Draft Genome Sequence of JVAP01T, the Type Strain of the Novel Species *Acinetobacter dijkshoorniae*

Dietmar Fernández-Orth,a Clara Cosgaya,a Murat Telli,b Noraida Mosqueda,a Marta Mari-Almirall,a Ignasi Roca,a Jordi Vilaa

Department of Clinical Microbiology and ISGlobal, Barcelona Ctr. Int. Health Res. CRESIB, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain; Department of Clinical Microbiology, School of Medicine, Adnan Menderes University, Aydin, Turkey

ABSTRACT Here, we report the draft genome sequence of the type strain of *Acinetobacter dijkshoorniae*, a novel human pathogen within the *Acinetobacter calcoaceticus–Acinetobacter baumannii* (ACB) complex. Strain JVAP01T has an estimated genome size of 3.9 Mb, exhibits a 38.8% G+C content, and carries a plasmid with the *bla*NDM-1 carbapenemase gene.

The *Acinetobacter calcoaceticus–Acinetobacter baumannii* (ACB) complex currently comprises six different *Acinetobacter* species, the environmental *A. calcoaceticus* and five *Acinetobacter* species that are potential human pathogens, that is, *A. baumannii*, *A. pittii*, *A. nosocomialis*, *A. seifertii*, and *A. dijkshoorniae*, the latter two only recently discovered (1). Members of the ACB complex are virtually undistinguishable from a biochemical standpoint and can only be differentiated by means of molecular methods (2, 3). Hospital outbreaks are mostly attributed to *A. baumannii*, whose innate ability to accumulate multiple antibiotic resistance mechanisms is greatly feared (4). The advent of more reliable identification methodologies, however, has shown an alarming abundance of all other species in the clinical setting, as well as their potential to bear resistance mechanisms to last resort antibiotics (5, 6). Here we report the draft genome sequence of strain JVAP01T (CECT 9134T, LMG 29605T), the type strain of *Acinetobacter dijkshoorniae* that was recovered in 2009 from a urine sample in Turkey. JVAP01T produces the *blaNDM-1* metallo-β-lactamase and is resistant to β-lactam antibiotics and kanamycin (7).

Genomic DNA was extracted from cultured bacteria and an Illumina library was generated following Nextera XT (Illumina, Inc., San Diego, CA, USA) manufacturer’s protocol with paired-end libraries (2 × 150). Sequencing was performed in an Illumina MiSeq system. *De novo* assembly was performed using Velvet version 1.2.10 in conjunction with the Velvet optimizer (http://bioinformatics.net.au/software.velvetoptimizer.shtml), ABySS v1.5.2 and Spades v3.5.0 (8–10). Contigs for all assemblers were joined using CISA v1.3 (11). CISA contigs below 200 nucleotides were discarded to yield a total of 92 contigs with a 90-fold coverage. The draft genome comprised a total assembly length of 3,858,459 bp and the G+C content was in accordance with that of *Acinetobacter* spp., at 38.8%.

The sequence of the 47 kilobase plasmid (pNDM-JVAP01) containing the *blaNDM-1* gene and a type VI secretion system was previously published (7).

All 92 contigs and the plasmid were further annotated using the RAST server (12), which predicted 3,599 coding sequences (CDS), 26 rRNAs, and 134 tRNAs in the genome. In order to classify the antibiotic resistance gene pools, Resfinder v2.1 with a threshold of 85% identity and a minimum length of 40% was used (13). Results showed the presence of the *blaNDM-1* and *aphA6* genes, described previously and conferring resistance to aminoglycosides.
ACKNOWLEDGMENTS

This study was supported by the Ministerio de Economía y Competitividad, Instituto de Salud Carlos III, cofinanced by European Regional Development Fund (ERDF) “A Way to Achieve Europe,” by the Government of Catalonia, the Adnan Menderes University and the European commission under the MagicBullet project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES

