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We study the nonequilibrium behavior of the three-dimensional Gaussian random-field Ising model at
T=0 in the presence of a uniform external field using a two-spin-flip dynamics. The deterministic, history-
dependent evolution of the system is compared with the one obtained with the standard one-spin-flip dynamics
used in previous studies of the model. The change in the dynamics yields a significant suppression of coer-
civity, but the distribution of avalanchessin number and sized stays remarkably similar, except for the largest
ones that are responsible for the jump in the saturation magnetization curve at low disorder in the thermody-
namic limit. By performing a finite-size scaling study, we find strong evidence that the change in the dynamics
does not modify the universality class of the disorder-induced phase transition.
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I. INTRODUCTION

The nonequilibrium random field Ising modelsRFIMd
was introduced by Sethnaet al.1 as a model for the
Barkhausen effect in ferromagnets and more generally as a
prototype for many experimental systems that show hyster-
etic and jerky behavior when driven by an external force.
Because of the presence of disorder, these systems have a
“complex free energy landscape” with a multitude of local
minima sor metastable statesd separated by sizeable barriers,
which makes thermally activated processes essentially irrel-
evant at low enough temperaturesthe lifetime of metastable
states may then be considered as infinited. As a consequence,
these systems remain far from equilibrium on the experimen-
tal time scalesseven when the driving rate goes to zerod and
their response to the external force is made of a series of
jumps savalanchesd between neighboring metastable states.
This type of behavior is very well modeled by the ferromag-
netic RFIM with a zero-temperature single-spin-flip dynam-
ics in which a spin flips only if this lowers its energy. The
local character of the energy minimization is then at the ori-
gin of irreversibility. With this dynamics, the RFIM satisfies
the property of return-point memorysor “wiping out” effectd
which is a feature observed in several experimental systems
with good approximation. Moreover, in dimensiondù3, the
model is known to exhibit an out-of-equilibrium phase tran-
sition between a strong-disorder regime where the magneti-
zation hysteresis loop is smooth on the macroscopic scale
and a weak-disorder one where it has a discontinuous jump.
Such a transition has been observed in thin Co/CoO films2

and Cu-Al-Mn alloys,3 and it has been recently suggested4

that it may also be associated to the change in the adsorption
behavior of4He in dilute silica aerogels.5 The two regimes,
strong and weak disorder, are separated by a critical point
characterized by universal exponents and scaling laws which
have been extensively studied by analytical and numerical
methods.6,7 In particular, much effort has been recently de-
voted to analyze the number of avalanches, their size, and

their geometrical properties above, below, and at
criticality.8,9 These results provide a comprehensive, though
rather complex scenario for the phase diagram of the non-
equilibrium RFIM with a metastable dynamics in the ther-
modynamic limit. A recent discussion of the relevance of the
model to the description of the Barkhausen effect in real
magnets can be found in Refs. 10 and 11.

An issue that so far has not been studied is the robustness
of this theoretical description with respect to a change in the
dynamicssin the literature on the RFIM, it is implicitly taken
for granted that this should not matterd. The single-spin-flip
dynamics, however, is not the uniquesand may be not the
bestd way of simulating hysteretic dynamical processes in
actual systems. It is clear for instance that the hysteresis loop
will shrink if the dynamics allows for a better equilibration
of the system by employing multiple-spin flips. Then, what
will be the avalanche properties? Will there still be a phase
transition? If so, will the critical behavior be the same as
with the single-spin-flip dynamics? There is in fact the in-
triguing possibility, supported by numerical simulations and
analytical arguments,6,9,12,13 that the nonequilibrium and
equilibrium transitions of theT=0 RFIM belong to the same
universality class, even if criticality occurs in zero external
field at equilibrium and at a nonzero coercive field in the
irreversible evolution.14 Since the ground state is stable with
respect to the flip of an arbitrarysfinited number of spins, this
may indicate that the disorder-induced transition has a uni-
versal character at criticality which does not depend on the
specific choice of the dynamics.9

In order to shed some light on this issue and check the
robustness of the transition, we study here the nonequilib-
rium T=0 RFIM with a two-spin-flip dynamics. We compare
the results with those obtained with the standard one-spin-
flip dynamics, in particular those concerning the number and
size of the avalanches. We first show in Sec. II that one can
indeed define a two-spin-flip algorithm that yields a deter-
ministic evolution of the system with the external field. In
particular, the dynamics satisfies the “abelian” property
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which guarantees that the same two-spin-flip stable configu-
ration is attained, whatever the order in which the unstable
spins are relaxed during an avalanche. It also has the prop-
erty of return-point memory. In Sec. III we present the results
of our numerical simulations on three-dimensionals3Dd lat-
tices and compare them to the behavior of the same system
with a one-spin-flip dynamics. The hysteresis loops are sig-
nificantly reduced when allowing two-spin flips, but the main
features, including the presence of a disorder-induced transi-
tion with an associated critical point, are not significantly
altered. We then perform in Sec. IV a finite-size scaling
analysis, which allows for a determination of the critical
properties. We find that, within statistical uncertainty, the ex-
ponents and scaling functions are identical to those obtained
with the standard one-spin-flip dynamics. The main conclu-
sions of the study are reported in Sec. V.

II. MODEL AND DYNAMICS

The model is defined on a cubic lattice of linear sizeL
with periodic boundary conditions. On each sitesi =1,…,N
=L3d there is an Ising spin variablesSi = ±1d. The Hamil-
tonian is

H = − Jo
ki,jl

SiSj − o
i

hiSi − Ho
i

Si , s1d

where the first sum extends over all distinct pairs of nearest-
neighbor snnd , H is the external applied field, andhi are
quenched random fields drawn independently from a Gauss-
ian distribution with zero mean and standard deviations. We
are interested in studying the sequence of states along irre-
versible paths atT=0 when the system is driven by the ex-
ternal fieldH sin the adiabatic limit corresponding to a van-
ishingly small rate of change of the external fieldd. For this
purpose, the Hamiltonian must be supplemented by some
dynamical rules.

The standard one-spin-flip dynamics used in previous
studies consists in minimizing the energy of each spin

Hi = − Si f i , s2d

where

f i = Jo
jsid

Sj + hi + H s3d

is the net field at sitei fthe summation in Eq.s3d is over the
z nn of ig. From the above expression, it is clear that the
minimization ofHi is obtained by aligning each spin with its
local field, Si =signsf id, as represented schematically in Fig.
1sad. This provides a stability criterion for any state with
respect to this one-spin-flip dynamics. This dynamical rule
may be implemented by an algorithm that propagates one
avalanche at a time.15 Starting from a stable configuration,
one increasessor decreasesd the external field until the local
field f i at some sitei becomes zerosthis corresponds to the
vanishing of the local minimum in which the system was
trappedd. The spinSi swhich is uniquely defined because the
distribution of the random fields is continuousd is then
flipped, which in turn may cause neighboring spins to be-

come unstable and thus initiate an avalanche. The avalanche
stops when a new metastable state is reached. The external
field is then changed again, and so on. When the spins that
become unstable during the avalanche are sequentially re-
versedse.g., by increasingi from 1 to Nd, it is of course
crucial that the final state does not depend on the sequential
order. Thanks to the ferromagnetic nature of the couplings,
this is indeed the case as a result of the so-called “no-
passing” and abelian properties of this dynamics.1,16 More-
over, the same state is also reached when all unstable spins
are flipped in parallel, which allows to measure the “time” it
takes an avalanche to occur.7

Setting the rules for a two-spin-flip dynamics is rather
straightforward. By definition, two-spin-flip stable states are
spin configurations whose energysdefined solely by the
Hamiltoniand cannot be lowered by the flip of one or two
spinssclearly, new features are only introduced when these
two spins are nnd. Theslocald energy to be minimized is thus
the one associated with a pairi j of nn spins

Hi j = − Si f i8 − Sj f j8 − JSiSj , s4d

where

f i8 = J o
ksidÞ j

Sk + hi + H s5d

is the field experienced bySi without the influence of
the neighborSj fthe summation in Eq.s5d is over the nn
of i excepting jg. One can then think of the dynamics as
made of single-spin flips and “irreducibly cooperative” two-
spin flips. As pictured in Fig. 1sbd, a single-spin flip occurs
whenever the net field onSi, f i = f i8+JSj, or on Sj, f j = f j8
+JSi, changes sign. This corresponds to the changes
↓↓ ↔ ↑↓, ↓↓ ↔ ↓↑, ↑↑ ↔ ↑↓, ↑↑ ↔ ↓↑ in the diagram. An
irreducibly cooperative two-spin flip involves a nn pair of
spins with the same signs↑↑ or ↓↓d that cannot flip individu-
ally si.e., without the simultaneous flip of the neighbord. This

FIG. 1. Stability diagrams showing the state with minimum lo-
cal energy according to the values of the fields created by the neigh-
borhoodsdefined in the textd: sad corresponds to a single spini and
sbd to a pair of neighboring spinsi , j .
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occurs whenever the net field on the pair of aligned spins,
f ij = f i8+ f j8, changes sign in the region of the diagram where
−Jø f i8øJ and −Jø f j8øJ. These two last conditions come
from the fact that the spins cannot individually flipshence
neither f i nor f j changes sign before the cooperative flip of
the paird and the condition that once a pair has flipped, none
of the spins can flip back individually.

The corresponding algorithm is a simple extension of the
one described above for the one-spin-flip dynamics. Starting
from a two-spin-flip stable configuration, the external field is
varied until one finds a pair of spins that becomes marginally
stable: the representative point of this pair in the diagram of
Fig. 1sbd leaves the region where it was originallysassoci-
ated with↑↑ , ↑ ↓ , ↓↑, or ↓↓d and, depending on the border
which is first attained, only a single spin flips or the two
spins flip simultaneously.17

It is not hard to show that this dynamics obeys the same
properties as the one-spin-flip dynamics, in particular the
crucial abelian property. This is again a consequence of the
ferromagnetic nature of the interactions. One only needs to
note that the state of the system can be represented by a set
of zN/2 pointsscorresponding to all the distinct nn pairsd in
the diagram of Fig. 1sbd. As the external field is monoto-
nously increasedsresp. decreasedd, the local fields can only
increasesresp. decreased, the spins can only flip upsresp.
downd, and the points can only move up and rightsresp.
down and leftd in the diagram. By slightly modifying the
arguments of Ref. 1, one then can prove the no-passing rule,
the abelian property and the existence of return-point
memory.

Instead of paraphrasing the demonstrations given in Ref.
1, we choose here to illustrate these properties by a numeri-
cal example.sWe have also performed numerical tests in
many situations and found no violations of these properties.d
The evolution of a system with sizeL=30 ands=2.5 is
shown in Fig. 2 where the energy per spin,e=H /N, is plot-
ted as a function of the magnetizationm=S Si /N sstrictly
speaking,e is the enthalpyd. The external fieldH is varied
from a very large initial value where all spins are up to the
final valueH=−2 shere and after,J is taken as the energy
unitd. Two of the curves display the sequence of unstable
states that are obtained after a sudden change of the external
field using either a sequential or a parallel updating algo-
rithm. We also show the metastable evolution corresponding
to the adiabatic drivingswith sequential updatingd along the
hysteresis loop. In all cases the final state is the same. This is
true even when the intermediate states are distinct, for in-
stance when the spins are chosen sequentially in a different
order.

The property of return-point memory property is illus-
trated in Fig. 3, again for a system with sizeL=30 and
s=2.5. The minor loop is obtained by reversing the evolu-
tion of the external field first in the decreasing branch at
H=−0.85 and then atH= +0.80. As can be seen from the
inset, the internal loop closes before the return point, so that
the evolution follows that of the major loop for a small re-
gion of H*−0.85.

III. NUMERICAL SIMULATIONS

We now present the results of numerical simulations per-
formed on 3-dimensional cubic lattices using either the one-

spin-flip or two-spin-flip dynamics with sequential updating.
Averaged quantities were obtained with statistics over
103–105 different realizations of the random field distribu-
tion and system sizes ranging fromL=8 up to L=48. As
emphasized in Ref. 8, in order to describe properly avalanche
propertiessespecially the “spanning” avalanchesd, it is more
important to perform averages over many disorder realiza-
tions than to simulate very large system sizes.

A. Hysteresis loops

Figure 4 shows the hysteresis loops obtained in a single
sample for two different values of the disorders. For com-

FIG. 2. sColor onlined Evolution of the enthalpy and the mag-
netizationsper spind for a system of sizeL=30 ands=2.5 as the
external field is changed fromH= +` to H=−2. The trajectories
corresponding to sequential and parallel updating algorithms are
also compared with the adiabatic one. Points indicate the interme-
diate unstable states. The inset shows a closeup of the region around
the end point. Notice that the end point is the same in all cases.

FIG. 3. sColor onlined Major hysteresis loop and internal loop
s−0.85øHø0.8d obtained with the two-spin-flip dynamics for a
system of sizeL=30 ands=2.5. The inset shows the details around
the point at H=−0.85 revealing the property of return-point
memory.
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parison, we also display the magnetization curves obtained
with the one-spin-flip dynamics and with the algorithm of
Ref. 18 which gives the exact ground-statesequilibriumd
magnetization. The corresponding behavior of the enthalpy
per spin along the ascending branches of the loops is re-
ported in Fig. 5snote in passing that the ground-state en-
thalpy does not show any discontinuity as the external field
is varied18d. As could be expected, the main effect of the new
dynamics is to reduce the size of the hysteresis loops. Spe-
cifically, the coercivitysi.e., the magnitude of the external

field for which the magnetization is equal to zerod is de-
creased by more than 30% when allowing pairs of spins to
flip together. Accordingly, the enthalpy difference between
the ground state and the metastable states which are visited
along the loops is also reduced. Nevertheless, the loops dis-
play the same key feature, that is a change from a discon-
tinuous to a continuous behavior as the disorder is increased.
This suggests that there is also an out-of-equilibrium
disorder-induced phase transition under the two-spin-flip dy-
namics, with a critical value ofs at which the discontinuity
appears in the thermodynamic limit.

It is worth pointing out that the new dynamical rules al-
low the system to effectively overcome energy barriers of
magnitude up toDE=2J. Indeed, the difference between the
two dynamics shows up when a pair of nn spins with same
sign can cooperatively flip, say from↓↓ to ↑↑ when the ex-
ternal field is increased, whereas each of its spin cannot in-
dividually flip. This means that along one-spin-flip paths, the
system has now been able to bypass the higher-energy states,
either↑↓ or ↓↑. By using Eq.s4d, it is easy to show that the
relevant barrier height associated with this process is at most
2J. Since cooperative flips of more than two spins do not
occur with the chosen dynamics and the system’s trajectory
otherwise go through states of decreasing energy, one con-
cludes thatDE=2J is the maximum barrier height that the
system may overcome when passing from the one-spin-flip
to the two-spin-flip dynamics.

B. Avalanches

As shown in recent studies,8,9 a good characterization of
the disorder-induced critical point can be reached by analyz-
ing the number and size distribution of the magnetization
jumps savalanchesd that compose the hysteresis loops in fi-
nite systems. For that purpose, it is necessary to classify the
avalanches in several categories, according to their behavior
as the system sizeL is increased. One first has to distinguish
whether or not an avalanche spans the system from one side
to the other, in one, two, or three spatial directionssindicated
in the following by the indexad. For each individual ava-
lanche, this is a property that can be easily detected during
the simulation. Avalanches are thus classified as being non-
spanningsa=nsd, one-dimensionals1Dd spanningsa=1d,
two-dimensionals2Dd spanningsa=2d, or three-dimensional
s3Dd spanningsa=3d.

Figure 6 shows the number of 1D, 2D, and 3D spanning
avalanches recorded along the descending branch of the hys-
teresis loops as a function ofs. The data, averaged over
disorder, correspond to a system of sizeL=24. It can be seen
that the behavior of the three quantities is completely equiva-
lent under the two dynamics. The only difference is a shift
toward larger values ofs when the two-spin-flip dynamics is
used. The same shift is also found for all studied system
sizes. This is a first indication thatsc

s2d.sc
s1d, as will be

confirmed by the finite-size scaling analysis presented in the
next section. In the case of the one-spin-flip dynamics, a
detailed analysis was performed in Refs. 8 and 9, revealing
the scenario that occurs in the thermodynamic limit and that
is already suggested by the data shown in Fig. 6: when

FIG. 4. sColor onlined Magnetization curves obtained with the
one-spin and two-spin-flip dynamics in a sample of sizeL=30 for
sad s=2 andsbd s=3: dotted-dashed lines correspond to the one-
spin-flip dynamics and dashed lines to the two-spin-flip dynamics.
In addition, the ground-state magnetization is shown as continuous
lines.

FIG. 5. sColor onlined Enthalpy per spin as a function ofH
corresponding to the loops in Fig. 5sfor clarity, only the ascending
branches are shownd. The continuous lines represent the ground-
state behavior.
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L→`, N1ssd and N2ssd are expected to display ad singu-
larity at sc and N3ssd a steplike behavior. It was shown,
moreover, that there are two types of 3D spanning ava-
lanches,subcritical and critical, which scale with different
exponents. The former are responsible for the discontinuity
in the magnetization curve in the thermodynamic limitsthere
is only one, compact, subcritical avalanche fors,scd
whereas the latter only exist atsc shence, the additionald
singularity at the edge of the step function whose signature is
already visible in Fig. 6d. In a finite system, however, all
kinds of avalanches may exist close enough to the critical
point, and it is quite difficult to discriminate subcritical from
critical avalanches. In Ref. 9, an elaborate analysis was
needed to show that these avalanches have different fractal
dimensions at criticality. This study is impossible here be-

cause of the complexity of the two-spin-flip algorithm that
forbids the use of large systems with good enough statistics.
Therefore, in the following, we shall not distinguish between
these subcritical and critical 3D-spanning avalanches.

Figure 7 shows thesnormalizedd avalanche size distribu-
tionsDass;s ,Ld obtained along one branch of the hysteresis
loop for three different values ofs sfor clarity, the results
obtained with the one-spin-flip dynamics are represented by
continuous linesd. Surprisingly, one can see that the distribu-
tion of non-spanning avalanches in Figs. 7sad–7scd is almost
unaltered by the change in the dynamics. The only small
differencesbarely visible on the figured induced by the two-
spin-flip dynamics is that there are a little less avalanches of
size s=1 and a little more avalanches of sizes=2, but the
rest of the distribution is almost the same. In particular, with
both dynamics, the expected power-law behavior of the dis-
tribution will be characterized by the same exponentteff
<2.0 in the thermodynamic limit.9

The size distributionsD1 and D2 of the 1D and 2D-
spanning avalanches shown in Figs. 7sdd–7sgd also appear to
be identical with the two dynamics, at least within statistical
error bars.sNote that these avalanches do not exist fors
=1.6 because this value is much lower thansc for both dy-
namics.d The only visible differences between the two dy-
namics occur inD3, the size distribution of the 3D-spanning
avalanches. Specifically, fors=1.60 and 2.25si.e., belowsc
and very close tosc, respectivelyd, the large 3D-spanning
avalanches tend to be shifted to even larger sizes. According
to Refs. 8 and 9, these avalanches are probablysubcritical
spanning avalanches and their average size is thus a measure
of the order parameter. Therefore, this result is another indi-
cation that sc

s2d.sc
s1d. In contrast, fors=2.80 swhich is

clearly abovescd, the distributionD3 is not affected by the
dynamicsfFig. 7sjdg: in this case, one expects to detect only
critical 3D-spanning avalanches in a finite system.

FIG. 6. sColor onlined Average numbers of 1D, 2D, and 3D-
spanning avalanches as a function ofs in a system of sizeL=24.
Continuous and dashed lines are guides for the eye and correspond
to the one-spin-flip and two-spin-flip dynamics, respectively.

FIG. 7. sColor onlined Ava-
lanche size distributions fors
=1.60 sa,hd, 2.25 sb,d,f,id, and
2.80 sc,e,g,jd. The open symbols
and the continuous lines corre-
spond to the two-spin-flip and
one-spin-flip dynamics, respec-
tively. The first row shows the dis-
tribution Dns of non-spanning ava-
lanches and the other rows show
the distributionsD1, D2, and D3

of the 1D, 2D, and 3D-spanning
avalanches, respectively. All data
have been obtained in a system of
sizeL=24. In sbd, the dashed line
indicates the expected power-law
behavior ofDns at criticality with
exponentteff=2.0.
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IV. FINITE-SIZE SCALING ANALYSIS

As already mentioned, a precise determination ofsc
s2d and

of some of the critical exponents requires a detailed finite-
size scaling analysis which, unfortunately, is not possible
with the present algorithm. What can be done, however, is to
check whether the set of exponents found with the one-spin-
flip dynamics can also be used to scale the two-spin-flip data.
We first considerN1 and N2, the numbers of 1D and 2D-
spanning avalanches, which are quantities that have a simple
scaling behavior. Following previous work,8,9 we assume the
forms

N1ss,Ld = LuÑ1su2L
1/nd s6d

N2ss,Ld = LuÑ2su2L
1/nd, s7d

whereu andn are critical exponents,Ñ1 and Ñ2 are scaling
functions, andu2 is a scaling variable that measures the dis-
tance to the critical point. It is defined as

u2 =
s − sc

s2d

sc
s2d + AFs − sc

s2d

sc
s2d G2

, s8d

where the parameterA accounts for a second-order correc-
tion that plays a role when the studied systems are not very
large, as is the case here. In Ref. 8 the best choice for the
collapse of the scaling plots was obtained withn=1.2, u
=0.1, andA=−0.2, values that we keep here. The only free
parameter is thussc

s2d.
As shown in Fig. 8, a very good collapse of the new data

can be obtained withsc
s2d=2.25. Taking into account the

quality of the plots, there is an uncertainty of ±0.01 on this
value, but, clearly, the valuesc

s1d=2.21 obtained with the
one-spin-flip dynamics8 can be discarded. We have also
checked that this conclusion is not modified when the non-
universal parameterA is allowed to vary. These scaling plots

thus indicate that the two-spin-flip dynamics only induces a
shift of the critical value of the disorder but does not change
the universality class of the transition.

A second check of this result may be obtained by measur-
ing the average fieldkH3ssdl at which the 3D-spanning ava-
lanches occur. This quantity was studied with the one-spin-
flip dynamics in Ref. 9, which allowed to map out the first-
order line scorresponding to the macroscopic jump in the
magnetizationd in the diagramH−s. The dependence of
kH3ssdl with the system size is shown in Fig. 9sad. Note that
the transition line extends abovesc in a finite system. How-
ever, the end point, beyond which no 3D-spanning ava-
lanches are foundswith the present sampling of disorder re-
alizationsd, becomes closer and closer to the critical point
sHc,scd asL is increased.

FIG. 8. sColor onlined Number of avalanches
spanning in 1Dsad and 2Dsbd obtained with the
two-spin-flip dynamics for different system sizes.
The corresponding scaling plots inscd and sdd
have been obtained according to Eqs.s6d–s8d
with sc

s2d=2.25,A=−0.2,n=1.2, andu=0.1.

FIG. 9. sColor onlined sad Average fieldkH3ss ,Ldl at which the
3D-spanning avalanches occur as a function ofs for different sys-
tem sizes.sbd Scaling plot of the data belowsc

s2d according to Eq.
s9d with Hc

s2d=−0.885,B8=0.25, andm=1.5.
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According to Ref. 9, this set of curves should scale as

kH3lss,Ld = Hc
s2dF1 − B8

s − sc
s2d

sc
s2d G − L−1/mĥ3su2L

1/nd, s9d

whereHc
s2d is the critical field,B8 is a nonuniversal tilting

constant,m is a critical exponent, andĥ3 is the corresponding
scaling function. Strictly speaking, the scaling should be
done separately for the average fieldskH3−l and kH3cl at
which the subcritical and critical 3D-spanning avalanches
occur.9 Indeed, the number of these avalanches scales differ-
ently with L. However we expect the lack of scaling to have
a ssmalld effect only in the regionu2L

1/n.1 where the two
kinds of avalanches coexist.9

In Ref. 9, the best collapse of the one-spin-flip data was
obtained withm=1.5, B8=0.25, andHc

s1d=−1.425. Here, we
keep the same values form andB8, setsc

s2d=2.25, and con-
sider the critical field as the only free parameter. As shown in
Fig. 9sbd, a very good collapse can be obtained withHc

s2d

=−0.885 ffor clarity, we only present the collapse fors
,sc

s2dg. Again, this result is consistent with the assumption
that the new dynamics does not change the universality class
of the transition. On the other hand, the significant decrease
in the critical field sin absolute valued is in line with the
decrease in coercivity illustrated by Fig. 4.

Finally, it is interesting to study the influence of the dy-
namics on the finite-size scaling functions. In Fig. 10, we
compare the scaling collapses of the number of 1D-spanning

avalanches,Ñ1ss ,Ld, obtained with the two dynamicssfor
the two-spin-flip dynamics, this is the same curve as in Fig.
8d. As can be seen, the agreement between the two curves is
quite remarkable. Even the deviationssaround u2L

1/n<0d
from the Gaussian fit proposed in Ref. 8 are the same. A

similar analysis forÑ2ss ,Ld shows the same agreement. This
is again a strong indication for universality, that goes beyond
the equality of the critical exponents.19

V. CONCLUSION

We have shown in this paper that the nonequilibrium be-
havior of the 3D RFIM at zero temperature is not qualita-
tively altered when going from the standard one-spin-flip
metastable dynamics to a two-spin-flip metastable dynamics.
The coercivitysthat is essentially the width of the hysteresis
loop associated with the evolution of the magnetization with
the driving fieldd is significantly reduced by allowing two-
spin flips, but the main features of the hysteretic behavior,
including the presence of a disorder-induced nonequilibrium
transition and the distribution of avalanches, remain similar.
By using a finite-size scaling analysis, focused on the num-
ber and size of the avalanches, we have furthermore provided
strong evidence that the critical behaviorsexponents and
scaling functionsd obtained with the two-spin-flip dynamics
is in the same universality class as that obtained with the
one-spin-flip dynamics.

Changing the dynamical rules used to study the evolution
of the model, as done here, helps address several important
questions. The first one is the robustness of the hysteretic
scenario provided by theT=0 RFIM with the standard one-
spin-flip dynamics. As discussed in the introduction, a basic
assumption underlying the theoretical description is that the
system gets trapped in metastable states on the experimental
time scale and can only escape when a change in the external
field makes the relevant state looses its stability. However,
real systems are not atT=0 and some partial, local equili-
bration, due for instance to thermally activated processes,
may take place even though the system remains far from
equilibrium on the experimental time scale. Introducing co-
operative two-spin flips is a simple way to check the effect of
partial equilibration processes. Our results clearly point to-
wards the robustness of the whole theoretical picture drawn
from previous studies of the model using theT=0 one-spin-
flip dynamics.1,6–9

A second question concerns the relation between the
disorder-induced critical properties observed in the nonequi-
librium behavior of the RFIM atT=0 and the equilibrium
critical behavior associated with the paramagnetic to ferro-
magnetic transition. There is numerical evidence that, at least
to a good approximation, critical exponents and scaling func-
tions associated with the two kinds of criticality are the
same.6,9,13 sAdditional, but less conclusive evidence is pro-
vided by exact, but mean-field-like results on the Bethe
lattice13 and by perturbation theory near the upper critical
dimensiond=6.6d Our present findings suggest that a whole
series ofT=0 metastable dynamics involvingk-spin flips
lead to the same nonequilibrium criticality, with the critical
disorder strength increasing withk and the critical coercive
field decreasing withk. Equilibrium behavior atT=0 as a
function of the external field involves the system’s ground
state, i.e., a state stable to flips of any arbitrary finite number

FIG. 10. sColor onlined Comparison of the scaling plots of the
number of 1D-spanning avalanches obtained with the one-spin-flip
ssymbols with error barsd and two-spin-flipssymbols without error
barsd dynamics. The two collapses only differ by the value of the
critical disorderfsc

s1d=2.21 andsc
s2d=2.25g. The continuous line is

the Gaussian fit proposed in Ref. 8.
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of spins. Based on the numerical closeness of the critical
exponents and scaling functions, on the fact that the critical
disorder strength satisfiessc

eq.sc
s2d.sc

s1d fwhereasHc
eq=0

,Hc
s2d,Hc

s1dg, and on the similarity of the underlying phys-
ics at T=0, it is tempting to speculate that the equilibrium
behavior can be obtained as the limit of a series ofk-spin-flip
metastable dynamics with increasingk, with the critical
properties of the whole series belonging to the same univer-
sality class and governed by the same fixed point.9 In the
opposite case, one would expect to see for large enoughk a
crossover between a behavior dominated by the equilibrium
fixed point and the asymptotic behavior controlled by the
nonequilibrium fixed point. No such crossover is seen in the
present studyssee, e.g., the distribution of avalanches in Fig.

7d, but the values ofk considered here,k=1 and 2, are of
course too small to detect such effect, if present.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with Francisco-José
Perez-Reche and Xavier Illa. E.V. also acknowledges the
hospitality of the Laboratoire de Physique Théorique des
LiquidessUPMC, Parisd during his stay as an invited profes-
sor in July 2004. This work has received financial support
from CICyT sSpaind, Project No. MAT2004-01291, and
CIRIT sCataloniad, Project No. 2001SGR00066. The Labora-
toire de Physique Théorique des Liquides is the UMR 7600
of the CNRS.

*Electronic address: eduard@ecm.ub.es
1J. P. Sethna, K. Dahmen, S. Kartha, J. A. Krumhansl, B. W.

Roberts, and J. D. Shore, Phys. Rev. Lett.70, 3347s1993d.
2A. Berger, A. Inomata, J. S. Jiang, J. E. Pearson, and S. D. Bader,

Phys. Rev. Lett.85, 4176s2000d.
3J. Marcos, E. Vives, Ll. Mañosa, M. Acet, E. Duman, M. Morin,

V. Novak, and A. Planes, Phys. Rev. B67, 224406s2003d.
4F. Detcheverry, E. Kierlik, M. L. Rosinberg, and G. Tarjus, Phys.

Rev. E 68, 061504s2003d; Langmuir 20, 8006s2004d.
5D. J. Tulimieri, J. Yoon, and M. H. W. Chan, Phys. Rev. Lett.82,

121 s1999d.
6K. Dahmen and J. P. Sethna, Phys. Rev. B53, 14 872s1996d.
7O. Perković, K. A. Dahmen, and J. P. Sethna, Phys. Rev. B59,

6106 s1999d.
8F. J. Pérez-Reche and E. Vives, Phys. Rev. B67, 134421s2003d.
9F. J. Pérez-Reche and E. Vives, Phys. Rev. B70, 214422s2004d.

10G. Durin and S. Zapperi, inThe Science of Hysteresis, edited by
G. Bertotti and I. MayergoyzsElsevier, New York, 2005d.

11J. P. Sethna, K. A. Dahmen, and O. Perković, in The Science of
Hysteresis, edited by G. Bertotti and I. MayergoyzsElsevier,
New York, in pressd.

12A. Maritan, M. Cieplak, M. R. Swift, and J. R. Banavar, Phys.

Rev. Lett. 72, 946 s1994d.
13F. Colaiori, M. J. Alava, G. Durin, A. Magni, and S. Zapperi,

Phys. Rev. Lett.92, 257203s2004d; M. J. Alava, V. Basso, F.
Colaiori, L. Dante, G. Durin, A. Magni, and S. Zapperi, Phys.
Rev. B 71, 064423s2005d.

14This objection, however, may be circumvented by considering the
remanent magnetization obtained in zero external field after a
demagnetization procedure as the order parameter of the transi-
tion ssee Ref. 13d.

15M. C. Kuntz, O. Perković, K. A. Dahmen, B. W. Roberts, and J.
P. Sethna, Comput. Sci. Eng.1, 73 s1999d.

16D. Dhar, P. Shukla, and J. P. Sethna, J. Phys. A30, 5259s1997d.
17Unfortunately, because of the additional complexity introduced

by the cooperative flip of nn pairs, one cannot use anymore the
so-calledsorted-listalgorithm proposed in Ref. 15. This in turn
implies that very large system sizes cannot be simulated.

18C. Frontera, J. Goicoechea, J. Ortin, and E. Vives, J. Comput.
Phys. 160, 117 s2000d.

19Note also that for the scaling collapses it has been possible to use
the same values of thea priori nonuniversal constantsA andB8
in Eqs.s8d and s9d.

VIVES, ROSINBERG, AND TARJUS PHYSICAL REVIEW B71, 134424s2005d

134424-8


