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We investigate adsorption of helium in nanoscopic polygonal pores at zero temperature using a finite-range
density functional theory. The adsorption potential is computed by means of a technique denoted as the
elementary source method. We analyze a rhombic pore with Cs walls, where we show the existence of multiple
interfacial configurations at some linear densities, which correspond to metastable states. Shape transitions and
hysterectic loops appear in patterns which are richer and more complex than in a cylindrical tube with the same
transverse area.
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A widely investigated topic in physics of quantum fluids
is the wetting behavior of helium on substrates of different
adsorbing powers. For flat surfaces, the latter is determined
by the adatom-adsorber interaction; however, the geometrical
structure of a matter exposed to the vapor modifies the ad-
sorption strength and the growth of the film.1 A special con-
cern is the filling of pores. Most reported research in this
field addresses classical fluids at or close to bulk coexistence
and resorts to Monte Carlo, molecular dynamics, and mean-
field approaches.2–7 These systems display a rich variety of
behaviors, and we expect that this is also true for liquid 4He
in extremely cold quantum regime. In addition to the com-
petition between adhesive �fluid-wall� and cohesive �fluid-
fluid� forces, which in wetting problems gives rise to phase
changes governed by surface effects, pores make room to
interplay among finite sizes, geometrical shape of the con-
finement, and varying dimensionality. Metastable fluid states
show up in hysteresis loops in the sorption isotherms, tradi-
tionally associated with the onset of capillary condensation
�CC�.8 Furthermore, as pointed out in Ref. 3, among the
complications arising from almost every model of condensa-
tion in pores, there are uncertainties in both the substrate-
fluid and the fluid-fluid interactions. The latter is commonly
selected as that in the bulk, while for the adhesive forces, the
simplest reduction is the summation of Lennard-Jones pair
interactions,9 which ignores effects that are associated with
the polarization and three-body forces.

A simple matter unit out of which one may construct
polygonal pores of various shapes is the infinite linear
wedge. Recently, we presented the theoretical study of
condensation of superfluid 4He in wedges,10 employing a
zero-temperature, finite-range density functional �FRDF� that
has proven helpful to understand a large variety of phenom-
ena in finite systems of liquid helium isotopes and their
mixtures.11 The summation employed there to construct the
adsorption potential of two semi-infinite walls meeting at a
corner can be improved by a newly reported method12 that
gives the potential of a substrate of arbitrary shape, provided
that the ab initio adsorption field for the semi-infinite mate-
rial with a planar surface is known. This method consists of
solving an inverse problem to determine the elementary

source potential that gives rise to the planar adsorption field
and allows the construction of potentials for curved matter,
for polygonal pores, and for rough surfaces in a relatively
simple way and at a rather low numerical cost.

In this work, we investigate adsorption of helium in nano-
scopic polygonal pores at zero temperature employing the
FRDF of Ref. 13 plus an adsorption potential built by the
method of Ref. 12. We analyze a rhombic pore, for which a
rich collection of interfacial configurations and shape transi-
tions appear along the full path from adsorption of quasi-
one-dimensional samples of helium up to CC. In particular,
we show that different metastable states with grand potential
above the equilibrium value may be reached at a given fluid
density, according to the choice of the initial condition. This
is well known in theory and experiments of classical fluids in
pores already discussed at length in the literature.3

Rhombic pores appear in mineral crystals and are manu-
factured in metallic and organic materials since the 1960s.14

The wetting and filling behavior of such pores with Cs walls
is an interesting issue, since the “heliophobicity” of planar
Cs at low temperatures is a consequence of the weak inter-
action between Cs and He atoms as compared to the cohe-
sive He-He forces; however, the wall-adatom interaction can
be tuned by the convexity of the pore walls and may drive
the substrate into a “heliophilic” regime. Our investigation of
the shapes of helium samples10 suggests that for some com-
bination of rhombus angles, it might be possible to have a
concave or flat meniscus at the narrow corner, which hosts
the absolute minimum of the external potential, coexisting
with a convex meniscus at the neighboring vertex.

We performed FRDF computations of helium density in a
Cs rhombic pore of 60° and side equal to 50 Å. This large
size has been chosen in order to visualize better the effects of
the angles and of the flat walls on the growth pattern of the
adsorbed film, as discussed below; moreover, microrhombic
pores of this shape have been fabricated, i.e., out of track-
etched mica.15 The calculational details to compute the he-
lium density are the same as in previous literature.10,11 The
potential along the diagonals of this pore obtained by the
elementary source method12 is shown in Fig. 1, together with
that for a cylindrical tube with the same transverse area. As
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expected,10 the presence of angles substantially enhances the
attraction with respect to a curved smooth surface.

Our recent investigation of CC and the formation of
bridges between two parallel plates16 showed that two or
more equilibrium configurations, which are connected by a
hysteresis loop, appear within a range of coverage. This mul-
tiplicity is intrinsic to any method of solution of a nonlinear
equation6 where an initial density profile is driven toward
equilibrium, for instance, by the imaginary time method here
employed.10,11 For classical fluids in pores, density func-
tional calculations provide metastable solutions arranged into
hysterectic loops, which are compatible with experiment and
with descriptions based on Monte Carlo techniques for pores
wider than a few angstrom.3,4,6

Due to the presence of corners at different angles, which
host local minima in the external potential, we should expect
multiple solutions at the same n, some corresponding to
metastable physical states. We have encountered different
equilibrium solutions by starting the imaginary time evolu-
tion, for a given linear density n, from various initial con-
figurations. We have performed at least two different runs for
each linear density, starting from helium filling homoge-
neously �i� the whole pore and �ii� only a single 60° wedge
up to the shortest diagonal.

In Fig. 2, we show the grand potential per particle, with
full and dashed-dotted lines corresponding to initial condi-
tion �i� and �ii�, respectively. The adsorption isotherms ��n�
are shown in Fig. 3. In view of the complexity of these
figures, we examine the trend of � /N and relate the distinct
features to those in ��n�. For the lowest linear densities,
pattern �a� on path �ii� is the stable configuration correspond-
ing to the absolute minimum of the grand potential. Conden-
sation ��=0� takes place on this trajectory near nc

�ii�

=3 Å−1 at �c around −7.75 K, which is well below the bulk
coexistence figure of −7.15 K. Instead, along trajectory �i�,
condensation takes place around nc

�i�=5.8 Å−1 at essentially
the same chemical potential. At a linear density around
10 Å−1, path �i� overcomes �ii�, which in turn destabilizes,

i.e., � becomes positive with negative d� /dn, for n slightly
above 11 Å−1.

The unstable trajectory �ii� evolves further by filling ad-
jacent corners with a hysterecticlike loop that corresponds �c�
to an asymmetric and �d� to a symmetric landscape, the
former possessing a smaller grand potential, however, posi-
tive. This loop has been induced by adding some numerical
noise at the start so as to break the symmetry with respect to
the longest diagonal as in pattern �c�. The stable path �i�
destabilizes near 17.5 Å−1 and there also appears a hyster-
ecticlike loop produced by symmetry-breaking noise. In ei-
ther case, both the symmetric and the asymmetric fillings are
preserved along the imaginary-time evolution, and the latter
always presents the lowest positive grand potential. For n
�28 Å−1, both trajectories merge and yield a unique pattern
�g� that becomes stable at nCC=32.5 Å−1 for a chemical po-
tential �CC around −8.5 K, which should be regarded as the
first order phase transition to CC. At 34 Å−1, the chemical
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FIG. 1. �Color online� Integrated potentials �Ref. 12� along the
diagonals of a rhombic Cs pore with 50 Å side and 60° on the z
axis and for a Cs cylinder with equal area, with distances measured
from the center of the pore. The respective lengths are 25 and
43.30 Å for the half-diagonals and 26.25 Å for the cylinder radius.
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FIG. 2. �Color online� Grand potential per particle � /N along
paths �i� and �ii� �full and dashed-dotted lines, respectively� in the
rhombic Cs adsorbing potential of Fig. 1. The insets �a�–�g� have
been, respectively, drawn for linear densities n=9, 9, 12, 16, 20, 26,
and 29 Å−1. The arrows point to the path �not to the value of n�.
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FIG. 3. �Color online� Same as Fig. 2 for the chemical potential
��n�.
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potential crosses the bulk value and grows with a large de-
rivative, signaling the end of validity of the current calcula-
tion.

We recognize two regions in Figs. 2 and 3. Below n
�17 Å−1, the isotherm reveals sequential adsorption by fill-
ing the corners, a process that constitutes the first stage in the
occupation of a pore3 and replaces, for this geometry, the
well-known “layering” of a film on planar surfaces. Although
in the density range between 17.5 and 32.5 Å−1 the system is
unstable against density fluctuations, the FRDF method al-
ways gives rise to continuous trajectories, which represent
possible branches of the equation of state of the helium at-
oms. The higher n region above 17 Å−1 corresponds to CC
and the loop resembles the adsorption-desorption hysteresis
cycle described in the literature,3,6 with an upper adsorption-
like branch governed by adhesion to the pore walls and a
lower desorptionlike path where symmetry-breaking bubbles
may form. Each isotherm in Fig. 3 displays two van der
Waals loops; one at low density ending at nc; the second
ending at the CC threshold ncc. Closer examinations of the
curves indicate that the origin of the latter Maxwell construc-
tion takes place around n=17 Å−1, where paths �i� and �ii�

cross. Note that the patterns �e� and �g� at the edges of this
plateau, respectively, represent a low-density phase with
fluid sticking to the walls, which corresponds to stable
multilayer adsorption and the fully condensed state at high
density �cf. Figs. 5 and 6�. These are the phases coexisting at
CC,5 which are unambiguously visualized in Monte Carlo
simulations.5,7

The CC loop is similar to the one in Fig. 4 for a cylindri-
cal pore of radius R�26.25 Å, with the same area as the
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FIG. 4. �Color online� Same as Fig. 2 for a cylindrical pore with
same area as the 50 Å, rhombus.
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FIG. 5. �Color online� Density ��0,z� in the rhombic pore of
Figs. 2 and 3.
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FIG. 6. �Color online� Density ��x ,0� in the rhombic pore of
Figs. 2 and 3.
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FIG. 7. �Color online� Density contours of type �g� for n
=29 Å−1.
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50 Å rhombus. As in Fig. 2, the full and dashed-dotted lines,
respectively, contain patterns evolved from helium filling ho-
mogeneously �i� the whole cylinder and �ii� a half tube. Al-
though we could not reach converging solutions along path
�i� for densities below 12 Å−1, it is clear that both curves
must join the origin of coordinates smoothly after reaching
their maxima at low densities. The main qualitative differ-
ence between Figs. 2 and 4 is the disappearance of the
branches associated with filling of the corners. Moreover, the
vanishing of the grand potential near 34.5 Å−1 for � around
−8.2 K is an indication that a radial configuration of helium
wets the tube walls, which is in agreement with earlier find-
ings for Cs cylinders.17 For this radius, adhesion to the cy-
lindrical walls is not sufficient to secure condensation at
lower densities. This is a prelude for the formation of finite
size drops or bubbles inside the tube, as obtained for planar
geometries.18

Figures 5 and 6, respectively, show the densities ��0,z�
and ��x ,0� along the long �z axis� and short �x axis� diago-
nals. In panels �a� and �b� of Fig. 5 the peaks represent quasi-
one-dimensional helium accumulating near the vertices, ac-
cording to the typical growth pattern in a wedge.16 Panels �c�
to �e� illustrate the various forms of filling the four corners
and we note the symmetry-breaking effect in panels �d�,

where helium is capillary condensed along the shortest diag-
onal �Fig. 6� while keeping empty one narrow corner �Fig.
5�. A similar effect takes place in panels �f� exchanging di-
agonals.

The lowest right panels confirm that in configuration �g�,
helium is capillary condensed. The density contours dis-
played in more detail in Fig. 7 illustrate the competition be-
tween the “spaghettilike” growth by an accumulation of
quasi-one-dimensional matter, and the “lasagnalike” pattern,
which is characteristic of planar film thickening by addition
of quasi-two-dimensional layers. This mechanism can only
occur in pores with sufficiently long sides.

As a final remark, we comment that since the universe of
initial conditions is overwhelmingly large, the present work
is far from exhaustive and serves the purpose of illustrating
the kind of scenarios that may appear.

We are grateful to Manuel Barranco for enlightening dis-
cussions. This work has been performed under Grants No.
FIS2005-01414 from DGI, Spain �FEDER�, Grant No. 2005
SGR00343 from Generalitat de Catalunya and in Argentina,
Grant No. PIP 5138/05 from CONICET, Grant No. PICT
31980/05 from ANPCT, and Grant No. X298 from Univer-
sity of Buenos Aires.

1 C. Rascón and A. O. Parry, J. Chem. Phys. 123, 024798 �2000�;
L. Bruschi, A. Carlin, and G. Mistura, Phys. Rev. Lett. 89,
166101 �2002�; C. Rascón and A. O. Parry, Nature �London�
407, 986 �2003�; G. McHale, N. J. Shirtcliffe, S. Aqil, C. C.
Perry, and M. I. Newton, Phys. Rev. Lett. 93, 036102 �2004�; O.
Gang, Kyle J. Alvine, Masafumi Fukuto, Peter S. Pershan,
Charles T. Black, and Benjamin M. Ocko, ibid. 95, 217801
�2005�; L. Bruschi, G. Fois, G. Mistura, M. Tormen, V. Garbin,
E. di Fabrizzio, A. Gerardino, and M. Natali, J. Chem. Phys.
125, 144709 �2006�; M. Tasinkevych and S. Dietrich, Phys.
Rev. Lett. 97, 106102 �2006�.

2 R. Evans, U. Marini Bettolo Marconi, and P. Tarazona, J. Chem.
Soc., Faraday Trans. 2 82, 1763 �1986�; P. C. Ball and R. Evans,
Langmuir 5, 714 �1989�.

3 L. D. Gelb, K. E. Gubbins, R. Radhandakrishnan, and M.
Sliwinska–Bartkowiak, Rep. Prog. Phys. 62, 1573 �1999�.

4 A. V. Neimark, P. I. Ravikovitch, and A. Vishnyakov, Phys. Rev.
E 62, R1493 �2000�; P. I. Ravikovitch, A. Vishnyakov, and A.
V. Neimark, ibid. 64, 011602 �2001�.

5 L. D. Gelb, Mol. Phys. 100, 2049 �2002�.
6 A. Neimark, P. I. Ravikovich, and A. Vishnakov, J. Phys.: Con-

dens. Matter 15, 347 �2003�.
7 R. Paul and H. Rieger, J. Chem. Phys. 123, 024708 �2005�.
8 L. H. Cohan, J. Am. Chem. Soc. 60, 433 �1938�.

9 M. W. Cole, F. Ancilotto, and S. M. Gatica, J. Low Temp. Phys.
138, 195 �2005�; M. Rossi, D. E. Galli, and L. Reatto, ibid. 146,
95 �2007�.

10 E. S. Hernández, F. Ancilotto, M. Barranco, R. Mayol, and M.
Pi, Phys. Rev. B 73, 245406 �2006�.

11 M. Barranco, R. Guardiola, S. Hernández, R. Mayol, J. Navarro,
and M. Pi, J. Low Temp. Phys. 142, 1 �2006�.

12 A. Hernando, E. S. Hernández, R. Mayol, and M. Pi, Phys. Rev.
B 76, 115429 �2007�.

13 F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, and J.
Treiner, Phys. Rev. B 52, 1193 �1995�.

14 M. A. M. Beerlage, J. M. M. Peeters, J. A. M. Nolten, M. H. V.
Mulder, and H. Strathmann, J. Appl. Polym. Sci. 75, 1180
�2000�; R. G. Harrison, N. K. Dally, and A. Y. Nazarenko,
Chem. Commun. �Cambridge� 2000, 1387; S. Matthias, F.
Müller, and U. Gösele, J. Appl. Phys. 98, 023524 �2005�.

15 P. F. Mc Kenzie, R. M. Webber, and J. L. Anderson, Langmuir
10, 1539 �1994�.

16 R. Mayol, F. Ancilotto, M. Barranco, E. S. Hernández, and M.
Pi, J. Low Temp. Phys. 148, 851 �2007�.

17 L. Szybisz and S. M. Gatica, Phys. Rev. B 64, 224523 �2001�.
18 M. Barranco, M. Guilleumas, E. S. Hernández, R. Mayol, M. Pi,

and L. Szybisz, Phys. Rev. B 68, 024515 �2003�.

HERNANDO et al. PHYSICAL REVIEW B 77, 195431 �2008�

195431-4


