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Hysteresis and avalanches in thd =0 random-field Ising model with two-spin-flip dynamics
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We study the nonequilibrium behavior of the three-dimensional Gaussian random-field Ising model at
T=0 in the presence of a uniform external field using a two-spin-flip dynamics. The deterministic, history-
dependent evolution of the system is compared with the one obtained with the standard one-spin-flip dynamics
used in previous studies of the model. The change in the dynamics yields a significant suppression of coer-
civity, but the distribution of avalanchds number and sizestays remarkably similar, except for the largest
ones that are responsible for the jump in the saturation magnetization curve at low disorder in the thermody-
namic limit. By performing a finite-size scaling study, we find strong evidence that the change in the dynamics
does not modify the universality class of the disorder-induced phase transition.

DOI: 10.1103/PhysRevB.71.134424 PACS nuni®er75.60.Ej, 05.70.Jk, 75.40.Mg, 75.50.Lk

I. INTRODUCTION their geometrical properties above, below, and at

The nonequilibrium random field Ising ModéRFIM) criticality.®® These results provide a comprehensive, though
was introduced by Sethnat all as a model for the rather complex scenario for the phase diagram of the non-
Barkhausen effect in ferromagnets and more generally as §uilibrium RFIM with a metastable dynamics in the ther-
prototype for many experimental systems that show hysterr_nodynamm limit. A recent discussion of the relevance. of the
etic and jerky behavior when driven by an external force.model to the description of the Barkhausen effect in real

Because of the presence of disorder, these systems hav@?gnets car:hbte fom;ndr:n Reff'blo antd 3.1' dis the robust
“complex free energy landscape” with a multitude of local N ISSUe that so far has not been studied 1S e robusiness

minima (or metastable stateseparated by sizeable barriers, of this theoretical description with respect to a change in the

which makes thermally activated processes essentially irre c?lrnggﬁz(:jnttr?aet I;th?;a;?]roeu?dn ;2? riz&hgngelsslmgllgglgi:\?ﬁﬁ) n
evant at low enough temperatuithe lifetime of metastable

h ; i dynamics, however, is not the uniqéend may be not the
states may then be considered as infinikes a consequence, peqy way of simulating hysteretic dynamical processes in

these systems remain far from equilibrium on the experimenz.y,5| systems. It is clear for instance that the hysteresis loop
tal time scalegeven when the driving rate goes to zeemd || shrink if the dynamics allows for a better equilibration
their response to the external force is made of a series Qff the system by employing multiple-spin flips. Then, what
jumps (avalanchesbetween neighboring metastable statesuill be the avalanche properties? Will there still be a phase
This type of behavior is very well modeled by the ferromag-transition? If so, will the critical behavior be the same as
netic RFIM with a zero-temperature single-spin-flip dynam-with the single-spin-flip dynamics? There is in fact the in-
ics in which a spin flips only if this lowers its energy. The triguing possibility, supported by numerical simulations and
local character of the energy minimization is then at the ori-analytical argument3?-1213 that the nonequilibrium and
gin of irreversibility. With this dynamics, the RFIM satisfies equilibrium transitions of th& =0 RFIM belong to the same
the property of return-point memofgr “wiping out” effec) universality class, even if criticality occurs in zero external
which is a feature observed in several experimental systenfgeld at equilibrium and at a nonzero coercive field in the
with good approximation. Moreover, in dimensides 3, the  irreversible evolutiodt* Since the ground state is stable with
model is known to exhibit an out-of-equilibrium phase tran-respect to the flip of an arbitrag§inite) number of spins, this
sition between a strong-disorder regime where the magnetimay indicate that the disorder-induced transition has a uni-
zation hysteresis loop is smooth on the macroscopic scaleersal character at criticality which does not depend on the
and a weak-disorder one where it has a discontinuous jumgpecific choice of the dynamiés.

Such a transition has been observed in thin Co/CoO %ilms In order to shed some light on this issue and check the
and Cu-Al-Mn alloys? and it has been recently suggested robustness of the transition, we study here the nonequilib-
that it may also be associated to the change in the adsorptiaium T=0 RFIM with a two-spin-flip dynamics. We compare
behavior of*He in dilute silica aerogefsThe two regimes, the results with those obtained with the standard one-spin-
strong and weak disorder, are separated by a critical poirftip dynamics, in particular those concerning the number and
characterized by universal exponents and scaling laws whickize of the avalanches. We first show in Sec. Il that one can
have been extensively studied by analytical and numericahdeed define a two-spin-flip algorithm that yields a deter-
methods%” In particular, much effort has been recently de-ministic evolution of the system with the external field. In
voted to analyze the number of avalanches, their size, angarticular, the dynamics satisfies the “abelian” property
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which guarantees that the same two-spin-flip stable configu- (a) } 0 }

ration is attained, whatever the order in which the unstable ) fi
spins are relaxed during an avalanche. It also has the prop-
erty of return-point memory. In Sec. Ill we present the results ,
of our numerical simulations on three-dimensio(@D) lat- (b) fj
tices and compare them to the behavior of the same system
with a one-spin-flip dynamics. The hysteresis loops are sig-

nificantly reduced when allowing two-spin flips, but the main bt t
features, including the presence of a disorder-induced transi- +J

tion with an associated critical point, are not significantly : ,
altered. We then perform in Sec. IV a finite-size scaling —J: +J fi
analysis, which allows for a determination of the critical
properties. We find that, within statistical uncertainty, the ex- gy R

ponents and scaling functions are identical to those obtained
with the standard one-spin-flip dynamics. The main conclu-

sions of the study are reported in Sec. V. R t

Il. MODEL AND DYNAMICS FIG. 1. Stability diagrams showing the state with minimum lo-
cal energy according to the values of the fields created by the neigh-
borhood(defined in the tejt (a) corresponds to a single spirand

(b) to a pair of neighboring spinisj.

The model is defined on a cubic lattice of linear slize
with periodic boundary conditions. On each siie 1,...,N
=L3) there is an Ising spin variablgS=+1). The Hamil-

tonian is
come unstable and thus initiate an avalanche. The avalanche
H=-3D SS - 2 hsS - HE S, (1)  stops when a new metastable state is reached. The external
) field is then changed again, and so on. When the spins that

. .- . become unstable during the avalanche are sequentially re-
where the first sum extends over all distinct pairs of nearesR/ersed(e g., by increasing from 1 to N), it is of course

nelghbhoro(lnn),dH |sf_tr;§ edxterna_l 3pp||e((jj f"?[:d'f ang a(r;a crucial that the final state does not depend on the sequential
guenched random fi€lds drawn Independently TTom a LauSy ey Thanks to the ferromagnetic nature of the couplings
ian distribution with zero mean and standard deviatiokiVe this is indeed the case as a result of the so-called *

are interested in studying the sequence of states along 'rrf)assmg and abelian properties of this dynanti€sMore-

;/ersdl)lfo ?;;hs. th 0 Vghin tt'hellsytstem Is dnv;n b%/ the ex- over, the same state is also reached when all unstable spins
.e{]?‘a | 1€ |§m ¢ € ? 'ﬁ atic |rfl1;hcorretspor} fm?ﬂ 0 ?hyan- are flipped in parallel, which allows to measure the “time” it
ishingly small rate of change of the external fielfor this ., .<"21 avalanche to ocdur.

purpose, the Hamiltonian must be supplemented by some Setting the rules for a two-spin-flip dynamics is rather

dyr11_ahm|cal rtalesd in-flin d . qi . straightforward. By definition, two-spin-flip stable states are
he standard one-spin-flip dynamics used in p.rev'ou%pin configurations whose energgefined solely by the

studies consists in minimizing the energy of each spin Hamiltonian cannot be lowered by the flip of one or two

=-5f, 2) spins(clearly, new features are only introduced when these
two spins are nn The (local) energy to be minimized is thus
where the one associated with a pajrof nn spins
fi=d2 §+h+H &) Hij = - Sfi - §fj -JSS, 4)
o where

is the net field at sité [the summation in Eq3) is over the

znn of i]. From the above expression, it is clear that the fi=3 > Sc+h+H (5
minimization of; is obtained by aligning each spin with its Ki#]

local field, §=sign(f;), as represented schematically in Fig.is the field experienced by§ without the influence of
1(a). This provides a stability criterion for any state with the neighborS [the summation in Eq(5) is over the nn
respect to this one-spin-flip dynamics. This dynamical ruleof i exceptingj]. One can then think of the dynamics as
may be implemented by an algorithm that propagates oneade of single-spin flips and “irreducibly cooperative” two-
avalanche at a tim¥. Starting from a stable configuration, spin flips. As pictured in Fig. (b), a single-spin flip occurs
one increasefor decreasgghe external field until the local whenever the net field o, f;=f/ +J§, or on S, f —f’
field f; at some sité becomes zergthis corresponds to the +JS, changes sign. This corresponds to the changes
vamshmg of the local minimum in which the system was || < 7|, ||« [T, TT< 1], 1T+ |7 in the diagram. An
trapped. The spin§ (which is uniquely defined because the irreducibly cooperative two-spin flip involves a nn pair of
distribution of the random fields is continuguss then  spins with the same sigtj T or | |) that cannot flip individu-
flipped, which in turn may cause neighboring spins to be-ally (i.e., without the simultaneous flip of the neighhdrhis
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occurs whenever the net field on the pair of aligned spins, 07— ' | ' ' '
fi=f/ +f;, changes sign in the region of the diagram where | — adabatic
-J=<f/<Jand J=<f =<J. These two last conditions come +  sequential
from the fact that the spins cannot individually flipence i o parallel
neitherf; nor f; changes sign before the cooperative flip of - ]
the pai) and the condition that once a pair has flipped, none | i
of the spins can flip back individually.

The corresponding algorithm is a simple extension of theq
one described above for the one-spin-flip dynamics. Starting -3
from a two-spin-flip stable configuration, the external field is L i
varied until one finds a pair of spins that becomes marginally
stable: the representative point of this pair in the diagram of [
Fig. 1(b) leaves the region where it was originallgssoci- - .
ated with71,17],]1, or |]) and, depending on the border
which is first attained, only a single spin flips or the two
spins flip simultaneousfy. a1 03 0 03 I

It is not hard to show that this dynamics obeys the same m
properties as the one-spin-flip dynamics, in particular the _ .
crucial abelian property. This is again a consequence of the FIG. 2. (Color onling Evolution of the enthalpy and the mag-
ferromagnetic nature of the interactions. One only needs tgetization(per spin for a system of siz¢. =30 ando=2.5 as the
note that the state of the system can be represented by a §&fernal field is changed frorhi =+ to H=-2. The trajectories
of zN/2 points(corresponding to all the distinct nn paiis corresponding to'sequentlgl an.d parallel .upd.atlr?g algorlthms are
the diagram of Fig. (b). As the external field is monoto- a!so compared with the aqllabatlc one. Points indicate the_ interme-
nously increasedresp. decreasgdthe local fields can only diate unsta_ble stat_es. The inset shows_ aploseup of th_e region around
increase(resp. decreagethe spins can only flip ugresp. the end point. Notice that the end point is the same in all cases.
down), and the points can only move up and righésp.
down and left in the diagram. By slightly modifying the spin-flip or two-spin-flip dynamics with sequential updating.
arguments of Ref. 1, one then can prove the no-passing rul@veraged quantities were obtained with statistics over
the abelian property and the existence of return-pointl0®-10 different realizations of the random field distribu-
memory. tion and system sizes ranging frob=8 up toL=48. As

Instead of paraphrasing the demonstrations given in Reemphasized in Ref. 8, in order to describe properly avalanche

cal example.(We have also performed numerical tests Nimportant to perform averages over many disorder realiza-
many situations and found no violations of these propejties.tions than to simulate very large system sizes.

The evolution of a system with size=30 ando=2.5 is

shown in Fig. 2 where the energy per spéxH /N, is plot- _

ted as a function of the magnetization=> S/N (strictly A. Hysteresis loops

speaking.e is the enthalpy. The external fieldH is varied Figure 4 shows the hysteresis loops obtained in a single

from a very large initial value where all spins are up to thegample for two different values of the disorder For com-
final valueH=-2 (here and after] is taken as the energy

unit). Two of the curves display the sequence of unstable . . . .
states that are obtained after a sudden change of the extern 1= o e
field using either a sequential or a parallel updating algo- L
rithm. We also show the metastable evolution corresponding

to the adiabatic drivingwith sequential updatingalong the 0.5
hysteresis loop. In all cases the final state is the same. This i

true even when the intermediate states are distinct, for in- e
stance when the spins are chosen sequentially in a differerS 0f

order.
The property of return-point memory property is illus-
trated in Fig. 3, again for a system with site=30 and 0.5 -

0=2.5. The minor loop is obtained by reversing the evolu-

tion of the external field first in the decreasing branch at
H=-0.85 and then aH=+0.80. As can be seen from the -1
inset, the internal loop closes before the return point, so thas -2
the evolution follows that of the major loop for a small re-

gion of H=-0.85. FIG. 3. (Color onlin@ Major hysteresis loop and internal loop

(-0.85<H=0.8) obtained with the two-spin-flip dynamics for a

Il NUMERICAL SIMULATIONS system of sizé.=30 ando=2.5. The inset shows the details around

We now present the results of numerical simulations perthe point at H=-0.85 revealing the property of return-point
formed on 3-dimensional cubic lattices using either the onememory.

134424-3



VIVES, ROSINBERG, AND TARJUS PHYSICAL REVIEW B1, 134424(2009

1—(3) D ‘ m 5 field for which the magnetization is equal to zgris de-
05'_ . creased by more than 30% when allowing pairs of spins to
L : ] flip together. Accordingly, the enthalpy difference between
E o ! 6=2.0 P the ground state and the metastable states which are visited
L A along the loops is also reduced. Nevertheless, the loops dis-
05 P play the same key feature, that is a change from a discon-

oo , B tinuous to a continuous behavior as the disorder is increased.
= : o This suggests that there is also an out-of-equilibrium
— disorder-induced phase transition under the two-spin-flip dy-
= namics, with a critical value of at which the discontinuity
N appears in the thermodynamic limit.
il It is worth pointing out that the new dynamical rules al-
low the system to effectively overcome energy barriers of
magnitude up taAE=2J. Indeed, the difference between the
j two dynamics shows up when a pair of nn spins with same
R sign can cooperatively flip, say frofn to 77T when the ex-
2 ternal field is increased, whereas each of its spin cannot in-
dividually flip. This means that along one-spin-flip paths, the

FIG. 4. (Color online Magnetization curves obtained with the System has now been able to bypass the higher-energy states,
one-spin and two-spin-flip dynamics in a sample of 4ize30 for ~ €itherT| or | T. By using Eq.(4), it is easy to show that the
(@ o=2 and(b) o=3: dotted-dashed lines correspond to the one-relevant barrier height associated with this process is at most
spin-flip dynamics and dashed lines to the two-spin-flip dynamics2J. Since cooperative flips of more than two spins do not
In addition, the ground-state magnetization is shown as continuousccur with the chosen dynamics and the system’s trajectory
lines. otherwise go through states of decreasing energy, one con-
cludes thatAE=2J is the maximum barrier height that the
parison, we also display the magnetization curves obtainegystem may overcome when passing from the one-spin-flip
with the one-spin-flip dynamics and with the algorithm of to the two-spin-flip dynamics.
Ref. 18 which gives the exact ground-stdeguilibrium)
magnetization. The corresponding behavior of the enthalpy
per spin along the ascending branches of the loops is re-
ported in Fig. 5(note in passing that the ground-state en- As shown in recent studié$, a good characterization of
thalpy does not show any discontinuity as the external fieldhe disorder-induced critical point can be reached by analyz-
is varied®). As could be expected, the main effect of the newing the number and size distribution of the magnetization
dynamics is to reduce the size of the hysteresis loops. Spgumps (avalanchesthat compose the hysteresis loops in fi-
cifically, the coercivity(i.e., the magnitude of the external nite systems. For that purpose, it is necessary to classify the
avalanches in several categories, according to their behavior

B. Avalanches

T T T &a) as the system sizeis increased. One first has to distinguish
2r 0=2.0 e ] whether or not an avalanche spans the system from one side
I - v V ) to the other, in one, two, or three spatial directiginslicated
s3I = : - in the following by the indexx). For each individual ava-
i 1 lanche, this is a property that can be easily detected during
4 : ' - the simulation. Avalanches are thus classified as being non-
L i i spanning (a=ns), one-dimensional1D) spanning(a=1),
5 i | i l i | i 1 : two-dimensional2D) spanning @=2), or three-dimensional
0.5 . 0 . 0.5 . 1 . 1.5 . 2 (3D) spanning(a=3).
ok ! ! ! ' (b) _| Figure 6 shows the number of 1D, 2D, and 3D spanning
0=3.0 avalanches recorded along the descending branch of the hys-
I o | teresis loops as a function ef. The data, averaged over
o3 T N Yy ] disorder, correspond to a system of dize?24. It can be seen
> iy that the behavior of the three quantities is completely equiva-
4~ - lent under the two dynamics. The only difference is a shift
L . toward larger values af when the two-spin-flip dynamics is
5 . | . | . | : | used. The same shift is also found for all studied system
-0.5 0 0.5 H 1 15 2 sizes. This is a first indication thai'éz)>0'£:1), as will be

confirmed by the finite-size scaling analysis presented in the

FIG. 5. (Color onling Enthalpy per spin as a function &f next section. In the case of the one-spin-flip dynamics, a
corresponding to the loops in Fig.(fr clarity, only the ascending detailed analysis was performed in Refs. 8 and 9, revealing
branches are shownThe continuous lines represent the ground-the scenario that occurs in the thermodynamic limit and that
state behavior. is already suggested by the data shown in Fig. 6: when
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A cause of the complexity of the two-spin-flip algorithm that
’< | forbids the use of large systems with good enough statistics.
i 4 o 7 X | Therefore, in the following, we shall not distinguish between
1t e X ‘ _ these subcritical and critical 3D-spanning avalanches.
\ \ . Figure 7 shows thénormalized avalanche size distribu-
. tionsD,(s; o,L) obtained along one branch of the hysteresis

0.8 .
. CD) E‘ Szig loop for three different values of (for clarity, the results
06 % Nj(l_spm) B obtained with the one-spin-flip dynamics are represented by
I e N, (2-spin) 1 continuous lines Surprisingly, one can see that the distribu-
04 m N, (2-spin) 7] tion of non-spanning avalanches in Figéa)#7(c) is almost
i o N, (2-spin) unaltered by the change in the dynamics. The only small

difference(barely visible on the figupeinduced by the two-
spin-flip dynamics is that there are a little less avalanches of
sizes=1 and a little more avalanches of sige2, but the
rest of the distribution is almost the same. In particular, with
FIG. 6. (Color online Average numbers of 1D, 2D, and 3D- both dynamics, the expected power-law behavior of the dis-
spanning avalanches as a functionoofn a system of siz¢ =24.  tribution will be characterized by the same exponegt
Continuous and dashed lines are guides for the eye and correspofe2.0 in the thermodynamic lim#.
to the one-spin-flip and two-spin-flip dynamics, respectively. The size distributionsD; and D, of the 1D and 2D-
spanning avalanches shown in Fig&)#7(g) also appear to
L—oo, Ny(o) andN,(o) are expected to display &singu-  be identical with the two dynamics, at least within statistical
larity at o, and N3(0) a steplike behavior. It was shown, error bars.(Note that these avalanches do not exist dor
moreover, that there are two types of 3D spanning ava=1.6 because this value is much lower thanfor both dy-
lanches,subcritical and critical, which scale with different namics) The only visible differences between the two dy-
exponents. The former are responsible for the discontinuitj@mics occur irDs, the size distribution of the 3D-spanning
in the magnetization curve in the thermodynamic litfitere ~ avalanches. Specifically, far=1.60 and 2.2%i.e., belowo,
is only one, compact, subcritical avalanche for<o,)  and very close tar, respectively, the large 3D-spanning
whereas the latter only exist af, (hence, the additionad  avalanches tend to be shifted to even larger sizes. According
singularity at the edge of the step function whose signature i¢0 Refs. 8 and 9, these avalanches are probabhbyritical
already visible in Fig. B In a finite system, however, all spanning avalanches and their average size is thus a measure
kinds of avalanches may exist close enough to the criticapf the order parameter Therefore, this result is another indi-
point, and it is quite difficult to discriminate subcritical from cation thata >a( ). In contrast, foro=2.80 (which is
critical avalanches. In Ref. 9, an elaborate analysis waslearly aboveac) the distributionD5 is not affected by the
needed to show that these avalanches have different fractedynamics[Fig. 7(j)]: in this case, one expects to detect only
dimensions at criticality. This study is impossible here be-critical 3D-spanning avalanches in a finite system.

0=1.60 0=2.25 0=2.80

FIG. 7. (Color online Ava-
lanche size distributions foro
=1.60 (a,h, 2.25 (b,df,), and
2.80 (c,e,g,). The open symbols
and the continuous lines corre-
spond to the two-spin-flip and
one-spin-flip dynamics, respec-
tively. The first row shows the dis-
tribution D, of non-spanning ava-
lanches and the other rows show
the distributionsD4, D,, and D3
of the 1D, 2D, and 3D-spanning
avalanches, respectively. All data
have been obtained in a system of
sizeL=24. In (b), the dashed line

0.0015
& 0.001
0.0005 o

0.006 —T— %‘ 7 0-0008 F————7— indicates the expected power-law
o 0.004 |- () g ] 0.00061~ (i) 7 behavior ofD, at criticality with
o - 0.0004 — — -
L g B ] exponentrg;=2.0.
0.002 1 00002 ENNEA e
Q ' 0 -
13000 14000 0 5000 10000 0 5000 10000
s s s
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0.8 T
0.6
=04
0.2
P . 1 FIG. 8. (Color online@ Number of avalanches
1 2 o 3 4 spanning in 10(a) and 2D(b) obtained with the
[ . . . . . ] [ two-spin-flip dynamics for different system sizes.
- I(c) ' ' ! S r] | ! ' ! (ld) The corresponding scaling plots iic) and (d)
0.8 f% ] ﬁ | have been obtained according to Ed6)—(8)
® r 1% bar 7 with o'?=2.25,A=-0.2,v=1.2, and¢=0.1.
= f §F o1 | g &
Z 04 g 4 % 02t %
o : 0 ! it B
420 2 4 420 2 4
I v
u,L u,L
IV. FINITE-SIZE SCALING ANALYSIS thus indicate that the two-spin-flip dynamics only induces a

As already mentioned, a precise determinatiorcr@f and shift of the critical value of the disorder but does not change
of some of t¥1e critical ex opnents requires a detailed f|n|tethe universality class of the transition.
P q A second check of this result may be obtained by measur-

size scaling analysis which, unfortunately, is not 035|ble
with the pregsent a)llgorlthm. What can be dgne howe?/er is 10 ') the average fieldHs (o)) at which the 3D-spanning ava-
check whether the set of exponents found wit}w the Oneisp”j)_anches occur. This quantity was studied with the one-spin-

flip dynamics can also be used to scale the two-spin-flip dat !'p dyn_amlcs in Ref. 9.' which allowed to map out thg first-
order line (corresponding to the macroscopic jump in the
agnetization in the diagramH-o. The dependence of
3(0)) with the system size is shown in Fig(&. Note that
the transition line extends abowg in a finite system. How-
ever, the end point, beyond which no 3D-spanning ava-

lanches are foundwith the present sampling of disorder re-

We first considemN; and N,, the numbers of 1D and 2D-
spanning avalanches, which are quantities that have a simp
scaling behavior. Following previous wofk,we assume the
forms

Ny(o,L) = L9N1(u2L1’V) (6)  alizationg, becomes closer and closer to the critical point
(H,0.) asL is increased.
Ny(,L) = LN, (UL 1), (7 05 '
- = ]
where # and v are critical exponentd\; andN, are scaling 1
functions, and., is a scaling variable that measures the dis- %-1.5 B
tance to the critical point. It is defined as % ]
4 |
=02 [og-o@ 238 ]
) +A{ e ] : ®) 4
C C
- b | - | RS

where the parametek accounts for a second-order correc- __ 100g a.ﬁ??f?' =
tion that plays a role when the studied systems are not ver)N : ggéuf@ ]
large, as is the case here. In Ref. 8 the best choice for thi 3 X e aow®Y 1
collapse of the scaling plots was obtained witk1.2, 0 S, 108 L eame® T E
=0.1, andA=-0.2, values that we keep here. The only free ™= F = ]
parameter is thus'” i i T
As shown in Fig. 8, a very good collapse of the new data b 1 10

can be obtained Withrf:z)=2.25. Taking into account the usz/ Y

quality of the plots, there is an uncertainty of £0.01 on this

value, but, clearly, the value'’'=2.21 obtained with the  FIG. 9. (Color onling (a) Average fiel(H(o,L)) at which the
one-spin-flip dynamids can be discarded. We have also 3D-spanning avalanches occur as a functlomrcibr different sys-
checked that this conclusion is not modified when the noniem sizes(b) Scaling plot of the data below according to Eq.
universal parametek is allowed to vary. These scaling plots (9) with H(z)——o 885,B’=0.25, andu=1.5.
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! similar analysis fonl‘~\|2(a, L) shows the same agreement. This

is again a strong indication for universality, that goes beyond
the equality of the critical exponent3.

0.8

« 06
2_ V. CONCLUSION
0.4
We have shown in this paper that the nonequilibrium be-
havior of the 3D RFIM at zero temperature is not qualita-
0.2 tively altered when going from the standard one-spin-flip

metastable dynamics to a two-spin-flip metastable dynamics.
The coercivity(that is essentially the width of the hysteresis
loop associated with the evolution of the magnetization with
the driving field is significantly reduced by allowing two-
spin flips, but the main features of the hysteretic behavior,
FIG. 10. (Color onling Comparison of the scaling plots of the including the presence of a disorder-induced nonequilibrium
number of 1D-spanning avalanches obtained with the one-spin-fligransition and the distribution of avalanches, remain similar.
(symbols with error bajsand two-spin-flip(symbols without error By using a finite-size scaling analysis, focused on the num-
barg dynamics. The two collapses only differ by the value of the her and size of the avalanches, we have furthermore provided
critical disorder[agl)ZZ.Zl anda-(cz)=2.25]. The continuous line is Strong evidence that the Critica' behavi(:e'xponents and
the Gaussian fit proposed in Ref. 8. scaling function obtained with the two-spin-flip dynamics
is in the same universality class as that obtained with the
According to Ref. 9, this set of curves should scale as one-spin-flip dynamics.
Changing the dynamical rules used to study the evolution
of the model, as done here, helps address several important
L@ o g(cz) 1t " questions. The first one is the robustness of the hysteretic
(Ha)(o,L) =HZ | 1-B'—5— [ -L*hg(uL™™), (9  scenario provided by th&=0 RFIM with the standard one-
Je spin-flip dynamics. As discussed in the introduction, a basic
assumption underlying the theoretical description is that the
where Hff) is the critical field,B’ is a nonuniversal tilting system gets trapped in metastable states on the experimental

constantu is a critical exponent, anids is the corresponding  time scale and can only escape when a change in the external
scaling function. Strictly speaking, the scaling should befield makes the relevant state looses its stability. However,
done separately for the average fiekd;_) and (Hao) at real systems are not dt=0 and some partial, local equili-
which the subcritical and critical 3D-spanning avalanchedration, due for instance to thermally ac'uvated_ PrOCESSES,
occur? Indeed, the number of these avalanches scales diffef@Y take place even though the system remains far from

ently with L. However we expect the lack of scaling to have equilibrium on th_e e.xpe.rimerlltal time scale. Introducing co-
a (smal) effect only in the regionu,LY*=1 where the two operative two-spin flips is a simple way to check the effect of
kinds of avalanches coexit partial equilibration processes. Our results clearly point to-

In Ref. 9, the best collapse of the one-spin-flip data wa ards the robustness of the whole theoretical picture drawn
obtained .wiéhuzl 5 B'=025 andH¥=-1.425. Here. we 'TOM previous studies of the model using the 0 one-spin-

i inrcl,6-9
keep the same values fpr andB’, seta(cz):Z.ZS, and con- flip dynamics.

sider the critical field as the only free parameter. As shown i A second question concerns the relation between the
. y P o ) Misorder-induced critical properties observed in the nonequi-
Fig. 9b), a very good collapse can be obtained V\M[f

i _ librium behavior of the RFIM aff=0 and the equilibrium
=-0.885[for clarity, we only present the collapse far  (yitica| hehavior associated with the paramagnetic to ferro-

<o) Again, this result is consistent with the assumptionmagnetic transition. There is numerical evidence that, at least
that the new dynamics does not change the universality clasg 5 good approximation, critical exponents and scaling func-
of the transition. On the other hand, the significant decreasgyns associated with the two kinds of criticality are the
in the critical field (in absolute valugis in line with the  ggmeb9.13 (Additional, but less conclusive evidence is pro-
decrease in coercivity illustrated by Fig. 4. vided by exact, but mean-field-like results on the Bethe
Fl_nally, it is m_te_rest!ng to st_udy the !nfluence Qf the dy- |attice!3 and by perturbation theory near the upper critical
namics on the finite-size scaling functions. In Fig. 10, Wedimensiond=68) Our present findings suggest that a whole
compare thg scaling collapses of the number of 1D-spanningaries of T=0 metastable dynamics involvinkrspin flips
avalanchesN,(o,L), obtained with the two dynamicdor  lead to the same nonequilibrium criticality, with the critical
the two-spin-flip dynamics, this is the same curve as in Figdisorder strength increasing withand the critical coercive
8). As can be seen, the agreement between the two curvesfigld decreasing wittk. Equilibrium behavior aff=0 as a
quite remarkable. Even the deviatiofaround u,L¥*=0)  function of the external field involves the system’s ground
from the Gaussian fit proposed in Ref. 8 are the same. Atate, i.e., a state stable to flips of any arbitrary finite number
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of spins. Based on the numerical closeness of the critical), but the values ok considered herek=1 and 2, are of
exponents and scaling functions, on the fact that the criticatourse too small to detect such effect, if present.
disorder strength satisfiest®> '” > o'” [whereasH=0

(2) (1) .. A .
<HZ <H; ] gnd on t_he similarity of the underlylng_ phys- ACKNOWLEDGMENTS
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