
Exchange-correlation effects on quantum wires with spin-orbit interactions under the influence
of in-plane magnetic fields

Francesc Malet, Martí Pi, and Manuel Barranco
Departament ECM, Facultat de Física, and IN2 UB, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

Llorenç Serra
Departament de Física and Institut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB), Universitat de les Illes Balears,

07122 Palma de Mallorca, Spain

Enrico Lipparini
Dipartimento di Fisica, Università di Trento, 38050 Povo, Trento, Italy

and INFN, via Enrico Fermi, 40-00044 Frascati, Rome, Italy
�Received 20 April 2007; published 10 September 2007�

Within the noncollinear local spin-density approximation, we have studied the ground state structure of a
parabolically confined quantum wire submitted to an in-plane magnetic field, including both Rashba and
Dresselhaus spin-orbit interactions. We have explored a wide range of linear electronic densities in the weak
�strong� coupling regimes that appear when the ratio of spin-orbit to confining energy is small �large�. These
results are used to obtain the conductance of the wire. In the strong coupling limit, the interplay between the
applied magnetic field—irrespective of the in-plane direction, the exchange-correlation energy, and the spin-
orbit energy—produces anomalous plateaus in the conductance vs linear density plots that are otherwise
absent, or washes out plateaus that appear when the exchange-correlation energy is not taken into account.
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I. INTRODUCTION

The possibility to carry out controllable manipulations of
electron spins using electric fields is the main goal of spin-
tronics. This emerging field, based on the spin-orbit �SO�
interaction, exploits the spin rather than the electron charge
for information processing and promises remarkable new de-
vices, faster, smaller, and more powerful than those currently
existing. This has prompted an intense activity in the study
of semiconductor heterostructures, since they present intrin-
sic SO interactions due to the existence of macroscopic elec-
tric fields arising from inversion asymmetry properties char-
acteristic of those systems, which give rise to the Rashba SO
coupling �related to the inversion asymmetry of the confining
potential in the growing direction� and Dresselhaus SO cou-
pling �related to the bulk inversion asymmetry�. Among
these nanostructures, quantum wires �QWs� are especially
well suited for the development of spintronic devices. On the
one hand, their transverse length can be externally con-
trolled, making the system more or less quasi-one-
dimensional and, hence, changing the ratio of the SO
strength to the confinement. On the other hand, the electron
motion can be rendered almost collisionless because of the
high purity of the starting two-dimensional electron gas.

The energy subband structure and conductance �G� of
QWs including SO effects have been addressed by several
authors. Most of them have only taken into account the
Rashba coupling1–3 because it can be tuned using gate volt-
ages. Contrarily, the Dresselhaus coupling is fixed since it
arises from basic properties of the semiconductor crystal.
Also, the effect of applied magnetic fields �B�, either in or
perpendicular to the plane containing the QW, has been con-
sidered in combination with only the Rashba4–6 or both7 SO
interactions.

Interesting features of the energy subbands and G have
been disclosed, especially for strong SO couplings and in
combination with magnetic fields applied to the QW. Among
them, the presence of anticrossings, k asymmetries, local ex-
trema, and energy gaps in the subband spectra, or the so-
called anomalous plateaus in the conductance, are some of
the most interesting. By anomalous plateaus �or steps� we
mean those appearing in the conductance that do not follow
the increasing step sequence in units of G0=2e2 /�, which
pertains to the Landauer formula. The importance of taking
into account the Rashba intersubband coupling term, ne-
glected in some works, has also been pointed out.4

In the above mentioned works, the electron-electron inter-
action has not been taken into account. It is, thus, worthy to
elucidate to which extent these results change when this in-
teraction is considered, at least in a workable and sound
mean field approximation, and this is the purpose of this
paper. We address here the effects of the exchange-
correlation interaction on the energy subband structure and
conductance of a quantum wire within the noncollinear
local-spin density approximation �LSDA�. To this end, we
implement a self-consistent solution of the Kohn-Sham equa-
tions for a QW of length L submitted to a parabolic lateral
confinement, including SO effects and an in-plane magnetic
field applied either parallel or perpendicular to the longitudi-
nal axis of the wire. This gives the wave functions and the
energy spectra of the QW, which, in turn, are used to calcu-
late the conductance and other properties of the system, such
as the phase diagram—energy per electron vs linear
density—and the spin textures that appear across the wire.
This work extends our results for a wire in the LSDA �with-
out SO� �Ref. 8� and for a noninteracting wire with Rashba
SO interaction.4

To avoid the cumbersome evaluation of the band occupa-
tions at zero temperature �T�, we use a finite-T formalism.
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More specifically, the calculation of the “turning points”
where the electron chemical potential crossing the energy
subbands becomes involved when the bands are not fully
parabolic. This is the case when SO terms and magnetic
fields are included. The finite-T frame is used here as a nu-
merical trick, since in practice we have chosen T small
enough so that our results are T=0 results. Thermal effects
may be introduced, increasing the value of T in the relevant
expressions, but we have not considered this possibility here.

This work is organized as follows. In Sec. II, we introduce
the system and its variables, the Hamiltonian and the noncol-
linear LSDA needed to describe it, as well as examples of
spin textures and energy subband structures of the QW ob-
tained for some selected values of the model parameters, i.e.,
intensity and direction of B, and strength of the SO interac-
tion with respect to the value of the lateral confining energy.
The conductance of the QW in the weak and strong SO cou-
pling regimes is discussed in Sec. III, together with an alter-
native derivation, based on the application of linear response
theory, of the conductance of a QW, equivalent to the one
introduced in Ref. 9. A summary is given in Sec. IV, and we
discuss in an appendix the subband structure up to second
order in perturbation theory when the exchange-correlation
energy is neglected. The first-order expression is a useful
guide to understand some aspects of the complete, numerical
calculation.

II. FORMALISM

A. System and its variables

We consider a parabolic confinement in the y direction
and free motion along the x direction. The electrons are
treated within the effective-mass, dielectric constant model
in two dimensions, with the motion restricted to the xy plane.
Although no structure is strictly two-dimensional, it is com-
monly accepted that the confinement in the perpendicular
direction is so strong that two-dimensional models catch the
basic physics of the processes under study while they render
the numerical effort much more affordable. The vertical ex-
tension of the structure is phenomenologically taken into ac-
count in the effective values of the spin-orbit constants, but it
is definitely missing in the electron exchange-correlation en-
ergy used to address the problem.

The SO terms prevent the formation of good spin states.
Therefore, the Kohn-Sham �KS� orbitals are two-component
spinors of the type

�nk�r� � ��nk� �
1
�L

��nk�y,↑�
�nk�y,↓�

�eikx. �1�

Translational invariance along x allows us to introduce a
continuous wave number k, and the index n=1,2 ,3 , . . ., la-
bels the different energy subbands. Therefore, the quantum
labels are �n ,k�. This implies that we have no spin label for
the subbands, and each of them contains both spin compo-
nents and satisfies a Kohn-Sham spinorial equation

hKS	�,m
��nk� = �nk��nk� . �2�

In Eq. �2�, we have a functional dependence on electron den-
sity � and spin magnetization m, the latter being a vector. In

order to determine these densities, we resort to the thermal
occupation of each single-electron KS orbital f� at a given
temperature T and chemical potential �,

f���nk� =
1

1 + e��nk−��/kBT . �3�

This Fermi function gives the occupation of the �n ,k� state.
The electron density is

��y� = �
n

L

2�
� dk�nk���ri − r���nk�ri

f���nk�

= �
n

1

2�
� dk	��nk�y,↑��2 + ��nk�y,↓��2
f���nk� , �4�

and the one-dimensional �1D� electron density along the QW
is the integral of ��y� over y,

�1D =� dy��y� . �5�

Translational invariance along the wire implies that all
densities—actually all physical variables—only depend on y.

For the a=x ,y ,z components of the spin magnetization,
we have in a similar way

ma�y� = �
n

L

2�
� dk�nk���ri − r�	a��nk�ri

f���nk� , �6�

where 	a is the corresponding Pauli matrix. The three com-
ponents then read

mx�y� = �
n

1

2�
� dk2 Re	�nk�y,↑�*�nk�y,↓�
f���nk� ,

my�y� = �
n

1

2�
� dk2 Im	�nk�y,↑�*�nk�y,↓�
f���nk� ,

mz�y� = �
n

1

2�
� dk	��nk�y,↑��2 − ��nk�y,↓��2
f���nk� .

�7�

To carry out the k integrations, we have discretized the inte-
grals in a 	−kmax, +kmax
 interval and have computed �nk for
the chosen states on a k grid with Nk points for all the n’s up
to a chosen nmax. Next, we have performed the integrations
using a high precision method—a Bode rule—in the k
domain.10 This discretization in k space has implications in
the way we handle the KS Hamiltonian we describe next.

B. Kohn-Sham Hamiltonian

We split the Kohn-Sham Hamiltonian hKS	� ,m
 into three
different pieces, hKS=h0+hSO+hZ, consisting of the kinetic
plus confining and exchange-correlation �XC� terms, the
Rashba plus Dresselhaus SO term, and the Zeeman contribu-
tion arising from an in-plane magnetic field applied with an
arbitrary orientation
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B = B�cos 
Bux + sin 
Buy� , �8�

where 
B is the azimuthal angle. The extension to include a
vertical magnetic field can be done easily, but it is not ad-
dressed here. Explicitly,

h0 =
px

2 + py
2

2m
+

1

2
m�0

2y2 + V���
xc �y� ,

hSO =
R

�
�py	x − px	y� +

D

�
�px	x − py	y� ,

hZ = Ez�	x cos 
B + 	y sin 
B� . �9�

Note that since B is in-plane, px and py are the actual com-
ponents of the linear momentum of the electron and not the
generalized momentum components that include contribu-
tions from the vector potential A, B=��A. We have intro-
duced the self-consistent potential V���

xc �y� due to exchange
and correlation energies, the Zeeman energy EZ=g*�BB, and
the Rashba and Dresselhaus parameters R and D. In prin-
ciple, one should also include a Hartree term,8,11 but we con-

sider that it is exactly cancelled by some neutralizing back-
ground contribution—full screening approximation.12 The
inclusion of such a Hartree term would introduce some un-
certainties in the model, as its actual expression would de-
pend on the way the positive charges are distributed to cancel
out the divergence in the Hartree potential. To be definite, the
screened transverse potential is assumed to be of parabolic
type although other potentials such as a square well would
yield a qualitatively similar behavior.

In view of the form of the Rashba and Dresselhaus con-
tributions, it is quite natural to introduce a complex SO cou-
pling parameter ��D+ iR. Due to the translational invari-
ance in the x direction, the full spin-orbit contribution then
reads

hR + hD =� 0 �k + �* d

dy

�*k − �
d

dy
0 � , �10�

and from Eq. �2� we obtain the eigenvalue equation

�−
�2

2m

d2

dy2 +
�2k2

2m
+

1

2
m�0

2y2 + V↑↑
xc �* d

dy
+ �k + EZe−i
B + V↑↓

xc

− �
d

dy
+ �*k + EZei
B + V↓↑

xc −
�2

2m

d2

dy2 +
�2k2

2m
+

1

2
m�0

2y2 + V↓↓
xc ���nk↑

�nk↓
� = �nk��nk↑

�nk↓
� , �11�

where �nk���nk�y ,��. The Hermiticity of the above equa-
tion is apparent.

C. Noncollinear local-spin density approximation

The exchange-correlation potential matrix V���
xc �y� is re-

lated to the energy functional Exc for a uniformly polarized
electron gas in the noncollinear LSDA framework. A useful
presentation of the theory is given in Ref. 13; see also Ref.
14 for a recent application to semiconductor nanostructures.
The underlying idea is that the local approximation is ex-
tended to locally treat the orientation of the magnetization
exactly as in the uniformly magnetized system. To do so, one
performs a local diagonalization of the density matrix, defin-
ing the angles ��y� and 
�y� that give the orientation of the
spin at point y—we recall that the system is translational
invariant in the x direction. In the noncollinear case, one
deals with the density matrix

�����y� = �
n

1

2�
� dk�nk

* �y,���nk�y,���f���nk�

⇒ ��↑↑ �↑↓

�↓↑ �↓↓
� �12�

that is written in terms of the particle and magnetization
densities, Eqs. �4� and �7�,

��↑↑ �↑↓

�↓↑ �↓↓
� =

1

2
� � + mz mx + imy

mx − imy � − mz
� . �13�

Following Ref. 13, we define a diagonal density matrix by
means of a local unitary transformation U,

U�U+ = n � �n↑ 0

0 n↓
� . �14�

The local rotation is given by

U =� ei
�y�/2 cos
��y�

2
e−i
�y�/2 sin

��y�
2

− ei
�y�/2 sin
��y�

2
e−i
�y�/2 cos

��y�
2
� , �15�

and the local rotation angles are determined by the equations

tan 
�y� = −
my�y�
mx�y�

,

tan ��y� =
�mx

2�y� + my
2�y�

mz�y�
. �16�

Omitting the y arguments, the diagonal local densities are
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n↑ =
1

2
�� + mz cos �� + Re��↑↓e

i
 sin �� ,

n↓ =
1

2
�� − mz cos �� − Re��↑↓e

i
 sin �� . �17�

Knowing n↑ and n↓ at a point y, we can use the familiar
relations of collinear LSDA to compute the exchange-
correlation potentials

�v↑ 0

0 v↓
� � ��Exc	n↑,n↓
/�n↑ 0

0 �Exc	n↑,n↓
/�n↓
� . �18�

Finally, we undo the rotation. The resulting expression for
the exchange-correlation potential Vxc can be written as

V���
xc �y� � �v0 + �v cos � �ve−i
 sin �

�vei
 sin � v0 − �v cos �
� , �19�

where we have defined v0��v↑+v↓� /2 and �v��v↑−v↓� /2.
This scheme fully determines the 2�2 potential matrix Vxc

in terms of the spinor orbitals and the LSDA energy density
functional. It allows the description of spin textures where
the spin orientation varies from one point to another, yielding
a transverse profile for the spin orientation across the wire.

As in our previous works on two-dimensional nanoscopic
structures, Exc has been constructed from the results on the
nonpolarized and fully polarized two-dimensional electron
gas,15 using the two-dimensional von Barth and Hedin16 pre-
scription to interpolate between both regimes. We want to
mention that a more accurate expression for Exc has become
available.17 Its use would also render unnecessary the men-
tioned interpolation. While a very accurate description of the
exchange-correlation energy is needed for a quantitative de-
scription of the Wigner crystallization at low electron densi-
ties and the corresponding phase diagram, we do not expect
that the use of the “improved” Exc might introduce substan-
tial changes in the results we are going to discuss. We would
also like to recall that in the presence of an external B, the
exchange-correlation energy not only depends on n↑,↓ but
also on the paramagnetic currents, constituting the so-called
current spin-density-functional theory �CSDFT�,18 which is
better suited to high magnetic fields than LSDA. CSDFT has
been applied to study two-dimensional quantum dots and
rings.19–22 We have carried out in the past some comparisons
between the results obtained using LSDA and CSDFT, and
the overall agreement turns out to be satisfactory, indicating
that the effects caused by the inclusion of the paramagnetic
currents are small, see, e.g., Ref. 23.

For each �nk�, we, therefore, have to diagonalize Eq. �2�,
keeping the lowest nmax eigenvalues and eigenvectors
��nk ,�nk�r��. To do so, we introduce a y discretization from
−ymax to +ymax. This defines Ny points, and since the two
components are coupled, the resulting matrix is 2Ny �2Ny.
Once ��nk ,�nk�r�� are known, we proceed to compute the
density and magnetization, which allow one to start a new
iteration until self-consistency is achieved. For Ny’s of the
order of 100, the diagonalization is extremely fast and, al-
though it is repeated Nk�nmax times per iteration, the calcu-
lation is quite efficient.

For the present study, we have considered the case of a
GaAs heterostructure and have used the corresponding bulk
parameters, namely, g*=−0.44, m*=0.067, and dielectric
constant �=12.4. The experimental values for the
GaAs/AlGaAs SO coupling constants R,D are of the order
of 10−11 eV m.24–26

Rather than presenting an exhaustive study as a function
of the parameter space of the model, we have limited our-
selves to some illustrative examples. In particular, when dif-
ferent from zero, the magnetic field has been set to B
=20 T, and only two angles have been considered, namely,

B=0 and � /2. To present the results, we have used the
harmonic oscillator length l0=�� /m�0 to express both the
linear density �1D and the wave number k in units of l0

−1. For
a typical energy value ��0=4 meV, a unit linear density
�1D= l0

−1 is about 5.9�105 cm−1. The interaction-to-
confinement ratio e2 / ��l0��0� has been fixed to 1.72, corre-
sponding to the above typical values for GaAs and to ��0
=4 meV. The energies are expressed in ��0 units.

To characterize the SO regime, we have used the ratio of
the SO to the confining energy, namely,

�R,D =
mR,D

2

2�3�0
. �20�

We have used the values �R=0.0037 and �D=0.015 to rep-
resent a typical weak SO coupling regime, and the values
�R=0.093 and �D=0.37 to represent a typical strong SO
coupling regime. The weak and strong coupling results we
discuss in the following have been obtained using these pa-
rameters, except when their values are explicitly given.

We have chosen the linear electronic density �1D as the
natural variable to characterize the QW8 and have solved the
KS equations to determine the corresponding subband struc-
ture and chemical potential �. Contrary to the noninteracting
situation, in which for a given set of physical parameters
defining the QW, its subband structure is determined once for
all and can be filled with electrons to reach a prefixed �1D or
� value, in the present case, the subband structure has to be
self-consistency determined and may change from a linear
density to another.

At a given �1D, the energy per unit length

Etotal = Ekin + Econf + ESO + Exc + EZ

=� dy�
n

L

2�
� dk�nk�hks��nk� �21�

is calculated piece by piece. For the kinetic and confining
terms, we obtain

Ekin =
1

4�
� dy�

n
� dk���nk↑� �2 + ��nk↓� �2 + k2���nk↑�2

+ ��nk↓�2��f���nk� , �22�
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Econf =
�0

2

4�
� dy�

n
� dky2���nk↑�2 + ��nk↓�2�f���nk� ,

�23�

with �nk�� �d�nk� /dy. For the SO contribution, using the ex-
pression of hR and hD in terms of �, we have

ESO =� dy�
n

1

2�
� dk��nk↑

* �nk↓
* �

�� 0 �k + �* d

dy

�*k − �
d

dy
0 ���nk↑

�nk↓
� f���nk� .

�24�

Performing the matrix multiplications, we get an expression
that is apparently real

ESO =� dy�
n

1

2�
� dk�2kRe	�*�nk↓

* �nk↑


+ Re	���nk↓�* �nk↑ − �nk↓
* �nk↑� �
�f���nk� . �25�

To obtain the above expression, we have used

� dy�nk↑
* �nk↓� =

1

2
� dy��nk↑

* �nk↓� − �nk↑�* �nk↓� . �26�

Finally, we have the Zeeman and exchange-correlation con-
tributions,

EZ = EZ� dy�
n

1

2�
� dk2�cos 
BRe	�nk↓

* �nk↑


− sin 
BIm	�nk↓
* �nk↑
�f���nk� , �27�

Exc =� dy�xc�y���y� , �28�

where �xc�y� is the exchange-correlation energy per electron.
We have also computed the total energy in an alternative

way that explicitly uses the eigenvalues obtained, solving the
KS equations, see, e.g., Sec. 4.4 of Ref. 27:

Etotal = �
n

1

2�
� dk�nkf���nk� +� dy�xc�y���y�

−� dy�n↑v↑ + n↓v↓� . �29�

We have checked that it gives the same result as Eq. �21�
with a high accuracy, constituting a stringent test on our
numerical method.

Figure 1 shows the energy per electron E /N at B=0 as a
function of �1D in the weak and strong SO coupling regimes.
Due to the exchange-correlation energy,8 E /N is not a mo-
notonous function of the linear density, and neither is the
chemical potential �.

D. Subband structure

We have studied the effect of the exchange-correlation
interaction in several situations involving in-plane magnetic
fields and different strengths of the SO interaction, and have
found it difficult to systematize, as its effect depends on the
actual value of other variables that characterize the QW, such
as �1D, the orientation 
B of the applied B, and the values of
the SO coupling constants. In general, Vxc has a tendency to
enhance magnetic field effects, and—perhaps the most inter-
esting feature—to act in some cases as an applied magnetic
field, especially at low densities. Indeed, we have found that
for some configurations, the subband structure at B=0, when
Vxc is taken into account, turns out to be qualitatively the
same as when a certain B is applied and Vxc=0. The sponta-
neous symmetry breaking leading to the appearance of a
magnetization is made possible by the exchange-correlation
energy. In some cases, this term attains its minimal value
when the system polarizes itself, even though no magnetic
field is present. Therefore, one can physically ascribe the
resulting magnetization to an effective magnetic field origi-
nating in the quantum exchange-correlation energy. Analo-
gously, when a magnetic field is already applied, Vxc may act
as if it were an additional field increasing the value of the
actual B field, or contributing to create an effective in-plane
magnetic field with an orientation different from that of the
applied field. Likely, the lack of a common spin axis when
SO effects are taken into account has much to do with the
complex effect of Vxc on the subband structure.

Since in many previous works only the Rashba SO inter-
action has been taken into account, it is pertinent to begin
with the discussion of the Vxc effects in the �D=0 situation.
As an example, Fig. 2 shows the results corresponding to a
low density QW, �1Dl0=0.17, for an applied B field of 20 T

FIG. 1. �Color online� Energy per electron �in ��0 units� as a
function of the linear density at B=0. The regions separated by
vertical lines are characterized by the indicated number of distinct
subbands crossed by the electron chemical potential �, i.e., partially
occupied subbands. Some of these subbands are crossed more than
twice by �, producing the anomalous steps in the conductance dis-
cussed in Sec. III. The vertical left �right� scale corresponds to the
weak �strong� SO regime. The lines have been drawn to guide the
eye.
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and 
B=0 in a strong SO regime, namely, �R=0.37. One
may see that when Vxc=0, the first subband presents the sym-
metric double minimum structure already found by other
authors,4,9 whose existence yields anomalous steps in the
conductance; see, e.g., Fig. 2�c� of Ref. 9 and Fig. 5, top
panel, of Ref. 4. The effect of Vxc at this low density is to
induce an asymmetry in the lowest subbands, transforming
the symmetric double minimum structure, characteristic of
the Vxc=0, 
B=0 case when only the Rashba term is consid-
ered, into a structure rather similar to the one corresponding
to Vxc=0 and 
B=� /4, as shown in Fig. 2�b� of Ref. 9. This
effect yields only one minimum below the chemical potential
contributing to the conductance G; see the next section. We
want to point out that, for small �R values, the double mini-
mum structure is not found even when Vxc=0, whereas in a
very strong regime, e.g., �R=0.83, this structure is also
present for odd n�1 values. In this case, the changes in-
duced by Vxc are qualitatively similar to those displayed in
Fig. 2�b�.

When the SO interaction is included, spin is not a good
quantum number and it is possible to find spin textures
across the wire.4 This is illustrated in Fig. 3, which corre-
sponds to the situation displayed in Fig. 2. The left panel
corresponds to the Vxc=0 case. The vector plot shows the
in-plane spin magnetization, and the solid line corresponds to
the z component 	see Eq. �7�
. In both panels, the z compo-
nent displays spin accumulations of different sign on oppo-
site sides of the wire,3,4 indicating the robustness of this ef-
fect with Vxc. On the contrary, the in-plane spin distributions
show remarkable differences. When Vxc=0, it is perfectly
aligned in the direction of the magnetic field �
B=0�, while

it deviates, pointing in a tilted orientation with 
B�� /4,
when Vxc is included. This result nicely illustrates the prop-
erty mentioned before that Vxc amounts to replace the applied
magnetic field with an effective one having different modu-
lus and direction.

Exchange-correlation effects also appear when both SO
contributions are taken into account. Figure 4 shows the en-
ergy subband structure in one of the most interesting situa-
tions for the discussion of the conductance that we will carry
out in the next section. It corresponds to the strong coupling
regime for a 
B=� /2 magnetic field. In both panels, con-
spicuous subband gaps and local extrema appear near k=0.
The interesting feature is the weak local maximum at k�0
for the even subbands when Vxc is not considered �bottom
panel�. Similar structures have been found by Moroz and
Barnes,1 who address the B=0 case for the Rashba SO inter-
action. The existence of these maxima is the reason for the
“anomalous steps” in the conductance that appear on top of
the “ordinary steps” at even e2 /h values. The inclusion of Vxc

washes out these structures, as can be seen in the top panel of
Fig. 4. On the other hand, the well-known9,4 local extrema
present in the odd bands, responsible for the anomalous
structures on top of the ordinary steps corresponding to odd
e2 /h values, remain qualitatively unaffected by the inclusion
of the exchange-correlation interaction. Another situation is
shown in Fig. 5, again in the strong SO regime, correspond-
ing to B=0 and �1Dl0=0.52. It can be seen that Vxc produces
a subband structure similar to that of the bottom panel of Fig.
2 and this is also reflected in the conductance, as will be
discussed in the next section.

The spin textures corresponding to the results including
Vxc of Figs. 4 and 5 are shown in the left and right panels of
Fig. 6, respectively. The left-panel results correspond to a
magnetic field along +y which is clearly constraining the
in-plane magnetization to essentially point along this direc-
tion. However, some straggling of the arrows around the ver-
tical direction persists. As in Fig. 3, the z component displays
different sign accumulations on opposite edges of the wire
that, when combined with the in-plane distribution, yield a
rather complicated spin texturing. The right panel in Fig. 6
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ρ1Dl0 = 0.17
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1

FIG. 2. �Color online� Single-electron energies �in ��0 units�
for �1Dl0=0.17 and B=20 T, 
B=0, in a strong SO regime charac-
terized by �R=0.37 and �D=0, as a function of the linear momen-
tum kl0. The thin horizontal line represents the chemical potential.
The effect of Vxc has not been included in the results shown in the
bottom panel.
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FIG. 3. �Color online� Spin textures across the wire �y direction,
in l0 units� corresponding to the situation displayed in Fig. 2. The
left panel corresponds to the Vxc=0 case. The vector plot shows the
in-plane spin, and the solid line corresponds to the z component.
The spin scale is indicated in �a�.
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corresponds to a B=0 case. In this situation, there is no pre-
ferred direction a priori and, therefore, the fact that Vxc may
induce a spin texture like that in Fig. 6�b�, where the in-plane
spin selects a certain direction, is an example of spontaneous
symmetry breaking induced by the interaction.

A particular situation—see the Appendix—appears when
D=R at zero magnetic field. It has already been addressed
when Vxc=0,28 showing that subband anticrossings disappear
when both SO strengths are equal. We have found that the
inclusion of Vxc does not change the crossing properties of
the subbands in any SO regime, and that it only induces a
small subband splitting.

Exchange-correlation effects are also found in the weak
SO coupling regime, though in this case no local extrema
appear. However, we will see in Sec. III that the effects of
Vxc on the conductance are also visible. As said above, all
these Vxc features are especially marked at low densities,
becoming notably weaker or disappearing for n�2, in which
case, only small k asymmetries are observed in odd subbands
when B=0. When an in-plane B acts on the QW in the weak
SO coupling regime, the most apparent effect of Vxc is to
slightly enhance the B effects without producing qualitative
changes in the subband structure.

III. CONDUCTANCE OF QUANTUM WIRES

The noncollinear Kohn-Sham calculation discussed in the
previous section allows one to evaluate the KS–mean field–
linear density response �0�q ,�� to a field parallel to the wire,
i.e., in the x direction, which involves only intrasubband ex-
citations:

�0�q,��
L

=
1

�
�� dk

�nk,q��nk+q�eiqx��nk��2

�� + i�2 − �nk,q
2 , �30�

where  is a small real quantity and the sum runs over all the
possible intrasubband excitations of energy �nk,q induced

FIG. 4. �Color online� Single-electron energies �in ��0 units�
for �1Dl0=1.38 and B=20 T, 
B=� /2, in a strong SO regime char-
acterized by �R=0.093 and �D=0.37, as a function of the linear
momentum kl0. Vxc has not been included in the results shown in
the bottom panel. In both panels, the thin horizontal line represents
the chemical potential for the linear density �1Dl0=1.38, whereas
the dashed horizontal lines in the bottom panel represent the chemi-
cal potential for two smaller linear densities chosen to show differ-
ent kinds of intrasubband excitations, represented by curved arrows
near the corresponding Fermi level, that contribute to the QW con-
ductance, as discussed in Sec. III. The vertical arrow in the bottom
panel represents an intersubband transition.
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FIG. 5. �Color online� Single-electron energies �in ��0 units�
for �1Dl0=0.52 and B=0 T in a strong SO regime characterized by
�R=0.093 and �D=0.37, as a function of the linear momentum kl0.
The thin horizontal line represents the chemical potential. Vxc has
not been included in the results shown in the bottom panel.
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FIG. 6. �Color online� Spin textures across the wire �y direction,
in l0 units� corresponding to the situations displayed in Fig. 4 �left
panel� and Fig. 5 �right panel� for the Vxc�0 cases. The vector plot
shows the in-plane spin, and the solid line corresponds to the z
component. The spin scale is indicated in �a�.
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from the ground state by the density operator � je
iqxj. The

longitudinal conductivity associated with
�0�q,��

L is given
by27,29

	���
L

= i
e2�

q2

�0�q,��
L

, �31�

whose real part is

Re�	���
L

� = −
e2�

q2 Im
�0�q,��

L
. �32�

The conductance G is defined as the q→0, �→0 limit of the
above expression. There are two possible kinds of electron-
hole excitations for the subband patterns generated before,
namely, intersubband �between different subbands� and intra-
subband �inside a subband�. The intrasubband excitations ex-
ist due to the y confinement, which breaks the translational
invariance of the system in the y direction and bends the
single-particle energy subbands. These excitations are gap-
less and are responsible for the xx dc conductivity of the
wire.

In the q→0 limit, the operator � je
iqxj induces intrasub-

band excitations between the states ��nk� and ��nk+q�, with
excitation energies given by

�nk,q = �nk+q − �nk = q� ��nk

�k
�

k=kn

� �kn
q , �33�

where kn are the intersections of the n subband with the
chemical potential � corresponding to positive slopes �kn

.
Indeed, it is crucial to realize that for q�0, only intrasub-
band excitations with k+q�k are allowed. Referring to Fig.
4, these allowed transitions are represented as curved arrows
for two possible situations that correspond to two different
values of the chemical potential. Since

�nk+q�eiqx��nk�

=� dr�nk+q
† �r�eiqx�nk�r�

=
1

L
�
�
� � dxdy�nk+q

* �y,��e−i�k+q�xeiqx�nk�y,��eikx

= 1 + O�q� , �34�

in the q→0 limit, the matrix elements of the operator eiqx

can be taken equal to unity. In the same limit, the phase
space for electron-hole excitations is �dk=q,27 yielding

Re�	�q,��
L

� =
�e2

q2 �
kn

q

2�
�kn

q��� − �kn
q� , �35�

where we have denoted with �kn
the sum over all the pos-

sible intrasubband allowed excitations. This amounts to
counting the number of cuts of the chemical potential with
partially occupied subbands corresponding to positive slope
values �kn

. Taking the cosine Fourier transform, we arrive at

Re�	�y,��
L

� =
e2

2�
�
kn

cos��y

�kn

� . �36�

Thus, in the �→0 limit, we obtain the conductance as

G =
e2

h
�
kn

1. �37�

In the Vxc=0 case, in the absence of B and SO effects,
�nk= �n+1/2��0+k2 /2 and the subbands are spin degenerate.
Thus, only one intrasubband excitation �one single intersec-
tion kn� contributes to G for each subband n. As a conse-
quence, Eq. �37� gives the usual conductance quantization of
the Landauer formalism, where each spin degenerate sub-
band contributes e2 /h to the conductance, yielding the result
G= 2e2

h �n1. However, different results for G may arise due to
magnetic field and spin-orbit and Vxc effects on the energy
spectrum. This is illustrated in Figs. 7–9, which constitute
the main result of this paper. In them, the conductance is
expressed in G0=2e2 /h units as a function of the linear elec-
tronic density.

Figure 7 shows the B=0 case for the weak and strong SO
regimes when the exchange-correlation energy is taken into
account and when it is not. It can be seen that when Vxc=0,
the conductance displays the usual steps of the spin degen-
erate case commented before. Contrarily, when Vxc�0, the
induced spin splitting in the energy subbands gives rise to
steps at semi-integer multiples of G0 for both SO coupling
regimes. These steps are apparently narrower than those cor-
responding to integer multiples of G0 because the splitting of
the subbands due to the confinement—coming from the �n
+1/2��0 term—is much larger than the one induced by Vxc.

An interesting feature appears in the strong SO regime, in
which “anomalous plateaus” are found on top of the men-
tioned steps corresponding to semi-integer multiples of G0.
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e2 /h
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xc

=0V
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e2 /h
)

B=0

0 1 2 3 4

ρ1Dl0

FIG. 7. Conductance as a function of the linear density for B
=0 in the strong and weak SO regimes when the exchange-
correlation energy is taken into account �top panels� and when it is
not �bottom panels�.
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Indeed, it can be seen that G has a nonmonotonic behavior as
a function of �1Dl0, but presents 0.5G0 drops for some values
of the electronic density. The origin of these plateaus can be
inferred from the top panel of Fig. 5, in which the combina-
tion of the spin splitting induced by Vxc and the well-known
subband k splitting induced by the �strong� SO coupling
gives rise to two possible intrasubband excitations per sub-
band �two intersection points kn� in some small ranges of the
chemical potential values �and thus of electronic densities�,
yielding the anomalous structure in the conductance. These
anomalous structures have already been found when consid-
ering an applied in-plane magnetic field.4,9 Contrarily, in our
case B is zero, and thus, it is a genuine exchange-correlation
interaction effect, which, as indicated in the previous section,
seems to mimic in some cases the effect of an applied mag-
netic field.

Figure 8 shows the conductance in the weak SO regime
when the magnetic field is applied along the 
B=0 and � /2
directions. As expected,4,9 we have found plateaus at semi-
integer multiples of G0 even when Vxc=0. The larger effect
of Vxc at low densities can be inferred from the difference in
the width of the first semi-integer steps when exchange-
correlation effects are included and when they are not, which
shows that Vxc combines with B, giving rise to a larger ef-
fective magnetic field. Some further evidence of the B-like
acting of Vxc stems from the comparison of the results of this
figure with those displayed in the left panels of Fig. 7 corre-
sponding to the B=0 weak SO coupling case.

Figure 9 shows the conductance in the strong SO regime.
When Vxc�0, the conductance is qualitatively similar to that
at B=0 for the same SO regime—right top panel of Fig. 7.
Only the width of the anomalous plateaus varies appreciably,
especially when 
B=� /2. When Vxc=0 and 
B=0, the struc-
ture is similar to that displayed in the top panels of Fig. 9
but, as in the weak SO regime, the first semi-integer step is
narrower than when Vxc�0. As before, the same happens for

most steps. New interesting structures appear when 
B
=� /2 for the Vxc=0 case: in addition to the just mentioned
ones at semi-integer multiples of G0, anomalous plateaus at
integer multiples of G0 are also found. They are narrower
than the semi-integer ones and their existence is due to the
presence of local maxima in the subband spectrum for even
values of n, which have already been discussed in Sec. II
�see, e.g., the bottom panel of Fig. 4�. It is worthy to note
that these structures are not robust in the sense that the
exchange-correlation energy washes them out �compare the
right panels of Fig. 9�. These additional anomalous plateaus
have also been found in Ref. 1, where neither the Vxc nor the
Dresselhaus SO interactions were considered.

Finally, we want to point out that the above mentioned
behavior is found when 
B=0 instead of � /2, if the values
of �R and �D are interchanged. This is due to the particular
interplay of the Rashba and Dresselhaus SO interactions and
the orientation of the magnetic field, which is discussed in
the Appendix 	see Eq. �A7�
.

IV. SUMMARY

Within the noncollinear LSDA and the linear response
theory, we have studied the effect of the exchange-
correlation interaction on the ground state structure and con-
ductance of quantum wires for different strengths of the
Rashba and Dresselhaus spin-orbit interactions. We have also
discussed the possibility to have an applied in-plane B field.

We have found that in some cases, especially at low den-
sities, Vxc “combines” with the actual B field or produces an
effect similar as if it were an applied magnetic field. This
manifests in the energy subband structure and in the QW
conductance for all SO coupling strengths, although it is in
the strong SO regime where the most striking features ap-
pear. In this case, we have found that the Vxc induced spin
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FIG. 8. Conductance as a function of the linear density for B
=20 T in the weak SO regime when the exchange-correlation en-
ergy is taken into account �top panels� and when it is not �bottom
panels�. The azimuthal angle of the magnetic field is indicated.
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FIG. 9. Conductance as a function of the linear density for B
=20 T in the strong SO regime when the exchange-correlation en-
ergy is taken into account �top panels� and when it is not �bottom
panels�. The azimuthal angle of the magnetic field is indicated.
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splitting gives rise to the so-called anomalous plateaus at
semi-integer multiples of G0 even when B=0. Moreover,
when the strong SO coupling is combined with the applied
in-plane magnetic field, local maxima may appear in the
even energy subbands, yielding anomalous plateaus also for
integer multiples of G0.

As a general trend, we have found that the effect of the
exchange-correlation potential depends on the actual value of
other variables defining the QW state, such as the applied
magnetic field and/or the SO parameters considered in the
calculation. The conductance turns out to be rather sensitive
to the ground state structure of the QW. In particular, to
symmetry breaking effects induced by Vxc, such as spontane-
ous spin polarization and Wigner crystallization, for which
there seems to be some experimental evidence.30–32
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APPENDIX

Even in the noninteracting case, the Hamiltonian Eq. �9�
has no analytical solution except when B=0 and the Rashba
and Dresselhaus SO terms have the same strength.28 In this
case, the single-electron energies are

�nk = �n +
1

2
���0 +

�2

2m
�k ±

�2mR

�2 �2

−
2R

2m

�2 . �A1�

Besides the usual splitting of the subband structure, the effect
of the SO interaction for this particular choice of the strength
parameters is a rigid displacement of the subband structure.
Remarkably, we have found that the inclusion of exchange-
correlation effects does not sensibly alter this independent
particle result, irrespective of the SO regime—strong or
weak.

The noninteracting case in the presence of an in-plane B
field has been worked out using second-order perturbation
theory when only the Rashba term is present.4 We extend
here these results considering both SO contributions. The
noninteracting Hamiltonian can be written in dimensionless
form as

Hk

��0
= �n̂k +

1

2
� +

1

2
� l0

lZ
�2

�cos 
B	x + sin 
B	y� +
k2l0

2

2

+
kl0

2

2
�l̃D	x − l̃R	y� +

il0

2�2
�ak̂

† − ak̂��l̃R	x − l̃D	y� ,

�A2�

where l̃R,D� lR,D
−1 �2mR,D /�2, l0��� /m�0, and lZ

���2 /mg*�BB. ak̂
† and ak̂ appearing in this equation are the

usual creation and annihilation harmonic oscillator operators

ak̂
†�nk�� = �n + 1��n + 1�k�� ,

ak̂�nk�� = �n��n − 1�k�� , �A3�

where �= ±1. We split the Hamiltonian as Hk=Hk
0+Hk

SO and
consider the SO terms as a small perturbation. The other
piece can be exactly solved, yielding the unperturbed
energies—in ��0 units—and eigenvectors

Enk�
�0� = �n +

1

2
� +

k2l0
2

2
+

�

2
� l0

lZ
�2

, �A4�

�nk�� =
1
�2

�n�y�eikx� 1

�ei
B
� . �A5�

We have calculated the first- and second-order energy cor-
rections arising from

Hk
SO =

kl0
2

2
�l̃D	x − l̃R	y� +

il0

2�2
�ak̂

† − ak̂��l̃R	x − l̃D	y�

� Hk,1
SO + Hk,2

SO . �A6�

The first-order correction is given by

Enk�
�1� � nk��Hk

SO�nk��

=
kl0

2

2 � 1
�2

�2

�1 �e−i
B�� 0 l̃D + il̃R

l̃D − il̃R 0
�� 1

�ei
B
�

=
kl0

2

2
��l̃D cos 
B − l̃R sin 
B� . �A7�

As we can see, to first order only Hk,1
SO contributes, and setting

D=0, we recover the result of Ref. 4. The first-order correc-
tion is zero when the magnetic field is oriented in the direc-
tion tan 
B=D /R.

Interestingly, we see that to first order, the term that com-
bines with the Zeeman splitting to yield multiple subband
crossing when 
B=0 is the Rashba term, whereas it is the
Dresselhaus term when 
B=� /2, and have opposite signs.
This result is not sensibly altered by exchange-correlation
effects, and helps one to understand some of the detailed
calculations shown in Sec. II. In particular, the conspicuous
results that, for the same intensity of the SO interaction, the
effect of the Dresselhaus term when 
B=0 is the same as that
of the Rashba term at 
B=� /2, provided k is changed by −k.

Defining �j���nk��, the second-order correction is given
by

Ej
�2� = �

i�j

�i�Hk
SO�j��2

Ej
�0� − Ei

�0� = �
i�j

�i�Hk,1
SO + Hk,2

SO�j��2

Ej
�0� − Ei

�0� , �A8�

with �i���n�k���, since the perturbation is diagonal in k.
Now both SO terms contribute. We distinguish the different
cases.

�a� �i�= �nk���, with ��=−�. In this case, i�Hk,2
SO�j�=0 and

we have

Ej
�0� − Ei

�0� = �� l0

lZ
�2

�A9�

and
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i�Hk,1
SO�j� = � 1

�2
�2kl0

2

2
�1 − �e−i
B�� 0 l̃D + il̃R

l̃D − il̃R 0
�

�� 1

�ei
B
�

=
kl0

2

2
�i�l̃D sin 
B + l̃R cos 
B� . �A10�

This yields

Ej,a
�2� = �

k2l0
4

4
� lZ

l0
�2

�l̃D sin 
B + l̃R cos 
B�2. �A11�

�b� �i�= �n�k�� with n��n. Now, i�Hk,1
SO�j�=0 and

Ej
�0� − Ei

�0� = n − n�, �A12�

yielding

Ej,b
�2� = �

i�j

�i�Hk,2
SO�j��2

Ej
�0� − Ei

�0�

= − � il0

2�2 · 2
�1 �e−i
B�� 0 l̃R + il̃D

l̃R − il̃D 0
�� 1

�ei
B
��2

= −
l0
2

8
�l̃D sin 
B − l̃R cos 
B�2. �A13�

�c� �i�= �n�k��� with n��n and ��=−�. Again, i �Hk,1
SO � j�

=0 and

Ej
�0� − Ei

�0� = n − n� + �� l0

lZ
�2

, �A14�

yielding

Ej,c
�2� = �

i�j

�i�Hk,2
SO�j��2

Ej
�0� − Ei

�0�

= � il0

2�2 · 2
�1 − �e−i
B�� 0 l̃R + il̃D

l̃R − il̃D 0
�

�� 1

�ei
B
��2� n + 1

− 1 + ��l0/lZ�2 +
n

1 + ��l0/lZ�2�
= −

l0
2

8
�l̃R sin 
B + l̃D cos 
B�2�1 + ��l0/lZ�2�2n + 1�

1 − �l0/lZ�4 � .

�A15�

The total second-order correction is therefore

Enk�
�2� = Ej,a

�2� + Ej,b
�2� + Ej,c

�2�

= �
k2l0

4

4
� lZ

l0
�2

�l̃D sin 
B + l̃R cos 
B�2 −
l0
2

8
� l̃R

2 + l̃D
2

+ �l̃R sin 
B + l̃D cos 
B�2 �l0/lZ�4 + ��l0/lZ�2�2n + 1�
1 − �l0/lZ�4 � ,

�A16�

showing that both SO terms are entangled and similarly con-
tribute at any angle. Setting D=0, we recover the result of
Ref. 4.
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