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Abstract 
Tumour cell-secreted factors skew infiltrating immune cells towards a tumour-supporting 

phenotype, expressing pro-tumourigenic mediators. However, the influence of lipocalin-2 

(Lcn2) in the tumour microenvironment on the metastatic cascade is still not clearly 

defined. Here, we explored the role of stroma-derived, especially macrophage-released, 

Lcn2 in breast cancer progression. Knockdown studies and neutralizing antibody 

approaches showed that Lcn2 contributes to the early events of metastasis in vitro. The 

release of Lcn2 from macrophages induced an epithelial-to-mesenchymal transition 

program in MCF-7 breast cancer cells and enhanced local migration as well as invasion 

into the extracellular matrix using a 3D-spheroid model. Moreover, a global Lcn2-

deficiency attenuated breast cancer metastasis both in the MMTV-PyMT breast cancer 

model and in a xenograft model inoculating MCF-7 cells pre-treated with supernatants 

from wild type and Lcn2-knockdown macrophages. To dissect the role of stroma-derived 

Lcn2, we employed an orthotopic mammary tumour mouse model. Implantation of wild 

type PyMT tumour cells into Lcn2-lacking mice left primary mammary tumour formation 

unaltered, but specifically reduced tumour cell dissemination into the lung. We conclude 

that stroma-secreted Lcn2 promotes metastasis in vitro and in vivo, thereby contributing to 

tumour progression. Our study highlights the tumourigenic potential of stroma-released 

Lcn2 and suggests Lcn2 as putative therapeutic target. 
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Introduction 

Lipocalin-2 (Lcn2) is a 25 kDa glycoprotein of the lipocalin superfamiliy [1,2] that plays a 

pivotal role during bacterial infections [3], kidney regeneration [4], sepsis [5], and cancer 

[6]. Regarding tumour progression, several studies indicate that Lcn2 expression 

correlates with poor prognosis [7–9]. Additionally, Lcn2 serves as a prognostic and 

diagnostic marker, because elevated levels of Lcn2 are detected in the urine of cancer 

patients [9]. Lcn2 displays pleiotropic functions and promotes proliferation, survival, 

differentiation, and migration [10], thus rendering Lcn2 a putative mediator of tumour 

development. It was previously reported that Lcn2 promotes lung metastasis of murine 

breast cancer cells after injecting Lcn2-overexpressing 4T1 cells [11]. Lcn2 has been 

proposed to promote early events of tumour metastasis. On one side, tumour-supporting 

effects of Lcn2 can be explained by stabilizing gelatinase B (MMP-9) [12], thereby 

enhancing degradation of the extracellular matrix and tumour cell dissemination [13,14]. 

On the other side, Lcn2 induces epithelial-to-mesenchymal-transition (EMT). Specifically, 

overexpression of Lcn2 in MCF-7 breast cancer cells provokes EMT by reducing E-

cadherin and increasing vimentin and fibronectin [9]. In contrast, the knockdown of Lcn2 in 

MDA-MB-231 breast cancer cells reverses EMT, associated with reduced tumour growth 

and metastasis [9]. In line with this, we recently described that Lcn2 conveys EMT 

characteristics to A375 melanoma cells, enhancing migration and invasion [15]. Moreover, 

the use of mouse mammary tumour models showed that Lcn2-/- mice developed 

significantly fewer tumours, but differences in metastasis are still controversially discussed 

[16–18]. Importantly, the role of Lcn2 was mainly examined in tumour cells, whereas the 

possibility that Lcn2 is provided by tumour infiltrating immune cells, such as neutrophils or 

macrophages, was not taken into account so far.  

Chronic inflammation and an impaired immune response provoke outgrowth of 

transformed cells and tumour progression [19]. Tumour-associated immune cells acquire a 
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supportive phenotype to promote angiogenesis, metastasis, and tumour cell proliferation. 

Tumour-associated macrophages (TAM) are a prominent population of functionally 

polarized immune cells in the tumour microenvironment [20]. They infiltrate the majority of 

human tumours and are often linked to a poor prognosis [21]. TAM not only contribute to 

primary tumour growth, but also interact with tumour cells in the distinct phases of the 

metastatic route. There is strong evidence that migrating tumour cells co-localize with 

endothelial cells and macrophages in order to support metastatic spread [21–23]. The 

complex functional TAM phenotype is, at least in part, a response to tumour-derived 

components. We previously determined that apoptotic tumour cells activate the production 

and secretion of Lcn2 in macrophages with the subsequent polarization of these 

macrophages towards a pro-tumour phenotype [4]. Along these lines, we recently showed 

that macrophage-derived Lcn2 promotes proliferation of MCF-7 breast cancer cells [24]. 

Furthermore, inhibition of Lcn2 production in macrophages reduced renal regeneration 

when applying a macrophage-based cell therapy approach in a renal ischemia/reperfusion 

injury model, thereby substantiating the pro-proliferative and anti-inflammatory role of Lcn2 

[4,25].  

Taking into account that Lcn2 conveys pro-proliferative, pro-regenerative, and anti-

inflammatory properties, we hypothesized that breast cancer progression might rely, at 

least in part, on the presence of Lcn2 in the tumour supportive microenvironment. We 

aimed at elucidating the role of macrophage-derived Lcn2 during the different stages of 

metastasis, including EMT, migration, and invasion, both in vitro and in vivo. 
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Materials and Methods 

Cell culture  

The human breast cancer cell lines MCF-7 and MDA-MB-231, the hepatocellular 

carcinoma cell line HUH7, and the lung carcinoma cell line A549 were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) with high glucose (Life Technologies, 

Darmstadt, Germany), supplemented with 100 U/ml penicillin (PAA Laboratories, Cölbe, 

Germany), 100 µg/ml streptomycin (PAA Laboratories), and 10% fetal calf serum (FCS; 

PAA Laboratories). T47D human breast cancer cells were cultured in RPMI 1640 (Life 

Technologies), supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin, and 10% 

FCS. Tumour cells were cultivated in a humidified atmosphere with 5% CO2 at 37 °C and 

passaged 3 times per week.  

Primary human macrophages were isolated from human buffy coats (DRK-

Blutspendedienst Baden-Württemberg-Hessen, Frankfurt, Germany) as described 

previously [24].  

Human pulmonary microvascular endothelial cells (HPMEC; PromoCell, Heidelberg, 

Germany) were cultured in Endothelial Cell Growth Medium (PromoCell) according to the 

manufacturers’ instructions.  

Generation of macrophage-conditioned medium 

MDA-MB-231 cells were stimulated with 0.5 µg/ml staurosporine (LC Laboratories, 

Woburn, US) for 1 h, washed with PBS, and incubated overnight in RPMI to generate 

apoptotic-conditioned medium (ACM). Primary human macrophages were stimulated with 

ACM for 6 h to induce Lcn2 production, washed with PBS, and cultured in RPMI overnight 

to generate macrophage-conditioned medium (MCM). To explore the role of Lcn2 in MCM, 

we applied a neutralizing antibody against Lcn2 (3.5 µg/ml; R&D Systems MAB1757, 
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Wiesbaden, Germany). An isotype matching IgG antibody (3.5 µg/ml; R&D Systems 6-

001-A) was used as a control. 

Production of recombinant Lcn2 

Recombinant human Lipocalin-2 (LCN2) was produced by transformation of E. coli with a 

pGEX-4T-3-NGAL plasmid (kind gift from Dr. Anna Sola, IIBB Barcelona, Spain) 

expressing human LCN2 tagged to glutathione-S-transferase. LCN2 expression was 

initiated by supplementing isopropyl-ß-D-thiogalactopyranoside (Sigma-Aldrich, Steinheim, 

Germany) to the bacterial culture to activate the lac-operon. LCN was purified using 

ProCatch Glutathione Resin (Miltenyi Biotec, Bergisch Gladbach, Germany). 

Animal studies 

Experiments were conducted with approval of the Animal Care and Use Committee of: 1) 

Hessian review board (F144/12); and 2) the Institute for Research in Biomedicine (IRB 

Barcelona) and the Parc Científic de Barcelona (CEEA) (Catalan Government nºDAAM: 

7899).  

MMTV-PyMT breast cancer model 

C57BL/6 Lcn2-/- mice (kind gift from Jack B. Cowland, University of Copenhagen, 

Denmark) were crossed into a C57BL/6 PyMT background. Tumour development was 

compared between wt (wild type; Lcn2+/+) and Lcn2-/- PyMT mice. Tumour growth was 

monitored to a maximal tumour diameter of 1.5 cm and tumour volume was calculated 

using the formula: Volume=length x width2 x 0.52. After sacrifice, tumour and lung were 

isolated. Lung metastases were determined by Meyer’s haemalum (Merck, Darmstadt, 

Germany) staining. The appearance of metastases was evaluated in 12 lung sections of 

different levels per mouse and the percentage of mice with lung nodules was calculated. 

Mice with an age of at least 20 weeks were taken into account.  
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Orthotopic breast cancer model 

Donors: female C57BL/6 wt PyMT and C57BL/6 Lcn-2-/- PyMT mice. Recipients: female 

C57BL/6 Lcn-2+/+ and C57BL/6 Lcn2-/- mice. The tumour from PyMT donor mice was 

isolated and dissociated with the Tumour Dissociation Kit (Miltenyi Biotec, Bergisch 

Gladbach, Germany). Cells were blocked with Fc Block Receptor Binding Inhibitor 

(eBioscience 130-092-575, Frankfurt, Germany) and stained with CD45 Vioblue (Miltenyi 

Biotec 130-102-430), CD326 PE (Miltenyi Biotec 130-096-448), and 7-AAD (BD 

Biosciences 559925). CD45-/CD326+ living tumour cells were sorted using FACS Aria (BD 

Biosciences). Tumour cells (5 x 105) were implanted into the mammary gland (No.4) of 

recipient mice. The tumour was removed at a size of 1.5 cm and processed for flow 

cytometry analysis. Lungs were removed for immunofluorescence of PyMT (abcam 

Ab15085, Cambridge, UK) and Ki-67 (abcam Ab16667). The OpalTM 4-Color Fluorescent 

IHC Kit (PerkinElmer, Waltham, USA) was used according to the manufacturer’s 

instructions. Co-localized PyMT- and Ki-67-double positive tumour cells were detected and 

quantified using the Vectra® 3 automated quantitative pathology imaging system 

(PerkinElmer). The percentage of disseminated tumour cells was evaluated in three lung 

sections of different levels per mouse. 

Xenograft model 

MCF-7 cells were pre-treated with MCM (scRNA MCM) and MCM from Lcn2-deficient 

macrophages (siLcn2 MCM) for 3 days. Subsequently, 3 x 106 tumour cells were 

resuspended in 25 µl PBS / 25 µl growth factor reduced Matrigel (Corning, New York, US) 

and injected into the mammary fat pad of BALB/c nude female mice. Each mouse received 

two plugs. Tumour growth was monitored to the size of 0.3 cm3. Oestrogen was provided 

by subcutaneous implantation of oestrogen pellets (90-day release) (Innovative research 

of America, USA) immediately after cell injections. Detection and quantification of 
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disseminated tumour cells in the lung was performed using the IVIS-200 system [26].  

Lung sections were stained with haematoxylin and eosin (H&E). For 

immunohistochemistry, a rabbit monoclonal antibody to human oestrogen receptor (ER) 

alpha (Abcam, ab16660) and a mouse monoclonal antibody to human Ki-67 (Novocastra, 

NCL-L-Ki-67-MM1) were used. 

Small interfering RNA (siRNA) transfections 

HiPerFect transfection reagent (Qiagen, Hilden, Germany) was used according to the 

manufacturers’ instructions. 50 nM SLC22A17 siRNA (Hs_SLC22A17_5 validated siRNA; 

Qiagen) was transfected into MCF-7 cells and 50 nM Lcn2 siRNA (Hs_LCN2_3 validated 

siRNA; Qiagen) was transfected into primary human macrophages. A non-targeting, 

scrambled siControl RNA (scRNA; Qiagen) was used.  

RNA extraction and Reverse Transcription-quantitative PCR (RT-qPCR) 

RNA extraction, reverse transcription and qPCR was performed as previously described 

[24]. The primers (human) used were: 18S: sense, 5’-GTA-ACC-CGT-TGA-ACC-CCA-TT-

3’, antisense, 5’-CCA-TCC-AAT-CGG-TAG-TAG-CG-3’; E-cadherin (CDH1): sense, 5’-

TTC-CTC-CCA-ATA-CAT-CTC-CC-3’, antisense, 5’-TTG-ATT-TTG-TAG-TCA-CCC-ACC-

3’; N-cadherin (CDH2): sense, 5’-CCT-GGA-GAC-ATT-GGG-GAC-TTC-A-3’, antisense, 

5’-GCC-ACT-GCC-TTC-ATA-GTC-AAA-CAC-3’; Lcn2 (LCN2): sense, 5’-TCA-CCC-TCT-

ACG-GGA-GAA-CC-3’, antisense, 5’-CCA-GCT-CCC-TCA-ATG-GTG-TT-3’; SLC22A17: 

sense, 5’-GCT-CTT-CGT-GGC-TCT-GGG-CAT-3’, antisense, 5’-TGG-CAT-TGG-GAG-

GCT-GCT-3’. 

FACS 

Tumour cells were blocked with Fc Block Receptor Binding Inhibitor (eBioscience) and 

stained with CD45 APC-Cy7 (Biolegend, 103115), CD326 BV711 (BD Biosciences, 
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563134), CDH1 FITC (eBioscience, 53-3249), CDH2 (abcam, Ab18203), Alexa Fluor 546 

goat anti-rabbit IgG (Life Technologies, A11035), and were measured on a LSRFortessa 

flow cytometer. 

ELISA 

Detection of secreted Lcn2 was performed as described previously [24]. Lcn2 content was 

calculated per mg of total protein. The anti-Lcn2 (MAB1757), the secondary anti-rat IgG 

antibody (BAF005), Streptavidin-HRP and colour reagent were bought from R&D Systems. 

Adhesion assays 

MCF-7 cells were stimulated with 1 µg/ml recombinant human Lcn2 or MCM for 4 days 

and marked with Cell Tracker green (Life Technologies). MCF-7 cells (5 x 104) were 

seeded into wells pre-coated with collagen I (10 µg/ml; BD Biosciences) or fibronectin (10 

µg/ml; Sigma Aldrich), left for 2 h, washed, then fixed with 4% PFA. Five pictures were 

taken for each group and from at least three independent experiments using triplicates and 

the number of attached cells was determined by ImageJ analysis (National Institutes of 

Health, Bethesda, US). 

Transendothelial migration assay 

MCF-7 cells were stimulated with 1 µg/ml Lcn2 or MCM for 4 days and marked with Cell 

Tracker green. HPMEC (1 x 105) were seeded into fibronectin-coated Transwell inserts of 

a 24-well plate (Greiner Bio-One, Frickenhausen, Germany) and were grown to 

confluence. MCF-7 cells (5 x 104) were added into each insert. After 24 h, cells were 

washed and fixed with 4% PFA. Five fields per well were counted and the mean was 

calculated for each group. At least three independent experiments using triplicates were 

performed. 

Cell migration assay 
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MCF-7 cells were transfected either with siSLC22A17 or scrambled control siRNA 

(scRNA) and cell migration assay was performed as described previously [24]. 

Measurement of the scratch area was accomplished using ImageJ software. The 0 h value 

was normalized to the 24 h value of each group. The relative migration rate defines the 

mean value of at least three independent experiments using triplicates. 

Spheroid invasion assay 

MCF-7 spheroids were generated in 1.5% agarose-coated 96-well-plates (Greiner Bio-

One). Spheroids were stimulated with scRNA MCM and siLcn2 MCM every 3 days for 2 

weeks and subsequently embedded in a collagen I matrix for 7 days. 3 pictures were taken 

of each spheroid from each group (triplicates) from at least three independent 

experiments. Distance of invasion from the spheroid border into the collagen I matrix was 

measured using Axiovision software (Zeiss). 

Statistical analysis 

Each experiment was performed at least three times. The p values were calculated using 

Student’s t-test or one-way ANOVA, and considered significant at *p<0.05, **p<0.01, 

***p<0.001. 
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Results 

Lcn2 ablation delays tumour growth and metastasis of PyMT breast tumours 

We analysed the impact of Lcn2 in the spontaneous PyMT breast cancer model, where all 

female mice developed a tumour within 150 days in at least one mammary gland. We 

detected a significantly delay of tumour growth in Lcn2-/- PyMT mice starting at week ~ 16, 

whereas tumour growth in wt PyMT mice was already detected at week ~ 12 (Fig. 1A). 

Accordingly, Lcn2-/- PyMT mice reached the end point of 1.5 cm tumour diameter at later 

times (week ~ 23), compared to wt PyMT mice that were sacrificed at week ~ 19 (Fig. 1B). 

In order to define the extent of overall tumour development, we chose 18 weeks, a time-

point when all mice showed tumour burden. Lcn2-/- PyMT mice had smaller tumours and 

showed more mammary glands without tumour burden compared to wt PyMT mice (Fig. 

1C), but the tumour diameter and number of glands with tumours did not significantly differ 

at the end point of 1.5 cm (Fig. 1D). Interestingly, we saw significant differences in the 

number of metastases-bearing mice comparing wt and Lcn2-/- groups at sacrifice. The 

percentage of mice developing lung metastases was significantly lower in the Lcn2-/- group 

compared to the wt group (Fig. 1E-F).  

Lcn2 induces metastatic spread in vitro 

We previously described that not only tumour cells, but also macrophages express Lcn2 

after exposure to apoptotic tumour cell supernatants [4]. In the context of cancer, we 

reported that TAM-released Lcn2 supports tumour growth [24], but the impact on 

metastasis was not investigated so far. Therefore, we generated macrophage-conditioned 

medium containing Lcn2 (MCM) by stimulation of primary human macrophages with 

apoptotic tumour cell supernatants (ACM) and used in vitro lung metastasis assays to 

characterise the ability of macrophage-released Lcn2 to promote the metastatic tumour 

cell phenotype. Most interestingly, ACM-stimulated macrophages secreted significantly 
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higher levels of Lcn2 compared to tumour cells (Fig. S1A and S1B). The attachment of 

tumour cells to extracellular matrix (ECM) components, including collagen I and 

fibronectin, is an essential step for tumour cell dissemination into the lung. Both MCM- and 

recombinant Lcn2 (1 µg/ml)-stimulated cells significantly enhanced adhesion to both 

matrices. Quantification and representative pictures of adhesion to collagen I (Fig. 2A) and 

fibronectin (Fig. 2B) are displayed. Once tumour cells manage to adhere to the lung 

matrix, they migrate through the tight endothelial layer of pulmonary tissue, before a 

metastatic lesion can be established. To test the effect of Lcn2 on cancer cell migration 

across an endothelial layer, human pulmonary microvascular endothelial cells (HPMEC) 

were cultured in Transwell culture inserts. MCF-7 cells, pre-stimulated with MCM or 

recombinant human Lcn2 (1 µg/ml), passed more efficiently through this layer into the 

lower chamber of the Transwell (Fig. 2C). Thus, both MCM- and Lcn2-treatment enhanced 

the passage of tumour cells through a pulmonary, endothelial layer. As migration and 

invasion through the ECM are important events during metastasis, we examined the effect 

of macrophage-derived Lcn2 on tumour cell invasion, utilising a previously described 3D 

tumour spheroid model [27]. To verify Lcn2 as the responsible factor in the MCM inducing 

invasiveness of breast cancer cells, we established a transient knockdown of Lcn2 in 

primary human macrophages in order to generate Lcn2-deficient MCM (siLcn2 MCM). 

Control macrophages were treated with scRNA in order to generate supernatants 

containing Lcn2 (scRNA MCM) (Fig. S2). MCF-7 spheroids were stimulated with siLcn2 

MCM, scRNA MCM, or left in normal growth medium (control) for ten days. Subsequently, 

spheroids were embedded into a collagen I matrix for additional seven days to allow 

invasion into the matrix. ScRNA MCM-treated spheroids showed significantly enhanced 

invasion into the collagen I matrix, whereas siLcn2 MCM-stimulated spheroids displayed 

reduced invasion (Fig. 2D).   

TAM-released Lcn2 facilitates lung colonization in vivo 
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As we had established that macrophage-derived Lcn2 induces metastatic spread in vitro, 

we wondered if these effects can be transferred to a breast cancer in vivo model. 

Therefore, we employed a xenograft model using MCF-7 cells that were pre-treated with 

scRNA MCM and siLcn2 MCM for 3 days. Our analysis of the tumour volume did not 

detect differences in tumour growth (Fig. 3A). Also, the weight of tumours at sacrifice was 

equivalent (Fig. 3B). Interestingly, the dissemination of implanted MCF-7 tumour cells to 

the lungs was significantly decreased by siLcn2 MCM-pre-treatment (Fig. 3C). 

Furthermore, histological analysis was performed in order to detect ER-positive 

proliferating (Ki-67-positive) tumour cell colonies (Fig. 3D). Representative pictures are 

shown for the co-localization of ER- and Ki-67-positive metastatic lesions. These data 

support the hypothesis that macrophage-derived Lcn2 increases the invasiveness of 

breast cancer cells, thereby facilitating metastatic spread. 

Macrophage-derived Lcn2 induces EMT through its specific receptor SLC22A17 

Since the higher migratory and invasive character of tumour cells is often associated with 

the transition from an epithelial to a mesenchymal state, the process of EMT plays an 

integral role in cancer metastasis. Therefore, we reasoned that macrophage-derived Lcn2 

promotes EMT in breast cancer cells.  MCM elicited a decrease in transcript abundance 

for the epithelial marker E-cadherin (CDH1) (Fig. 4A) and an increase of the mesenchymal 

marker N-cadherin (CDH2) (Fig. 4B) in human MCF-7 breast cancer cells. This effect was 

significantly attenuated by neutralizing Lcn2, while addition of the IgG control antibody was 

without effect. To exclude potential cell-specific effects, we verified changes in E-cadherin 

and N-cadherin mRNA abundance in response to MCM in T47D breast cancer cells, A549 

lung carcinoma cells, and HUH7 hepatocellular cells (Fig. S3). In all cell lines tested, MCM 

decreased E-cadherin and increased N-cadherin mRNA expression. These changes were 

significantly reversed by neutralizing Lcn2. Analysis of EMT-related transcription factors 

showed the potential involvement of ZEB1, whereas SNAI1 was not affected (Fig. S4). 
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Neither Slug (SNAI2) nor Twist (TWIST1) transcripts could be detected. To explore the 

role of the specific Lcn2 receptor (SLC22A17) in transmitting EMT promoting effects on 

tumour cells, we performed a transient siRNA knockdown in MCF-7 cells (Fig. S5). Both, 

control (scRNA) and SLC22A17-downregulated tumour cells were stimulated with MCM for 

24 h and the abundance of mRNA encoding the EMT markers E-cadherin (Fig. 4C) and N-

cadherin (Fig. 4D) were measured by RT-qPCR. The previously observed impact of MCM 

on EMT marker expression was significantly reversed by the knockdown of SLC22A17. 

Since EMT correlates with increased migration rates, we explored if the knockdown of 

SLC22A17 affected tumour cell migration. Indeed, the knockdown of SLC22A17 impaired 

tumour cell migration (Fig. 4E). Quantification showed a significantly reduced migration 

rate in siSLC22A17 knockdown cells (Fig. 4F).  

Stroma-derived Lcn2 induces breast cancer cell dissemination into the lung 

In order to evaluate the impact of stroma-derived Lcn-2 on tumour growth and metastasis, 

we established an orthotopic breast cancer model. We used both wt and Lcn2-/- PyMT 

mice as tumour cell donors and Lcn2+/+ and Lcn2-/- C57BL/6 mice as recipients. A 

schematic picture of the model is shown in Figure 5A. Implantation of Lcn2-/- tumour cells 

into Lcn2+/+ and Lcn2-/- mice allowed us to analyse stroma-derived Lcn2 effects on tumour 

growth and metastasis. In addition, the comparison of implanted wt and Lcn2-/- tumour 

cells allowed us to determine tumour cell-derived Lcn2 effects. We could not detect any 

differences in tumour development between Lcn2+/+ and Lcn2-/- recipients, neither for 

Lcn2-competent donors (Fig. 5B), nor for Lcn2-deficient donors (Fig. 5C). Furthermore, the 

tumour weight at sacrifice did not differ significantly, suggesting that stroma-derived Lcn2 

is not important for primary tumour growth (Fig. 5D-E). In order to detect lung metastases 

derived from implanted PyMT-positive tumour cells, we performed immunofluorescence 

using a PyMT specific antibody in combination with staining of proliferating tumour cells 

using Ki-67. Representative pictures show an efficient co-localization of PyMT- and Ki-67-
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positive tumour cells (Fig. 5F). Quantification of double-positive tumour cells showed that 

the injection of wt tumour cells into Lcn2-/- recipient mice elicited a significant decrease in 

the number of disseminated Ki-67-positive PyMT tumour cells within the lung (Fig. 5G). 

However, implantation of Lcn2-deficient tumour cells resulted in a slight, but not significant 

reduction of the number of disseminated tumour cells in Lcn2-/- recipient mice compared to 

wt recipients (Fig. 5H). Remarkably, the Lcn2-/- recipient showing decreased tumour cell 

dissemination, had a reduced number of E-cadherinlow/N-cadherinhigh tumour cells (Fig. 

6A). The in vivo situation in the orthotopic model was corroborated in the PyMT model, 

where Lcn2-deficient PyMT mice revealed a reduced number of E-cadherinlow/N-

cadherinhigh-tumour cells (Fig. 6B). Our results suggest that stroma-derived Lcn2 enhances 

metastatic spread by promoting different steps of the metastatic cascade, such as 

adhesion, transendothelial migration, invasion, and EMT (Fig. 6C). 
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Discussion 

The present study reveals a previously unknown function of stroma-derived Lcn2 on breast 

cancer metastasis. Evidently, macrophage-derived Lcn2 promotes tumour cell 

dissemination by inducing EMT, resulting not only in increased cancer cell motility and 

invasion, but also in enhanced transendothelial migration. A number of studies previously 

acknowledged a role of tumour-derived Lcn2 in tumour development and metastatic breast 

cancer progression, correlated with a poor prognosis [9,16]. The present study adds to the 

emerging role of Lcn2 for tumour progression. Interestingly, our data suggest a 

significantly higher expression of Lcn2 in ACM-treated macrophages than in tumour cells 

(Fig. S1). It was previously suggested that a threshold level of Lcn2 must to be achieved in 

tumour cells in order to promote EMT in Lcn2 overexpressing MCF-7 cells [9]. Therefore, it 

might be speculated that the local expression of Lcn2 from tumour-infiltrating 

macrophages adds to their pro-tumorigenic capacity. So far, most studies focused on the 

role of tumour cell-derived Lcn2, whereas the idea that Lcn2 might originate from tumour-

infiltrating immune cells has so far not been appreciated. Shinriki et al. recently analysed 

the expression of Lcn2 in human oral squamous cell carcinoma (OSCC) [28]. They 

detected that poorly differentiated OSCC and reduced overall survival were particularly 

associated with Lcn2-expressing CD68 positive stromal immune cells rather than tumour 

cells, thus underscoring the importance of monocyte-derived Lcn2. These findings point to 

a role of stroma-derived Lcn2 as a previously unrecognized factor in tumour progression. 

However, we previously showed that macrophage-released Lcn2 enhanced the 

proliferative capacity of MCF-7 breast cancer cells in vitro [24]. To prove the impact of 

macrophage-derived Lcn2 on breast cancer progression in vivo, we used a xenograft 

model involving MCF-7 cells pre-treated with macrophage supernatants and an orthotopic 

mammary tumour model. Neither the xenograft (Fig. 3A-B), nor the orthotopic model (5B-

E) displayed differences in primary tumour growth. In the present study, we also checked 
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for tumour growth, both in a 3D tumour spheroid model and in 2D cell culture, but failed to 

detect differences in primary growth characteristics in the complex 3D system, whereas 

the 2D cultured responded as described before [24]. Corroborating our data, it was 

recently published that supernatants of macrophages co-cultured with apoptotic tumour 

cells promote the aggressiveness of MCF-7 cells by enhancing tumour growth and 

metastasis [29].  

There is growing evidence that Lcn2 promotes the development of malignant tumour cell 

phenotypes by inducing EMT [9,15], an essential early step towards tumour metastasis. 

The transition from an epithelial into a mesenchymal cell is characterised by the loss of 

epithelial cell polarity, the loss of cell–cell contacts, and increased cell motility. An 

important characteristic of EMT is the cadherin switch, characterised by decreased E-

cadherin, but increased N-cadherin expression. E-cadherin promotes cell–cell adhesion 

through homophilic interactions between E-cadherin proteins on adjacent cells, thus 

forming adherens junctions [30]. In contrast, N-cadherin causes tumour progression and 

invasion. This is facilitated through interactions with fibroblast growth factor receptor 1, 

activating the mitogen-activated protein kinase (MAPK)/extracellular signal–regulated 

kinase (ERK) pathway to enhance MMP-9 expression [30,31]. Interestingly, Lcn2 was 

shown to support tumour progression by stabilizing MMP-9, thereby facilitating ECM 

degradation [12,14]. Apparently, tumour cell-derived Lcn2 as well as stroma-derived Lcn2 

might be important players during the metastatic spread. However, our orthotopic tumour 

model suggests that predominantly stroma-derived Lcn2 induces metastasis by promoting 

tumour cell dissemination into the lung. Therefore we questioned whether this results from 

the induction of EMT in tumour cells. In fact, we showed that macrophage-derived Lcn2 

induces EMT in MCF-7 breast cancer cells by reducing the epithelial marker E-cadherin 

and inducing the mesenchymal marker N-cadherin (Fig. 4A-D). Importantly, we observed a 

more robust and consistent Lcn2-induced expression of N-cadherin rather than repression 
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of E-cadherin in vitro. However, it is important to note that EMT usually is not a complete 

transition but rather a transient and reversible process, since many tumours might also co-

express both cadherins, illustrating thereby their plasticity [32]. Nevertheless, it is 

speculated that a proportion of fully acquired EMT-cells are required for effective invasion 

through the ECM, thereby opening the way for non- or transient-EMT-cells to enter the 

bloodstream and to spread into distant organs.  

In summary, we propose that stroma-derived Lcn2 enhances the malignant 

characteristics of breast cancer cells. Our studies underscore the significance of stroma-

derived Lcn2 on tumour cell dissemination and metastatic growth and offer new 

therapeutic perspectives. Nevertheless, further research is needed to define the diverse 

biological effects of Lcn2 within the tumour microenvironment.  
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Figure legends 

 

 

Fig. 1: Lcn2 ablation delays tumour growth and reduces lung metastasis of PyMT 

breast tumours 
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(A) Tumour occurrence in wt PyMT (n=27) and Lcn2-/- PyMT (n=9) mice. (B) Time until 

sacrifice displayed for wt PyMT (n=33) and Lcn2-/- PyMT (n=12) mice. (C) Number of 

mammary glands with tumour burden and tumour size was assessed by palpation of wt 

PyMT (n=9) and Lcn2-/- PyMT (n=6) mice at the age of 18 weeks and (D) at sacrifice. (E-F) 

After sacrificing, lung sections were stained with Meyer’s haemalum. (E) Representative 

whole lung section (scale bar: 1000 µm) and magnification of a metastatic lesion (scale 

bar: 200 µm). Arrows point to metastatic nodules. (F) The percentage of mice with 

metastatic lesions were counted in wt PyMT (n=12) and Lcn2-/- PyMT (n=8) mice. Data are 

means ± S.D., *p<0.05 vs. controls, ***p<0.001 vs. controls. 
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Fig. 2: Lcn2 induces the metastatic spread in vitro 

(A-C) MCF-7 cells were stimulated with 1 µg/ml recombinant human Lcn2, macrophage-

conditioned medium (MCM), or remained unstimulated for 4 days. Adhesion of Cell 

Tracker green-labelled cells to (A) collagen I and to (B) fibronectin coated layers was 

quantified after 2 h. Representative pictures of the adhesion assay are shown. Scale bar: 

200 µm. (C) Transendothelial migration of pre-treated MCF-7 cells through a layer of 

HPMEC for 24 h was assessed by a Boyden chamber approach and quantified as the 

number of migrated cells. (D) MCF-7 spheroids were treated with scRNA MCM containing 
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Lcn2, siLcn2 MCM deficient of Lcn2, or remained unstimulated (control) for 10 days and 

were embedded into a collagen I matrix for additional 7 days. The distance of spheroid cell 

invasion from the spheroid border into the matrix was measured after 1, 3 and, 7 days and 

is represented as distance of invasion relative to day 0. Representative pictures are 

shown. Scale bar: 200 µm. Data are means ± S.D., n≥ 3, *p<0.05 vs. controls, **p<0.01 vs. 

controls, ***p<0.001 vs. controls. 

 

Fig. 3: TAM-released Lcn2 facilitates lung colonization in vivo 

(A-D) MCF-7 cells were stimulated with scRNA MCM and siLcn2 MCM for 3 days. 3 x 106 

tumour cells were implanted into the mammary fat pad of female BALB/c nude mice. (A) 

Tumour growth analysis was followed by IVIS until the tumour became palpable. (B) 

Tumour weight was calculated at sacrifice and (C) disseminated tumour cells were 

detected via the ex vivo photon flux measurement using the IVIS-200 system. (D) Fixed 

lungs were embedded in paraffin and the sections stained with H&E to detect metastases. 

Furthermore, lung sections were stained for ER and Ki-67 by immunohistochemistry. 
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Representative pictures of a macroscopic metastatic lesion (upper panel) and a 

microscopic lesion (lower panel) are shown. Scale bar: 50 µm. Data are means ± S.D., n≥ 

3, *p<0.05 vs. controls. 

 

Fig. 4: Macrophage-derived Lcn2 induces EMT through its specific receptor 

SLC22A17 
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(A-B) MCF-7 cells were stimulated with MCM supplemented with a neutralizing antibody 

against Lcn2 (αLcn2) or a control isotype matching IgG antibody (αIgG) for 24 h. 

Expression of mRNA encoding (A) E-cadherin (CDH1)  and (B) N-cadherin (CDH2) was 

measured by RT-qPCR.  (C-D) MCF-7 cells were treated with either a scrambled control 

siRNA (scRNA) or siRNA to knockdown the Lcn2 receptor SLC22A17 (siSLC22A17) and 

stimulated with MCM for 24 h. Expression of mRNA encoding (C) E-cadherin and (D) N-

cadherin was assessed by RT-qPCR. (E-F) Cell migration assays were performed for 

MCM-treated MCF-7 cells previously transfected with scRNA or siSCL22A17. (E) 

Representative pictures and (F) quantification of migration after 24 h. Scale bar: 100 µm. 

Data are means ± S.D., n≥ 3, *p<0.05 vs. controls, **p<0.01 vs. controls, ***p<0.001 vs. 

controls. 
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Fig. 5: Stroma-derived Lcn2 induces breast cancer cell dissemination into the lung 
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(A) Wt PyMT and Lcn2-/- PyMT donors were sacrificed and CD45-/CD326+ tumour cells 

were FACS sorted. Tumour cells were implanted into the mammary gland of Lcn2+/+ and 

Lcn2-/- recipient mice. (B-C) Tumour growth was detected by palpation of recipient mice 

and tumour volume was calculated as described in Methods. Analysis of the tumour 

volume in (B) wt PyMT donor cells in Lcn2+/+ (n=6) and Lcn2-/- (n=6) recipient mice and (C) 

Lcn2-/- donor cells in Lcn2+/+ (n=4) and Lcn2-/- (n=4) recipient mice.  (D-E) Recipient mice 

were sacrificed when the tumour developed a diameter of 1.5 cm and tumour weight was 

assessed (n≥ 4). (F) Lungs were co-stained for PyMT and Ki-67 by immunofluorescence. 

DAPI was used to detect nuclei. A PyMT- and Ki-67-double positive tumour cell lesion is 

encircled. Scale bar: 200 µm. (G-H) Quantification of PyMT- and Ki-67-double positive 

tumour cells. (G) Wt PyMT donor cells in Lcn2+/+ (n=5) and Lcn2-/- (n=5) recipient mice and 

(H) Lcn2-/- donor cells in Lcn2+/+ (n=3) and Lcn2-/- (n=3) recipient mice are displayed. Data 

are means ± S.D., ***p<0.001 vs. controls. 

 

Fig. 6: Stroma-released Lcn2 fosters EMT 
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(A) E-cadherinlow/N-cadherinhigh cells were detected in the tumours of Lcn2+/+ (n=3) and 

Lcn2-/- (n=3) recipient mice implanted with Lcn2-/- PyMT donor cells using flow cytometry. 

(B) Detection of the E-cadherinlow/N-cadherinhigh cells in the tumours of wt PyMT (n=12) 

and Lcn2-/- PyMT donors (n=3). Data are means ± S.D., *p<0.05 vs. controls. (C) 

Schematic representation of the results.  
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