Vector control with long-lasting insecticidal nets (LLINs) and indoor residual spraying are responsible for more than two thirds of the reduction seen in malaria prevalence in Africa over the last 15 years (1). Yet the behavioral plasticity of mosquito vectors can lead to residual transmission and possibly hamper elimination efforts (2, 3).

One identified source of residual transmission is partial zoophagy. Mosquitoes that feed on peridomestic livestock can avoid contact with insecticides and survive to continue transmission once human blood is available again (3). This behavioral pattern could be seen after the scale-up of LLINs that put selective pressure on vectors that bite predominantly humans indoors (4), either by allowing a shift to a vector species with different behavior (5) or by selecting members of the same species that circumvent LLINs by biting outdoors (6) or outside sleeping hours (7).
Ivermectin is an endectocide, a drug that kills ectoparasites that feed on treated subjects. Ivermectin mass drug administration to humans has been proposed as a potential complementary measure to reduce malaria transmission (8). Additional treatment of peridomestic livestock with ivermectin could reduce malaria transmission by killing partially zoophagic vectors (9) and also contribute to human wellbeing via the one-health concept, improving food production and economic benefits of animal owners (10).

Ivermectin, however, has a relatively short half-life (3.5 days in pigs (11) and 2.8 days in cattle (12)), although veterinary use allows more flexibility in dose and route of administration. Even novel injectable formulations at 3.15% used at a three-fold dose would only sustain mosquito-killing concentrations for maximum estimated 40 days in cattle (13). Consideration should be given to longer-lasting formulations specifically conceived for vector control.

We previously showed that subcutaneous long-lasting formulations sustained mosquito-killing ivermectin levels in a rabbit model for more than six months (14). Using the same formulations, we aimed at achieving stable and safe ivermectin levels in a larger mammal, the pig.

Methods. We chose two 80-kg hybrid mini pigs to facilitate extrapolation to larger livestock such as cattle. We tested the two formulations of subcutaneous silicone rods that showed the most promising pharmacokinetic profile in our previous experiment (14). The rods are 40 mm long and have a 1 mm radius; four or five devices are inserted subcutaneously in the back or thighs by means of a trocar used for commercially available hormonal implants. Formulation “F” contains 80% ivermectin (29 mg), 7% sucrose and 13% deoxycholate. Formulation “X” contains 35% ivermectin (13 mg), 10% sucrose and 55%
deoxycholate, which greatly increases the elution of the drug (for further details on implant
design refer to (14)).

Plasma ivermectin levels were measured weekly for 12 weeks after the first month. At
completion of the experiment, the implants were removed and the ivermectin remaining in
the rods quantified. Animals were checked daily for toxicity. The protocol was approved by
the Institutional Animal Care and Use Committee of the University of Navarra.

Results. The implants sustained stable ivermectin plasma levels around 20 ng/ml for
more than 12 weeks (Figure 1), greatly exceeding 6 ng/ml, the concentration needed to kill
50% of *Anopheles gambiae* mosquitoes in 10 days (15). Both formulations showed a similar
pharmacokinetic pattern, formulation “F” eluted 47% of its ivermectin content while
formulation “X” eluted 55%. The mean daily dose received by the pig with formulation “F”
was 43 mcg/kg/day and for that with formulation “F” 9.8 mcg/kg/day. No clinical adverse
effects were seen in the pigs.

Conclusion. Our results show there is potential to safely sustain mosquitocidal levels
of ivermectin in larger mammals for months using a subcutaneous formulation. Whether an
entomologically relevant outcome can be expected should be tested by means of a cluster
randomized trial. This approach could contribute to human wellbeing not only by reducing
residual malaria transmission driven by zoophagic vectors but also by improving the health
of economically relevant livestock. Hence this intervention could be attractive for livestock
owners, possibly opening the door for previously unforeseen funding collaborations.

Acknowledgements

We declare no competing interests.
This work was funded by the University of Navarra. Carlos Chaccour is supported by a Ramón Areces fellowship.

References

Legend

FIG. 1. Ivermectin plasma levels after implantation of a slow release formulation in two 80 kg-pigs. Levels above the 10-day lethal concentration 50 for *An. gambiae* (double blue line) are sustained for at least 12 weeks. We expect this effect to last for at least 6 months given that the implants still contained 45-53% of ivermectin after removal at 12 weeks. The dotted lines are included for comparison; red reflects the approximate PK of a single subcutaneous 300 mcg/kg dose of 1% ivermectin in pigs (11), orange reflects the approximate PK of a single subcutaneous 630 mcg/kg dose of 3.15% ivermectin in cattle (13).