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Abstract 

This study presents a multiple-input multiple-output (MIMO) approach for 

multi-step-ahead time series prediction with a Gaussian process regression 

(GPR) model. We assess the forecasting performance of the GPR model with 

respect to several neural network architectures. The MIMO setting allows 

modelling the cross-correlations between all regions simultaneously. We find 

that the radial basis function (RBF) network outperforms the GPR model, 

especially for long-term forecast horizons. As the memory of the models 

increases, the forecasting performance of the GPR improves, suggesting the 

convenience of designing a model selection criteria in order to estimate the 

optimal number of lags used for concatenation. 
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1 Introduction 

Machine learning (ML) methods are being increasingly used for economic and financial 

forecasting (Ortega and Khashanah, 2014; Von Spreckelsen et al., 2014; Stasinakis et 

al., 2014; Kock and Teräsvirta, 2014; Aminian et al., 2006; Medeiros et al., 2006; Chen 

and Leung, 2005). International tourism is becoming one of the most important 

economic activities worldwide, and as result there is an increasing interest in the 

refinement of tourism demand forecasts. A growing body of literature finds evidence in 

favour of a better predictive performance of machine learning models with respect to 

traditional forecasting methods (Adya and Collopy, 1998; Cho, 2003; Xu et al., 2016). 

Statistical learning is based on the construction of computer algorithms that learn 

through experience. The complex nature of the data generating process of tourism 

demand explains the increasing use of non-linear approaches such as support vector 

regression (SVR) and neural network (NN) models for tourism forecasting. Akin 

(2015), Chen and Wang (2007), Claveria et al. (2016b) and Hong et al. (2011) all find 

that SVR models outperform linear models for tourism demand forecasting. 

With respect to NN models, the most widely used NN feed-forward topology in 

tourism has been the multi-layer perceptron (MLP) network (Pattie and Snyder, 1996; 

Uysal and El Roubi, 1999; Law, 2000; Tsaur et al., 2002; Palmer et al., 2006; Padhi and 

Aggarwal, 2011; Lin et al., 2011; Teixeira and Fernandes, 2012; Claveria et al., 2015b; 

Molinet et al., 2015). See Athanasopoulos et al. (2011) and Song and Li (2008) for a 

thorough review of recent tourism demand forecasting studies. 

The Radial Basis Function (RBF) network, is being increasingly used for tourism 

forecasting. Kon and Turner (2005) implement a RBF NN to forecast arrivals to 

Singapore. More recently, Cang (2014) combines RBF, MLP and SVR forecasts of UK 

inbound tourist arrivals in non-linear models. Subsequently, Çuhadar et al. (2014) and 

compare the forecasting accuracy of RBF to that of MLP networks to predict tourist 

demand, finding evidence in favour of RBF NNs. A complete summary on the use of 

NNs with forecasting purposes can be found in Zhang et al. (1998). 

Originally devised for interpolation, the Gaussian Process Regression (GPR) model 

can be regarded as a supervised learning method based on a generalized linear 

regression that locally estimates forecasts by the combination of values in a kernel 

(Rasmussen, 1996). Gaussian process models allow to specify Bayesian priors on the 

data and the structure, and therefore the use of kernel analogue for machine for learning. 
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Another key advantage of GPs over other statistical learning techniques is that they 

provide full probabilistic predictive distributions, including estimations of the 

uncertainty of the predictions. These features make GPR an ideal tool for forecasting 

purposes (Banerjee et al., 2008; Ahmed et al., 2010; Yang et al., 2013). 

In spite of the fact that GPs are powerful, non-parametric tools for regression in high 

dimensional spaces, there is only one previous study that uses GPR for tourism 

forecasting (Wu et al., 2012). The authors use a sparse GPR model to predict tourism 

demand to Hong Kong and find that its forecasting capability outperforms those of the 

ARMA and SVR models. For a unifying description of sparse approximations for GPR 

see Quiñonero-Candela and Rasmussen (2005). 

In order to fill this gap, we propose a multiple-output GPR model for multi-step-

ahead time series prediction. Recently, Ben Taieb et al. (2010) presented a multiple-

input multiple-output (MIMO) extension of conventional local modelling approaches 

that allows to preserve the stochastic properties of the training series in multiple-step-

ahead prediction. The main aim of this study is to design a MIMO framework for multi-

step-ahead time series prediction with a GPR model. 

To assess the forecasting performance of the presented GPR model we compare it to 

a RBF NN and a MLP NN used as benchmark in a MIMO setting that incorporates the 

cross-correlations between the inputs (international tourist arrivals to all seventeen 

regions of Spain) in order to generate a vector of future values (for all markets). 

The study is organized as follows. The next section reviews the literature and 

describes the data. The third section presents the different machine learning methods 

applied in the study. Section four describes the experimental settings and reports the 

results of the multiple-step-ahead forecasting comparison. The paper concludes with 

some final remarks and potential lines for future research. 

 

 

2 Background and data 
 

As a result of the growing importance of tourism as a key driver of socio-economic 

progress, there is an increasing amount of literature about the contribution of tourism to 

economic growth (Sánchez et al., 2015; Pérez-Rodríguez et al., 2015; Chou, 2013; 

Schubert et al., 2011; Biagi and Pulina, 2009; Durbarry, 2004; Balaguer and Cantavella-

Jordá, 2002). At regional level, Paci and Marrocu (2013) evaluated the impact tourism 

on economic growth in 179 European regions. By means of a spatial growth regression 
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framework, the authors found that regional growth was positively affected by domestic 

and international tourism. 

Most of the research on tourism at regional level in Spain focuses on three regions: 

Andalusia, and the Balearic and the Canary Islands. Regarding the region of Andalusia, 

Andrades-Caldito et al. (2013) analysed the destination image perceived by visitors over 

the past decade. The authors quantified the degree of convergence of each province’s 

tourism image relative to the overall tourism image of Andalusia as a destination, and 

ranked the provinces according to their level of attractiveness as perceived by tourists, 

finding a decline in the valuation of the region’s main coastal destinations in favour of 

those specializing in nature and culture. Similar results were obtained by Sarrión-

Gavilán et al. (2015), who used exploratory spatial data analysis techniques to analyse 

the impacts of tourism flows. In spite of a high degree of concentration in the littoral, 

the authors found a more equitable territorial distribution of tourism in coastal mature 

destinations and an increasing dynamism in the rural inland areas. 

Bardolet and Sheldon (2008) undertook a comparative analysis between the Balearic 

Islands and the Hawaiian Islands, evaluating their growth paths since the 1950s, and 

identifying their strengths and weaknesses as archipelago destinations. While Capó et 

al. (2007) showed that that the continuous orientation towards tourism activities had 

translated in significant growth in the level of income in both the Balearic and the 

Canary Islands, Vera and Ivars (2009) found evidence that the impact of low-cost 

carriers in Spain had reinforced the specialization of tourism in real estate along the 

Spanish Mediterranean coast. 

Aguiló et al. (2005) identified the sensitivity of the tourist market in the Balearic 

Islands to price changes in travel-related services. Garín-Muñoz and Montero-Marín 

(2007) used a dynamic model with panel data to identify and measure the impact of the 

main determinants of the inbound international tourism flows to the Balearic Islands 

from the most important source markets. The authors found that consumer loyalty to the 

destination was an important determinant of tourism demand. The results suggested that 

the demand was heavily dependent on the evolution of economic activity in each of the 

origin countries and on the relative cost of living of tourists in the destination. 

By means of regression analysis, Rosselló et al. (2004) provided evidence of the 

influence of economic variables on the seasonal distribution of tourist arrivals to the 

Balearic Islands. The temporal concentration of tourism demand was also analysed by 

Duro and Farré (2015), who found significant differences across the Spanish provinces 
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for the period 1999-2012. On one end, the Balearic and the Catalonian coastal provinces 

(with the exception of Barcelona) presented the strongest seasonal pattern, while on the 

other end, the Canary Islands and Madrid were the regions that showed the lowest level 

of seasonality. In this sense, Priego et al. (2015) used a gravity model to show that climate 

was an important factor in determining domestic tourism flows in Spain at regional level.  

In the Canary Islands, Santana-Jiménez and Hernández (2011) used panel data 

analysis to evaluate the influence of the tourist’s perception of overcrowding in five 

islands of the archipelago, obtaining an indicator of each island’s maximum capacity. 

Focusing on the island of Tenerife, Ledesma-Rodríguez et al. (2001) estimated short-run 

and long-run elasticities for tourists visiting the island, obtaining significant elasticities 

for income, exchange rate, cost of the trip, and infrastructure. See Aguiló (2010) for an 

overview of tourism economics research in Spain from 2000 to 2010. 

Despite the fact that most forecasting studies are conducted at the national level, 

several regional studies have been published in recent years. Lehmann and Wohlrabe 

(2015) reviewed some of the main issues related to regional forecasting. Guizzardi and 

Stacchini (2015) made use of business sentiment indicators form tendency surveys for 

real-time forecasting of hotel arrivals at a regional level, improving the forecasting 

accuracy of structural time series models. Rickman et al. (2009) applied a A Bayesian 

vector autoregression (BVAR) approach to assess whether prior information on spatial 

and economic linkages improved forecast accuracy of employment for the metropolitan 

areas of the state of Oklahoma and their proximate metropolitan areas. 

Studies on tourism demand forecasting at regional level in Spain are mostly 

concentrated in the Balearic and the Canary Islands. Regarding the Canary Islands, Gil-

Alana (2010) analysed the degree of persistence of monthly arrivals using different 

time-series approaches. Gil-Alana et al. (2008) applied seasonal unit roots and 

seasonally fractionally integrated models to forecast tourist arrivals to the Canary 

Islands, and found that simple deterministic models with seasonal dummy variables and 

AR(1) disturbances produced better results over short horizons. 

For the Balearic Islands, Rosselló-Nadal (2001) predicted turning points in 

international visitor arrivals from the two major source markets using the leading 

indicator approach. Álvarez-Díaz and Rosselló-Nadal (2010) incorporated 

meteorological variables to forecast British tourist arrivals to the Balearic Islands. More 

recently, Saenz-de-Miera and Rosselló (2014) modelled tourism impacts on air 

pollution in Mallorca. The authors showed that the inclusion of daily stock of tourists 
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improved the standard specification of urban air pollution models. By means of a 

Generalized Additive Model they found that a 1% increase in tourists could be related to 

up to a 0.45% increase in 10PM  concentration levels. 

The complex data generating process of tourism demand explains the increasing use 

of new non-linear approaches for tourism modelling. As a result, ML methods are 

experiencing a growing use in tourism forecasting (Peng et al., 2014). SVR and NN 

models are the most commonly used ML techniques for tourism demand prediction. 

Regarding SVR models, Chen and Wang (2007) predicted tourist arrivals to China with 

SVR, back propagation NN and ARIMA models, obtaining the best forecasting results 

with SVRs. Hong et al. (2011) also obtained more accurate forecasts with SVRs than 

with ARIMA models for Barbados. Akin (2015) compared the forecasting results of 

SVR to that of SARIMA and NN models to predict international tourist arrivals to 

Turkey, obtaining the best predictions with SVR models when the slope feature is more 

prominent. 

There is also wide evidence in favour of NN models when compared to traditional 

time series models for tourism demand forecasting (Cho, 2003; Law, 2000). The first 

study that implemented ML techniques for tourism demand forecasting in Spain was 

that of Palmer et al. (2006). The authors designed a MLP NN to forecast tourism 

expenditure in the Balearic Islands, finding that the proposed network architecture 

provided more accurate forecasts when data had been detrended and deseasonalized. 

This result coincides with that of Claveria et al. (2017) for Catalonia, who analysed the 

effects of data pre-processing on the forecasting performance of NN models and found 

that the predictive accuracy of the models improved with seasonal adjusted data.  

Medeiros et al. (2008) developed an alternative approach to analyse the demand for 

international tourism in the Balearic Islands. By using a NN model that incorporated 

time-varying conditional volatility and daily air passenger arrivals to Palma de 

Mallorca, Ibiza and Mahon as a proxy for international tourism demand for the Balearic 

Islands, the authors found that time-varying variances provided useful information 

regarding the risks associated with variations in international tourist arrivals. 

Whilst NN models have been widely used in economic modelling and forecasting, 

other ML techniques such as GPR have been barely applied for forecasting purposes. 

From a wide range of ML methods, Ahmed et al. (2010) found that an MLP NN and the 

GPR showed the best forecasting performance on the monthly M3 time series 

competition data. In a similar exercise, Andrawis et al. (2011) found evidence in favour 
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of a simple average combination of NN, GPR and linear models for the NN5 

competition. Chapados and Bengio (2007) obtained accurate predictions of commodity 

spread prices by means of GPR. 

GPR models can be regarded as supervised learning methods based on a generalized 

linear regression that locally estimates forecasts by the combination of values in a 

kernel (Rasmussen, 1996). The works of Smola and Barlett (2001), MacKay (2003), and 

Rasmussen and Williams (2006) have been key in the development of GPR models. By 

expressing the model in a Bayesian framework, the authors extended GPR applications 

beyond spatial interpolation to regression problems. Additional refinements have been 

proposed by Belhouari and Bermak (2004) and Girard et al. (2003) who respectively 

proposed using a non-stationary covariance function and the knowledge of the variance 

on inputs in order to improve the forecasting performance of the GPR model. However, 

up until now applications of GPR have been mostly restricted to a single-input single-

output framework. 

In this study, we attempt to cover this deficit by applying an extension of the GPR 

model for MIMO modelling, and assessing its forecasting performance at the regional 

level. We make use of international tourist arrivals to all seventeen regions of Spain. 

The MIMO GPR allows modelling the connections in tourism demand to all regions and 

generate a vectorial forecast. This strategy is cost-effective in computational terms, and 

seems particularly indicated for regional forecasting. 

With this aim we use monthly data on international tourism demand used in this 

study are collected from the Spanish Statistical Office (National Statistics Institute – 

INE – www.ine.es). Our data set for the empirical experiment covers 183 monthly 

observations of of tourist arrivals at a regional level from 1999:01 to 2014:03. In spite 

of the fact that the forecasting performance of NNs improves when using 

deseasonalized data (Nelson et al., 1999), we use the raw data in order to analyse the 

forecasting accuracy of the models without using any pre-processing. In Figure 1 we 

present the mean annual growth rates of the different regions. The regions marked in 

grey experience a rate of growth above the average (3.7%). These regions are located in 

coastal areas of the Mediterranean, showing the asymmetric concentration of tourism is 

Spain (Sarrión-Gavilán et al., 2015). 

 

http://www.ine.es/
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Fig 1. Mean annual growth rate of tourist arrivals to Spain by region (1999-2013) 

 

 

3 Machine learning methods 

 

3.1 Gaussian Process Regression (GPR) 

 

GPR was first developed by Matheron (1973) based on the geostatistic works of Krige 

(1951). The works of MacKay (2003) and Rasmussen and Williams (2006) have been 

crucial in the development of GPR, which can be conceived as a method of 

interpolation for which the interpolated values are modelled by a GP governed by prior 

covariances. 

By expressing the model in a Bayesian framework, different statistical methods can 

be implemented in GP models. Therefore GPR applications can be extended beyond 

spatial interpolation to regression problems. GPR is used to estimate the weights of 

observed values form temporal lags and spatial points using the known covariance 

structures. Detailed information about GPR can be found in Rasmussen and Williams 

(2006). 

The GPR model assumes that the inputs ix  have a joint multivariate Gaussian 

distribution characterized by an analytical model of the structure of the covariance 

matrix (Rasmussen, 1996). The key point of the GPR is the possibility of specifying the 

functional form of the covariance functions, which allows to introduce prior knowledge 
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about the problem into the model. The training set       nn yxyxyx ,,,,,, 2211 D is 

assumed to be drawn from the (noisy) process: 

  εxfy ii   with  2,0~  N  (1) 

where ix  is an input vector in dR  and iy is a scalar output in 1R . Therefore we have a 

1RRd   mapping. For notational convenience, we aggregate the inputs and the outputs 

into matrix  nxxx ,,, 21 X  and  nyyy ,,, 21 y  respectively. 

The joint distribution of the variables is the conditional Gaussian distribution: 

    IXX,~X
2,0 KNyp   (2) 

where I  is the identity matrix, and the covariance matrix  XX,K  is also called the 

kernel matrix with elements  jiij xxK , . The kernel function  xxk ,  is a measure of the 

distance between input vectors. 

For the kernel function, a common choice is the Gaussian, or squared exponential. 

In this study we make use of a radial basis kernel with a linear trend to account for the 

trend component present in most of the time series over the training period: 
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where 2υ  controls the prior variance, and λ  is a parameter that controls the rate of 

decay of the covariance by determining how far away ix  must be from jx  for if  to be 

unrelated to jf . Alternative sets of kernels are discussed in MacKay (2003). The 

hyperparameters  κγλυ ,,,  are estimated by maximum likelihood in: 

         2log
2

log
2

1

2

1
log 212 n

yyxyp T 


IXX,KIXX,K  (4) 

Given the training samples  ji yx ,  and a set of test points *X , the objective of 

GPR is to find the predictive outputs *f  with probabilistic confidence intervals. By 

making use of the Bayesian inference, the joint posterior distribution is: 
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The joint prior distribution and the independent likelihood probability both follow a 

Gaussian distribution: 
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   IσfNfyp 2,   (7) 

where f  and *f  are subscripts of the variables between which the covariance is 

computed. The Gaussian predictive distribution  yfp *  is characterized by mean μ  

and variance  . 

Therefore the GPR model specification is given by equations: 

     yIXXK
12*,


  XX,K   (8) 

        *,*,**,
12 XXKIXXKXXK


 XX,K  (9) 

where μ  is the predicted output, and the variance   can be used to estimate confidence 

levels. 

In this study we propose an extension of the model to multiple outputs based on an 

analogy to radial basis functions. We use a set of univariate predictors followed by a 

matrix product that takes into account the cross-dependencies of the outputs in order to 

improve the performance of the GPR. In this case we have a Md RR  , where M  is 

the dimension of the output. This extension is applied by following a two-step training. 

First, we independently train each time series, generating supervised forecasts for each 

output. In the second step, by means of a regularized linear regression (Haykin, 2008), 

we generate forecasts for each output taking into account their correlations. This 

procedure is also applied to the NN models. 

 

 

3.2 Neural Network models 

 

3.2.1 Radial Basis Function (RBF) 

 

Initially proposed by Broomhead and Lowe (1988), RBF networks are hybrid networks 

that combine both supervised and non-supervised learning. RBF NN are a special class 

of multi-layer feed-forward architecture with several layers of processing. First, an input 

layer, modelled as a feature vector of real numbers. Second, a hidden layer, which 

consists of a set of neurons, each of them computing a symmetric radial function 

centred each at a centroid j . Finally, an output layer that consists of a set of neurons, 

one for each given output. The output of the network can be expressed as a scalar 

function of the output vector of the hidden layer: 
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  (10) 

where ty  is the output vector of the network at time t ; itx   is the input value at time 

it  , where i  stands for the number of lags that are used to introduce the context of the 

actual observation; jg  is the activation function, which usually has a Gaussian shape; 

j  are the weights connecting the output of the neuron j  at the hidden layer with the 

output neuron; j  is the centroid vector for neuron j ; and the spread j  is a scalar 

that measures the width over the input space of the Gaussian function. We denote q  as 

the number of neurons in the hidden layer, which ranges from 5 to 30, increasing for 

longer forecasting horizons. 

 

3.2.2 Multi-layer Perceptron (MLP) 

 

MLP networks consist of multiple layers of computational units interconnected in a 

feed-forward way. MLP networks are supervised neural networks that use as a building 

block a simple perceptron model. The topology consists of layers of parallel 

perceptrons, with optimal connections between layers: 
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where ty  is the output vector of the network at time t ; itx   is the input value at time 

it  ; j  are the weights connecting the output of the neuron j  at the hidden layer with 

the output neuron;. ijw  stand for the weights of neuron j  connecting the input with the 

hidden layer; and g  is the non-linear function of the neurons in the hidden layer. The 

number of neurons in the hidden layer is denoted by q , and determines the network’s 

capacity to approximate a given function. In order to solve the problem of overfitting, 

the number of neurons is estimated by cross-validation. 
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4 Forecasting comparison 

 

4.1 Experimental design 

 

For an iterated multi-step-ahead forecasting comparison the partition between train 

and test sets is done sequentially: as the prediction advances, past forecasts are 

successively incorporated to the training database. As the size of the training set 

increases, for each predicted value in the test database, the first element of the validation 

database is transferred to the training database, and the last predicted value of the test 

database is incorporated to the validation database in a recursive way. Thus, the first 

ninety-six monthly observations are selected as the initial training set, the next 33% as 

the validation set, and the last 15% as the test set. 

Once the topology of the neural networks is decided, the parameters of the networks 

are estimated by means of the Levenberg-Marquardt (LM) algorithm. In order to assure 

a correct performance of the RBF NNs, the number of centroids and the spread of each 

centroid have to be selected before the training phase. In this study the training is done 

by adding the centroids iteratively with the spread parameter fixed. Then a regularized 

linear regression is estimated to compute the connections between the hidden and the 

output layer. Finally, the performance of the networks is computed on the validation 

data set. This process is repeated until the performance on the validation database ceases 

to decrease. To avoid the possibility that the search for the optimum value of the 

parameters finishes in a local minimum, we use a multi-starting technique that 

initializes the NNs several times for different initial random values and returns the best 

result. All models are implemented with Python. 

 

4.2 Experimental results 

 

To assess the performance of the GPR model, we compare its forecasting accuracy to 

that of a RBF NN. We estimate the models and generate forecasts in a recursive way for 

different forecast horizons (1, 3, 6 and 12 months) during the out-of-sample period. In 

order to summarize the results of the forecasting comparison, we compute several 

forecast accuracy measures. First we obtain the Relative Mean Absolute Percentage 

Error (rMAPE) statistic for the GPR and the RBF NN with respect to a MLP NN model 
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used as a benchmark (Table 1). Next, we run the Diebold-Mariano (DM) test using a 

Newey-West type estimator to analyse whether the reductions in MAPE between both 

models are statistically significant (Table 2). Finally, in Table 3 we compute the 

proportion of Periods with Lower Absolute Error (PLAE) statistic. 

 

Table 1. Forecast accuracy. rMAPE - GPR and RBF NN vs. MLP NN 

 GPR RBF NN  GPR RBF NN 

Andalusia   Valencia (Community)   

h=1 0.823 0.921 h=1 0.945 1.017 

h=3 1.059 0.918 h=3 0.948 0.924 

h=6 0.971 0.795 h=6 0.966 0.902 

h=12 1.197 0.769 h=12 0.972 0.948 

Aragon   Extremadura   

h=1 0.820 0.935 h=1 0.991 1.106 

h=3 0.911 0.976 h=3 1.228 1.307 

h=6 1.041 0.928 h=6 0.898 0.741 

h=12 0.866 0.850 h=12 0.921 0.961 

Asturias   Galicia   

h=1 0.767 0.863 h=1 0.845 0.931 

h=3 1.072 0.797 h=3 1.068 0.760 

h=6 0.871 0.895 h=6 1.065 1.023 

h=12 0.859 0.758 h=12 1.064 1.006 

Balearic Islands   Madrid (Community)   

h=1 0.746 0.755 h=1 1.289 1.134 

h=3 1.048 0.526 h=3 1.049 1.092 

h=6 1.112 1.507 h=6 1.002 0.917 

h=12 2.359 1.671 h=12 0.983 1.015 

Canary Islands   Murcia (Region)   

h=1 1.148 1.123 h=1 1.061 1.121 

h=3 1.002 1.003 h=3 1.073 1.001 

h=6 0.933 0.957 h=6 0.920 0.845 

h=12 1.055 1.031 h=12 0.919 0.836 

Cantabria   Navarra   

h=1 0.807 0.835 h=1 0.798 0.928 

h=3 0.910 0.715 h=3 1.055 0.952 

h=6 0.792 1.045 h=6 1.080 1.082 

h=12 0.712 0.586 h=12 0.814 0.827 

Castilla-Leon   Basque Country   

h=1 0.761 0.966 h=1 0.871 0.914 

h=3 0.841 0.797 h=3 0.909 0.914 

h=6 0.935 0.933 h=6 0.924 0.945 

h=12 0.913 0.818 h=12 0.894 0.954 

Castilla-La Mancha   La Rioja   

h=1 0.592 0.862 h=1 1.026 1.058 

h=3 0.736 0.838 h=3 0.769 0.613 

h=6 0.916 0.911 h=6 0.976 0.677 

h=12 0.872 0.696 h=12 1.079 0.852 

Catalonia      

h=1 0.794 0.948    

h=3 1.063 0.996    

h=6 1.017 0.968    

h=12 0.816 0.872    
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Table 2. DM test statistic - GPR vs. RBF NN 

Andalusia  Valencia (Community)  

h=1 -2.384 h=1 -1.941 

h=3 0.309 h=3 -0.207 

h=6 1.619 h=6 1.784 

h=12 6.426 h=12 1.138 

Aragon  Extremadura  

h=1 -1.776 h=1 -1.755 

h=3 -1.455 h=3 -1.702 

h=6 2.766 h=6 1.747 

h=12 0.632 h=12 -1.090 

Asturias  Galicia  

h=1 -1.846 h=1 -2.733 

h=3 0.884 h=3 0.864 

h=6 -0.218 h=6 0.666 

h=12 1.670 h=12 0.594 

Balearic Islands  Madrid (Community)  

h=1 -1.941 h=1 2.334 

h=3 0.668 h=3 -1.258 

h=6 1.161 h=6 1.449 

h=12 0.973 h=12 -0.269 

Canary Islands  Murcia (Region)  

h=1 0.485 h=1 -0.214 

h=3 -0.226 h=3 -0.029 

h=6 -1.208 h=6 1.169 

h=12 0.494 h=12 1.586 

Cantabria  Navarra  

h=1 -0.437 h=1 -1.300 

h=3 0.256 h=3 0.852 

h=6 -0.051 h=6 -1.267 

h=12 -0.460 h=12 0.788 

Castilla-Leon  Basque Country  

h=1 -6.729 h=1 -1.626 

h=3 -0.557 h=3 -0.960 

h=6 1.283 h=6 -0.748 

h=12 3.338 h=12 -0.899 

Castilla-La Mancha  La Rioja  

h=1 -2.848 h=1 -0.459 

h=3 -1.792 h=3 -0.325 

h=6 0.660 h=6 3.425 

h=12 2.325 h=12 2.616 

Catalonia    

h=1 -3.758   

h=3 -0.242   

h=6 1.714   

h=12 -0.027   

Note: The 5% level critical value is 2.028 

 

The results of the rMAPE for the GPR and the RBF NN models presented in Table 

1 show that there are no major differences between both models when compared to a 

MLP NN. By regions, in the Balearic Islands, Madrid and the Canary Islands the MLP 

NN is rarely outperformed. In contrast, in Cantabria, Castilla-Leon, Castilla-La Mancha, 

and the Basque Country, both the GPR model and the RBF NN outperform the MLP for 

all forecast horizons. 
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In order to test whether the differences between the two competing models are 

statistically significant, we calculate the DM test (Table 2). The null hypothesis of the 

test is that the difference between the two competing series is non-significant. A 

negative sign of the statistic implies that the RBF NN model has bigger forecasting 

errors. 

The results of the DM test between the GPR and the RBF NN models presented in 

Table 2 indicate that only in 18% of the cases we find a significant difference between 

the absolute forecast errors of the GPR and the RBF NN model. In 58% of the cases, the 

RBF NN shows a significant improvement over the GPR. While in three regions 

(Cantabria, Catalonia and the Basque Country) the forecast errors of the RBF NN are 

bigger than the forecast errors of the GPR model, in the rest of the regions the results 

are mixed. 

The improvement of the GPR model with respect to the RBF NN becomes more 

prominent for short-term forecast horizons (one and three-months ahead predictions). 

While for six and twelve-months ahead forecasts, the errors of the GPR are bigger than 

the ones of the RBF NN in 9 out of 17 regions (Andalusia, Aragon, the Balearic Islands, 

Castilla-Leon, Castilla-La Mancha, Valencia, Galicia, Murcia and La Rioja). 

Finally, to attain a more comprehensive forecasting evaluation, we compute the 

PLAE statistic (Claveria et al., 2015a). The PLAE can be regarded as a variation of the 

Percent Better measure used in the M3-competition to compare the forecast accuracy of 

the models to a random walk (Makridakis and Hibon, 2000). The PLAE is a 

dimensionless measure based on the CJ statistic for testing market efficiency (Cowles 

and Jones, 1937). This accuracy measure allows us to compare the forecasting 

performance between two competing techniques against a benchmark model. In this 

study we use the MLP NN as a benchmark. 

The PLAE statistic is a ratio that gives the proportion of periods in which the model 

under evaluation obtains lower absolute forecast errors than the benchmark model. Let 

us denote ty  as actual value and tŷ  as forecast at period nt ,,1 . Forecast errors can 

then be defined as ttt yye ˆ . Given two competing models A  and B , where A  refers 

to the forecasting model under evaluation and B  stands for benchmark model, we can 

then obtain the proposed statistic as follows: 

n

λ
PLAE

n
t t

 1  where 





 


otherwise   0

 if   1 ,, BtAt

t

ee
λ   (11) 
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Table 3. Forecast accuracy. PLAE - GPR and RBF NN vs. MLP NN 

 GPR RBF NN  GPR RBF NN 

Andalusia   Valencia (Community)   
h=1 0.364 0.273 h=1 0.182 0.910 

h=3 0.273 0.545 h=3 0.273 0.455 

h=6 0.455 0.545 h=6 0.364 0.455 

h=12 0.818 0.818 h=12 0.636 0.727 

Aragon   Extremadura   
h=1 0.273 0.273 h=1 0.182 0.182 

h=3 0.545 0.727 h=3 0.273 0.727 

h=6 0.727 0.545 h=6 0.727 0.818 

h=12 0.636 0.727 h=12 0.909 0.818 

Asturias   Galicia   
h=1 0.182 0.182 h=1 0.910 0.910 

h=3 0.545 0.909 h=3 0.636 0.818 

h=6 0.818 0.818 h=6 0.818 0.909 

h=12 0.818 0.818 h=12 0.909 0.909 

Balearic Islands   Madrid (Community) .  

h=1 0.545 0.545 h=1 0.000 0.182 

h=3 0.818 0.909 h=3 0.182 0.182 

h=6 0.909 1.000 h=6 0.182 0.273 

h=12 1.000 1.000 h=12 0.000 0.000 

Canary Islands   Murcia (Region)   

h=1 0.000 0.000 h=1 0.910 0.182 

h=3 0.000 0.000 h=3 0.364 0.545 

h=6 0.000 0.000 h=6 0.364 0.455 

h=12 0.000 0.000 h=12 0.636 0.818 

Cantabria   Navarra   

h=1 0.364 0.364 h=1 0.182 0.910 

h=3 0.818 0.909 h=3 0.545 0.818 

h=6 0.818 0.909 h=6 0.636 0.727 

h=12 1.000 0.909 h=12 0.727 0.636 

Castilla-Leon   Basque Country   

h=1 0.545 0.910 h=1 0.182 0.182 

h=3 0.636 0.909 h=3 0.273 0.455 

h=6 0.727 0.818 h=6 0.545 0.455 

h=12 0.909 0.909 h=12 0.910 0.273 

Castilla-La Mancha   La Rioja   

h=1 0.636 0.545 h=1 0.182 0.273 

h=3 0.727 0.909 h=3 0.727 0.909 

h=6 0.818 0.818 h=6 0.727 0.727 

h=12 0.818 0.818 h=12 0.818 0.909 

Catalonia      

h=1 0.273 0.910    

h=3 0.36.4 0.545    

h=6 0.818 0.818    

h=12 0.727 0.727    

Note: The PLAE ratio measures the proportion of out-of-sample periods with lower absolute errors than the 

benchmark model (MLP NN model). Values below 0.5 indicate that the benchmark model displays a higher 

number of lower absolute forecast errors than the model under evaluation for the out-of-sample period. 
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Table 3 shows the results of the PLAE statistic for the GPR and the RBF NN 

compared to the MLP NN. We do not find relevant differences between the GPR and 

the RBF NN when compared to the MLP NN. Both the GPR and the RBF NN display 

higher PLAE values than the MLP NN for all forecast horizons except for one-month 

ahead predictions, where the MLP NN shows a higher proportion of out-of-sample 

periods with lower absolute errors in all regions except two (the Balearic Islands and 

Castilla-La Mancha). Special mention should be made to the Canary Islands and the 

Community of Madrid, where neither model outperforms the MLP NN regardless of the 

forecast horizon. These results are in line with those obtained in Table 1. 

In order to evaluate the effect of the memory on the forecasting results, we repeat 

the experiment considering different topologies regarding the number of lags used for 

concatenation. In Table 4 we present the results of the rMAPE and the DM test for the 

GPR model with a memory of one period with respect to the GPR with i =3. We find 

that when additional lags are incorporated in the feature vector, the rMAPE results show 

that the forecasting performance of the GPR models improves in almost 70% of the 

cases. 

Finally, in Table 4 we also present the results of the DM test between the GPR with 

a one-period memory and the GPR with a three-period memory. We find that in 54% of 

the cases there is a significant difference between the absolute forecasting errors of the 

GPR for i =1 and the GPR for i =3. In 90% of the cases, incorporating additional lags in 

the model results in a significant improvement. Madrid and the Canary Islands are the 

only regions where there is no significant reduction in forecasting errors when 

increasing the memory of the model. The fact that both regions are the ones with the 

lowest temporal concentration of tourism demand suggests that increasing the memory 

of the models is particularly indicated when the series present a marked seasonal 

component. This evidence is in line with the results obtained by Claveria et al. (2016a), 

who found that GPR models could not outperform naïve forecasts in the absence of 

seasonality regardless of the forecast horizon. 

Overall, the empirical experiment shows that the forecasting performance of the 

different techniques improves for longer forecast horizons. For the Balearic Islands, 

Palmer et al. (2006) found that NNs were especially suitable for long-term forecasting, 

which is in line with previous research by Burger et al. (2001), Pattie and Snyder (1996) 

and Teräsvirta et al. (2005). However, we find that the RBF NN generates better 

predictions than the GPR models when compared to a MLP NN, especially for longer-
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term forecast horizons. This output suggests that RBF networks are better able to 

capture the seasonal pattern of the series than interpolation methods such as the GPR 

model. Cang (2014), Claveria et al. (2015a,b) and Çuhadar et al. (2014) also obtained 

better results with RBF networks than with other NN architectures for seasonal 

forecasting. 

 

Table 4. Forecast accuracy. rMAPE and DM test statistic - GPR( i =1) vs. GPR( i =3) 

 rMAPE DM  rMAPE DM 

Andalusia   Valencia (Community)   

h=1 1.264 -3.828 h=1 1.162 -1.341 

h=3 1.685 -5.386 h=3 1.231 -2.429 

h=6 1.151 -4.619 h=6 1.123 -3.153 

h=12 1.498 -2.113 h=12 1.084 -2.744 

Aragon   Extremadura   

h=1 0.914 -0.376 h=1 1.048 -0.685 

h=3 1.200 -2.204 h=3 1.374 -1.863 

h=6 1.022 -2.294 h=6 0.930 -2.259 

h=12 1.089 2.192 h=12 0.827 -1.933 

Asturias   Galicia   

h=1 0.805 -1.301 h=1 0.866 -1.536 

h=3 1.569 -2.823 h=3 1.188 -3.409 

h=6 1.149 -2.517 h=6 0.988 -2.314 

h=12 1.108 0.660 h=12 0.759 -0.400 

Balearic Islands   Madrid (Community)   

h=1 0.770 -1.102 h=1 1.206 0.361 

h=3 1.378 -3.404 h=3 1.123 0.325 

h=6 0.529 -3.553 h=6 1.066 0.950 

h=12 0.964 -0.239 h=12 1.023 0.962 

Canary Islands   Murcia (Region)   

h=1 0.960 2.768 h=1 1.208 -0.007 

h=3 0.947 0.891 h=3 1.641 -3.069 

h=6 1.042 0.256 h=6 1.263 -4.365 

h=12 1.092 -0.898 h=12 1.088 -3.397 

Cantabria   Navarra   

h=1 0.944 -2.499 h=1 0.767 -1.395 

h=3 1.396 -3.326 h=3 1.356 -3.052 

h=6 1.062 -3.798 h=6 1.021 -2.534 

h=12 0.940 0.058 h=12 0.843 2.110 

Castilla-Leon   Basque Country   

h=1 0.855 -1.948 h=1 1.049 -2.142 

h=3 1.147 -4.885 h=3 1.160 -1.760 

h=6 0.871 -3.150 h=6 1.066 -1.416 

h=12 0.875 1.040 h=12 1.071 1.008 

Castilla-La Mancha   La Rioja   

h=1 1.006 -2.987 h=1 0.932 -0.533 

h=3 1.250 -4.548 h=3 1.246 -3.585 

h=6 1.165 -3.781 h=6 1.001 -3.221 

h=12 0.859 -2.239 h=12 1.276 -0.046 

Catalonia      

h=1 0.887 -1.635    

h=3 1.372 -2.107    

h=6 1.055 -1.683    

h=12 1.068 2.405    

Note: The 5% level critical value is 2.028 
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When comparing the forecasting accuracy of a sparse GPR model than with ARMA 

and SVR models for tourist arrivals to Hong Kong, Wu et al. (2012) obtained better 

forecasting results with the GPR model. In our case, the GPR model only outperformed 

the RBF NN for short-term forecast horizons. Nevertheless, there are several differences 

between both approaches. On the one hand, the models used in the forecasting 

comparison differ between both studies. In this experiment we compared a GPR model 

to a RBF NN architecture, using a MLP NN model as a benchmark. Moreover, we did 

not apply any sparse approximation to reduce the computational complexity of the GPR 

model due to the size of the sample. On the other hand, we applied a MIMO setting 

instead of a single-input single-output approach. In this sense, Ben Taieb et al. (2010) 

and Claveria et al. (2015a) also found evidence that MIMO strategies for ML techniques 

were particularly suitable for long-term forecasting. 

 

 

4 Concluding remarks 

 

In this study we present a multiple-input multiple-output (MIMO) framework for 

Gaussian process regression (GPR). In order to examine the predictive performance of 

the proposed method we compare its out-of-sample forecast accuracy to that of two 

neural network architectures (RBF NN and MLP NN) in a multiple-step-ahead 

forecasting comparison. The MIMO forecasting strategy allows modelling the 

interdependencies between the inputs in order to generate a vector of future values. By 

using the cross-correlations between tourist arrivals to all seventeen regions of Spain we 

forecast tourist demand for all markets simultaneously. 

The forecasting results show that the proposed extension of the GPR only 

outperforms the NN models for short-term forecasts. We find that the predictive 

performance of all techniques improves for for the longest forecast horizons, which 

suggests that machine learning techniques are specially suitable for mid and long-term 

forecasting. 

To evaluate the effect of an increase in the dimensionality of the input on forecast 

accuracy, we repeat the experiment by increasing the temporal context. As we increase 

the number of lags used for concatenation, we find that the forecasting performance of 

MIMO GPR models improves. This finding shows that the increase in the weight matrix 

is compensated by a more complex specification, and highlights the convenience of 
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designing a model selection criteria to estimate the optimal number of lags when 

forecasting with machine learning methods. 

The assessment of alternative kernel functions that can support a broader class of 

covariance functions on the forecasting accuracy of GPR models is a question to be 

addressed in further research. Another question to be considered in future research is the 

effect of different sparse approximations for parameter estimation on forecast accuracy. 
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