics of diffusion in multiplex graphs, which makes the
equations compatible with the replicator equation with mutations. We derive an exact formula for the diffusion
term, which shows that, while diffusion is linear for numbers of agents, it is necessary to account for nonlinear
terms when working with fractions of individuals. We also derive the transition probabilities that give rise to
such macroscopic behavior, completing the bottom-up description. Finally, it is shown that the usual assumption
of constant population sizes induces a hidden selective pressure due to the diffusive dynamics, which favors the
increase of fast diffusing strategies.
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I. INTRODUCTION

During the last decade agent-based modeling has increased
its importance as a powerful tool to model situations in which
the complexity of the interactions of many-agent systems
makes it impossible, or at least very difficult, to make analytic
predictions of the dynamical behavior of the system [1,2].
Furthermore, the agent-based models complement the an-
alytic approach allowing for an exploration of the coarse-
grained dynamics and the connection between microscale
and macroscale behavior [3–6]. Such agent-based modeling
is of special importance in evolutionary game theoretical
studies [7,8], which aim to capture the intricacies of biological,
social, and economical systems, where the nonlinearity and
feedbacks of the systems cannot be easily foreseen [9–12].
In the middle of such framework [13], and connected with
the microevolutionary dynamics [3–6], stands the replicator
equation [14,15]

(ẋα)rep = xα(f α − f̄ ). (1)

The replicator equation, which was introduced shortly
after the foundation of the evolutionary game theoretical
framework [7,16,17], has been extensively used during the last
decades to model the evolution of the fractions xα = nα/N of
traits of type α = 1, . . . ,L in large well-mixed populations
with frequency dependent selection, i.e., when the fitness f α

(reproductive potential or capacity) of the agents traits and
the mean population fitness f̄ = ∑

α f αxα depend on the
population composition. Such traits may represent different
phenotypes and genotypes in biological settings, or different
behavioral strategies in a cultural evolutionary framework.

The replicator equation is on the core of the framework of
evolution, linked to the quasispecies equation [13], the game
dynamical equation [3,4], adaptive dynamics [13], Lotka-
Volterra dynamics [18,19], and the Price equation [20–23].
During the last years the physics community has analyzed how
such equation is affected by physical entities, as the interplay
between different temporal scales of interaction and selec-
tion [24,25], the self-organized homeostatic regulation [26]
triggered by constraints on resource availability [9,10,12,27],
or the existence of network structures [25,28–31]. Further-
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more, an extension of the replicator dynamics to regular
networks has been developed in a situation where each node
is an agent [32], and a second extension of the replicator
dynamics has been developed to represent a two-dimensional
world where the agents diffuse [33]. However, many real-world
situations cannot be modeled as a simple network or a two-
dimensional space, and need the introduction of several kinds
of links to represent different properties of the system [34], as
in air transportation networks, where each airline represents a
different network [35].

Let us focus on a cultural evolutionary framework for the
remainder of the paper. In such a framework the individual
traits being selected are behavioral traits, called strategies.
The main aim of this paper is to develop the mathematical
tools that allow us to model diffusion of strategies in multiplex
networks in a compatible way with the selection dynamics
described by the replicator equation (with or without muta-
tions), irrespective of the microscopic dynamics that give rise
to the replicator equation (see Appendix A). Let us provide
a simple example to illustrate the situation: imagine several
cities that are connected by bus, train, and plane, each kind
of connection with a different network structure. Individuals
in each city are interacting between them, both directly or
indirectly: they have different jobs and different incomes,
which determines, at least partially, their choices on how to
travel, and they also have information about the transportation
ways. Based on such interactions and information, they may
decide to travel in one or another transport, which determines
their individual strategy. As the different transportation ways
determine different networks structures, as well as the travel
speeds are different, a multilayer network is necessary to
represent the full transportation system; hence, as a first
approach to such simplified situation, we need to extend the
replicator dynamics (describing strategy changes) to diffusive
individuals in this kind of multilayer.

We may think that introducing diffusion on multiplex
models of evolution is a straightforward task, as the diffusive
process has been studied on detail on such networks [36,37].
However, it poses a challenge: as the replicator dynamics
describe the evolution of fractions of individuals, the diffusive
models need to be rewritten in a compatible way, accounting
for the constraint on the addition of the fractions to one, as
well as for the conservation of the number of agents. We
develop such extension in this paper, showing that working
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with fractions introduces dependencies, which are not present
for the diffusion of the numbers of agents. These new
dependencies can only be taken into account introducing a
nonlinear term, which has to be added to the linear one, in order
to represent the general dynamics of diffusion of fractions of
individuals in the multiplex. Furthermore, we discuss some
situations in which the linear scenario can be recovered, as
when population sizes or population size ratios between sites
are constant, and show that in such situations hidden selective
pressures act on the system, even when they do not appear
explicitly on the equations.

The paper is outlined as follows. We start in Sec. II by
defining multiplex networks and showing the problem to
overcome when working with fractions. After that, in Sec. III
we derive the diffusion term compatible with the replicator
dynamics and infer the transition probabilities that give rise to
it. Then, in Sec. IV we discuss some situations in which the
linear dynamics are recovered (and the analytic calculations
simplified), and show that some of this situations carry attached
the appearance of hidden selective pressures. Finally, in Sec. V
we discuss the results.

II. DIFFUSION IN THE MULTIPLEX: THE PROBLEM
OF WORKING WITH FRACTIONS

In a general multilayer network [34] each node in one layer
can be connected to any node in any other layer. Hence, the
connectivity may be given by a tensor with four indices, M

αβ

ij ,
whose entries are 1 if nodes iα—node i in layer α—and jβ are
connected and zero otherwise. In multiplex networks [36–40],
however, the set of nodes i = 1, . . . ,N is the same in all layers
α = 1, . . . ,L, and the connectivity of each layer is given by a
matrix Aα = {aα

ij } (see Fig. 1). Furthermore, only connections
among one node iα and its counterpart in another layer iβ are
allowed. This interlayer connectivity is the same for all nodes
and is given by the interlayer connectivity matrix �αβ [37].
Hence, multiplex networks have a connectivity defined by

Mαα
ij = aα

ij M
αβ

ii = �αβ M
αβ

ij = 0 (2)

with i �= j and α �= β.

FIG. 1. Example of multiplex network formed by three layers
(blue, gray, and red). The set of nodes is the same in all layers and
the interlayer links connect them in a one to one basis. For clarity,
the interlayer connection between the first and third layer has been
omitted.

Each site i of a multiplex may be regarded as one
structural entity, and the different layers α represent different
interconnection structures between these entities. Structural
entities (sites) may represent specific locations (cities), and
the different connectivity of each transportation system or
mobility pattern would define the different layers through
which the agents move, while the interlayer connections
refer to the possibility to reach another transport (layer)
from a specific location (for simplicity we will assume that
�αβ = 1). Individuals changing from one layer to another can
be represented as changing their strategy due to selection (due
to prices, availability, or other competitive reasons) or mutation
(random trial) in an evolutionary framework.

In order to describe the state of the entire multiplex system,
we may define a set of vectors {�ni}, one per site i, each one
with L (number of layers) components. From an evolutionary
game theoretical point of view the components of such vectors
represent the number of agents nα

i in a given position iα of
the multiplex, and hence �ni is the population composition at
i. Then, the evolution of the state of node iα may be assumed
as given by a functional Fα

i [{�ni(t)},aα
ij ,�

αβ], which depends,
respectively, on the state of the system, and on the intralayer
and interlayer connectivities.

As the state of the system is instantaneously defined by a
set of quantities �ni for each site i, we may write the dynamics
as a set of coupled differential equations, one per component
(layer),

dnα
i (t)

dt
= Fα

i

[
nα

i (t),aα
ijn

α
j (t),�αβn

β

i (t)
]
, (3)

where the terms on which the functional depends are, re-
spectively, the state of iα , the state of connected nodes in
the same layer (intralayer neighborhood of iα), and the state
of equivalent nodes connected through interlayer connections
(interlayer neighborhood of iα).

In order to approach a replicator-equation-like functional
[see Eq. (1)], we have to normalize nα

i with respect to Ni =∑
α nα

i , the number of agents (population size) on site i, which
is only site dependent. The normalized quantity is the fraction
xα

i = nα
i /Ni , which must fulfill the restriction

∑
α xα

i = 1, and
hence its derivative satisfies

∑
α ẋα

i = 0. Note that, whenever
the agents diffuse from jβ to iβ (or in the opposite direction),
they are modifying the value of the fraction in iα through
the modification of the population size Ni . Hence, in order to
account for the dynamics in a position iα it is no longer enough
to take into account the direct neighborhood of iα , given by
its connectivity, but it is necessary to take into account the
entire neighborhood of i, introducing an extra dependence.
The functional in terms of fractions is thus

dxα
i (t)

dt
= Fα

i

[ �xi(t),a
α
ij x

α
j (t),�αβx

β

i (t),aβ

ij x
β

j (t)
]
, (4)

where the extra dependencies are given by the first term
between brackets, which now accounts for the entire state of i,
and the last term, which accounts for the neighborhood of iβ .
As we show in the following, such extra dependencies require
a modification of the diffusion term, which will no longer be
linear, but include a nonlinear term.
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III. REPLICATOR DYNAMICS WITH DIFFUSION
IN THE MULTIPLEX

In this section we derive a diffusion term in the multiplex
compatible with the replicator dynamics, i.e., describing the
evolution of the fractions of agents xα

i at site i with diffusive
pattern given by layer α, and keeping the conservation
of the total number of agents in the multiplex,

∑
i Ni = N

where N is constant, as well as the constraint
∑

α xα
i = 1. We

will assume that diffusion and evolution are uncoupled, and
hence the diffusion term can simply be added to the dynamics.

As the diffusion of agents has been already studied, let us
start trying to derive the equations for diffusion of the fractions
from those for the number of agents, and discuss its use in
game theoretical studies. If the agents are diffusing across a
network structure with adjacency matrix of layer α given by
the elements aα

ij = 1 for connected nodes and 0 otherwise, the
transition probabilities determining the microscopic dynamics
of diffusion of (numbers of) individuals i given j in layer α

are (
T +α

i|j
)

diff = Dαaα
ijn

α
j = Dαaα

ijNjx
α
j(

T −α
i|j

)
diff = Dαaα

ijn
α
i = Dαaα

ijNix
α
i , (5)

where Dα is the diffusion coefficient of layer α and

T +α
i|j = T

[
nα

i → nα
i + 1

∣∣ nα
j → nα

j − 1
]

(6)

is the transition rate of increase (decrease, by changing all
signs) of the number of agents in iα in one unit triggered by
the movement of one agent in jα . Note that, as the process
of diffusion implies a redistribution of agents, the aggregated
number of agents Ni + Nj is preserved in each diffusive event
among i and j , and hence the constraint (T +α

i|j )diff = (T −α
j |i )diff

holds, which also ensures the global conservation of agents
in the entire multiplex system by linking the processes nα

i →
nα

i + 1 and nα
j → nα

j − 1. In the following, for simplicity, we
will write the transition rates in a simplified form, explicitly
stating the process to which it refers in the focal variables and
the terms involved, but not the possible linked processes, which
will be pointed out when they are relevant for the discussion; in
this way, Eq. (6) would be (T +α

i|j )diff = T [nα
i → nα

i + 1 | nα
j ].

The microscopic dynamics can be connected with the
macroscopic behavior of the system by expanding a Fokker-
Planck equation and truncating high-order terms (this happens
naturally for N � 1 when working with fractions, see Ap-
pendix A for the one-dimensional derivation), which results in
the Langevin equation,

η̇α
i = e + ξs, (7)

where ξ is uncorrelated Gaussian noise, η is either the number
of individuals or the fraction of individuals, and the drift and
diffusion terms (do not confuse the latter with the diffusive
dynamics studied in this section) are respectively

e =
∑

j

(
T +α

i|j − T −α
i|j

)
, s =

√∑
j

(
T +α

i|j + T −α
i|j

)
Ni

, (8)

where the transition probabilities have to be written in terms
of numbers or fractions depending on the choice in Eq. (7).
The first term in Eq. (8) (drift) accounts for the deterministic

behavior of the system and the latter (diffusion term) for
stochastic effects. Note that the stochastic effects disappear
in the thermodynamic limit Ni → ∞, or whenever Ni �∑

j (T +α
i|j + T −α

i|j ), i.e., when the transition rates are small
compared to the population size.

Whenever we introduce the transition probabilities Eq. (5)
into the drift term in Eq. (8) expressed for numbers of
individuals, the deterministic diffusive dynamics for the
number of agents are(

ṅα
i

)
diff = Dα

∑
j

aα
ij

(
nα

j − nα
i

) = −Dα
∑

j

Lα
ijn

α
j , (9)

a well-known equation for the diffusion of particles on a
network, where the tensor Lα = {Lα

ij } = {δij k
α
i − aα

ij } is the
graph Laplacian of the corresponding layer α (with δαβ the
Kronecker’s δ) and kα

i is the degree of site i in layer α.
In order to derive the equation for the diffusion of fractions

instead of numbers, it is important to note that, if we
differentiate the fraction xα

i = nα
i /N , we get

ẋα
i = ṅα

i

Ni

− xα
i

Ṅi

Ni

(10)

and hence a nonlinear term that depends on xα
i appears. Since

we are trying to find the exact description of the diffusive
process which is compatible with the replicator equation for
mobile agents in a multiplex, we can follow this approach:
first, construct a compatible macroscopic equation, and then
infer the transition probabilities that give rise to it. In order to
do this we may introduce Eq. (9) into Eq. (10) [note that the
latter is a replicator equation of the form of Eq. (A1)], and use∑

β n
β

i = Ni , obtaining a term of the form,

(
ẋα

i

)
diff = −Dα

∑
j

ρijL
α
ij x

α
j + xα

i

∑
β

∑
j

DβρijL
β

ij x
β

j ,

(11)

where ρij = Nj/Ni is a population size dependence between
neighboring sites. As it can be observed, in addition to a linear
term, the first one, a second term appears. This term ensures
that the normalization of the fractions is the proper one, i.e.,
fractions always add up to one, as shown in Figs. 2(a), 2(b) for a
system of two layers and two nodes in each layer. Note that, as
previously foreseen in Sec. II, this term implies a dependence
of the dynamics at iα on positions jβ to which it is not directly
connected, but represents the neighborhood of iβ nodes.

The diffusion term (11) may be rewritten in a more compact
form(
ẋα

i

)
diff = −

∑
β

∑
j

Dβx
β

j ρij

(
δαβ − xα

i

)(
k

β

i δij − a
β

ij

)
. (12)

Note that, if one extracts the node degree from the second
parenthesis—the network Laplacian term—then it becomes
k

β

i (δij − a
β

ij /k
β

i ), which is similar to the first parenthesis term,
ρij (δαβ − xα

i ), but with constant values instead of variables. In
this way the latter term may be interpreted as a population-
composition-dependent Laplacian, which accounts for the
instantaneous heterogeneity in population sizes and fractions
of individuals in the network.
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FIG. 2. Intralayer diffusive dynamics of a system consisting of two layers with diffusion coefficients Dα = 10−1 and Dβ = 10−2, and two
sites, i = 1, 2. Initially there are N individuals in nodes 1α and 2β , which are allowed to diffuse within its own layer (note that N may take
any value in the situation depicted, provided that it is the same in both layers, as the fractional character of ρ makes it vanish); no interlayer
process is acting on the system. In order to fulfill the constraint

∑
α xα

i = 1, filled and empty circles, as well as filled and empty triangles, have
to add up to one. (a), (b) dynamics of Eq. (11), with (a) ρij calculated exactly analytically and (b) setting ρij = 1; (b), (c) dynamics of Eq. (17)
with (c) ρij calculated exactly analytically and (d) ρij = 1; Cases (c) and (d) do not keep the normalization of the fractions. The dynamics
given in (a) and (b) maintain the restriction

∑
γ x

γ

i = 1 due to the quadratic term in Eq. (11). However, while case (a) describes accurately
the expected dynamics, (b) shows an asymmetry in the final state, which is not expected due to pure intralayer diffusion, but the result of an
induced evolutionary pressure due to the different diffusive velocities and the restriction ρij = 1.

Now, it is possible to infer the transition probabilities of the
microscopic process from the emergent macroscopic dynamics
[Eq. (12)], which may be used in Markovian analysis [12]. The
macroscopic deterministic dynamics emerge from the drift
term in Eq. (8), which by extrapolation to two dimensions
results in

ẋα
i =

∑
β

∑
j

(
T

+α|β
i|j − T

−α|β
i|j

)
, (13)

where

T
+α|β
i|j = T

[
xα

i → xα
i + 
xα

i

∣∣ xβ

j

]
(14)

is the transition rate of increase (decrease, by changing all
signs) of the fraction of agents in iα given the fraction of
agents in jβ (see Appendix C). Note that x

β

j may also vary in
the same process, but such variation is specified in its related
transition rate, and not explicitly written here for simplicity.

Then, we can compare Eq. (12) and Eq. (13) (see Ap-
pendix C for the derivation), and infer the bidimensional
transition probabilities describing the variation of the fractions

of individuals xα
i , which give rise to Eq. (12), resulting in

T
+α|α
i|i = 0 T

−α|α
i|i = Dαkα

i xα
i

(
1 − xα

i

)
T

+α|α
i|j = Dαρij a

α
ij x

α
j

(
1 − xα

i

)
T

−α|α
i|j = 0

T
+α|β
i|i = Dβk

β

i xα
i x

β

i T
−α|β
i|i = 0

T
+α|β
i|j = 0 T

−α|β
i|j = Dβρija

β

ij x
α
i x

β

j , (15)

where we have omitted the subscript “diff” for simplicity.
Note that the transition probabilities depend on both the

layers (α) and the sites (i), and that the symmetry, which
is present for mutation transition probabilities, which makes
them keep local population sizes constant (see Appendix B), is
broken in general settings, T −α|β �= T +β|α . Such asymmetry is
however expected, as diffusion implicitly needs variable local
population sizes (although the total number of particles in
the multiplex is conserved), and assuming constant population
sizes locally may have unexpected effects, as shown in the next
section.
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The transition probabilities in Eq. (15), together with
those that give rise to the replicator equation with mutations
(Appendixes A, B) complete the microscopic description of
the evolutionary process for agents in a multiplex. Let us
finally write down the deterministic replicator dynamics (see
Appendix A) with additive mutations (see Appendix B) and
diffusion in a multiplex:

ẋα
i = xα

i

(
f α

i − f̄i

) +
∑

β

(
x

β

i q
βα

i − xα
i q

αβ

i

)

−
∑

β

∑
j

Dβx
β

j ρij

(
δαβ − xα

i

)(
kβ
s δij − a

β

ij

)
, (16)

where f α
i is the fitness of individuals in position iα , f̄i =∑

α f α
i is the mean fitness of individuals in i across layers

and q
αβ

i is the mutation rate, which accounts for transitions
of agents between α and β layers in site i. For the case of
mutations coupled to reproduction substitute the first two terms
in the previous equation by the so called replicator-mutator
equation [Eq. (B7)].

Remarkably, the nonlinear effects due to diffusion are
all contained in the xα

i in the first parenthesis of the latter
term in Eq. (16). There are, however, some situations in
which the nonlinearity disappears, and in which the analytic
calculations can be simplified. Let us discuss them, as well as
their implications, with special emphasis on the appearance of
hidden selective pressures.

IV. RECOVERING LINEAR DIFFUSION AND
SIMPLIFYING THE ANALYTICS

Some situations allow us to recover linear diffusion, as well
as to simplify the analytic calculations. Here, we analyze three
of such scenarios. The first one refers to a situation in which
population size ratios are all forced to be constant; note that this
includes as a subcase having constant populations, situation
when the second term in Eq. (10) disappears. Remarkably,
in this situation a hidden selective pressure appears favoring
the increase of fast diffusing strategies. The second scenario
refers to slow population change, a situation that approximates
the constant population sizes scenario. The last subsection
explores the situation in which the population ratio can be
expressed as some analytic function. In that case, time scales
separation allows us to write some formulas, which simplify
the calculations.

A. Constant population ratios (or sizes) induce hidden
selective pressure

Let us first study the case in which some mechanism makes
ρij = Nj/Ni → c, where c is a constant; for simplicity, we
will assume c = 1, which includes the usual assumption in
evolutionary game theoretical studies of constant population
sizes [3–5,41–43]). This case is shown in Fig. 2(b), where
the restriction on the addition of fractions of individuals to
one during the dynamical evolution of the system is fulfilled.
However, the final state is not a symmetric one in which there
are N/2 individuals in each node, as it happens without the
restriction on the quotient of population sizes. Why does this
happen?

The case in which ρij is forced to be equal to a certain
value in Eq. (11) may happen only if the conservation of
particles due to the diffusive process does no longer hold. In
such case, which may be due to a fast (compared to diffusion)
and neutral evolutionary process acting on the system, the
difference in diffusive velocities transforms into different
diffusive pressures, which induce different selective pressures
while the system decays to the equilibrium.

The different selective pressures are induced by the fact
that fast diffusing individuals are increasing their frequency
in a site compared to slower diffusing ones, and then the
increased fraction is fixated by the neutral selective process,
which only renormalizes the population size without altering
the proportions. This is similar to a Wright-Fisher process,
in which the population reproduces during the reproduction
period according to their fitness and then, keeping the
proportions of individuals, the population size is renormalized
to its initial value. In our case, however, the variation in the
fractions is due to the diffusion of the agents and the continuous
renormalization of the population size is due to the neutral
evolutionary process, thus favoring the fast diffusive strategy,
as shown in Fig. 2(b).

B. Slow population size change and quasineutral selection

The equation describing the evolution of the fraction of
particles present at each point may in principle be simplified
whenever, starting from a situation near the equilibrium, the
variation of the number of agents is so slow that it can be
neglected, Ṅi/Ni → 0. This is equivalent to assuming that
ẋα

i ≈ ṅα
i /Ni , which results in

(
ẋα

i

)
diff = Dα

∑
j

aα
ij

(
Nj

Ni

xα
j − xα

i

)
= −Dα

∑
j

ρijL
α
ij x

α
j .

(17)

However, Eq. (17) does not generally keep the proper nor-
malization for the fractions

∑
β x

β

i = 1, as it can be easily
proven with a simple example. Let us assume a multiplex
network formed by identical networks with identical diffusion
coefficients (for two-dimensional spatial networks, this equals
the Fisher-Kolmogorov reaction-diffusion scenario for gene
wave-front propagation [44–46]). In this case, which is
analogous to a monolayer network, there is no dependence
of the adjacency matrix terms and diffusion coefficients on
the layer index α, which now serves only to identify the
different strategies present in each node. Hence, by summing
Eq. (17) over layers (or strategies) and noting that

∑
β x

β

i = 1,

we obtain the condition
∑

β ẋ
β

i = (D/Ni)
∑

j aij (Nj − Ni) =
(D/Ni)

∑
j aijNj − kiNi , which is only equal to zero, i.e.,

satisfies the dynamical constraint, whenever

Ni =
∑

j aijNj

ki

or Ni = Nj . (18)

These two restrictions are equivalent to requiring that∑
j LijNj = 0, which could be implemented or engineered

in the system, but it is not a priori expected to happen
as a self-organizing feature. Furthermore, simulations using
a system with two nodes and two layers confirm that the
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normalization is not fulfilled using Eq. (17), as shown in
Figs. 2(c), 2(d). Hence, the construction of a microscopic
model that describes the macroscopic diffusive dynamics of
fractions of individuals cannot be done by simply rewriting
the transition probabilities in Eq. (5) in terms of fractions.

The case of slow population change is equivalent to
assuming that the second term in Eq. (11) vanishes∑

β

∑
j

DβρijL
β

ij x
β

j → 0 (19)

and is hence only slightly influencing the dynamics described
by the first term. In such case, the diffusion term approaches
Eq. (17). Note however that, if we assume that the term above is
strictly zero, we recover the case of strictly constant population
sizes, and hence hidden selective pressures may appear, as
explained in the previous subsection.

From an evolutionary perspective, small perturbations
introduced in the neutral selection limit satisfy the conditions
leading to the slow population size change approximation
whenever diffusion is slow. If we define the quasineutral
selection limit as represented by f α

i → 0, then the population
size at each site varies slowly, given that Ṅi = Nif̄i → 0 and
Dγ → 0. The quasineutral selection limit is important for two
reasons: first, it allows for analytic calculations to be carried
out in a similar way to the weak selection limit [47,48] and,
second, this limit approaches the neutral theory of molecular
evolution proposed by Kimura [49]. However, care should be
taken when approaching this limit, as explained above.

C. Time-scales separation

Let us finish exploring the situations in which ρij can be
written as a function of the fractions of individuals (or their
fitness, which are determined by such fractions once the payoff
matrix is known) and time due to time-scales separation.

Whenever we are able to write the population size depen-
dence of the diffusion term as

ρij = ρij

(
x

γ

k ,t
)

(20)

the entire replicator dynamics in the multiplex, including
replication and deaths, mutations, and diffusion, can be written
as a function of the state of the system, given by the fractions of
individuals in each node, and of the structural terms (diffusion
coefficients and Laplacian of the multiplex).

In the cases in which it is not possible to write an explicit
dependence for ρij as above, there are at least two situations in
which time-scales separation allows for approximations that
take such form. The first one is whenever diffusion is slow
and most of the population size change is due to replication
and death. In this case it is easy to prove that the differential
equation

ρ̇ij ≈ (f̄j − f̄i)ρij (21)

governs the evolution of population sizes. Note that the
solution of this equation is an exponential integral,

ρij (t) = ρ0
ij e

∫ t

0 (f̄j −f̄i )dt ′ , (22)

which implies that the system has memory. More precisely,
the entire history of the difference of mean population fitness
differences, which depends on the population compositions,

is influencing the present state. Hence, Eq. (22) is a memory
kernel of the past states of the system.

As the memory kernel has an exponential form, although
the entire history is contained in it, the influence of past
states decays very fast with time compared to present states.
This can be easily proved noting that, given two time
lapses beginning at t = 0 and ending at t1 and t2 > t1, the
memory kernels are ρij (t1) = ρ0

ij e
∫ t1

0 (f̄j −f̄i )dt ′ and ρij (t2) =
ρ0

ij e
∫ t1

0 (f̄j −f̄i )dt ′e
∫ t2
t1

(f̄j −f̄i )dt ′ . The quotient between them is

ρij (t2)/ρij (t1) = e
∫ t2
t1

(f̄j −f̄i )dt ′ , which is a memory kernel of the
time lapse between t1 and t2 and does not take into account
the time lapse between 0 and t1. Hence, we may always make
t2 = t1 + dt to express the quotient as an instantaneous integral
of the fitness differences, which allows for computation of the
dynamics without keeping track of the entire history of the
system.

The opposite limit to slow diffusion is the fast diffusion
limit: In this case we may assume that, after a short transient,
the population size variations fulfill Ṅi/Ṅj = κij (t) �= 0,∞;
then the approximation

ρij = (f̄i/f̄j )κij (t) (23)

can be used. Furthermore, in the fast diffusion limit we may
assume that the population size variations due to replication
and death may be negligible compared to diffusion, as
in the previous subsection; in such case the conditions in
Eq. (18)—equal populations across all sites or a local mean
field describing the population sizes—may be prone to happen,
although again, this may introduce hidden selective pressures.

V. DISCUSSION AND CONCLUSIONS

When dealing with replicator dynamics the equations are
written in terms of the fractions of strategies in the population
in every node, although diffusion is usually described in
terms of the populations themselves. We have solved this
arbitrariness by writing the complete diffusion equations
for the fractions, but this makes the diffusion process have
nonlinear contributions. On the one hand, it introduces the
ratio of population sizes, which is clearly state dependent. On
the other hand, it generates an additional quadratic term in the
population fractions.

The extra nonlinear diffusive term in Eq. (11) takes into
account the state of the vicinity of the focal node and its
equivalent nodes in all layers (extended neighborhood), and
not only its direct neighbors (directly connected nodes). This
is relevant for the calculation of the evolution of the fractions of
individuals at each site, and contrasts with the usual diffusion
term, which only takes into account the state of directly
connected nodes within each layer.

We have finally explored the recovery of the linear scenario,
finding some situations in which the analytics are simplified.
One of such scenarios happens whenever population sizes
are constant across sites (due to environmental saturation,
for instance). In that case the nonlinearity disappears, but
the diffusion process induces an extra evolutionary pressure
acting while the system is out of equilibrium. This has been
argued to happen because a hidden selective process induces a
constant renormalization of the population size, which favors
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the increase of fast diffusing strategies. This latter result
suggests that, depending on the network architecture, the
induced evolutionary selective pressures may work so as to
create extra gradients of selection acting while the system is out
of equilibrium, which may induce, depending on the multiplex
architecture, an unexpectedly complex phenomenology.
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APPENDIX A: MICROSCOPIC LOCAL DERIVATION
OF THE REPLICATOR EQUATION

The replicator equation in a well-mixed population [no
network structure, Eq. (1)] can be derived—for large popu-
lation sizes accepting smooth derivatives—by differentiating
the fraction of individuals xα ,

d(xα)rep

dt
= d(nα/N)rep

dt
= xα

(
ṅα

nα
− Ṅ

N

)
(A1)

and assuming that the fitness of the individuals corresponds to
the instantaneous per-capita growth rate of each strategy due
to replication and deaths [41],

f α(x) = ṅα

nα
, (A2)

where x = {xα} is the state vector of the population, and
the mean fitness of the aggregated population fulfills f̄ =∑

α xαf α = Ṅ/N . If the population size is constant, Ṅ = 0,
then the per-capita growth rate is proportional to the difference
between trait and mean population fitness,

f α(x) − f̄ (x) = ṅα

nα
, (A3)

being hence the replicator equation applicable for constant and
variable populations with slightly different fitness definitions.
As it will be proven in the following, the replicator dynamics
also emerge as the macroscopic description of some micro-
scopic dynamics.

Let us start the derivation of the replicator equation by
assuming that there is a microscopic process, which can be
described by some transition probabilities between states, and
that such states are well defined. As we will assume that
individuals of different types diffuse through different network
architectures, each of such networks being part of a multiplex
structure, let us introduce now the related notation: As before,
each agent type will be labeled by the superscript α of the
layer to which it belongs (related with its strategy), and the
subscript i will refer to a site in such layer.

The probability for node iα to be at time t in a state
with nα

i individuals of α type will be denoted as P (nα
i ,t),

and the probability of increasing or decreasing such number

of individuals by one individual will be T +(nα
i ) and T −(nα

i )
respectively, where

T +(
nα

i

) = T
[
nα

i → nα
i + 1

]
(A4)

(similarly for T − with a sign change). With this notation, it is
possible to write the master equation

P
(
nα

i ,t + 1
) − P

(
nα

i ,t
)

= P
(
nα

i − 1,t − 1
)
T +(

nα
i − 1

) + P
(
nα

i + 1,t − 1
)

× T −(
nα

i + 1
) − P

(
nα

i ,t − 1
)[

T −(
nα

i

) + T +(
nα

i

)]
,

(A5)

which describes the evolution of nα
i . Now, let us assume that

the total number of agents in site i is Ni = ∑
α nα

i � 1. We do
not require it to be infinite, but just large enough, so that we
can make a continuous approach without neglecting finite-size
fluctuations. In this case it is possible to define the rescaled
variables xα

i = nα
i /Ni , τ = t/Ni and ρ(xα

i ,τ ) = NiP (nα
i ,t).

For simplicity, let us assume that there are only two strategies
present in the population, and the constraint

∑
α xα

i = 1; we
can then expand the master equation in a one-dimensional
Taylor expansion for Ni � 1 (the derivation is similar for the
three- [42] and n-strategies cases [43] by using a multivariate
Taylor expansion), giving rise to

d

dt
ρ
(
xα

i ,t
) = − d

dxα
i

[
e
(
xα

i

)
ρ
(
xα

i ,t
)]

+ 1

2

d2(
dxα

i

)2

[
s2(xα

i

)
ρ
(
xα

i ,t
)]

. (A6)

As the previous equation has the form of a Fokker-Planck
equation, it is possible to transform it into the Langevin
equation

ẋα
i = e

(
xα

i

) + s
(
xα

i

)
ξ, (A7)

where ξ is uncorrelated Gaussian noise and the drift and
diffusion terms are

e
(
xα

i

) = T +(
xα

i

) − T −(
xα

i

)
,

(A8)

s
(
xα

i

) =
√

T +(
xα

i

) + T −(
xα

i

)
Ni

,

respectively accounting for the deterministic behavior and the
stochastic effects.

Note that whenever the transition probabilities can be
written as

T +(
xα

i

) = xα
i R

(
xα

i

)
, T −(

xα
i

) = xα
i D

(
xα

i

)
, (A9)

the drift term e(xα
i ) looks like a replicator equation. This

is indeed the only term acting in the thermodynamic limit
N → ∞, and whenever the size of large populations does not
increase or decrease too fast, Ni � xα

i [R(xα
i ) + D(xα

i )]. In
this cases the Langevin equation simplifies to

ẋα
i = xα

i · [
R

(
xα

i

) − D
(
xα

i

)]
(A10)

and the terms R(xα
i ) and D(xα

i ) act as the replication and
death components of the fitness difference f α

i − f̄i [compare
Eqs. (A10) and (1)]. Hence, any process in which the transition
probabilities can be factorized as shown in Eq. (A9), can be
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written as a replicatorlike system with fitness obtained as the
solution of the equation

f α
i − f̄i = R

(
xα

i

) − D
(
xα

i

)
. (A11)

This property has a particularly useful value: by using the latter
equation and decomposing fitness in payoff components, it is
possible to combine several processes, as virus spread (linear
models) and cultural reproduction (frequency dependence,
usually nonlinear), into a unified evolutionary framework.

APPENDIX B: MICROSCOPIC LOCAL UPDATING RULES
AND MUTATIONS

Whenever there is an arbitrary number of strategies in the
population, the transition rates in Eq. (A9) can be decomposed
in additive terms in a way in which each term relates to the
contribution of each of the strategies. In this way Eq. (A7) can
be generalized to

ẋα
i =

∑
β

(
T

+α|β
i − T

−α|β
i

)
, (B1)

where T
+α|β
i is the transition rate of increase of the fractions

of individuals in i,α corresponding to the increase in one unit
due to the action of agents in β,

T
+α|β
i = T

[
nα

i → nα
i + 1

∣∣ nβ

i

]
, (B2)

and decreases them by one unit for the minus sign (note that
this may imply a variation in the local population size Ni). The
exact choice of the transition rates depends on the microscopic
dynamics. These transition rates may be written as [42],

T
+α|β
i =

∑
γ

x
γ

i x
β

i g
+γ |β
i q

γα

i , T −α|β = T +β|α (B3)

whenever the transitions depend on a big number of random
interactions between agents in the same site (local well-mixing
assumption) in which one individual replaces another (defined
by the second condition) and there are mutations between γ

and α individuals at a rate q
γα

i . Factor g±γ |β contains the
information about how the microscopic updating rule acts: it
states the exact mechanism by which one strategy increases or
decreases due to the action of another.

Two probabilistic microscopic dynamics are usually inves-
tigated, which give rise to the replicator dynamics (assuming
q

γα

i = δγα). The first one is the modified Moran process,
where one randomly chosen individual is assumed to die,
and another individual, chosen according to a probability
proportional to its fitness, reproduces. This process is defined
by g

+α|β
i = f α

i /f̄i and g
−α|β
i = g

+β|α
i . The second process

is proportional imitation, where one individual compares its
strategy to another one, both chosen at random in the mean field
limit, and changes its strategy with a probability increasing
linearly with the difference of the payoffs between them. This
process is defined by g

+α|β
i = (1/2)[1 + (f α

i − f
β

i )/
fs,max]
and g

−α|β
i = g

+β|α
i , where 
fs,max is the maximum fitness

difference and keeps the proper normalization. In both
cases the symmetry condition g

−α|β
i = g

+β|α
i ensures that

the evolutionary process maintains a constant population,
and the dynamics result in the replicator equation, up to a

multiplicative factor, which relates to the temporal scale of the
dynamics.

Whenever mutations happen as a strategy change at any
point during the lifetime of the individuals, they can be
introduced as additive terms [4] of the form

(T +α|β)mut = xβqβα, (T −α|β)mut = (T +β|α)mut (B4)

to the transition rates in Eq. (B3), where the coupled mu-
tations may be eliminated by setting q

αβ

i = δαβ (with δαβ

the Kronecker’s δ). The introduction of the additive term in
the transition rates gives rise to the extra additive term in
the replicator dynamics(

ẋα
i

)
mut =

∑
β

(
x

β

i q
βα

i − xα
i q

αβ

i

)
. (B5)

This term describes the effect of random mutations or
equivalently of random exploration of strategies [50] in
the evolutionary process. For the case of equal symmetric
mutations, i.e., q

αβ

i = q
βα

i = μ, between all strategies this
term simplifies to (

ẋα
i

)
mut = μ

(
1 − Lxα

i

)
, (B6)

where L is the number of strategies [51].
Let us finally recall that, when mutations are coupled to the

reproductive dynamics as in Eq. (B3), then Eq. (B1) gives rise
to the replicator-mutator equation,(

ẋα
i

)
rep,mut =

∑
β

x
β

i f
β

i q
βα

i − xα
i f̄i . (B7)

The diffusion term in Eq. (12) could also be added to this
equation to represent situations where only newborns mutate.

APPENDIX C: DERIVATION OF THE TRANSITION
PROBABILITIES FOR THE NONLINEAR DIFFUSION

TERM

The microscopic dynamics that give rise to the nonlinear
equation describing the dynamics of diffusion for fractions of
individuals [Eq. (12)] is defined by the transition probabilities
determining the increase or decrease of the number of indi-
viduals, as shown in Eq. (13). In order to infer such transition
probabilities, which complete the bottom-up description, we
can start expanding Eq. (12) as(

ẋα
i

)
diff = −

∑
β

∑
j

Dβx
β

j ρij

(
δαβk

β

i δij − δαβa
β

ij − k
β

i xα
i δij

+ a
β

ij x
α
i

)
(C1)

Then, we can split the double sum on the four contributions
corresponding to the terms arising from iα , jα , iβ and jβ

(assuming that α �= β and i �= j ), obtaining(
ẋα

i

)
diff = −Dαkα

i xα
i

(
1 − xα

i

) +
∑
j �=i

Dαaα
ijρij x

α
j

(
1 − xα

i

)

+
∑
β �=α

Dβk
β

i xα
i x

β

i −
∑
j �=i

∑
β �=α

Dβa
β

ijρij x
α
i x

β

j ,

(C2)

respectively.
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By performing the same kind of split in Eq. (13) we find

ẋα
i = T

+α|α
i|i − T

−α|α
i|i +

∑
j �=i

(
T

+α|α
i|j − T

−α|α
i|j

)

+
∑
β �=α

(
T

+α|β
i|i − T

−α|β
i|i

) +
∑
j �=i

∑
β �=α

(
T

+α|β
i|j − T

−α|β
i|j

)
.

(C3)

Then, since the terms relate to the influence of different
nodes kγ on the focal node iα , we can compare term by
term both equations above, finding that each term in the first
equation corresponds to the substraction of a pair of terms in
the second.

In order to finally find the right transition terms, we need
to take into account the physical constraints in the system. Let
us analyze them one by one.

First, we can focus on the first term on the above equations.
This term relates to the influence of iα on its own dynamics.
Since the agents in iα are diffusing away from that position, the
influence is necessarily negative, and hence T

+α|α
i|i = 0, and

T
−α|α
i|i = T

[
nα

i

Ni

→ nα
i − 1

Ni − 1

∣∣∣∣ xα
i

]
= Dαkα

i xα
i

(
1 − xα

i

)
,

(C4)

where |xα
i denotes a dependence, not implying that such term

is constant (indeed, it varies in the process). Note also that
whenever xα

i = 0, the transition rate is zero, as expected due to
the absence of agents diffusing away. Furthermore, if xα

i = 1,
the transition rate is again zero, as expected due to the fact
that agents diffusing away decrease the number of agents, but
leave the fraction unchanged.

Now, let us focus on the influence of jα on the dynamics of
iα (j �= i). Since agents diffusing away from jα are increasing
the number of agents in iα , the influence is necessarily positive,

and the transition rates are T
−α|α
i|j = 0 and

T
+α|α
i|j = T

[
nα

i

Ni

→ nα
i + 1

Ni + 1

∣∣∣∣ xα
j

]
= Dαaα

ijρij x
α
j

(
1 − xα

i

)
.

(C5)

The limits, as before, can be easily proven to behave in the
correct way.

Then, for the influence of iβ on iα (β �= α), we have to note
that agents diffusing away from iβ decrease the denominator
of the fraction xα

i = nα
i /

∑
γ n

γ

i , since they are decreasing n
β

i ,
and hence the fraction xα

i increases. Therefore, the transition
rates are T

−α|β
i|i = 0 and

T
+α|β
i|i = T

[
nα

i

Ni

→ nα
i

Ni − 1

∣∣∣∣ xβ

i

]
= Dβk

β

i xα
i x

β

i . (C6)

Finally, individuals diffusing away from jβ (j �= i and β �=
α) are increasing the number of individuals in iβ , and hence
increasing the denominator in the fraction of xα

i (opposite as
in the previous case). The influence is then so as to decrease
the fraction of individuals at iα and hence T

+α|β
i|j = 0 and

T
−α|β
i|j = T

[
nα

i

Ni

→ nα
i

Ni + 1

∣∣∣∣ xβ

j

]
= Dβa

β

ijρij x
α
i x

β

j . (C7)

From the transition probabilities above we can derive the
diffusion term corresponding to the stochastic effects in the
Langevin equation [extrapolating s to two dimensions in
Eq. (8)], which is

s =
√∑

β

∑
j Dβx

β

j ρij

[
xα

i + (
1 − 2xα

i

)
δαβ

](
a

β

ij + k
β

i δij

)
Ni

.

(C8)

This term can be added to Eq. (12)—multiplied by white
Gaussian noise—in order to account for the stochastic effects
introduced by the diffusive process in situations in which the
thermodynamic limit cannot be assumed, or population sizes
vary fast.
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