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Abstract

Bivariate Poisson regression models for ratemaking in car insurance has been
previously used. They included zero-inflated models to account for the ex-
cess of zeros and the overdispersion in the data set. These models are now
revisited in order to consider alternatives. A 2-finite mixture of bivariate
Poisson regression models is used to demonstrate that the overdispersion in
the data requires more structure if it is to be taken into account, and that
a simple zero-inflated bivariate Poisson model does not suffice. At the same
time, it is shown that a finite mixture of bivariate Poisson regression models
embraces zero-inflated bivariate Poisson regression models as a special case.
Finally, an EM algorithm is provided in order to ensure the models’ ease-of-
fit. These models are applied to an automobile insurance claims data set and
it is shown that the modelling of the data set can be improved considerably.

Keywords: Zero-inflation, Overdispersion, EM algorithm, Automobile
insurance, A priori ratemaking

1. Introduction

In a recent paper Bermúdez (2009) describes bivariate Poisson (BP) re-
gression models for ratemaking in car insurance. The central idea is that the
dependence between two different types of claim must be taken into account
to achieve better ratemaking. BP regression models are presented, therefore,
as an instrument that can account for the underlying correlation between
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two types of claim arising from the same policy (i.e. third-party liability
claims and all other automobile insurance claims). The paper concludes that
even when there are small correlations between the claims, major differences
in ratemaking can nevertheless appear. Thus, using a BP model results in
ratemaking that has larger variances and, hence, larger loadings in premiums
than those obtained under the independence assumption.

The paper also includes zero-inflated bivariate Poisson (ZIBP) models so
as to inflate the (0,0) cell and to account for the excess of zeros and overdis-
persion typically observed in this type of data set. This produces the best
goodness of fit among the bivariate Poisson models considered. In conclu-
sion, the independence assumption should be rejected when using either BP
or ZIBP regression models, but one question still remains unresolved: do
ZIBP models constitute the best option for dealing with the unobserved het-
erogeneity usually observed in such a data? The aim of the present paper is
to examine this question further by considering alternative bivariate models
that might account for both these features of the data, i.e. the excess of zeros
and overdispersion.

In the context of automobile insurance, the problem of unobserved hetero-
geneity is caused by the differences in driving behavior among policyholders
that cannot be observed or measured by the actuary, such as a driver’s re-
flexes, his or her aggressiveness, or knowledge of the Highway Code, among
others. The main consequence of unobserved heterogeneity is overdispersion,
i.e. data exhibiting variance larger than mean, which it invalidates the use of
a simple Poisson distribution. The presence of excess of zeros in most insur-
ance data sets can be also seen as a consequence of unobserved heterogeneity.

In the univariate case, Lambert (1992) introduced the zero-inflated Pois-
son regression model. Since then, there has been a considerable increase in
the number of applications of zero-inflated regression models based on sev-
eral different distributions. A comprehensive discussion of these applications
can be found in Winkelmann (2008) and a specific application to insurance
ratemaking is addressed in Boucher et al. (2007). Zero inflated negative bi-
nomial regression models have been also described as for example in Wang
(2003) and Garay et al. (2011). See again Winkelmann (2008) for a descrip-
tion of a variety of such models and Denuit et al. (2007) for an exhaustive
review of the models used in ratemaking systems for automobile insurance.

In the bivariate (or multivariate) case, the literature analysing the excess
of zeros and overdispersion is less developed. For example, zero-inflation
in the bivariate case is examined in Gurmu and Elder (2008), Karlis and
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Ntzoufras (2003) and the references therein, while in the multivariate case
it is analysed in Li et al. (1999). Recently, in the actuarial literature and
for ratemaking purposes, Bermúdez (2009) and Bermúdez and Karlis (2011)
deal with the bivariate and multivariate versions of the zero-inflated Poisson
regression models, respectively. They tackle overdispersion via the excess of
zeros, i.e. zero-inflated models.

A natural approach for accounting for overdispersion is to consider mod-
els with some overdispersed marginal distribution, as opposed to bivariate
Poisson models. In this paper we consider an m-finite mixture of bivariate
Poisson regressions (m-FMBP) extending the no-covariate cases presented
in Karlis and Meligkotsidou (2007). This model has a number of interesting
features: first, the zero-inflated model represents a special case; second, it
allows for overdispersion; and, third, it allows for an elegant interpretation
based on the typical clustering application of finite mixture models. To the
best of our knowledge, this model is new to the literature, so in what follows
we seek to explain its properties as well as to discuss appropriate estimation
approaches.

The rest of of the paper proceeds as follows. The new model is described
in the next section, followed by the development of an EM algorithm for
parameter estimation. The model is then applied to the same data set as in
Bermúdez (2009). Finally, we conclude with some remarks.

2. The proposed model

2.1. A bivariate Poisson distribution

Consider random variables Xk, k = 1, 2, 3 which follow independent Pois-
son distributions with parameters λk ≥ 0, respectively. Then the random
variables Y1 = X1 +X3 and Y2 = X2 +X3 jointly follow a bivariate Poisson
distribution, denoted as BP (λ1, λ2, λ3), with joint probability function given
by

PY1,Y2(y1, y2) = P (Y1 = y1, Y2 = y2) =

= BP (y1, y2;λ1, λ2, λ3)

= e−(λ1+λ2+λ3)
λy1
1
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The above bivariate distribution allows for dependence between the two ran-
dom variables. It is also related to a common shock model. Marginally each
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random variable follows a Poisson distribution with E(Y1) = λ1 + λ3 and
E(Y2) = λ2 + λ3. Moreover, Cov(Y1, Y2) = λ3, and hence λ3, is a measure
of dependence between the two random variables. If λ3 = 0 then the two
variables are independent and the bivariate Poisson distribution reduces to
the product of two independent Poisson distributions (also known as a dou-
ble Poisson distribution). For a comprehensive treatment of the bivariate
Poisson distribution and its multivariate extensions the reader is referred to
Kocherlakota and Kocherlakota (1992) and Johnson et al. (1997).

For greater flexibility, we can assume a bivariate Poisson regression model
where each of the parameters of the BP is related to some covariates through
a log link function, i.e. by assuming

log λki = βT
kxki, k = 1, 2, 3, i = 1, . . . , n,

where xki is a vector of covariates for the i-th observation related to the k-th
parameter and βk is the associated vector of regression coefficients. Note
that x does not need to be the same for all the parameters. Likewise note
that according to Karlis and Ntzoufras (2003), it is perhaps a good idea
not to use the same covariates in all the parameters since this may lead
to problems in their interpretation. For example, since the marginal mean
for Y1 is λ1 + λ3 using the same covariates in both may create problems of
interpretation especially if the signs of the regression coefficients differ. R

package bivpois can be used to fit this model based on an EM algorithm.
In this model, and since the marginal distributions are Poisson, the

marginal means and variances are equal. Moreover, that the correlation is
positive. Therefore, there we need to consider extensions to allow for overdis-
persion (variance greater than the mean) and a possible negative correlation.

2.2. Mixed bivariate Poisson models

A natural way to allow for overdispersion is to consider mixtures of a
simpler model. This is best achieved in the univariate setting by moving from
the simple Poisson model to the negative binomial model. Such an approach,
while applicable in the bivariate setting, is not an easy task especially because
there is not a single correct way to do it and, in consequence, questions of
ease and interpretation come into play.

Mixtures of BP distribution can be considered in at least two different
ways. In the first we start with a BP (aλ1, aλ2, aλ3) distribution where a
follows some distribution. We can assume λ3 = 0 which makes the calculation
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much easier and assumes that all the correlation comes from the common a.
If λ3 > 0 then the correlation is twofold, due to λ3 (known as an intrinsic
correlation) and due to the common a. This complicates the interpretation
of the parameters. A natural assumption in this case is that E(a) = 1 so
a does not inflate the means. This is a very typical extension of a simple
mixed Poisson regression models. One drawback, however, is that the model
only allows a positive correlation. The literature on this approach includes
the works of Stein et al. (1987), ?, Stein and Yuritz (1987) and Kocherlakota
(1988) for the case without covariates. Munkin and Trivedi (1999) described
multivariate mixed Poisson regression models based on this type of mixing
and a gamma mixing distribution. Gurmu and Elder (2000) used an extended
gamma density as a mixing distribution. This approach also has a random-
effect representation if covariates are used. This assumes that

Y1i, Y2i ∼ BP (λ1i, λ2i, λ3i),

log λki = βT
kxki + ui, k = 1, 2, 3, i = 1, . . . , n and

ui ∼ G(u),

where ui is the random effect associated with the i-th observation, common
to all the parameters. In fact this approach is equivalent to a frailty model.

In the second case, we start with a BP (a1λ1, a2λ2, a3λ3) distribution,
but now the a’s are different. We need to assume that they jointly follow
a trivariate (or bivariate if we assume that λ3 = 0 ) distribution. Clearly
such a construction is much more complicated and, in practice, not especially
useful. The case when λ3 = 0 has received attention primarily because it can
induce negative correlation between counts. Steyn (1976) proposed the use
of a bivariate normal distribution as the mixing distribution. Some years
later, Aitchinson and Ho (1989) proposed using the bivariate lognormal dis-
tribution instead of the simple bivariate normal distribution. For a Bayesian
application of this distribution see Chib and Winkelmann (2001).

To put it in a random effect format the above model is equivalent to
assuming

Y1i, Y2i ∼ BP (λ1i, λ2i, λ3i),

log λki = βT
kxki + uki, k = 1, 2, 3, i = 1, . . . , n and

u1i, u2i, u3i ∼ G(·),

where now G(·) is a trivariate distribution and, hence, the random effects
are different, albeit related, for each parameter. Again for purposes of iden-
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tifiability, it must be assumed that the expectation for each random effect is
1.

In both of the above models the specification of the random-effects distri-
bution G(·) can be a continuous, a discrete or a finite distribution. Here we
consider the latter case assuming that the joint distribution for the random
effects is a finite distribution, i.e. the case in which only a finite number
of points have positive probabilities. Such an assumption gives rise to finite
mixture models, which are very popular in a range of disciplines. These
models, i.e. finite mixtures of multivariate Poisson distributions, have been
described in Karlis and Meligkotsidou (2007).

The novelty of our approach lies in the fact that we assume different
regression lines for each component in the mixture, extending the finite mix-
ture Poisson regression model of Wang et al. (1998) (see Grun and Leisch
(2007) for the implementation of models of this type) in two dimensions.
Thus, in the next section we introduce the finite mixture of bivariate Poisson
regressions.

2.3. The finite mixture of bivariate Poisson regressions

Let the θ = (λ1, λ2, λ3) denote the vector of parameters. We define as
an m-finite mixture of bivariate Poisson distributions the distribution with
joint probability function

P (y1, y2) =
m∑
j=1

pjBP (y1, y2;θj),

where pj > 0, j = 1, . . . ,m are the mixing proportions with
m∑
j=1

pj = 1 and θj

are the component-specific vectors of parameters, namely θj = (λ1j, λ2j, λ3j).
In the sequel the first subscript denotes the parameter and the second the
component, while if we require a further subscript to indicate the observation
we will use a third one.

In this mixture model, the marginal expectations are given by

E(Yk) =
m∑
j=1

pj(λkj + λ3j), k = 1, 2,
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while its variance covariance matrix of Y = (Y1, Y2)
T is given by

V ar(Y ) = A

 m∑
j=1

pjΣj −

(
m∑
j=1

pjθj

)(
m∑
j=1

pjθj

)T
AT ,

where

Σj =

 λ2
1j + λ1j λ1jλ2j λ1jλ3j

λ1jλ2j λ2
2j + λ2j λ2jλ3j

λ1jλ3j λ2jλ3j λ2
3j + λ3j


and

A =

[
1 0 1
0 1 1

]
.

This can be written in the following interesting form

V ar(Y ) = AD(θ)AT ,

where

D(θ) =

 V ar(λ1) + E(λ1) Cov(λ1, λ2) Cov(λ1, λ3)
Cov(λ1, λ2) V ar(λ2) + E(λ2) Cov(λ2, λ3)
Cov(λ1, λ3) Cov(λ2, λ3) V ar(λ3) + E(λ3)

 ,

which results in

Cov(Y1, Y2) = Cov(λ1, λ2) + Cov(λ2, λ3) + Cov(λ1, λ3) + V ar(λ3) + E(λ3).

Thus if the λ’s are negatively correlated we can end up with negative corre-
lation.

The above model has some interesting properties. First, as shown in
Karlis and Meligkotsidou (2007), even if λ3 = 0, i.e. within each compo-
nent the two variables are uncorrelated, the Y ’s are correlated due to the
correlation induced by the finite distribution of the λ’s. Such a model, with
λ3 = 0 for all the components, actually assumed independence within each
component, but again overall we can have correlation. Second, the correla-
tion between Y1 and Y2 can be negative, while Y1 and Y2 are overdispersed if
m > 1. Note also that the marginal distributions are finite Poisson mixtures.
Finally, as we prove in Appendix A, mixed bivariate Poisson distributions al-
ways give equal or greater probability to the (0,0) cell from the corresponding
bivariate Poisson with the same marginal means. Furthermore, zero-inflated
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bivariate Poisson models can be considered a special case of this model, when
the first component has λ1 = λ2 = λ3 = 0 and, hence, all the probability
mass is given in the (0,0) cell. This also suggests why zero-inflated models
are overdispersed and can induce different correlation structures.

In Appendix B, we summarize some of the moments of the finite mixture
of bivariate Poisson distribution. These quantities can be used for actuarial
purposes as in Bermúdez (2009) and Bermúdez and Karlis (2011). Basically,
following the net premium principle, the total net premium is obtained as
E(Y1+Y2) . However, following the variance premium principle, i.e. including
a risk loading to the net premium that is proportional to the variance of the
risk, V ar(Y1 + Y2) must be obtained.

In order to include covariates and thus allow for greater flexibility we
assume that each parameter is associated to a vector of regressors. Namely
our model takes the form

Y i = (Y1i, Y2i) ∼
m∑
j=1

pjBP (y1, y2;λ1ji, λ2ji, λ3ji), i = 1, . . . , n, j = 1, . . . ,m,

where
log(λkji) = βT

kjxkji, k = 1, 2, 3, j = 1, . . . ,m, (1)

where xkji is a vector of covariates for the i-th observation associated with
the k-th parameter of the j-th component of the mixture and βkj is the set
of regression coefficients. It is clear that the covariates can differ for different
parameters.

This model extends the finite mixture of Poisson regression model of Wang
et al. (1998). The model assumes that for each variable we have m distinct
Poisson regression models that relate the variable of interest with different
covariates. Hence, we assume that the population has several distinct clus-
ters presenting different behaviour. The added feature is that now we model
two variables together and so we are able to take into account their relation-
ships and correlation. Moreover, starting from a bivariate Poisson model,
within each group we may assume a different correlation structure. A natu-
ral extension of the model is to use covariates also in the mixing proportions,
i.e. the vector of probabilities (p1, . . . , pm). A typical choice is to assume a
multinomial logistic model for the vector of mixing proportions (reducing to
simple logistic regression if only two components are present).

In the next section, we provide an EM algorithm to allow for a relatively
simple maximum likelihood (ML) estimation of the model. It is based on the
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standard EM for finite mixtures but also takes into account the trivariate
reduction derivation of the bivariate Poisson model.

3. ML estimation via an EM algorithm

In this section we develop an EM algorithm. The parameters to be esti-
mated are the mixing proportions pj, j = 1, . . . ,m− 1, and the component-
specific vector of regression coefficients βkj, k = 1, 2, 3, j = 1, . . . ,m.

Being a finite mixture, standard missing data representation is possible.
Let Zi = (Z1i, . . . , Zmi) be a vector with Zji = 1 if the i-th observation
belongs to the j-th group and 0 elsewhere. We also introduce component-
specific latent variables, i.e. for the j-th component we use the unobservable
vectors Y j∗

i = (T1ji, T2ji, Sji) such as Y1i = T1ji + Sji and Y2i = T2ji + Sji, as
the trivariate reduction derivation implies. The algorithm is similar to that
described in Brijs et al. (2004), but here we also have regressors. Clearly if
Zi and Sji were observables then estimation would have been a simple task,
since at the E-step we need to obtain the conditional expectations. The
algorithm is now given by:

E-step: Given the values of the parameters after the rth iteration we
obtain from (1), λ

(τ)
1j , λ

(τ)
2j and λ

(τ)
3j and then we calculate the expected values

of the unobservables:

sji = E(Sji | Y1i, Y2i,λ
(τ)
1j ,λ

(τ)
2j ,λ

(τ)
3j ) =

=

 λ
(τ)
3ji

BP (y1i−1,y2i−1;λ
(τ)
1ji ,λ

(τ)
2ji ,λ

(τ)
3ji)

BP (y1i,y2i;λ
(τ)
1ji ,λ

(τ)
2ji ,λ

(τ)
3ji)

, if y1iy2i > 0

0 if y1iy2i = 0

and

wji =
p
(τ)
j BP (y1i, y2i;λ

(τ)
1ji, λ

(τ)
2ji, λ

(τ)
3ji)

m∑
j=1

p
(τ)
j BP (y1i, y2i;λ

(τ)
1ji, λ

(τ)
2ji, λ

(τ)
3ji)

.

M-step: Update the estimates by

p
(τ+1)
j =

n∑
i=1

wji/n

β
(τ+1)
1j = β̂(y1 − sj,x1,wj),

β
(τ+1)
2j = β̂(y2 − sj,x2,wj) and

β
(τ+1)
3j = β̂(sj,x3,wj),
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where sj = [sj1, . . . , sjn]
T is the n × 1 vector, β̂(y,x,w) are the weighted

maximum likelihood estimated parameters of a Poisson model with response
to the vector y, design or data matrix given by x and weights w. Note that
different covariates may be used for each λ, i.e. different design matrices.

The above procedure has all the advantages and drawbacks of the EM
algorithm. For this reason, suitable terminating conditions should be con-
sidered carefully. In the case in which covariates are also used for the mixing
proportions, then the M-step has to be replaced by one that fits a multi-
nomial logistic (or a simple logistic if only two components are considered)
regression using wij as response vector.

Finally, initial values can be obtained by fitting a simple univariate Pois-
son regression to each variable so as to obtain the fitted values. Then, by
simply perturbing them (e.g. multiplying the lambda expressions by 0.8 and
1.2), we can obtain initial values for each component. Initial values for the
mixing proportions are less important for initialization. Furthermore, as in
other finite mixture settings, initial values can be obtained using a standard
clustering algorithm. Note that obtaining initial estimates for the wji is
sufficient to initialise the algorithm.

4. Application

4.1. The data

The original population comprised a ten-percent sample of the 1996 au-
tomobile portfolio (note, only automobiles categorized as being for private
use were considered) of a major insurance company operating in Spain and
contains information for 80,994 policyholders. The data have previously been
also used in Bermúdez (2009) where bivariate Poisson models, including zero-
inflated models, were fitted. The sample is not representative of the com-
pany’s current portfolio, being drawn from a larger panel of policyholders
that had been customers of the company for at least seven years; however,
the sample should be helpful here for illustrative purposes. Twelve exoge-
nous variables were considered plus the annual number of accidents recorded
for both types of claim. For each policy, the information at the beginning of
the period and the total number of claims from policyholders “at fault” were
reported for each year. The exogenous variables, described in Table 1 outline
the covariates, and this data set have previously been used in Pinquet et al.
(2001), Brouhns et al. (2003), Bolancé et al. (2003), Bolancé et al. (2008),
Boucher et al. (2007), Boucher and Denuit (2008) and in Boucher et al.
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Variable Definition

V1 equals 1 for women and 0 for men
V2 equals 1 when driving in urban area, 0 otherwise
V3 equals 1 when zone is medium risk (Madrid and Catalonia)
V4 equals 1 when zone is high risk (Northern Spain)
V5 equals 1 if the driving license is between 4 and 14 years old
V6 equals 1 if the driving license is 15 or more years old
V7 equals 1 if the client is in the company between 3 and 5 years
V8 equals 1 if the client is in the company for more than 5 years
V9 equals 1 of the insured is 30 years old or younger
V10 equals 1 if includes comprehensive coverage (except fire)
V11 equals 1 if includes comprehensive and collision coverage
V12 equals 1 if horsepower is greater than or equal to 5500cc

Table 1: Explanatory variables used in the models

(2009). In this study, all customers had held a policy with the company for
at least three years. Thus, variable V7 could be rejected and variable V8
retained, the latter’s baseline now being established as a customer who had
been with the company for fewer than five years.

The meaning of the variables that refer to the policyholders’ coverage
should also be clarified. The classification adopted here responds to the
most common types of automobile insurance policy available on the Spanish
market. The simplest policy only includes just third-party liability (claimed
and counted as Y1) and a set of basic guarantees such as emergency road- side
assistance, legal assistance or insurance covering medical costs but it does not
include comprehensive coverage or collision coverage (claimed and counted
as Y2). This simplest type of policy makes up the baseline group, while
variable V10 denotes policies which, apart from the guarantees contained in
the simplest policies, also include comprehensive coverage (except fire), and
variable V11 denotes policies which also include fire and collision coverage.
Y1 and Y2 are the two response variables used in the paper.

4.2. Results

We fitted a 2-finite mixture of bivariate Poisson regressions to this data
set. We have avoided running a model with three components as the in-
terpretation of such a model would have been more difficult and because a
2-finite mixture allows sufficient interpretation of this particular data set.
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Model Log-Lik Parameters AIC
Double Poisson -48,882.95 24 97,813.90
Bivariate Poisson (BP) -48,135.98 25 96,321.96
BP (regressors on λ3) -47,873.37 26 95,798.74
Zero inflated BP (ZIBP) -45,435.00 26 90,922.00
ZIBP (regressors on λ3) -45,414.80 27 90,883.60
2-finite mixture BP (2-FMBP1) -44,927.01 51 89,956.02
2-FMBP2 (regressors on p) -44,842.22 53 89,737.44
Bivariate Negative Binomial -45,080.12 25 90,210,24
Bivariate Poisson Lognormal -45,036.85 27 90,127.70

Table 2: Information criteria for selecting the best model for the data

However, models with more components can easily be fitted via the EM al-
gorithm provided. Further, we estimated both λ3 parameters as being equal
to 0, implying that conditional on the component no correlation was present.

The first model fitted does not have covariates in the mixing proportion
p while the second uses V10 and V11 as covariates in the mixing proportion.
We used these covariates because when fitting the first model we noticed
that there was a large difference in a posteriori probabilities when considering
values 0 or 1 for V10 and V11. We return to this issue later. Bermúdez (2009)
also used V 10 covariate to model λ3 parameter. In the sequel, 2-FMBP1 is
the name given to the first model without covariates on p and 2-FMBP2 is
the name given to the second model with covariates on p. Models were fitted
via the EM algorithm provided.

Table 2 presents the results from fitting various models to the data. We
fitted models of increasing complexity, starting from a simple independent
Poisson regression model. The first five models are the same as those fitted
in Bermúdez (2009). It can be seen that the 2-finite mixture of bivariate
Poisson regressions are by far the best models, especially the regression with
covariates in the mixing proportion, which has the best AIC. We also include
in the table some more models mentioned in Section 2.2 to show the gain
offered by our model.

Table 3 shows the results from fitting the 2-finite mixture of bivariate Pois-
son model with the covariates in the mixing proportion. The p-value refers
to the likelihood ratio test (LRT) statistic when the variable is included or
excluded from the model. We prefer this approach as standard errors in fi-
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1st component 2nd component
(j = 1) (j = 2)

Y1 Y2 Y1 Y2

Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value
Intercept 0.071 < 0.001 -1.611 < 0.001 -3.118 < 0.001 -6.014 < 0.001
V1 -0.061 0.115 0.032 0.218 0.127 0.059 0.037 0.258
V2 -0.037 0.162 0.008 0.308 -0.076 0.123 0.179 0.001
V3 -0.090 0.027 0.106 0.003 0.197 0.006 0.242 < 0.001
V4 0.129 0.003 -0.043 0.166 0.284 < 0.001 -0.371 < 0.001
V5 -0.132 0.142 0.153 0.111 -0.346 0.016 0.452 0.003
V6 -0.216 0.052 0.027 0.313 -0.524 0.002 0.137 0.215
V8 0.101 0.022 0.135 0.002 0.190 0.013 0.326 < 0.001
V9 0.078 0.145 0.035 0.262 0.193 0.048 0.171 0.024
V10 -0.707 < 0.001 1.622 < 0.001 -2.676 < 0.001 2.953 < 0.001
V11 -0.361 < 0.001 1.069 < 0.001 -0.285 0.002 2.412 < 0.001
V12 0.036 0.224 0.102 0.028 0.079 0.145 0.397 < 0.001
λ3 0.000 - 0.000 -
Mixing Proportion (p)
Intercept -2.4595 < 0.001
V10 1.447 < 0.001
V11 0.680 < 0.001

Table 3: Results from fitting the 2-FMBP2 model (with regressors on p)

nite mixtures are not easy to derive. In our case we would need to derive the
Hessian of the log-likelihood function which is particularly time consuming
and vulnerable to overflows as we have 53 parameters (12 regression coeffi-
cients for each variable for two of the components, plus three coefficients for
the mixing proportion and two covariance parameters). Bootstrapping as an
alternative can also be very slow. So, we removed each variable each time
and calculated a LRT. The p-values reported correspond to this LRT.

Figures 1 and 2 help illustrate that the 2-finite mixture of bivariate Pois-
son regression (with covariates on p) is a good option, and better in all
circumstances than a zero-inflated bivariate Poisson regression, for dealing
with overdispersion and the excess of zeros present in the data set.

Figure 1 shows the components fitted. We plotted boxplots for the two
components for the two variables under consideration. The boxplots repre-
sent the values of λkji for k = 1, 2, j = 1, 2, and i = 1, . . . , 80, 994. From
this plot, it can be readily seen that the first component corresponds to pol-
icyholders with high rates of claims for both variables, Y1 and Y2, while the
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second component corresponds to those with small claim rates. In fact, the
second component has very small means for the underlying Poisson compo-
nents, which implies a high probability of zeros. Thus, the second component
introduces a large amount of zero inflation in our model.

Bermúdez (2009) fitted zero-inflated bivariate Poisson models to account
for the excess of zeros found with respect to the simple bivariate Poisson
model while at the same time, allowing for overdispersion. Here, we show
that the problem is more than one of simple zero inflation. Thus, by assum-
ing the existence of two types of policyholder described separately by each
component in the mixture, we are able to improve considerably the modelling
of the data set. Indeed zero-inflated models represent special instances of the
finite mixture model presented here, which was considered, at least initially,
to account for overdispersion.

In fact, in the univariate case, Lord et al. (2005) and Lord et al. (2007)
criticize zero-inflated models when modelling the number of accidents owing
to a dual-state process assumption. According to them, the claim is made
that zero-inflated models assume two sources of zeros: “true” and “observed”.
The existence of “true” zeros may be too strong an assumption in some
cases (see also Boucher and Santolino (2010)). However, as Park and Lord
(2009) discuss in the univariate case, the two-component mixture model used
here does not make this somewhat strict dual-state process assumption and
allows mixing with respect to both zeros and positives. This interpretation
is more flexible and it holds better in our case. The group separation is
characterized by low mean with low variance (policyholders considered as a
“good” drivers) and high mean with high variance (policyholders considered
as a “bad” drivers).

From Figure 1, it is also interesting to note that third-party liability claims
(Y1) present greater separation between the two components than is shown by
the rest of automobile claims (Y2). For each observation, we also calculated
the underlying variance and covariance. These are depicted in Figure 2. The
horizontal line is the observed quantity and the boxplot refers to the values
fitted for each individual based on the second model (the one with covariates
on p). As for the covariance, we can see that the model captures this quite
well. In the case of the variance, we can see that the model’s prediction is
somewhat smaller than that observed. This is perhaps an indication that
some overdispersion remains uncaptured, either because a third component
could be fitted or because we have overlooked some covariates.

Most of the parameters are significant. Note, however, that the sample
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Figure 1: The fitted components for the two variables analyzed
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Figure 2: Variance and covariance for the fitted model

size was very large. Any variable selection technique could have been used
to reduce the number of variables, however in this application we preferred
to retain all the variables in order to see their effect. Recall that it is not
necessary to use the same covariate vector for all the parameters. Only the
parameter related to gender (V1 ) is not significant in all cases, i.e. for both
components and both response variables. On the other hand, parameters
related to the driving zone (V3 ), the number of years the customer has been
with the company (V8 ), and the type of coverage (V10 and V11 ) present
significant coefficients for both components and both response variables. It
is interesting to note that parameters V10 and V11 present coefficients of
different signs for each response variable. For the Y1 variable (third-party
liability claims), the more policy guarantees the customers take out the fewer
claims they report. The opposite is the case for the Y2 variable (all other
automobile insurance claims). Finally, parameters V5 and V9, related to the
policyholder’s driving experience and age respectively, are significant only for
the second component, while parameter V12, related to the car’s horsepower,
is only significant for the second response variable.

A more detailed explanation of the coefficients is of interest here to differ-
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entiate between the two groups. Recall that the first component corresponds
to the policyholders considered “good” drivers, characterized by a low mean
with low variance, and the second component corresponds to the policyhold-
ers considered “bad” drivers, characterized by a high mean with high vari-
ance. Most of the parameters present the same behaviour for both “good”
and “bad” drivers. This is the case of the parameters related to the driv-
ing zone (V3 and V4 ), the type of coverage (V10 and V11 ), and the car’s
horsepower (V12 ). Another example is the longer the customer has been
with the company (V8 ) the more claims the policyholder reports, regardless
of the group to which he or she belongs. By contrast, three parameters are
only significant for the second component, and as such can be used to define
a “bad” driver. These are basically the parameters related to a driver’s age
and driving experience. The fact of being thirty years old or younger (V9 )
results in the expected number of claims to increase for all types of claim.
Driving experience (V5 ) reduces the expected number of third-party liability
claims, but increases the expected number for all other automobile insurance
claims. Moreover, “bad” drivers in urban areas (V2 ) only present a larger
expected number of claims for Y2 type claims. Finally, V10 and V11 are
also highly significant for the mixing proportion, implying that the existence
of V10 and V11 increases the probability of belonging to the first cluster.
Hence, “good” drivers take out more guarantees in their policies than is the
case with “bad” drivers.

Table 4 presents the observed and expected frequencies under the two
2-finite mixture of bivariate Poisson regressions. To obtain the expected
frequencies, for each observations we calculated the probability table based
on the estimated parameters and then we summed all these probability tables
to obtain the one with the expected frequencies. The fit is quite good, while
there are still a few cells that have large residuals. The results of the chi-
square test show that only a few cells contribute to this goodness of fit, but
owing to the very large sample size, rejecting the null hypothesis is somewhat
artefactual. It is our belief that the fit is, in fact, very good given the size
of the data set. Furthermore, note that a zero-inflated model would only
correct with respect to the (0,0) cell and not to the entire probability table.

Finally, we present Figure 3 in an effort to see which variables characterize
each cluster and which variables can be included as regressors in the mixing
proportion p. Using the posterior probabilities, available on finishing the EM
algorithm, we can classify each observation to a cluster, based (as usual) on
the maximum posterior probability. Since all the variables were binary, for
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Y1 Y2

0 1 2 3 4 5 6 7
Observed 71087 3722 807 219 51 14 4 0

0 2-FMBP1 70992.70 3932.01 593.23 161.74 49.25 13.93 3.54 0.80
2-FMBP2 71045.30 3806.84 644.29 191.87 54.33 13.26 2.81 0.53
Observed 3022 686 184 71 26 10 3 1

1 2-FMBP1 3032.90 753.38 253.26 87.06 27.60 7.87 2.01 0.46
2-FMBP2 3055.16 737.08 280.54 92.21 25.57 6.10 1.28 0.24
Observed 574 138 55 15 8 4 1 1

2 2-FMBP1 580.86 200.93 71.19 24.73 7.87 2.25 0.58 0.13
2-FMBP2 476.95 217.76 77.63 23.73 6.27 1.45 0.30 0.05
Observed 149 42 21 6 6 1 0 1

3 2-FMBP1 107.79 38.11 13.61 4.75 1.52 0.44 0.11 0.03
2-FMBP2 117.96 49.36 15.41 4.31 1.07 0.24 0.05 0.01
Observed 29 15 3 2 1 1 0 0

4 2-FMBP1 15.41 5.50 1.98 0.69 0.22 0.06 0.02 0
2-FMBP2 24.48 9.06 2.46 0.62 0.14 0.03 0.01 0
Observed 4 1 0 0 0 0 2 0

5 2-FMBP1 1.79 0.65 0.23 0.08 0.03 0.01 0 0
2-FMBP2 4.26 1.42 0.34 0.08 0.02 0 0 0
Observed 2 1 0 1 0 0 0 0

6 2-FMBP1 0.18 0.06 0.02 0.01 0 0 0 0
2-FMBP2 0.64 0.20 0.04 0.01 0 0 0 0
Observed 1 0 0 1 0 0 0 0

7 2-FMBP1 0.02 0.01 0 0 0 0 0 0
2-FMBP2 0.08 0.02 0 0 0 0 0 0
Observed 0 0 1 0 0 0 0 0

8 2-FMBP1 0 0 0 0 0 0 0 0
2-FMBP2 0.01 0 0 0 0 0 0 0

Table 4: Observed and expected frequencies
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each cluster we considered the proportion of observations that belong to the
first cluster for all the variables.

In Figure 3 the profiles of the two clusters are depicted for each model
fitted, i.e. the mean for all the clients assigned to each cluster. The left-
hand side plot corresponds to the 2-FMBP without covariates in the mixing
proportion, while the right-hand side plot corresponds to the model with V10
and V11 as covariates in the mixing proportion. The dotted line represents
the first cluster while the solid line represents the second. For the left-hand
side plot, the main differences occur for variables V10 and V11 while some
small difference is found for V3. In simple terms, these variables can be
used to distinguish between the two clusters. Interestingly, these variables
also have different signs in their regression coefficients for the two components
(see Table 3). They are also the only variables that are statistically significant
for both components and both response variables. For all the other variables,
the profiles are the same which indicates their unsuitability for characterizing
the clusters.

After including V10 and V11 as covariates in the mixing proportion, it
can be seen that all the information regarding V11 is now included within
the mixing proportion parameter p. In other words, the p does not differ
for the two components but it is significant when selecting the component.
Thus, if we do not use V11 in the p then the differences will be apparent in
the means. By contrast, the inclusion of the comprehensive coverage (except
fire) (V10 ) variable still characterizes the clusters. Differences exist for the
other variables but are smaller.

Note also the differences in interpretation afforded by the two models.
By using covariates in the mixing proportion, we model the effect of the
covariate explicitly to the choice of component, while when using them only
in the mean of the component we do so implicitly. It also helpful to consider
how covariates directly affect the probability of each customer belonging to
a group.

5. Concluding Remarks

We have proposed a new model of finite mixture of bivariate Poisson re-
gressions. The idea is that the data consist of subpopulations of different
regression structures. A potential use for such a model is for examining the
clustering of observations, taking into consideration the effect of certain co-
variates while also taking into account the dependence between the response
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Figure 3: The profiles of the two clusters considered for 2-FMBP1 and 2-FMBP2 models

variables. The model corrects for the zero inflation and overdispersion present
in the real automobile insurance data set used in the application. The model
can also be used to model negative correlation.

The AIC reported here indicates that the 2-finite mixture of bivariate
Poisson regression with covariates in the mixing proportion is the best model
for describing the data set. This model has a number of interesting features:

Firstly being a finite mixture it has a nice cluster interpretation. Secondly
it is semi-parametric, in the sense that we avoid a parametric assumption
on the mixing distribution. Thirdly is flexible enough allowing for overdis-
persion, zero inflation but also for negative correlation. Finally, our EM
algorithm makes its fit straightforward while for other models their fitting
procedure is not easy for large samples and many covariates as in our case.
Such an example is the bivariate Poisson lognormal model which needs the
evaluation of a bivariate integral for each observation, and of course each
iteration during maximization which leads to a lot of computational prob-
lems. Concluding the proposed model provides very interesting structure
while being computationally feasible.

The problem of overdispersion arises because of the presence of unob-
served heterogeneity in many real data sets. In insurance data sets, an in-
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surance company cannot keep track of the many differences between policy-
holders. However, the model proposed in this paper accounts for unobserved
heterogeneity by choosing a finite number of subpopulations. We assume the
existence of two types of policyholder described separately according to each
component in the mixture.

The phenomenon of excess of zeros may also be seen as a consequence of
this unobserved heterogeneity. The model proposed here, as a finite mixture
of bivariate Poisson regression model, embraces the zero-inflated bivariate
Poisson regression model as a special case. The main difference with zero-
inflated models is that the two-component mixture model reported here al-
lows mixing with respect to both zeros and positives. This interpretation
is more flexible and holds better in our application. The group separation
is characterized by low mean (policyholders considered as a “good” drivers)
and high mean (policyholders considered as a “bad” drivers).

Moreover, as it seems that the data set may have been generated from
two distinct subpopulations, the model allows for a net interpretation of each
cluster separately. Note that different regression coefficients can be used to
account for the “observed” heterogeneity within each population.

Finally, we would like to mention various ways in which this paper might
be extended. Although in the present paper we limit our analysis to the
bivariate case, it could be extended to include larger dimensions. Following
the general model presented by Karlis and Meligkotsidou (2007), covariates
might be added and this finite mixture of multivariate Poisson regressions
could be used to cluster high-dimensional data. A particularly interesting
case occurs if we consider there to be no dependence within a cluster, whereby
within-cluster independent Poisson regressions are considered.

To conclude this section, we should point out that the one of the lim-
itations of the bivariate Poisson model is that it allows only for positive
dependence within each component, owing to the properties of the bivariate
(multivariate) Poisson distribution. To overcome this shortcoming, other bi-
variate models, such as the copula-based models defined in Nikoloulopoulos
and Karlis (2010), might be considered as the component specific bivariate
distributions.
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AppendixA. Zero inflation in mixed bivariate Poisson distributions

Lemma: Mixed bivariate Poisson distributions always give equal or greater
probability to the (0,0) cell from the corresponding bivariate Poisson with
the same marginal means.

Proof: It is straightforward to see that any mixed bivariate Poisson distribu-
tion has an excess of zeros compared to the bivariate Poisson distribution with
the same marginal means. This result generalizes the known property in one
dimension (Shaked’s Two Crossings Theorem). To demonstrate this, consider
for sake of simplicity the 2-finite bivariate Poisson mixture, with probability
p and (1 − p) to the points (λ11, λ21, λ31) and (λ12, λ22, λ32). The marginal
means are p(λ11+λ31)+(1−p)(λ12+λ32) and p(λ21+λ31)+(1−p)(λ22+λ32)
respectively. Consider also the bivariate Poisson with the same marginal
means. Under the 2-finite mixture case the (0, 0) probability is given by

P2(0, 0) = p exp (−(λ11 + λ21 + λ31)) + (1− p) exp (−(λ12 + λ22 + λ32))

or
P2(0, 0) = p exp(−Λ1) + (1− p) exp(−Λ2),

while for the bivariate Poisson we have

PBP (0, 0) = exp (−(pΛ1) + (1− p)Λ2) .

By considering the random variable Q that takes value −Λ1 and −Λ2

with probabilities p and 1 − p and considering the Jensen’s inequality we
have that

E(exp(Q)) ≥ exp(E(Q))

and thus
P2(0, 0) ≥ PBP (0, 0).

Thus, this mixing of this kind also results in zero inflation. The above
result can be readily generalized to an infinite number of components as well
as to more than two dimensions.
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AppendixB. Some of the moments for the 2-finite mixture of bi-
variate Poisson distribution

It can readily be obtained that

E(Yk) =
m∑
j=1

pj(λkj + λ3j),

E(Y 2
k ) =

m∑
j=1

pj
[
λkj + λ3j + (λkj + λ3j)

2
]
,

V ar(Yk) = E(Y 2
k )− [E(Yk)]

2 ,

E(Y1Y2) =
m∑
j=1

pj [λ3j + (λ1j + λ3j)(λ2j + λ3j)] ,

and
Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2).

For actuarial purposes one may well be interested in quantities such as
E(Y1 + Y2) and/or V ar(Y1 + Y2) (see, e.g. Bermúdez (2009)). These can be
easily obtained from the above formulas.
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Pinquet, J., Guillén, M., Bolancé, C., 2001. Long-range contagion in auto-
mobile insurance data: Estimation and implications for experience rating.
ASTIN Bulletin 31, 337–348.

Stein, G., Yuritz, J., 1987. Bivariate compound Poisson distributions. Com-
munications in Statistics -Theory and Methods 16, 3591–3607.

Stein, G., Zucchini, W., Juritz, J., 1987. Parameter estimation for the Sichel
distribution and its multivariate extension. Journal of the American Sta-
tistical Association 82, 938–944.

Steyn, H., 1976. On the multivariate Poisson normal distribution. Journal
of the American Statistical Association 71, 233–236.

Wang, P., 2003. A bivariate zero-inflated negative binomial regression model
for count data with excess zeros. Economics Letters 78, 373–378.

Wang, P., Cockburn, I., Puterman, M., 1998. Analysis of patent data: a
mixed Poisson regression model approach. Journal of Business and Eco-
nomic Statistics 16, 27–36.

26



Winkelmann, R., 2008. Econometric Analysis of Count Data, 4th edition.
Springer, New York.

27


