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The influence of vacancy concentration on the behavior of the three-dimensional random field Ising model
with metastable dynamics is studied. We have focused our analysis on the number of spanning avalanches
which allows us a clear determination of the critical line where the hysteresis loops change from continuous to
discontinuous. By a detailed finite-size scaling analysis we determine the phase diagram and numerically
estimate the critical exponents along the whole critical line. Finally, we discuss the origin of the curvature of
the critical line at high vacancy concentration.
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I. INTRODUCTION

Externally driven systems at sufficiently low temperature
often display rate-independent hysteresis. This out-of-
equilibrium phenomenon occurs because intrinsic disorder
creates multiple energy barriers that the system cannot over-
come due to very weak thermal fluctuations.

The study of zero-temperature models with metastable
dynamics has been very successful for understanding rate-
independent hysteresis. A prototypical case is the random
field Ising model �RFIM� with single spin-flip relaxation
dynamics.1,2 Although the model is formulated in terms of
magnetic variables �external field H and magnetization m�, it
can be applied to the study of many phenomena associated
with low-temperature first-order phase transitions in disor-
dered systems, e.g., martensitic transformations,3 fluid ad-
sorption in porous solids,4 ferroelectrics,5 etc.

Disorder is an intriguing concept; in the RFIM it is intro-
duced via independent, quenched random fields on each lat-
tice site, Gaussian-distributed with zero mean, and standard
deviation �. In real materials, disorder is much more com-
plicated and includes features on all length scales: vacancies,
interstitials, composition fluctuations, dislocations, strain
fields, grain boundaries, sample surfaces, edges and corners,
etc. Thus, it is interesting to add to the RFIM other sources
of disorder, in order to see how nonequilibrium behavior is
modified.

The goal of this paper is to study the diluted RFIM at T
=0 with metastable dynamics and to analyze the conse-
quence of introducing a concentration c of quenched vacan-
cies. The interplay between the two kinds of disorder �ran-
dom fields and vacancies� will be at the origin of the
properties of the �-c phase diagram.

One of the striking results concerning the RFIM with
metastable dynamics, as already pointed out in the seminal
paper of Sethna et al.,1 is the occurrence of a critical point
when the amount of disorder � is increased. The m vs H
hysteresis loops change from being discontinuous �as in a
ferromagnet� when ���c to continuous �as in a spin glass�
when ���c. This result was demonstrated using mean-field
analysis and numerical simulations in three-dimensional
�3D� systems. This problem was also studied within the
renormalization group �RG� formalism.6,7 Moreover, many

properties of the critical point have also been studied analyti-
cally on Bethe lattices.8–12 Experimental evidence for the
occurrence of such a critical point has been found in different
magnetic systems.13,14

Another interesting result of the RFIM with metastable
dynamics is that it reproduces the experimental observation
that m�H� trajectories of such athermal systems are discon-
tinuous on small scales. The evolution proceeds by ava-
lanches from one metastable state to another. In the RFIM
the avalanche-size distribution becomes a power law at the
critical point. Experimentally, scale-free distributions of ava-
lanche properties have been found in many systems.15–22 A
first attempt to study the influence of dilution in such
avalanche-size distributions was done some years ago.23 The
results of this work, however, should be considered as only
qualitative, given the fact that the studied system was two
dimensional �2D�,28 the analysis only focused on the ava-
lanche distributions and the results concerning the phase dia-
gram were very approximate.

The order parameter that vanishes at the critical point is
the size of the macroscopic discontinuity �m. Analysis of
this quantity from simulations is very intricate. In finite-size
systems it is very difficult to make the distinction between a
macroscopic jump and a microscopic avalanche. The
measured-order parameter only displays reasonable finite-
size scaling �FSS� properties when the simulated systems are
very large.24 Recent studies25,26 have shown how the critical
point can be characterized in systems of moderate size. The
key point is to detect the so-called “spanning” avalanches,
which are the magnetization jumps that involve a set of spins
that spans the whole finite system �e.g., cubic lattice� from
one face to the one opposite. By this method avalanches in
finite systems can be classified as nonspanning, one-
dimension �1D� spanning, 2D spanning, or 3D spanning. The
average numbers N1, N2 of 1D- and 2D-spanning avalanches
display a peak at a value of � that shifts with system size L
and tends to �c when L→�. The numerical data can then be
scaled according to the FSS hypothesis25

N� = L�Ñ��uL1/	� , �1�

where �=1,2. The exponent 	=1.2±0.1 characterizes the
divergence of the correlation length �
���−�c�−	�, while
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�=0.10±0.02 characterizes the divergence of the number of
critical avalanches. The scaling variable u��� is analytic and
measures the distance to the critical point. It can be fitted by
the second-order expression

u��� =
� − �c

�c
+ A�� − �c

�c
�2

, �2�

with �c=2.21 and A=−0.2. The behavior of the 3D-spanning
avalanches is more complex because there are two different
kinds; �i� critical 3D-spanning avalanches that behave as the
1D and 2D avalanches and �ii� subcritical 3D-spanning ava-
lanches which correspond to the �m discontinuity in the
thermodynamic limit. The analysis is more difficult and re-
quires a double finite-size scaling technique. This will not be
used in the present paper. Instead we will only focus on the
behavior of the average numbers N1 and N2 in the presence
of vacancies and propose a FSS hypothesis by using a scal-
ing variable u�� ,c� that allows the full �–c diagram to be
studied.

In Sec. II we define the model and the dynamics. In Sec.
III we present results of the numerical simulations. In Sec.
IV we formulate the FSS hypothesis and determine the criti-
cal line. In Sec. V we propose approximations to the scaling
variable u�� ,c�. In Sec. VI, we discuss the interplay between
vacancies and avalanches and, finally, in Sec. VII we sum-
marize our main findings and conclude.

II. MODEL AND SIMULATIONS

The diluted 3D RFIM on a cubic lattice with N sites �N
=L�L�L� is defined by the following Hamiltonian �mag-
netic enthalpy�:

H = − �
	ij


n.n.

cicjSiSj − �
i=1

N

hiciSi − H�
i=1

N

Sici, �3�

where Si= ±1 are Ising spin variables, ci=0,1 indicates the
presence of a vacancy �ci=0� or not �ci=1� at each site, hi

are Gaussian-distributed quenched random fields with zero

mean and standard deviation �, and H is the driving field.
The first sum extends over all distinct nearest-neighbor
�n .n . � pairs. Vacancies are quenched and randomly distrib-
uted over the lattice. Their concentration is measured by c
=1−�ici /N.

The metastable dynamics is implemented as follows: the
system is externally driven by the field H which is adiabati-
cally swept from −� where the system is fully negatively
magnetized �Si=−1� to +�. �Si= +1�. The spins flip accord-
ing to a local relaxation dynamical rule

Si = sign��
j

Sjcj + hi + H� , �4�

where the sum extends over all the n .n. of Si. When a spin
flips, it may trigger an avalanche. The unstable spins are
flipped synchronously until a new stable situation is reached.

The hysteresis loop is obtained by computing the magne-
tization

m = �
i=1

N

Sici/N , �5�

as a function of the applied field H. Magnetization ava-
lanches are recorded along the whole increasing field branch
and their spanning properties are analyzed by using “mask”
vectors �as explained in Ref. 25� that allow them to be clas-
sified as nonspanning, 1D spanning, 2D spanning, and 3D
spanning. In this work we shall mainly study the number of
spanning avalanches of each kind which are recorded in the
full upwards branch. These numbers, N1, N2, and N3, which
depend on L, �, and c, correspond to averages over more
than 104 realizations with different random fields and ran-
dom vacancy positions. The disorder averages are denoted
by the symbol 	·
. We study systems of sizes ranging from
L=8 to L=64 at a number of points on the �-c diagram, as
indicated schematically in Fig. 1.

III. NUMERICAL RESULTS

The general evolution of the average hysteresis loops as a
function of � and c is shown in Fig. 2. One can observe the
transition from discontinuous loops to smooth loops when �
or c are increased. It can also be seen that the saturation
magnetization decreases with increasing c.

Figure 3 shows the behavior of the coercive field 	Hcoe
 as
a function of the concentration of vacancies for different val-
ues of �. As can be seen, 	Hcoe
 decreases with increasing c
and increasing �. The behavior with increasing c exhibits an
inflection point at the transition, as can be seen in the inset of
Fig. 3, which shows the numerical derivative of the 	Hcoe

with respect to c. Such an inflection point does not exist in
the nondiluted model when the coercive field is plotted as a
function of �. This feature, which can be of interest for the
determination of the critical point in experiments, is probably
related to the fact that 	Hcoe
, expressed as a function of c,
should vanish at c�1, whereas if it is expressed as a func-
tion of � it only vanishes asymptotically when �→�.

Figure 4 shows the distribution D�s ;� ,c ,L� of avalanche
sizes �the size s of an avalanche is the number of spins

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7c
0

1

2

3

σ

Region I

Region II

FIG. 1. �Color online� Coordinates of the points studied by nu-
merical simulations on the �-c diagram. The finite-size scaling
analysis presented in Sec. IV is performed in regions I and II.
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flipped� for the same cases as in Fig. 2 on the log-log scale.
The histograms include all avalanches irrespective of their
spanning properties. The qualitative picture is that power-law
distributions are obtained along a critical line with an expo-

nent that seems to be the same for all values of c. Apparently,
no differences can be observed when comparing the transi-
tion induced by changing � from the transition induced by
changing c. Below the critical line the distributions show a
peak for large values of s which correspond to the 1D-, 2D-,
and 3D-spanning avalanches. Above the critical line, the dis-
tributions have an exponentially damped character.

Figure 5 shows the average number of 1D-, 2D-, and 3D-
spanning avalanches as a function of � for increasing values
of the vacancy concentration c ranging from 0 to 0.5. Data
correspond to a system with size L=16. The same informa-
tion is displayed in Fig. 6 for a system with size L=48.

The behavior for small and intermediate vacancy concen-
tration is qualitatively similar to that found for the nondiluted
model.25,27,28 The average numbers N1 and N2 display peaks,
whereas N3 shows a peak on the edge of a step function.
Note that for L=16 the peak height in N1�� ,c ,L� and
N2�� ,c ,L� seems to decrease with increasing c. This behav-
ior, however, is much less apparent for larger systems �L
=48�. Therefore, it is possibly due to a finite-size effect.

At higher concentrations �c�0.4� N1 and N2 begin to de-
velop a flat plateau at low �. The reason for this plateau can
be well understood by looking at the 3D plot in Fig. 7, which
represents the average number N1�� ,c ,L� for L=32. The
plateau in the constant c cuts of Figs. 5 and 6 is due to the
fact that the crest of the N1 and N2 functions does not de-
crease linearly with increasing c, but shows a bend and
reaches the c axis almost perpendicularly.

FIG. 2. �Color online� Average hysteresis loops corresponding
to a system of size L=32 for different values of � and c as
indicated.
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FIG. 3. �Color online� The coercive field as a function of the
vacancy concentration c for different values of the amount of dis-
order �. The inset shows the behavior of the numerical derivative
�Hcoe /�c which exhibits a maximum at the transition line. Data
correspond to averages in a system of size L=64.

FIG. 4. �Color online� Avalanche size distributions correspond-
ing to a system with L=32 at different values of c and � as indi-
cated. Data are represented on the log-log scale.
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IV. FINITE-SIZE SCALING HYPOTHESIS

The hypothesis that we want to check numerically is that
in the presence of vacancies, the critical point found at c
=0 transforms into a critical line for a wide range of concen-
trations. Thus, the critical exponents found previously should
be equally valid for the description of the behavior of the
average numbers N1 and N2 with c�0. According to this
hypothesis we shall propose the following corresponding
FSS behavior:

N���,c,L� = L�Ñ��uL1/	� , �6�

where �=1,2 and u�� ,c� is a scaling variable that measures
the distance to the critical line. The exponents � and 	, as

well as the functions Ñ�, were already found in previous
works.25 Therefore, the hypothesis is quite strong and indi-
cates that all the N1 and N2 data, corresponding to different
sizes L, different vacancy concentrations c, and different
amounts of disorder �, must collapse onto a function that is
already known. The only freedom that we have is in the
determination of the scaling variable u that should be ana-
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FIG. 5. �Color online� Average number of �a� 1D-spanning ava-
lanches, �b� 2D-spanning avalanches, and �c� 3D-spanning ava-
lanches, as a function of � for different values of the vacancy con-
centration c, as indicated by the legend. Lines are guides to the eye.
Data correspond to numerical simulations of a system with size L
=16.
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FIG. 6. �Color online� Average number of �a� 1D-spanning ava-
lanches, �b� 2D-spanning avalanches, and �c� 3D-spanning ava-
lanches, as a function of � for different values of the vacancy con-
centration c, as indicated by the legend. Lines are guides to the eye.
Data correspond to numerical simulations of a system with size L
=48.
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FIG. 7. �Color online� Surface plot representing N1�� ,c ,L� for
L=32. The dashed lines on the basal plane represent the position of
the cuts in Fig. 8 at c=0.15 and �=0.9.

XAVIER ILLA AND EDUARD VIVES PHYSICAL REVIEW B 74, 104409 �2006�

104409-4



lytic. Before constructing it in the next section, we can make
a first test of Eq. �6� by checking scaling on the critical line.
Note that by setting u=0, Eq. �6� becomes

N���,c,L� = L�Ñ��0� , �7�

where � and c should be on the critical line. Since we know

�from Ref. 25� that �=0.10, Ñ1�0�=0.12, and Ñ2�0�=0.07,

we can deduce that the different curves N��� ,c ,L� /L�Ñ��0�
should cross at height 1 on the critical line, independently of
L. Two examples are shown in Fig. 8 that correspond to two
cuts �one at constant � and the other at constant c� on the �-
c diagram. As can be seen, the critical line can be determined
to high accuracy. By analyzing a large number of such � and
c cuts, we have managed to construct the critical line. The
result is shown in Fig. 9. Note that the process can be re-
peated independently with N1 and N2. The two independent
lines overlap almost perfectly. The obtained critical line is
linear up to c�0.3. A least-squares fit gives �c�c�=�c�0�
+c with �c�0�=2.21±0.01 and =−4.09±0.03. The value

�c�0�=2.21 is in total agreement with the previous estimate
for the nondiluted model.25

It is remarkable that the finite-size-scaling hypothesis al-
lows the collapse of the data up to large values of c, far from
the point c=0, where the scaling function and the exponents
were determined. It is also remarkable that scaling works
even after the bend observed for c�0.3. �Note that the cross-
ing point shown in Fig. 8�a� corresponds to a value of �
where the critical line is not linear.�

For small values of � the critical line displays vertical
behavior. The critical value of the vacancy concentration cc
above which the hysteresis loops do not display a disconti-
nuity can be fitted to cc=0.426±0.003.

V. SCALING VARIABLE

In general the scaling variable is a function that can be
expanded as
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FIG. 8. �Color online� Examples of crossing points on the criti-
cal line along cuts �a� parallel to the c axis and �b� parallel to the �
axis. The different symbols correspond to different system sizes as
indicated by the legend. Continuous lines are guides to the eye. The
horizontal dashed line indicates the height 1 where the curves are
supposed to cross according to Eq. �7�.
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FIG. 9. �Color online� Critical line in the �-c diagram deter-
mined from the crossing points in N1 �•� and N2 ���. The dashed
line is the fit discussed in the text, and the thin discontinuous lines
indicate the cuts along which the correlation in Fig. 14 is computed.
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FIG. 10. �Color online� Finite-size-scaling collapse of the aver-
age number of 1D-spanning avalanches in region I. The continuous
line shows the Lorentzian function in Eq. �12�.

DILUTED THREE-DIMENSIONAL RANDOM FIELD¼ PHYSICAL REVIEW B 74, 104409 �2006�

104409-5



u��,c� = a0 + a1� + a2c + a3�c + a4�2 + a5c2 + ¯ . �8�

Since c and � are not necessarily very small along the criti-
cal line, it is difficult to know a priori how many terms in the
expansion will be needed in order to obtain a good scaling
collapse. The direct determination of a large number of co-
efficients from the numerical data is difficult. Therefore, we
shall adopt a different strategy by taking into account previ-
ously known data as much as possible.

As a first step we will concentrate on the region c�0.3
where the coexistence line shows linear behavior and we will
try to use an expansion up to quadratic terms only. By forc-
ing the condition u=0 to be satisfied on the fitted coexistence
line, we deduce that u satisfies

u��,c� = �� − �c − c��b0 + b1� + b2c� . �9�

We should also consider the fact that the scaling variable is
known to be well described by a second-order expansion �up
to �2� for c=0 as indicated in Eq. �2�. After some algebra
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FIG. 11. �Color online� Finite-size-scaling collapse of the aver-
age number of 2D-spanning avalanches in region I. The continuous
line shows the Lorentzian function in Eq. �13�.
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FIG. 12. �Color online� Finite-size scaling collapse of the aver-
age number of 1D-spanning avalanches in region II. The continuous
line shows the Lorentzian function in Eq. �12�.
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FIG. 13. �Color online� Finite-size scaling collapse of the aver-
age number of 2D-spanning avalanches in region II. The continuous
line shows the Lorentzian function in Eq. �13�.
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FIG. 14. �Color online� Correlation between the border of the
largest cluster of vacancies and the largest avalanche as a function
of c. Data corresponding to different system sizes are represented
by different symbols as indicated by the legend. The curves corre-
spond to cuts in the phase diagram at �a� �=1, �b� �=0.5, and �c�
�=0.1.
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one can determine the two parameters b0 and b1,

b0 = �1 − A�/�c = 0.543 ± 0.002, �10�

b1 = A/�c
2 = − 0.041 ± 0.001. �11�

Therefore, we are left with a single free parameter b2 that
should allow all of the data in the scaling region to collapse
onto a single curve for different values of �, c, and L. All the
available data in region I of Fig. 1 have been considered.
Note also that the same b2 parameter must be used to scale
both N1 and N2 data. The best two collapses are shown in
Figs. 10 and 11 for b2=−0.13. Note that the data for c=0 are
also included on this plot. Therefore, we have obtained two

scaling functions Ñ1 and Ñ2 that are compatible with those of
Ref. 25. In this paper the scaling functions were approxi-
mated by Gaussians, although it was also shown that there
were systematic deviations. In this work we have tried to fit
the data using more complex functions �with three free pa-
rameters�. We have found a very good �2 by using the fol-
lowing modified Lorentzians, which are represented by a
continuous line on the data in Figs. 10 and 11,

Ñ1�x� =
1

�1.73 − 0.53x + 0.10x2�3.9 , �12�

Ñ2�x� =
1

�1.83 − 0.59x + 0.13x2�4.6 . �13�

For a second step we will try to build up u�� ,c� for the
data very close to the �=0 axis. In this region II �see Fig. 9�
the transition line is again quite linear and, in fact, is almost
vertical. This means that to measure the distance to the criti-
cal line it should be sufficient to use the variable �c−cc�. We
have considered the following second-order expansion:

u�c�
k�

=
c − cc

cc
+ B� c − cc

cc
�2

. �14�

Note that k� is not a free parameter. It can be fixed by im-
posing that the definitions of the scaling variables �9� and

�14� coincide at �=0 and c=0. Thus k�= �A−1� / �B−1�. The
only free parameter for the collapse of the data is B. Best
collapses are shown in Figs. 12 and 13 for N1 and N2, re-
spectively, using the best choice B=−0.2 �thus k�=1�.

The continuous lines in both figures correspond to the
same lines as in Figs. 10 and 11. We can thus conclude that
we have built up two good approximations �given by Eqs. �9�
and �14�� to the unique scaling variable in regions I and II
which will display a more complex behavior in the interme-
diate region where the critical line bends, probably with
higher order terms.

VI. DISCUSSION

In this section we will try to explain why the critical line
exhibits such a curvature. There must be a physical reason
that goes beyond the mere effect of the dilution of the system
and destabilizes the phase even more with the ferromagneti-
clike discontinuity. We propose that the effect is related to
the percolation of vacancies above cp=0.3116, a value which
is, indeed, very close to the limit where the critical line loses
its linearity. To justify this hypothesis numerically, we have
studied the distribution of the clusters of vacancies and the
position of the avalanches for each particular realization of
disorder. In particular, we have determined the spatial posi-
tion of the largest vacancy cluster �which, above cp, will
correspond to the percolating cluster in the thermodynamic
limit�. It is clear that the neighboring sites of this percolating
cluster of vacancies are an easy path for the propagation of
an avalanche, since these sites have a smaller number of
neighbors. To distinguish such sites we have defined a local
flag that takes values bi=1 when a site belongs to the border
of the largest cluster of vacancies or bi=0 otherwise. We
have also recorded the largest avalanche during the H scan
�which will correspond to the spanning avalanche below the
critical line in the thermodynamic limit� and we have marked
its position with a flag �i=1. With these two variables we
have defined the correlation between the border of the largest
cluster of vacancies and the largest avalanche as

��,b =
� 1

N � �ibi − � 1

N � �i� 1

N � bi
�� 1

N � �i
2 − � 1

N � �i2�� 1

N � bi
2 − � 1

N � bi2
. �15�

Note that since �i and bi only take values of 1 and 0, the
power 2 in the first bracket inside the square roots can be
suppressed. This correlation is equal to 1 when the spanning
avalanche sits exactly on the border of the spanning cluster
of vacancies. The behavior of ��,b as a function of c is shown
in Fig. 14 for three different values of � that correspond to
the dashed lines indicated in Fig. 9, and for increasing sys-

tem sizes as indicated by the legend. The important observa-
tion is that the curves for �=0.5 and �=0.1 exhibit two
crossing points. One is located at cp and the other on the
critical line �it thus shifts with ��. For a concentration of
vacancies below cp or above the critical line, the behavior of
the curves with increasing L indicates that the correlation
vanishes in the thermodynamic limit, whereas in the region
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between the two crossing points the correlation increases
with increasing system size. A value �=1 is probably not
reached, since the spanning avalanche is larger than the bor-
der of the percolating cluster of vacancies. Using this analy-
sis, we have thus identified the origin of the curvature of the
critical line; when vacancies percolate, the spanning ava-
lanche propagates along the border of the percolating cluster
of vacancies. The propagation in such a constrained environ-
ment decreases the amount of disorder needed to break the
infinite macroscopic avalanche into small microscopic
jumps. However, as shown in Sec. V, this mechanism does
not change the values of the critical exponents.

VII. SUMMARY AND CONCLUSIONS

We have analyzed the influence of dilution on the critical
properties of the 3D-RFIM at T=0 with metastable dynam-
ics. We have shown that the critical point, associated with the
change in the shape of the hysteresis loop from discontinu-
ous to continuous loops, becomes a critical line which we
have located on the �-c phase diagram. The critical proper-

ties close to this line are characterized by the same critical
exponents as in the nondiluted model. This result indicates
that it should be possible to find RG arguments, showing that
there is a unique fixed point at T=0 in the disorder parameter
space that includes, at least, both random fields and dilution.2

We have computed quadratic approximations to the scaling
variable in two different zones of the phase diagram that
allow for a bivariate finite-size-scaling collapse on a univer-
sal scaling function. Finally, we have proposed an explana-
tion for the curvature observed in the critical line when the
concentration of vacancies increases above the percolation
limit; the spanning avalanche that is responsible for the dis-
continuity of the hysteresis loops has a tendency to follow
the neighborhood of the percolating cluster of vacancies.
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