
Adsorption Of Hydrogen Molecules On

Carbon Nanotubes Using Quantum Chemistry

And Molecular Dynamics

N. Faginas-Lago,∗,† D. Oksuz,† F. Huarte,‡ Y. Wang,¶,§ M. Alcamí,¶,§ and F.

Martin¶,§,‖

†Dipartimento di di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia,

Via Elce di Sotto 8, 06123 Perugia, Italy

‡Chemical Physics Department and Institute for Theoretical and Computational Chemistry

(IQTUB), Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain

¶Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid,

Spain

§Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia),

Cantoblanco, 28049 Madrid, Spain

‖Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049

Madrid, Spain

E-mail: noelia.faginaslago@unipg.it,Tel.:+390755855527

1



Abstract

Physisorption and storage of molecular hydrogen on single-walled carbon nanotube

(SWCNT) of various diameters and chiralities are studied by means of classical Molecu-

lar Dynamics (MD) simulations and a Force Field validated using DFT-D2 and CCSD(T)

calculations. A non-rigid carbon nanotube model is implemented with stretching (C-C)

and valence angle potentials (C-C-C) formulated as Morse and Harmonic cosine poten-

tials, respectively. Our results evidence that the standard Lennard-Jones potential fails

to describe the H2-H2 binding energies. Therefore, our simulations make use of a poten-

tial that contains two body term with parameters obtained from fitting CCSD(T)/CBS

binding energies. From our MD simulations, we have analyzed the interaction energies,

radial distribution functions, gravimetric densities (% wt), and the distances of the

adsorbed H2 layers to the three zigzag type of nanotubes (5,0), (10,0) and (15,0) at 100

and 300 K.

Introduction

The storage of hydrogen by various new structural forms of carbon which are inherently

lightweight materials, has recently gained widespread attention as possible enabling tech-

nology of a future hydrogen economy. The continuous increase in the level of hazardous

emissions and in the strictness environmental regulations have led to the development of

more efficient and safe methods of power generation. Fuel cells, which convert the chemical

energy of a fuel into electricity through a chemical reaction with oxygen or another oxidiz-

ing agent,1 emit zero hazardous substances when the fuel is hydrogen, make less noise and

have longer life while needing less maintenance. Therefore, they seem to be one of the most

promising power generation technologies for the future.2

The foremost advantage of hydrogen as an energy source lies in the fact that in addition

to being one of the most abundant elements in the universe, it can easily be regenerated.

Hydrogen has also other considerable properties. First of all, in fact, hydrogen is the cleanest
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fuel and its combustion produces only water vapor and heat reducing so far the emissions of

greenhouse gases to a minimum. Second, hydrogen has a chemical energy per mass (141.84

MJ/kg) that is three times larger than that of the most popular chemical fuels, such as liquid

hydrocarbons (47.16 MJ/kg).3 This feature helps meet the global demand for energy as it

continues to rise significantly. However, the use of hydrogen as fuel is limited by storage

and transportation problems. Hydrogen in fact is the lightest element on earth and is very

volatile. Despite its high energy content per mass, it has the disadvantage that the volume of

one kg of hydrogen is approximately 10 m3 under standard conditions. This enormous volume

needs to be reduced when looking for practical applications. Due to the fact that hydrogen

can only be found in nature mainly as water and hydrocarbons, it has to be produced by

purpose when needed from them and this costs three times more than spilling oil.4

The currently investigated hydrogen storage technology considered in this paper is the

one making use of carbon nanotubes. Carbon nanotubes bear different physical properties

depending on their diameter and chirality. The large avalaible volume, particularly in the

cavities inside the single walled carbon nanotubes (SWCNTs), can be used for hydrogen

storage. It is beneficial to develop storage materials of this type having high capacity, light

mass and high stability, which is applicable to movable electronics and moving vehicles. Sev-

eral recent experiments suggested that SWCNTs are capable of storing hydrogen at ambient

temperature and moderate to high hydrogen pressures.5 Many molecular simulations6–8 have

also been performed to study hydrogen adsorption in SWCNTs. In particular, molecular dy-

namics (MD) simulations using accurate intermolecular interaction potentials are a powerful

tool to describe the highly dynamical adsorption system and to derive useful energetic in-

formation at a given temperature.

Many fundamental issues related to the effects of chirality and diameter and how these give

rise to the strong H2 adsorption enthalpy in SWCNT remain to be addressed in detail in

order to develop a comprehensive understanding of the overall adsorption phenomenon. Un-

derstanding the adsorption mechanism is a key to predict the maximum storage capacity
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and to develop a road map for the development of the carbon nanotube (CNT)-based hy-

drogen storage vehicle. One of these mechanisms is physisorption, mainly dependent on

electrostatic and weak van der Waals interactions. Physical adsorption occurs quickly and

may be a single-molecule (unimolecular process), a monolayer or several monolayers thick

(multi-molecular processes). As physical adsorption takes place, it begins as a monolayer.

It can then become multi-layer, and then, if the pores are close to the size of the molecules,

more adsorption occurs until the pores are filled with adsorbate. Accordingly, the maxi-

mum capacity of a porous adsorbent can be more related to the pore volume than to the

surface area. In contrast, chemisorption involves the formation of chemical bonds between

the adsorbate and adsorbent is a monolayer, often with a release of heat much larger than

the heat of condensation. Desorption of hydrogen chemically bonded to SWCNT requires a

temperature higher than 600 K,9 rendering chemisorption impractical for mobile hydrogen

storage.

The goal of this paper is to study the adsorption of molecular hydrogen onto various

adsorption sites and orientations on SWCNT in order to estimate the hydrogen storage

capacity of carbon nanotubes. The most significant point to be mentioned around these

results is that for the SWCNT (15,0) we obtain a gravimetric density (%wt) of 6.70 close

to the standard specified by The Department Of Energy (DOE) (i.e 6.5 wt%).10 The paper

is organized as follows. The description of the computational details including the detailed

description of the different force fields are given in Section 2, The Molecular Dynamics

simulations details and the results obtained are presented and discussed in Section 3. The

conclusions are given in the last section.

Computational Details

The total potential energy used to calulate the total interaction energy for SWCNT and

molecular hydrogen, Vtotal, is obtained as a sum of two intramolecular potentials, one for the
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H2 and the other one for the SWCNT subsystems, and an intermolecular potential,

Vtotal = VSWCNT +
n∑
j=1

V(H2)j + Vinter (1)

where

Vinter =
l∑

i=1

n∑
j=1

VCi−(H2)j +
n−1∑
j=1

n∑
k>j

V(H2)j−(H2)k (2)

and n represents the number of hydrogen molecules and l the number of C atoms .

Bonding interactions in SWCNT

During the MD simulations, the nanotubes are no kept rigid and the corresponding in-

tramolecular potential VSWCNT is computed as a sum of bond length, bond angle, and

dihedral potentials:

VSWCNT =
∑

U(rij) +
∑

U(θjik) +
∑

U(φ) (3)

The stretching of C–C bond in SWCNT is formulated as a Morse potential:

U(rij) = E0[{1− exp(−k(rij − r0))}2 − 1] (4)

where rij is the distance between C atoms i and j, the parameters are as follows: E0 =

114.4569 kcal mol−1 Å−2, r0 = 1.418 Å and k = 2.1867 Å−1. Valence angle potentials for

the bond bending between C–C–C atoms of SWCNT are described by a harmonic cosine

function:
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U(θjik) =
k

2
(cos(θjik)− (cos(θ0))

2 (5)

where θjik is the angle between atoms Cj-Ci-Ck, and the parameters11 are θ0=120◦ and

k = 134.5 kcal mol−1. The dihedral potential energy term describing the torsional interac-

tions in the carbon nanotube is computed by taking the general triple cosine function11

U(φ) =
1

2
A1(1 + cos(φ)) +

1

2
A2(1− cos(2φ)) +

1

2
A3(1 + cos(3φ)) (6)

where φ is the dihedral angle among the four C atoms, and and reducing it to a simpler

functions using parameters A1= 0, A2= 6.009569 kcal mol−1 and A3= 0.

H2-SWCNT interaction

For the SWCNT-H2 interaction, we have carried out systematic DFT-D212 calculations for

the binding energy of the H2-(5,0)-SWCNT complex, with different molecular orientations,

distances and adsorption sites. The nanotube used is made of 20 carbon atoms per unit cell.

The calculations were performed using the Vienna Ab initio Simulation Package (VASP)

employing the generalized gradient corrections (GGA) of Perdew-Burke-Ernzerhof (PBE)

functional.13 The Grimme’s DFT-D2 method was employed to describe the long-range vdW

interactions, which are described using the following formula:

Edisp = −s6
Nat∑
i=1

Nat∑
j=i+1

(
C6
ij

R6
ij

fdmp(Rij)

)
. (7)

where Nat is the number of atoms in the system, C6
ij the dispersion coefficient for atom

pairs i and j, s6 a global scaling factor, Rij the interatomic distance between atoms i and

j, and fdmp a damping function. In Eq. 7, the scaling parameter s6 in the DFT-D2 scheme

was set to be 0.6 (in stead of the default value 0.75), which has been calibrated based on our

CCSD(T)/CBS binding energy calculations for the H2-benzene system.
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The binding energies from CCSD(T) computations at the CBS limit have been extrapo-

lated using the binding energies from CCSD(T) and MP2 computations with two basis sets,

aug-cc-pVDZ and aug-cc-pVTZ,14 and by assuming that the difference between CCSD(T)

and MP2 binding energies remains constant at such large basis sets.15

The binding energy between the hydrogen molecule and the SWCNT has been calculated

for different molecular orientations and adsorption sites of H2 and distances (R) between the

H2 and the SWCNT (see Fig. 1), with R being the distance of the center of mass of the

hydrogen molecule from the nanotube center. For each geometry and adsorption site, we

calculated the energy value by varying the intermolecular distance R, from 4 to 8 Å in steps

of 0.2 Å . Our calculations have been carried out using the periodic boundary conditions, so

the carbon nanotube is infinitely long.

v

p1
pp2

A
B1

H

B2

R

(a) (b)

(c)

Figure 1: (a) Typical orientations of H2 around SWCNT. Adsorption sites of H2 on SWCNT.
(c) Distance R between centers of mass of H2 molecule and SWCNT. All calculations have
been carried out using periodic boundary conditions. Dashed boxes indicate the unit cell of
the periodic models.

Hydrogen is placed above a carbon atom (site A), above the center of a hexagon of carbon

atoms (site H), and above the midpoint of a C-C bond site B1 and B2, respectively and four

different orientations (p, p1, p2 and v), given a total of sixteen geometries considered. In this

case, a total of sixteen geometries were considered. Among these geometries, it is observed
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Figure 2: Binding energies of hydrogen with SWCNT for the pH configuration
.

that the most stable arrangement is the one with the H2-axis parallel to the nanotube axis

and sitting on the hollow site of nanotube (pH-configuration).

A Lennard-Jones (LJ) potential has been used to describe intermolecular interaction

between H2 and the carbon atoms in the SWCNT in the MD calculations, as follows:

U(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(8)

where rij represents the distance between atoms i(H) and j(C), and the parameters ε and σ

were fitted from density functional theory (DFT) calculations. Accordingly, we performed,

first, CCSD(T) calculations at complete basis set (CBS)16 limit for the H2-benzene systems.

Then DFT calculations were extended to the H2-SWCNT systems with BSSE correction

included. The fitted LJ parameters from the DFT-D2 calculations are: ε = 0.0360 kcal

mol−1 and σ = 3.02 Å. Fig. 2 shows the binding energies of hydrogen with SWCNT for

the pH configuration, and we can see that the LJ potential nicely reproduces of the overall

DFT-D2 results.
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H2-H2 interaction

The covalent H-H bond was modeled by the Morse potential given by Eq. 3. The values

of the parameters used in our calculation are as follow:11 E0 = 109.20 kcal mol−1 Å−2,

r0 = 0.746 Å and k = 3.52 Å−1. For the H2-H2 interaction, CCSD(T)/CBS calculations16

have been performed for the H2 dimer. The H2-H2 binding energies were calculated for

different configurations of the hydrogen molecules (see Fig. 3). For each configuration, we

calculated binding energies by varying the intermolecular distance R, from 2 to 4 Å in step

of 0.1 Å . The most stable configuration corresponds to the v-shaped configuration in which

an H2-axis points perpendicularly to the other H2 axis. The LJ potential results show that

p1-shaped geometry is the most stable configuration with the two H2 molecules parallel (see

Fig. 4). The parameters employed for the H2-H2 interaction using a Lennard-Jones potential

(represented in Fig. 4) are σ= 2.81 Å and ε= 0.01707 kcal mol−1.

Figure 3: Different configurations of H2 dimer.

In Fig. 4, the binding energy curves are plotted for the most stable configurations ac-

cording to CCSD(T)/CBS and LJ potential results (p1 and v-shaped). As shown by Fig. 4,

the LJ empirical values are not consistent with CCSD(T)/CBS binding energies. We have

found that the LJ potential fails to describe the obtained H2-H2 binding energies. Therefore,

in order to apply an analytic potential for the H2-H2 interactions, we have employed a more

sophisticated potential containing two-body term with parameters obtained by fitting to the

CCSD(T)/CBS binding energies. This potential is a combination of a Morse potential and
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Figure 4: (a) Comparison of binding energies of H2 dimer with different configurations,
between results obtained from the LJ potential and from the CCSD(T)/CBS computations.
(b) Comparison of binding energies of H2 dimer with different configurations, between results
obtained from our new potential (Eq. 8) and from the CCSD(T)/CBS computations.

a screened harmonic potential, as written in the following:

U(rij, riµ, riν , θµiν) = E0{[1−exp(−k1(rij−r0))]2−1}+
k2
2
(θµiν−θ0) exp(riµ/ρ1−riν/ρ2) (9)

where rij is the distance between hydrogen atom i and j, riµ the distance between hydrogen

i and the center of the first H2 molecule (represented by X) µ, riν the distance between

hydrogen i and the center of the second H2 molecule ν, θµiν the angle defined by µ–i–ν. The

parameters obtained by fitting to the CCSD(T)/CBS binding energies are listed in Table 1.

Table 1: Fitted parameters for the H2-H2 potential.

E0 (kcal mol−1 Å−2 ) r0 (Å) k1 (Å−1) k2 (Å−1) θ0 (rad.) ρ1 (Å) ρ2 (Å)
0.0135 3.489 1.713 -1800.0 1.5708 0.33 0.33

Our CCSD(T) binding energies of H2 dimer are consistent with the ab initio data in the

literature.17,18 The binding energy order between different configurations of H2 dimer, the

equilibrium intermolecular distances and the corresponding minimum binding energies are

all in good agreement with previous work (see the above-mentioned references).
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Molecular Dynamics simulations

Our MD simulations were performed considering a microcanonical ensemble of particles

(NVE) enforcing parallelepiped periodic boundary conditions using the DL−POLY19 classical

dynamics program, at two different temperatures 100 and 300 K. Each MD trajectory is

equilibrated for 0.3 ns and then propagated for another 1 ns, with a time step of 2.5x10−4

ps. A cutoff radius of 10.0 Å is applied to the non-bonding interactions in order to speed

up the computation. The data collected along the 1 ns of equilibration is excluded from

the statistical analysis performed at the end of the MD trajectory. Energy contributions,

radial distribution functions (RDFs) and gravimetric densities (% wt), as a function of the

temperature and of the H2 concentration, have been analyzed.

In the present investigation, we have used the Tubebash script20 to construct the SWCNT

structure. To examine the maximum capacity for hydrogen storage inside SWCNT’s in

this work we report detailed molecular dynamics simulation results for hydrogen molecules

into a (5,0), (10,0) and (15,0). To investigate the effect of the H2 loading, we considered a

zigzag nanotubes made of five unit cells and 100, 200 and 300 carbon atoms for (5,0), (10,0)

and (15,0) SWCNTs, respectively. The simulation are performed at 100 K and 300 K with

parallelepiped periodic boundary conditions. The diameter (d) of the SWCNT is calculated

using the following expression

d =
a

π

√
(n2 + nm+m2) (10)

where a = 0.246 nm and (n,m) are the chiral vector of SWCNT. After the SWCNT struc-

ture was obtained, H2 molecules were added randomly around the SWCNT at a distance

varying from 4 and 8 Å . The criterium used to decide of the H2 molecules were physisorbed

if the distance of the H2 molecule of mass (c.o.m) is smaller than 3 Å and any SWCNT

carbon atom.

In order to analyze the effect of the various parameters of the MD simulation on the distri-
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bution of adsorbed hydrogen molecules, we first determined the amount of adsorbed H2 at

the endohedral and exohedral sites of the SWCNT. To understand the dependence of the H2

distribution on the diameter of the nanotube, SWCNTs of different diameters were selected.

Then, the dependence of the radial distribution function was analyzed in order to figure out

the composition of attractive and repulsive interaction between H2 molecules and SWCNT.

The effect of temperature on H2 distribution was also investigated.

The simulation results for each nanotube are showed in Table 2, where Nc is the number

of carbon atoms. Table 2 lists the number of hydrogen molecule adsorbed in exohedral

(NH2 ,out) and endohedral (NH2 ,in) sites for the three types of SWCNT. In all runs the

same number of initial H2 molecules has been employed, all distributed randomly around

the nanotube. It is important to notice that not all the H2 molecules are adsorbed.

Table 2: Results of the H2 molecular adsorbed as a function of the temperature
and the chiratily.

SWCNT d(Å ) Nc T(K) NH2 ,in NH2 ,out
(5,0) 3.914 100 96.51 0 7
(5,0) 251.01 0 1
(10,0) 7.828 200 92.20 7 22
(10,0) 274.01 5 16
(15,0) 11.743 300 100.93 33 45
(15,0) 287.02 21 9

As an illustrative example of the equilibrium, Fig. 5 shows the system configuration after

1 ns of simulation in the (15,0) case.

We have observed that the H2 population distribution at the endohedral(in) and exohe-

dral(out) sites increases with the diameter of nanotube due to fact that the volume of both

exohedral and endohedral sites increases as the nanotube diameter becomes larger.

The distribution of hydrogen molecules around the SWCNT could be extracted from the

radial distribution function (RDF), g(r). This function is defined as the probability of find-

ing molecular hydrogens at distance r from the nanotube surface, relative to the probability

expected for a completely random distribution at the same density of H2. The RDF is of
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Figure 5: Snapshot of final configuration with 100 H2 molecules for the (15,0).

particular importance since it can be extracted from neutron scattering measurements and

compared with the values obtained is plotted for both C-X and X-X pairs for the already

mentioned three types of SWCNT. Figures 6 and 7 show the C-X RDF for the three types

of SWCNT considered at T=100 K and 300 K, respectively. One can see sharp rise of

g(r) at r ≈ 3 Å, which is the distance of closest approach of H2 molecules to the surface of

SWCNTs, thus suggesting a pure physisorption mechanism. The rise is followed by a strong

(for (10,0) and (15,0)) or a slight (for (5,0)) plateau. The position of the peaks reflects the

average relative position between SWCNT and hydrogen. The first peak is located at around

3 Å while the second peak is around 8 Å . From these plots we deduce that the higher the

temperature, the less H2 adsorbed. Fig. 8 shows the RDF of the H2 molecules for the two

different temperatures (100 and 300 K). The first peak occurs at X-X distances between 3.2

and 3.6 Å for different SWCNT, and mainly reflects the attractive interaction between H2

molecules. However, when the temperature increase (dashed lines) the RDF of the SWCNT

(10,0) and (15,0) show a bimodal structure.

Using the data in Table 2 we have also been able to analyze the effect of the temperature

in the hydrogen distribution. Table 2 shows that, for the same nanotube diameter, the
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Figure 6: Radial distribution function between C atoms and c.o.m of hydrogen molecular,
represented by X at T=100 K for the three SWCNT considered. Full line (5,0), dotted line
(10,0) and dashed line (15,0).

number of H2 molecules adsorbed both inside and outside the nanotube decreases with the

temperature. As the temperature increases, the interaction energy decreases, reducing the

strength of C and H atom interaction.

In order to provide the graphical evidence with a more qualitative ground we calculated

also the storage capacity for three types of zigzag ((5,0), (10,0) and (15,0)) open-ended

SWCNTs at the two different temperatures of 100 K and 300 K. To this end the nanotubes

were progressively loaded with hydrogen by carrying out consecutive molecular dynamics

simulations till saturation of the nanotube. In all cases, for the three types of SWCNT

analyzed, 100 H2 molecules were distributed randomly around it as an initial run. Then, the

simulation was run and adsorption of the H2 on the SWCNT was analyzed. If the nanotube

was not saturated, the adsorbed hydrogen molecules were conserved and a new group of 100

H2 molecules was added under the same initial conditions. Gravimetric density is calculated

at every step of the trajectory using
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Figure 7: Radial distribution function between C atoms and c.o.m of hydrogen molecular,
represented by X at T=300 K for the three SWCNT considered. Full line (5,0), dotted line
(10,0) and dashed line (15,0).

wt(%) =
NaMH2

NaMH2 +Madsorbent

× 100 (11)

where Na is the number of adsorbed molecules for a given number of molecules in the

gas phase N. The molecules adsorbed are estimated by counting those that are located at a

distances of 3 Å from the surface of the SWCNT. Madsorbent is the mass of the absorbent.

Hydrogen storage capacity (HSC) indicates the amount of gas that can occupy a given vol-

ume as a result of any additional hydrogen storage effect with respect to the amount of gas

occupying the same volume at constant temperature.21 In other words, HSC is the capacity

of storing hydrogen shown by a material, in a addition to that of a compression of the gas

at the same pressure and temperature. HSC is most commonly expressed as weight percent

(wt%) of the stored gas over the sum of the weight of the adsorbed gas and the adsorbent.

Fig. 9 shows the wt% for the consecutive simulations of the progressive loading procedure
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Figure 8: Radial distribution function for H-H separation at intermolecular distance.

for the (10,0) nanotube at 100 K. In this figure, each panel corresponds to one simulation

of the related type of nanotube. For the medium diameter nanotube (10,0) the progressive

loading was repeated up to six times, getting saturation of the nanotube. The results of the

six simulations are shown in Fig. 9. The calculated storage capacity is 2.40 wt%. For the

nanotube with the largest diameter (15,0), the simulations were repeated up to four times

till saturation of the nanotube. In this case, the calculated a storage capacity is 6.7 wt%.

The same procedure was followed for the three types of SWCNT by raising the temperature

to 300 K.

After saturating the SWCNTs, we analyzed the distribution of the H2 molecules around

the nanotube. To simplify the analysis we set the Z coordinate constant and plotted the

probability density map. The map shows therefore the probability of finding the H2 molecules

placed around the nanotube, on the XY-plane (see Fig. 10 for this xy-plane projected dis-

tribution of the H2 for the three types of SWCNTs at 100 K). In the case of the nanotube

with the smallest nanotube (top-left), the density map shows that the highest probability

of finding the H2 molecules corresponds to a crown around the SWCNT (yellow region). In
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Figure 9: The hydrogen gravimetric density (wt%) plotted as a function of time for (10,0)
SWCNT at 100 K. Each rectangle represents a simulation during the data collect time of 1
ns.

the case of (10,0) and (15,0) nanotubes (top-right and bottom), it is observed that as the

nanotube diameter increases, the maximum of the probability shifts inside the nanotube.

The final H2 storage capacities of the three types of SWCNT are listed in Table 3 in terms

of gravimetric densities (wt%), for the temperatures of 100 and 300 K. As expected, the

maximum storage of H2 is obtained for the nanotube (15,0) since it has the largest diameter

(and, therefore, the largest volume). We note also that as the temperature increases, the H2

storage capacity decreases due to fact that hydrogen molecules are increasingly desorbed.

We can explain this effect of the temperature in terms of a decrease of the van der Waals

(intermolecular) energy (see Table 3) that leads to the weakening of the interaction between

C and H atoms.
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Figure 10: Density map for (5,0) at left upward, (10,0) at right-upward and (15,0) at bottom
panel at 100K. The SWCNT walls are indicated in the figure by dotted white lines.

Conclusions

In this paper we have systematically investigated the H2 storage capacity of SWCNTs using

a classical MD technique. As demonstrated by our MD calculations, the highest hydrogen

storage capacity is obtained for the nanotube with the largest diameter, owing to the fact

that high surface area favors adsorption of H2 molecules. The other crucial observation is

that as the temperature increases, the H2 storage capacity decreases since the interaction

between SWCNT and H2 weakens, thus favoring desorption of H2 molecules. For low H2

densities, H2 tends to adsorb in the exohedral sites. As the H2 loading increases, the en-

dohedral sites become more populated. The larger nanotube diameter (15,0) provides the

the highest relative population in the endohedral sites but never exceeds the population ad-

sorbed in the exohedral sites. In contrast to many reported classical MD simulations,5,22,23
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Table 3: The VdW Energies (kcal/mol) for the three different SWCNTs at
T=100K and 300 K. Also listed the gravimetric density (wt%) results.

SWCNT d (Å ) EvdW 100 K EvdW 300 K wt% 100 K wt% 300 K
(5,0) 3.914 -6.9979 -2.0395 0.61 0.086
(10,0) 7.828 -36.064 -15.745 2.40 1.37
(15,0) 11.743 -77.317 -30.544 6.70 2.58

the LJ parameter, ε (the depth of the potential well), corresponding to the C-H2 interaction

is defined as independent of the nanotube curvature. DFT-D2 calculations show that, in the

case of SWCNT-H2, parallel adsorption sites are more stable than perpendicular configura-

tions, and for external adsorption, the hollow site is preferable over the other sites. These

results are also consistent with the studies of W. J. Fan et al.22,23 This justifies the use of

the LJ potential to describing the H2-SWCNT interaction using MD simulations. However,

the LJ empirical potential is not accurate enough to describe H2-H2 interaction.
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