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Within density functional theory, we have obtained the structure of 4He droplets doped with neutral calcium
atoms. These results have been used, in conjunction with newly determined ab initio 1� and 1� Ca-He pair
potentials, to address the 4s4p 1P1←4s2 1S0 transition of the attached Ca atom, finding a fairly good agree-
ment with absorption experimental data. We have studied the drop structure as a function of the position of the
Ca atom with respect to the center of mass of the helium moiety. The interplay between the density oscillations
arising from the helium intrinsic structure and the density oscillations produced by the impurity in its neigh-
borhood plays a role in the determination of the equilibrium state, and hence in the solvation properties of
alkaline earth atoms. In a case of study, the thermal motion of the impurity within the drop surface region has
been analyzed in a semiquantitative way. We have found that, although the atomic shift shows a sizable
dependence on the impurity location, the thermal effect is statistically small, contributing by about 10% to the
line broadening. The structure of vortices attached to the calcium atom has been also addressed, and its effect
on the calcium absorption spectrum discussed. At variance with previous theoretical predictions, we conclude
that spectroscopic experiments on Ca atoms attached to 4He drops will be likely unable to detect the presence
of quantized vortices in helium nanodrops.
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I. INTRODUCTION

Optical investigations of atomic impurities in superfluid
helium nanodroplets have drawn considerable attention in
recent years.1,2 In particular, the shifts of the electronic tran-
sition lines with respect to the gas-phase transition lines
�atomic shifts� are a very useful observable to determine the
location of the foreign atom attached to the drop. Alkaline
earth atoms appear to play a unique role in this context.
While, e.g., all alkali atoms reside in surface “dimple” states,
and more attractive impurities such as all noble gas atoms
reside in the bulk of drops made of either isotope,3 the ab-
sorption spectra of heavy alkaline earth atoms attached to
4He drops clearly support an outside location of Ca, Sr, and
Ba,4,5 whereas for the lighter Mg atom the experimental evi-
dence is that it resides in the bulk of the 4He droplets.6,7

We have recently presented density functional theory
�DFT� results for the structure and energetics of large 3He
and 4He doped nanodroplets, showing that alkaline earth at-
oms from Mg to Ba go to the bulk of 3He drops, whereas Ca,
Sr, and Ba reside in a dimple at the surface of 4He drops, and
Mg is in their interior.8 This is in agreement with the analysis
of available experimental data, although the case of Mg has
been questioned very recently.9 Moreover, according to the
magnitude of the observed shifts, the dimple for alkaline
earth atoms was thought to be more pronounced than for
alkali atoms, indicating that the former reside deeper inside
the drop than the latter. This has been also confirmed by the
calculations. In addition, the 5s5p←5s2 experimental transi-
tion of Sr atoms attached to helium nanodroplets of either
isotope has shown that strontium is solvated inside 3He
nanodroplets, also in agreement with the calculations.8

Calcium atoms are barely stable on the surface of the
drop, and the difference between the energy of the surface

dimple state and that of the solvated state in the bulk of the
drop is rather small and depends very sensitively on the
Ca-He interatomic potential.10 The aim of this work is to
obtain the atomic shifts for Ca attached to large 4He drops,
and to compare them with the experimental data. To this end,
we have improved our DFT approach,8 treating the atomic
impurity as a quantal particle instead of as an external field.
Laser induced fluorescence �LIF� experiments for Ca atoms
in liquid 3He and 4He have been reported11 and analyzed
within a vibrating bubble model, which involves the forma-
tion of a bubble around the impurity, using Ca-He pair po-
tentials based on pseudopotential self-consistent field/
configuration interaction �SCF/CI� calculations.12

This work is organized as follows. In Sec. II we discuss
the Ca-He interaction potentials we have used. In Sec. III we
briefly present our density functional approach, as well as
some illustrative results for the structure of Ca@4HeN drops.
The method we have employed to obtain the atomic shifts is
discussed in Sec. IV. In Sec. V we present the results ob-
tained for calcium, discuss how thermal motion may affect
the line shapes, and investigate how the presence of a quan-
tized vortex line may change the Ca absorption spectrum.
Finally, a summary is presented in Sec. VI.

II. CALCIUM-HELIUM INTERACTION POTENTIALS

Figure 1 shows the X 1� Ca-He adiabatic potential ob-
tained by different authors.13–16 This potential determines the
dimple structure described in the next section. It can be seen
that apart from the unpublished potential by Meyer, the oth-
ers are quite similar. As in our previous work,8 we shall use
the one obtained in Ref. 15. This will allow us to ascertain
the effect of treating Ca as a quantal particle. Since the X 1�
potential seems to be fairly well determined, we have turned
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our attention to the excited adiabatic potentials.
In a previous work17 the excited state potentials were cal-

culated in a valence ab initio scheme. The core electrons of
calcium and helium were replaced by scalar-relativistic
energy-consistent pseudopotentials, and the energy curves
were calculated on the complete-active-space multiconfigu-
ration self-consistent field �CASSCF�18,19/complete-active-
space multireference second order perturbation level of
theory.

In this work we have performed fully ab initio calcula-
tions and have only focused on singlet states. The calcula-
tions for excited states have been done at the CASSCF/
internally contracted multireference configuration interaction
�ICMRCI�20,21 level of theory. In the calculations we have
used correlation consistent polarized valence five zeta basis
sets. For the calcium atom we have used the
�26s ,18p ,8d ,3f ,2g ,1h� / �8s ,7p ,5d ,3f ,2g ,1h� basis set de-
veloped by Koput and Peterson,22 and for the helium atom
we have used the �8s ,4p ,3d ,2f ,1g� / �5s ,4p ,3d ,2f ,1g� ba-
sis set developed by Woon and Dunning.23

The calculations were performed within the MOLPRO suite
of ab initio programs.24 The molecular orbitals used for the
excited state calculations were optimized in the state aver-
aged CASSCF method for all singlet states correlating to
�4s2�1S, �4s3d�1D, and �4s4p�1P atomic asymptotes. The ac-
tive space was formed by distributing the two valence elec-
trons of the Ca atom into 4s3d4p valence orbitals. The
1s2s2p3s3p orbitals of calcium and 1s orbital of helium
were kept doubly occupied in all configuration state func-
tions, but they were optimized in the CASSCF calculations.
The resulting wave functions were used as references in the
following ICMRCI calculations. At the ICMRCI level, the
1s2s2p3s3p orbitals of calcium and 1s orbital of helium
were kept as doubly occupied in all reference configuration
state functions, but these orbitals were correlated through
single and double excitations. The 4s, 4p, and 3d calcium
orbitals had not restricted occupation patterns. We show in
Fig. 2 the excited adiabatic potentials; to have better insight
into the potential minima of the 1� and 1� potentials, they
have been plotted correlating to the �4p�1P Ca term.

III. DENSITY FUNCTIONAL THEORY DESCRIPTION
OF HELIUM NANODROPLETS

In recent years, static and time-dependent density func-
tional methods25–27 have become increasingly popular to
study inhomogeneous liquid helium systems because they
provide an excellent compromise between accuracy and
computational effort, allowing us to address problems inac-
cessible to more fundamental approaches, see, e.g., Ref. 3 for
a recent review. Obviously, DFT cannot take into account the
atomic, discrete nature of these systems, but can address in-
homogeneous helium systems at the nanoscale28 and take
into account the anisotropic deformations induced by some
dopants in helium drops. Both properties are essential to
properly describe these systems.

Our starting point is the Orsay-Trento density
functional,25 together with the Ca-He adiabatic potential X
1� of Ref. 15, here denoted as VCa-He. This allows us to write
the energy of the Ca-drop system as a functional of the Ca
wave function ��r� and the 4He “order parameter” ��r� as
follows:

E��,�� =
�2

2mHe
� d3r����r��2 +� d3rE���

+
�2

2mCa
� d3r����r��2

+� � d3rd3r����r��2VCa-He��r − r�����r�� .

�1�

The order parameter is defined as ��r�=���r�exp�ıS�r��,
where ��r� is the particle density and v�r�=��S�r� /m4 is
the velocity field of the superfluid. In Eq. �1�, E��� is the 4He
“potential energy density.”25 In the absence of vortex lines,
we set S to zero and E becomes a functional of � and �.
Otherwise, we have used the complex order parameter ��r�
to describe the superfluid.

We have solved the Euler-Lagrange equations which re-
sult from the variations with respect to �* and �* of the
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FIG. 2. �Color online� Excited Ca-He pair potentials used in this
work.
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energy E�� ,�� under the constrain of a given number of
helium atoms in the drop, and a normalized Ca wave func-
tion, namely,

−
�2

2mHe
�� + �	E

	�
+ UHe	� = 
� �2�

−
�2

2mCa
�� + UCa� = �� , �3�

where 
 is the helium chemical potential and � is the lowest
eigenvalue of the Schrödinger equation obeyed by the Ca
atom. The effective potentials UHe and UCa are defined as

UHe�r� =� d3r����r���2VCa-He��r − r��� ,

UCa�r� =� d3r���r��VCa-He��r − r��� . �4�

The coupled equations �2� and �3� have to be solved self-
consistently, starting from an arbitrary but reasonable choice
of the unknown functions � and �. In spite of the axial
symmetry of the problem, we have solved them in three-
dimensional �3D� Cartesian coordinates. The main reason is
that these coordinates allow us to use fast Fourier transfor-
mation techniques29 to efficiently compute the convolution
integrals entering the definition of E���, i.e., the mean field
helium potential and the coarse-grained density needed to
compute the correlation term in the He density functional,25

as well as the fields defined in Eq. �4�.
The differential operators in Eqs. �1�–�3� have been dis-

cretized using 13-point formulas for the derivatives, and Eqs.
�2� and �3� have been solved employing an imaginary time
method;30 some technical details of our procedure are given
in Ref. 31. Typical calculations have been performed using a
spatial mesh step of 0.5 Å. We have checked the stability of
the solutions against reasonable changes in the step.

Equations �2� and �3� have been solved for several N val-
ues from 100 to 2000. They will allow us to study the atomic
shift as a function of the cluster size. The equilibrium con-
figurations of Ca@4He1000 and Ca@4He2000 will be shown
later.

Figure 3 shows the energy of a Ca atom attached to a
drop, defined as the energy difference

SN�Ca� = E�Ca@4HeN� − E�4HeN� . �5�

On the figure are shown also the results obtained treating
calcium as an external field.8 It can be seen that for large
drops the energy of the calcium atom is about 10 K less
negative due to its zero point motion. We want to stress again
how barely stable is the calcium atom on the surface of 4HeN
drops. For instance, we have found that the total energy of
the equilibrium—dimple—configuration of Ca@4He1000 is

−5467.4 K, whereas it is 
−5455.0 K when Ca is forced
to be at the center of the drop. For Ca@4He500, the corre-
sponding values are 
−2525.2 and 
−2511.1 K, respec-
tively.

The dimple depth �, defined as the difference between the
position of the dividing surface at �=�0 /2, where �0
=0.0218 Å−3 is the bulk liquid density, with and without im-
purity, respectively, is shown in Fig. 4. Due to the zero point
motion that pushes the impurity toward lower helium densi-
ties, for large drops the dimple depth is about 0.8 Å smaller
when the zero point motion is included than when it is not.8

This change in the depth is large enough to produce observ-
able effects in the calculated absorption spectrum, as dis-
cussed below.

It can be seen that the dimple depth curve ��N� has some
structure. This is not a numerical artifact, but a genuine ef-
fect due to the interplay between the Ca atom and the drop,
whose density, even for pure drops, shows conspicuous os-
cillations all over the drop volume, extending up to the sur-
face region irrespective of whether the drop is described
within DFT or diffusion Monte Carlo methods.3,25,32 The in-
terplay of these oscillations with those arising from the pres-
ence of the impurity little affects the total energy of the sys-
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FIG. 3. �Color online� Energy �K� of a calcium atom as a func-
tion of the number of 4He atoms in the droplet �dots�. Results ob-
tained treating calcium as an external field are also shown �tri-
angles� �Ref. 8�. The lines have been drawn to guide the eyes.
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FIG. 4. �Color online� Calcium dimples �Å� as a function of the
number of 4He atoms in the droplet �dots�. Results obtained treating
calcium as an external field �Ref. 8� are also shown �triangles�. The
lines have been drawn to guide the eyes.
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tem and hence, the Ca energy, but yields some visible
structure in the density distributions that shows up in related
quantities, such as the dimple depth. To illustrate it, we show
in Fig. 5 the density of the helium moiety of Ca@4He2000,
where the interference pattern can be clearly seen.

Further insight can be gained studying, for a given drop,
the energy of the Ca@4HeN complex as a function of the
distance between the centers of mass of the impurity and of
the helium moiety. This can be done adding an appropriate
constraint to the total energy in Eq. �1�, and solving the cor-
responding Euler-Lagrange equations. Specifically, we have
minimized the expression

E +
C

2
�Z − Z0�2, �6�

where Z is the average distance in the z direction between
the impurity and the geometrical center of the helium moiety

Z =� dr3z���r��2 −
1

N
� dr3z��r� , �7�

and C is an arbitrary constant, large enough to guarantee
that upon minimization, Z equals the desired Z0 value. We
have also applied this method to Mg doped helium drops,
and will present the details of the calculation elsewhere.33

We show in the bottom panel of Fig. 6 the total energy of
the Ca@4He500 and Ca@4He1000 systems as a function of Z0.
For the sake of comparison, the energies and Z0 distances
are referred to their equilibrium values. The vertical lines
roughly delimit the drop surface regions, conventionally de-
fined as the radial distance between the points where the
density equals 0.1�0 and 0.9�0 �see Fig. 10�. The horizontal
line has been drawn 0.4 K above the equilibrium energy,
representing the accessible energy range due to the tempera-
ture of the helium drops.34 Its intersection with the energy
curves yields a qualitative measure of the dispersion of the
impurity location due to thermal motion. The energy curve of

Ca@4He1000 displays some structure to the left of the mini-
mum due to the mentioned interference pattern. This behav-
ior has not been disclosed before, and appears in the course
of “pushing” the impurity inside the droplet from its equilib-
rium position �a similar structure shows up for Ca@4He500,
but at more negative �Z0 values�. While it affects rather
little the equilibrium location of the Ca atom because of its
clear surface location, and hence the atomic shift—see, how-
ever, the inset in Fig. 8, it plays a substantial role in the
solvation of magnesium atoms in small helium drops.33 We
recall that this problem has recently drawn the attention of
experimentalists and theoreticians as well.6–9,35,36 How the
position of the Ca atom affects the absorption spectrum
throughout the change in the dimple structure will be dis-
cussed in Sec. V.

IV. EXCITATION SPECTRUM OF AN ATOMIC IMPURITY
IN A 4He DROP

Lax’s method37 offers a realistic way to study the absorp-
tion spectrum I��� of a foreign atom embedded in helium
drops. It makes use of the Franck-Condon principle within a
semiclassical approach, and it has been employed to study
the absorption spectrum of several atomic dopants attached
to fairly small 4He drops.35,38–40 The case of alkali atoms
attached to large drops described within DFT has been also
considered, see Refs. 41 and 42, and references therein.
Lax’s method is usually applied in conjunction with the

Ca�4He2000

�20

0

20

y �Å�

�20

0

20

z �Å�

0

0.01

0.02

0.03

Ρ �Å�3�

�20

0

20

y �Å�

FIG. 5. �Color online� Helium density of the Ca@4He2000 drop
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diatomics-in-molecules theory,43 which means that the atom-
drop complex is treated as a diatomic molecule, where the
helium moiety plays a role of the other atom.

In the original formalism, to obtain I��� one has to carry
out an average on the possible initial states of the system that
may be thermally populated. Usually, this average is not
needed for helium drops, as their temperature, about 0.4 K,34

is much smaller than the vibrational excitation energies of
the Ca atom in the mean field represented by the second term
of Eq. �4�.44 However, thermal broadering due to the “wan-
dering” of the dopant must be analyzed separately if it is in a
dimple state, as this may have some influence on the line
shape. Its effect on the absorption spectrum will be exempli-
fied later for the N=500 case. Contrarily, when the impurity
is very attractive and resides in the bulk of the drop, thermal
motion plays no role, as the dopant hardly gets close enough
to the drop surface to have some effect on the line shape. In
this case, dynamical deformations of the cavity around the
impurity may be relevant �Jahn-Teller effect�. It cannot be
discarded that, if some of these very attractive impurities
have an angular momentum large enough,45 they may get
close to the drop surface, in which case thermal motion
might have some influence on the absorption spectrum.

We review here the essentials of the method and the way
we have implemented it. In particular, we present some of
the expressions in Cartesian coordinates, better adapted to
our approach. They are of course equivalent to the expres-
sions in spherical coordinates that can be found in the
literature—see, e.g., Ref. 39 and references therein.

A. Line shapes

The line shapes for electronic transitions from the ground
state �gs� to the excited state �ex� in a condensed phase sys-
tem can be written as

I��� �� dte−i�t��gs�Dge
† e�it/��HexDgee

−�it/��Hgs��gs� , �8�

where Dge is the matrix element of the electric dipole opera-
tor, Hgs and Hex are the Hamiltonians which describe the
ground and excited states of the system, respectively, and
��gs� represents the ground state. I��� can be evaluated using
the Born-Oppenheimer approximation, which makes a sepa-
ration of the electronic and nuclear wave functions ��i�
= �ei���i�, and the Franck-Condon principle, whereby the
heavy nuclei do not change their positions or momenta dur-
ing the electronic transition. If the excited electron belongs
to the impurity, the helium cluster remains frozen, so that the
relevant coordinate is the relative position r between the
cluster and the impurity. That principle amounts to assuming
that Dge is independent of the nuclear coordinates. Taking
into account that e�−it/��Hgs��gs�=e−it�gs��gs� and projecting
on eigenstates of the orbital angular momentum of the ex-
cited electron �m�,

I��� � 
m
� dte−i��+�gs�t��gs�Dge

† �m�e−�it/��Hm
ex

�m�Dge��gs�

= 
m
� dte−i��+�gs�t� d3r� d3r���gs�r�

��r�Dge
† �m�e�it/��Hm

ex
�m�Dge�r���r���gs�

= �Dge�2
m
� dte−i��+�X

gs�t� d3r�X
gs�r�*e�it/��Hm

ex�r��X
gs�r� ,

�9�

where ��X
gs and �X

gs�r� are the energy and the wave function
of the rovibrational ground state of the frozen helium-
impurity system, and Hm

ex�r� is the rovibrational excited
Hamiltonian with potential energy Vm

ex�r� determined by the
electronic energy eigenvalue, as obtained in the next subsec-
tion for a p←s transition. Equation �9� will be referred to as
the Fourier formula, and it is the Fourier transform of the
time-correlation function. It is nothing but a sum at the reso-
nant energies weighted with the well-known Franck-Condon
factors as follows:

I��� � 
m
� dte−i��+�X

gs�t��X
gs�e�it/��Hm

ex
��X

gs�

= 
m


���
� dte−i��+�X

gs�t��X
gs���

m����
m�e�it/��Hm

ex
����

m �

�����
m ��X

gs�

= 
m


�
� dte−i��+�X

gs−��
m�t����

m��X
gs��2

= 
m


�

	�� + �X
gs − ��

m�����
m��X

gs��2,

where ��
m and ���

m� are the rovibrational eigenvalues and
eigenstates of the Hamiltonian Hm

ex.
If the relevant excited states for the transition have large

quantum numbers, they can be treated as approximately
classical37–39 using the averaged energy ���

m�Vm
ex�r� which

is independent of �. In this case we obtain the expression

I��� � 
m
� d3r��X

gs�r��2	„� + �X
gs − Vm

ex�r�/�…

= ��
�m���

d2r
��X

gs�r��2

��Vm
ex�r��

, �10�

where �m��� is the surface defined by the equation �+�X
gs

−Vm
ex�r� /�=0. We will refer to this equation as the semiclas-

sical formula.
If the atom is in bulk liquid helium, or at the center of the

drop, the problem has spherical symmetry and the above
equation reduces to

I��� � 4�
m
� dr�r�X

gs�r��2	„� + �X
gs − Vm

ex�r�/�…

= 4��
m
� �r�X

gs�r��2

dVm
ex�r�/dr

�
r=rm���

, �11�

where rm��� is the root of the equation �+�X
gs−Vm

ex�r� /�
=0.

In the nonspherical case, we have evaluated I��� from the
first expression in Eq. �10� using the discretization
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I�n�� + �0� � 
m


ijk

��X
gs��rijk + r0��2

�x�y�z

��

�����n − 1/2��� + �0 + �X
gs

− Vm
ex��rijk + r0�/�� − ���n + 1/2��� + �0

+ �X
gs − Vm

ex��rijk + r0�/��� , �12�

where � is the step function and �� is a frequency step
small enough so that the above discretization represents the
delta function. We also take advantage that only points near
the impurity contribute to the integral, by writing �rijk+r0
= �i�x+x0 , j�y+y0 ,k�z+z0�, with �x, �y, and �z being the
spatial mesh steps used in the discretization, and r0 an arbi-
trary point in the neighborhood of the impurity. Finally, we
recall that I��� needs to be evaluated only in a narrow fre-
quency range starting from an arbitrary �0 which can be,
e.g., the free atom frequency. This range defines the maxi-
mum n value in the above equation.

B. Excited rovibrational potential for a p]s transition

We next determine the potential energy surfaces Vm
ex�r�

needed to carry out the calculation of the atomic shifts.

1. Pairwise sum approximation

The pair interaction between an atom in a s state and an
atom in a p state can be expressed, in the Cartesian eigenba-
sis ��x� , �y� , �z��, as

U�r� = �V��r� 0 0

0 V��r� 0

0 0 V��r�
�

= V��r���x��x� + �y��y�� + V��r��z��z�

= V��r�I + �V��r� − V��r���z��z� , �13�

where V��r� and V��r� are the adiabatic potentials neglecting
the spin-orbit interaction and r is the distance between at-
oms. For a system of N helium atoms and an excited impu-
rity in a p state, the total potential is approximated by the
pairwise sum

U = 
n=1

N

�V��rn�I + �V��rn� − V��rn��Rn�z��z�Rn
−1� , �14�

where rn is the distance between the nth helium atom and the
impurity, and Rn is the rotation matrix that transform the
unity vector ẑ into the r̂n vector. It can be shown that, in
Cartesian coordinates,

�xi�Rn�z��z�Rn
−1�xj� =

xn
i xn

j

rn
2 , �15�

where x1=x, x2=y, x3=z, and rn
2=xn

2+yn
2+zn

2. Thus, the matrix
elements of the total potential are

�xi�U�xj� � Uij = 
n=1

N �V��rn�	ij + �V��rn� − V��rn��
xn

i xn
j

rn
2 	 .

�16�

Using the continuous density approach inherent to DFT
�n→�d3r���r���, this expression can be written as

Uij�r� =� d3r���r� + r��V��r��	ij + �V��r��

− V��r���
x�ix�j

r�2 	 . �17�

The eigenvalues of this symmetric matrix are the sought-
after Vm

ex�r� which define the potential energy surfaces
�PESs� as a function of the distance between the centers of
mass of the droplet and of the impurity, and are given by the
three real roots i�r� of the equation

3 + C2 + B + A = 0, �18�

with

C = − 
i=1

3

Uii,

B =
1

2
i�j

3

�UiiUjj − Uij
2 � ,

A = 
i�j�k

3 �1

2
UiiUjk

2 −
1

3
UiiUjjUkk −

2

3
UijUjkUki� . �19�

It can be shown that for spherical geometry, Eq. �17� is
diagonal with matrix elements �in spherical coordinates�

i�r� � Uii�r� = 2�� � r�2 sin ��d��dr�

���r� + r + 2r�r cos �����V��r�� + �V��r�� − V��r���

��1

2
�	i1 + 	i2�sin2 �� + 	i3 cos2 ���	 . �20�

2. Spin-orbit coupling

For atomic impurities in which the spin-orbit �SO� inter-
action is prominent and comparable to the splitting of the P
states due to the interaction with the droplet, it has to be
taken into account in the calculation of the PESs. This is
usually done considering that the SO splitting of the dopant
is that of the isolated atom irrespective of the impurity-drop
distance.39,46,47 Given the atomic structure of alkaline earth
atoms, the SO interaction can be safely neglected in the PES
calculation. However, we discuss it here for the sake of com-
pleteness and future reference.

When the spin-orbit interaction is taken into account, the
total potential can be written as VT=U+VSO, where VSO has
the form, in the spin-Cartesian orbit basis ��x ,1 /2� ,
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�x ,−1 /2� , �y ,1 /2� , �y ,−1 /2� , �z ,1 /2� , �z ,−1 /2��,

VSO =
A�s

2 �
0 0 − i 0 0 1

0 0 0 i − 1 0

i 0 0 0 0 − i

0 − i 0 0 − i 0

0 − 1 0 i 0 0

1 0 i 0 0 0

� ,

where A�s is 2 /3 of the experimental SO splitting of an iso-
lated atom. Kramers’ theorem states that there is a twofold
degenerate manyfold of systems with a total half-integer spin
value that cannot be broken by electrostatic interactions,48 so
that the twofold degenerate eigenvalues that define the PESs
are the roots of the equation

3 + C2 + �B − 3
4A�s

2 � + �A + 1
4 �A�s

3 − A�s
2 C�� = 0,

�21�

with A, B, and C defined in Eq. �19�. In the case of spherical
geometry, the eigenvalues adopt a simple expression as fol-
lows:

1�r� = 1
2 �U11 + U33� + 1

4 �− A�s

+ �9A�s
2 − 4A�s�U11 − U33� + 4�U11 − U33�2� ,

2�r� = U11 +
A�s

2
,

3�r� = 1
2 �U11 + U33� + 1

4 �− A�s

− �9A�s
2 − 4A�s�U11 − U33� + 4�U11 − U33�2� ,

�22�

which reduces to Eq. �20� if A�s=0.
It is important to notice that for spherical geometries

�spherically symmetric impurities in liquid helium or at the
center of a drop�, when the SO interaction is negligible two
of the PESs, as it can be seen from Eq. �20�, that yields
1�r�=2�r��3�r� are degenerate.49 Thus, the existence of
the SO interaction not only is the reason of the appearance of
the D1 and D2 lines in the case, e.g., of alkali atoms in bulk
liquid helium, but also the reason of either the broadening or
the splitting of the D2 line.50 For this particular geometry,
another contribution to the splitting of the D2 line is the
Jahn-Teller effect caused by dynamical quadrupole deforma-
tions of the cavity surrounding the impurity, which develop
irrespective of whether the spin-orbit energy is relevant or
not.6,51 When the impurity resides in a deformed environ-
ment like a dimple, the three PESs are nondegenerate, and
may cause the appearance of three distinct peaks in the ab-
sorption spectrum, or of just one single broad peak, as it
happens in the case of Ca, Sr, and Ba atoms attached to 4He
drops.4,5 The liquid 4He results for alkaline earth atoms are
reported in Refs. 52 and 53, and references therein.

V. RESULTS FOR THE ABSORPTION SPECTRUM
OF CALCIUM ATOMS

A. Line shifts

The problem of obtaining the line shifts has been thus
reduced to that of the dopant in the 3D trapping potentials
corresponding to the ground state, UCa�r�, and P excited
states, i�r�. Since we have neglected the fluctuations of the
dimple—shape fluctuations54—and their coupling to the dop-
ant dipole oscillations, as well as inhomogeneous broadening
resulting from droplet size distributions, laser linewidth and
similar effects, the model is not expected to yield the line
shapes, but only the energies of the atomic transitions. These
limitations are often overcome by introducing line shape
functions or convoluting the calculated lines with some ef-
fective line profiles.41,42 We discuss now some illustrative
examples without considering these justified but somewhat
uncontrolled convolutions.

Figure 7 shows the absorption spectrum of Ca@4He2000
calculated with the semiclassical formula. The much in-
volved Fourier formula calculation is unnecessary in the
Ca@4HeN case. The reason is the absence of bound-bound
transitions from the ground state PES to the � or � ones
because their wells are spatially well apart. The starred ver-
tical line represents the gas-phase transition. The three com-
ponents of the absorption line, each arising from a different
excited PES, are also shown. We have normalized to 1 the
integral of each component. This choice comes out naturally
from the normalization of the wave function of the impurity;
obviously, the relative intensity of the three components is
not arbitrary. In Fig. 7, the � PESs contribute to build up the
maximum of the line, whereas the long blueshift tail arises
from the � PES.

No appreciable differences appear between N=2000 and
2500, the largest drop we have calculated. This saturation has
been also observed in the experiment,4,5 although for larger
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mean cluster sizes, about N
3000. The peak energy is
79 cm−1, 10% larger than the experimental saturation value
of 72 cm−1,4 which indicates a fairly good agreement be-
tween theory and experiment. The calculated width �full
width at half maximum �FWHM�� is 
55 cm−1, whereas the
measured width for drops in the N=1500–2000 range is

140–155 cm−1,4 i.e., about three times larger. We will
show later how thermal motion affects the theoretical result.

Figure 8 shows the total absorption spectrum of Ca at-
tached to 4HeN droplets for several N values. It is interesting
to notice the evolution of the absorption line as the number
of atoms increases. As a general rule, the smaller the drop,
the smaller the splitting of the � components. Indeed, they
would be degenerate if N=1, as Eq. �13� shows. This ex-
plains why the main peak for N=100 is the narrower one,
and is the reason why the main peak is fairly apart from the
� shoulder. As N increases, so it does the splitting, while the
three components of the peak become broader. Eventually, if
N is large enough, it is not possible to distinguish the com-
ponents of the absorption line. It is also obvious that line
broadening due to effects not considered here may wash out
the blueshifted shoulder found for small N values.

The inset in Fig. 8 shows the calculated shifts relative to
the gas-phase transition, compared with the experimental
values.4 One can appreciate a small oscillation for the largest
drops; it is a genuine effect produced by the dimple structure.
Further insight can be gained from the study of the absorp-
tion spectrum as a function of Z0. To this end, we display in
the top panel of Fig. 9 the absorption spectra for the N
=500 droplet corresponding to Z0 values from 16 to 19 Å in
0.5 Å steps, all of them within the drop surface region �the
equilibrium value is Z0=17.45 Å�. The inset in Fig. 9 shows
the dependence of the relative shift on the location of the Ca
atom. One can see how a 3 Å dispersion in the position of
the impurity generates an 
45 cm−1 change in the shift,

showing in a quantitative way the well-known sensitivity of
this quantity to the structure and depth of the dimple. It is
worth seeing how the shift decreases as the distance between
the centers of mass increases, and at the same time the ab-
sorption peak becomes more asymmetric as the Ca environ-
ment does �see also Sec. V C�.

B. Thermal broadening

As we have indicated, for very attractive impurities, the
foreign atom is fully solvated, and its delocalization in the
bulk of the drop due to thermal motion hardly introduces a
significant change in the line shape. When the dopant is in a
dimple state, it has to be checked whether thermal motion
may have observable effects on the absorption spectrum, as
Fig. 6 seems to indicate for calcium.

To ascertain this effect, we have carried out a thermal
average of the spectrum using an approximate expression for
the probability density. Referring the energy Ei of a given Z0i
configuration to the equilibrium value, �Ei=Ei−Egs, and ne-
glecting the kinetic energy of the impurity and the displaced
fluid, we write the probability density for the position Z0i

of
the Ca atom as

wi =
Z0i

2 e−�Ei/kBT

� jZ0j

2 e−�Ej/kBT�Z0j

, �23�

where kB is the Boltzmann constant, T=0.4 K, and the
sum—actually integral—runs on the selected Z0i
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configurations.55 The Z0i

2 factor takes care of the relative vol-
ume available to each configuration. With this definition the
probability of finding the Ca atom between Z0i

and Z0i
+�Z0i

is wi�Z0i
. We show in the top panel of Fig. 6 the

probability densities wi corresponding to the configurations
displayed in the bottom panel. We see that there is a non-
negligible probability of finding the Ca atom in a broad re-
gion of the drop surface, and consequently we have ad-
dressed, as a case of study, the statistical properties of the
Ca@4He500 system at this temperature.

We have found that the mean position, calculated as
�Z0�=�iZ0i

wi�Z0i
, and the standard deviation, calculated as

��Z0�=��Z0
2�− �Z0�2, are 17.38 and 0.76 Å, respectively.

This dispersion in the position generates a dispersion in the
value of the shift. To quantify this effect we have evaluated
the mean value of the shift, calculated as ����
=�i��iwi�Z0i

, and its standard deviation, calculated as

�����=����2�− ����2, using the values shown in the inset
of the top panel of Fig. 9, which correspond to the seven
lower energy configurations in Fig. 6. We have obtained
����±�����=63.8±11.5 cm−1.

The thermally averaged Ca absorption spectrum is shown
in the bottom panel of Fig. 9 �solid line�, as well as that
corresponding to the equilibrium configuration �dashed line�.
To carry out the average, we have used the Ii��� in the top
panel of Fig. 9, and averaged them as I���=�iIi���wi�Z0i

.
This procedure, consistent with the Franck-Condon prin-
ciple, assumes that absorption proceeds instantaneously on
any of the frozen drop-Ca configurations characterized by a
Z0i

value.
We are led to conclude that the thermal motion effect is

rather small. It increases the FWHM by about 10%, from

49.5 to 
55.0 cm−1, still a factor of 3 smaller than the
experimental value. From Fig. 6, we expect a similar effect
for the N=1000 drop, and likely for larger drops.

C. Calcium atoms attached to vortex lines in 4He drops

Since 4He is a superfluid, it is quite natural to wonder
about the appearance and detection of quantized vortices in
droplets, see, e.g., Refs. 3 and 57, and references therein.
Adapting an idea originally put forward by Close et al.,58 it
has been proposed10 that Ca atoms should be the dopant of
choice to detect vortices by means of microwave spectros-
copy experiments. The rationale of this proposal is that Ca
atoms are barely stable on the drop surface and become sol-
vated in its interior in the presence of a vortex line.10 These
conclusions were drawn from DFT calculations using Mey-
er’s Ca-He potential which, as shown in Fig. 1, is slightly
more attractive than recent potentials. If this scenario were
plausible, one would not need the microwave spectroscopy
experiments suggested in Ref. 10 to detect a vortex state in a
Ca@4HeN drop: LIF spectroscopy could do the job, given the
sizable difference between the blueshifts of the absorption
lines when Ca has been drawn inside the drop by the vortex
�similar in value to the liquid helium blueshift�, and when it
resides in a dimple state in vortex-free drops.4

This has prompted us to reanalyze the structure of a large
N=1000 drop hosting a calcium atom attached to a vortex
line along the symmetry axis. Within DFT, a robust method
to generate vortex configurations in liquid helium is de-
scribed in Ref. 59. We adapt it here to the case of helium
drops. For a n=1 quantum circulation vortex line, we start
the imaginary time evolution to solve Eq. �2� from the initial
state

��r� =
�1/2�r�
�x2 + y2

�x + �y� �24�

if x and y are nonvanishing, and zero otherwise, where ��r�
is the vortex-free Ca@4He1000 helium density. After the
minimization procedure is converged, we have checked that
the obtained final configuration is indeed a n=1 vortex state.

Figure 10 shows equidensity lines for the equilibrium
configuration of Ca@4He1000 with and without a vortex line
along its symmetry axis. It can be seen that the vortex line
draws the impurity toward the bulk of the droplet, but it still
resides in a deeper surface dimple.

Figure 11 shows the absorption spectrum for the two con-
figurations displayed in Fig. 10. The effect of the presence of
the vortex on the absorption spectrum of calcium is twofold.
On the one hand, the maximum of the absorption peak is
shifted toward the bulk value because of the deeper dimple.
On the other hand, the FWHM increases by about a factor of

FIG. 10. �Color online� Equidensity lines showing the equilib-
rium configuration of a Ca atom on a 4He1000 droplet with a vortex
line along its symmetry axis �top panel�, and without it �bottom
panel�. The lines correspond to densities 0.9�0 to 0.1�0 in 0.1�0

steps; these lines span the drop surface region as well as the vortex
core. The equidensity lines of the Ca probability density are simi-
larly plotted starting from its maximum value.
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2. The reason is the spreading of the Ca wave function within
the stretched UCa�r� well, which allows the atom to “probe”
a wider region in the excited PES, thus increasing the width.
Notice also the larger splitting of the peaks that form the line
due to the more anisotropic helium environment. This also
contributes to increasing the width of the absorption peak.
Unfortunately, the experimental absorption line is so broad
and asymmetric that the extra shift caused by the vortex is
not enough to displace the line to a region where it could be
distinguishable on top of the vortex-free absorption line.

VI. SUMMARY

Within density functional theory, we have carried out a
detailed study of the absorption spectrum of calcium atoms
attached to 4HeN drops in the vicinity of the 4s4p 1P1
←4s2 1S0 transition, finding a semiquantitative agreement

with experiment. To this end, we have improved our previous
implementation of the DFT method by incorporating the zero
point motion of the impurity, and have carried out ab initio
calculations to obtain the excited 1� and 1� Ca-He poten-
tials needed to obtain the potential energy surfaces.

We have studied the drop structure, finding that the “in-
terference” between the density oscillations of the helium
moiety arising from its intrinsic structure and those arising
from the presence of the impurity plays a role in the deter-
mination of the position of the impurity. This may be rel-
evant for the solvation of alkaline earth atoms, especially for
magnesium.35

In a case of study, we have systematically addressed the
dependence of the relative shift on the position of the impu-
rity, quantitatively assessing the relevance of a proper de-
scription of the dimple to reproduce the experimental results.
We have statistically taken into account the influence of the
thermal motion of the impurity on the absorption line, con-
cluding that it only increases the linewidth by a modest
amount.

Finally, we have addressed the Ca absorption spectrum
when the helium drop hosts a vortex line, and conclude that
absorption spectroscopy experiments on these drops would
be likely unable to ascertain the presence of vortical states.
In spite of this, the study of vortex lines pinned by calcium
atoms in superfluid helium drops is interesting by itself, es-
pecially the evaluation of the atomic shift caused by the pres-
ence of a vortex line.
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