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Abstract

When actuaries face the problem of pricing an insurance contract that contains different

types of coverage, such as a motor insurance or homeowner’s insurance policy, they usually

assume that types of claim are independent. However, this assumption may not be realistic:

several studies have shown that there is a positive correlation between types of claim. Here we

introduce different multivariate Poisson regression models in order to relax the independence

assumption, including zero-inflated models to account for excess of zeros and overdispersion.

These models have been largely ignored to date, mainly because of their computational

difficulties. Bayesian inference based on MCMC helps to resolve this problem (and also allows

us to derive, for several quantities of interest, posterior summaries to account for uncertainty).

Finally, these models are applied to an automobile insurance claims database with three

different types of claims. We analyse the consequences for pure and loaded premiums when

the independence assumption is relaxed by using different multivariate Poisson regression

models together with their zero-inflated versions.
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tat de Barcelona, Diagonal 690, 08034-Barcelona, Spain. Tel.:+34-93-4034854; fax: +34-93-4034892; e-mail:

lbermudez@ub.edu

1



1 Introduction

Automobile insurance aims at covering different type of claims incurred as a result of traffic

accidents. In most developed countries motor insurance is compulsory for driving a motor vehicle

on public roads. The level of protection of each jurisdiction varies greatly, but essentially, the aim

of compulsory motor insurance for all vehicle owners is to cover damage to third parties. This

coverage is usually termed third-party liability coverage and provides financial compensation to

cover any injuries caused to other people or their property.

Apart from this liability coverage, motor insurance can also cover the insured party (vehicle

damage and personal injury). Property coverage or first-party coverage provides different levels

of protection depending on the policy the insured purchases. Car owners may take out com-

prehensive coverage (damage to the vehicle caused by any unknown party, for example, damage

resulting from theft, flood or fire), collision coverage (damage resulting from a collision with

another vehicle or object when the policyholder is at fault), or a set of basic guarantees such as

an emergency roadside assistance, legal assistance or insurance covering medical costs.

Pricing is especially complicated in the branch of motor insurance, due to the heterogeneity

of the portfolios and the fact that policies cover different risks. One way to handle the problem of

this heterogeneity is to segment the portfolio into homogeneous classes so that all policyholders

belonging to the same class pay the same premium. To achieve this, an a priori ratemaking

based on generalized linear models (GLM) is usually accepted. A thorough review of ratemaking

systems for motor insurance, when modelling claim count data, can be found in Denuit et al.

(2007).

With the usual ratemaking procedure, modelling the number of claims incurred using Poisson

regression models, the expected number of claims (the pure premium, assuming the amount of

the expected claim equals one monetary unit) is obtained for each class of guarantee as a

function of different factors. Then, assuming independence between types of claims, the total

motor insurance premium is obtained by the sum of the expected number of claims of each

guarantee. This procedure presents at least three important limitations.

First, not all factors influencing risk can be identified, measured and introduced in the a

priori tariff system, and hence, the tariff classes may be quite heterogeneous. To correct for this

unobserved heterogeneity an a posteriori tariff (or bonus-malus system) can be used, by fitting
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an individual premium based on the experience of claims for each insured party. There is a large

amount of literature on bonus-malus systems (see Denuit et al., 2007). Another way to handle

unobserved heterogeneity is to introduce a random effect into the model (Cameron and Trivedi,

1998 and Boucher and Denuit, 2006).

Second, unobserved heterogeneity and serial dependence (when the data consist of repeated

observations regarding the same policyholder) will often lead to overdispersion (variance greater

than mean) which cannot be fully remedied by Poisson regression models. Failing to account for

overdispersion may increase the number of factors considered significant by artificially increasing

their level of significance. To account for overdispersion, some generalizations of the model have

been considered (see e.g. zero-inflated models as in Boucher et al., 2007).

Finally, it remains to be established whether the independence assumption between types

of claims is realistic. This question is not widely discussed in the actuarial literature. When

this assumption is relaxed, it is interesting to see how the tariff system is affected. In Frees

and Valdez (2008) and Frees et al. (2009) a hierarchical statistical model is fitted using micro-

level data. A multivariate probit model has also been suggested by Young et al. (2009) to

account for dependencies among claim types. In Bermúdez (2009), the interpretation of a

number of bivariate Poisson models was illustrated in the context of motor insurance claims and

the conclusion was that using a bivariate Poisson model leads to an a priori ratemaking that

presents larger variances and, hence, larger loadings than those obtained under the independence

assumption. In that study, only two types of claim were considered: claims for third-party

liability or for the rest of guarantees. Obviously, this is a limitation that other multivariate

count data models can overcome: for instance, we could divide claims for third-party liability

into vehicle damage and personal injury claims, or distinguish between motor collision coverage

and the rest of guarantees. In the present paper we deal with this kind of extension.

Here we introduce different multivariate Poisson regression models in order to relax the inde-

pendence assumption when pricing several guarantees simultaneously in automobile insurance.

Creating multivariate Poisson models is not easy, as many different models can be obtained. In

the present paper we use two such models and their zero-inflated variants (to account for the

excess of zeros observed in automobile databases, see e.g. Boucher et al., 2007 and Bermúdez,

2009). The first one, which we call the “common covariance model”, has been defined in Tsionas

(2001) and the second one, the “full covariance model”, in Karlis and Meligkotsidou (2005). In
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addition, here we extend these models with their zero-inflated variants. It is important to re-

alize that zero inflation also introduces overdispersion in the marginal distributions. Hence,

zero-inflated models can introduce improvements in several aspects of the data. Multivariate

zero-inflated models are well known for claim counts data, see for example Boucher and Denuit

(2008) for a credibility application. Our approach differs from this paper as we attempt to model

dependence between different types of claims and not for a panel data, i.e. one type observed

in different time periods. Moreover, they are focus on a posteriori premiums and we use these

models for a priori ratemaking procedure.

Finally, we use a Bayesian approach for fitting the models that offers some advantages. It

facilitates the estimation for such complicated models, while at the same time, allows for deriving

posterior quantities of interest not as simple point estimates but together with their posterior

distribution providing more insight and better understanding for correct ratemaking. To our

knowledge, the derived MCMC scheme for multivariate zero-inflated Poisson models is novel.

The article is organized as follows. First, in Section 2 we introduce several multivariate

Poisson regression models. In Section 3 we discuss the Bayesian methodology used to fit the

statistical model to the data. In Section 4 the database from a Spanish insurance company is

described. In Section 5 the results are summarized. Finally, we provide concluding remarks in

Section 6.

2 Multivariate Poisson regression models

Let us consider a policyholder with N1 the number of claims for motor third-party liability

coverage, N2 the number of claims for motor collision coverage, N3 the number of claims for the

rest of motor guarantees and N = N1 + N2 + N3 the total number of claims during one year.

Our aim is to analyze different multivariate Poisson models as a way to relax the indepen-

dence assumption between types of claims when a ratemaking procedure is developed. First,

we analyze a simple multivariate Poisson model with common covariance parameter (Johnson

et al., 1997, Tsionas, 2001). Second, we study a multivariate Poisson model with full covariance

following the model introduced by Karlis and Meligkotsidou (2005). Finally, we consider zero-

inflated versions of these models to account for the excess of zero claims and the overdispersion

observed typically in such datasets.
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2.1 A model with common covariance

The first model is based on a simple multivariate reduction. Namely we assume that

N1 = Y1 + Y0

N2 = Y2 + Y0 (1)

N3 = Y3 + Y0

where Yi ∼ Po(θi), i ∈ {0, 1, 2, 3}, θi > 0. Then, each Ni, i ∈ {1, 2, 3} marginally follows

a Poisson distribution with parameter θi + θ0. θ0 is a common covariance parameter which

measures the covariance of each pair. The covariance matrix is

Cov(N) =




θ1 + θ0 θ0 θ0

θ0 θ2 + θ0 θ0

θ0 θ0 θ3 + θ0


 .

The joint probability function of the vector N is given by

P (n1, n2, n3) = exp(−θ)
s∑

k=0

θk
0

k!
θn1−k
1

(n1 − k)!
θn2−k
2

(n2 − k)!
θn3−k
3

(n3 − k)!
,

where s = min{n1, n2, n3} and θ = θ1 + θ2 + θ3 + θ0. We will denote the above distribution as

MP1(θ1, θ2, θ3, θ0).

Let us assume that N1q, N2q and N3q denote respectively the random variables indicating

the number of claims of each type of guarantee for the qth policyholder. We may allow for

covariates by considering that log(θiq) = x′
iqβi , where xiq is a vector of explanatory variables

and βi denotes the corresponding vector of regression coefficients.

Note that different covariates can be used to model each parameter θi , i = 1, 2, 3. In general

we may use covariates to θ0 as well but this would make the interpretation much more difficult.

If covariates are introduced to model θ1 , θ2 and θ3 , a multivariate Poisson regression model

can be defined with the following scheme (for more details see Tsionas, 2001):

(N1q, N2q, N3q) ∼ MP1(θ1q, θ2q, θ3q, θ0q),

log(θ1q) = x′
1q β1,

log(θ2q) = x′
2q β2, (2)

log(θ3q) = x′
3q β3.
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Limitations of this model are that it assumes a common covariance for each pair; it allows

only for positive covariance (correlation); and the marginal distributions are Poisson, and so we

cannot model over(under)dispersion.

There are some other models that allow for negative correlation (see van Ophem 1999, Chib

and Winkelmann 2001, Berkhout and Plug 2004, Karlis and Melogkotsidou (2007), Nikoloulopou-

los and Karlis, 2009), but they are much more complicated and require a special effort for

parameter estimation. In the context of automobile insurance, it is not necessary to consider

negative correlation for these type of claims.

However, in the next sections, we consider a more complex model to allow different covariance

for each pair of variables, and zero-inflated models to deal with overdispersion which has often

been observed when modelling claim counts in automobile insurance data (Dean, 1992).

2.2 A model with full covariance

In order to extend the previous model and allow for modelling the covariance structure of the

data in a flexible way, we consider the case of the trivariate Poisson model with full two-way

covariance structure:

N1 = Y1 + Y12 + Y13

N2 = Y2 + Y12 + Y23 (3)

N3 = Y3 + Y13 + Y23

where Yi ∼ Po(µi), i ∈ {1, 2, 3} and Yij ∼ Po(θij), i, j ∈ {1, 2, 3}, i < j, µi, θij > 0 . Then,

each Ni, i ∈ {1, 2, 3} marginally follows a Poisson distribution with parameter µi + θij + θik,

i, j, k ∈ {1, 2, 3}, i 6= j 6= k.

Now, random variables N1, N2, N3 jointly follow a trivariate Poisson distribution with pa-

rameter θ = (µ1, µ2, µ3, θ12,θ13, θ23)′. The means of the random variables are µ1 +θ12 +θ13, µ2 +

θ12 + θ23 and µ3 + θ13 + θ23 respectively and their variance-covariance matrix is given by

Cov(N) =




µ1 + θ12 + θ13 θ12 θ13

θ12 µ2 + θ12 + θ23 θ23

θ13 θ23 µ3 + θ13 + θ23


 .

The parameters θij , i, j = 1, 2, 3, i 6= j, can be interpreted straightforward as the covariances

between the variables Xi and Xj and, thus, we refer to them as the covariance parameters. The
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parameters µi, i = 1, 2, 3, appear only at the marginal means and variances and we refer to them

as the mean parameters. It is clear that this model is more flexible for real applications than the

one with common covariance. For example, if the data refer to the number of claims for different

coverage of an automobile insurance, it is natural to assume that each pair of different coverage

has different covariance due to the intrinsic nature of these coverages instead of assuming that

all pairs have the same covariance.

Again in order to extend the applicability of the model we may assume that the parameters θi

(including both the mean and the covariance parameters) are functions of explanatory variables.

Therefore we may add covariates by assuming that log(θiq) = x′
iqβi , where xiq is a vector of

explanatory variables and βi denotes the corresponding vector of regression coefficients. To

make the model easier to interpret, we consider covariates only for the mean parameters µi,

i = 1, 2, 3. While covariates can also be added to the covariance parameters, this again would

make the interpretation of the model very difficult and so we do not consider them here. Finally,

note that the covariates associated with each parameter may be different.

The joint probability function (jpf) is given by:

P (n1, n2, n3) = exp(−θ)
s1∑

k1=0

s2∑

k2=0

s3∑

k3=0

θk1
12

k1!
θk2
13

k2!
θk3
12

k3!
µ

(n1−k1−k2)
1

(n1 − k1 − k2)!
µ

(n2−k2−k3)
2

(n2 − k2 − k3)!
µ

(n3−k1−k3)
3

(n3 − k1 − k3)!

where s1 = min{n1, n2}, s2 = min{n1 − s1, n3}, s3 = min{n2 − s1, n3 − s2} and θ = µ1 + µ2 +

µ3 + θ12 + θ13 + θ23. We will denote the above distribution as MP2(µ1, µ2, µ3, θ12, θ13, θ23).

Note that this model allows for different covariances between different pairs, making the

model more realistic at the cost of having two additional parameters to estimate. The jpf is

quite complicated as it involves successive summations. One may improve it by deriving a

recurrence relationship between the probabilities, i.e. by calculating probabilities based on ones

that have already been calculated. This reduces the computation burden by avoiding excessive

summation and reducing error accumulation. On the other hand, the data augmentation offered

by the multivariate reduction makes Bayesian methods appealing. More details for the model

can be found in Karlis and Meligkotsidou (2005).

2.3 Zero-inflated models

The multivariate Poisson models treated above have Poisson marginal distributions and thus

they cannot model overdispersion. Certain amounts of overdispersion can be introduced by
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considering inflated versions of multivariate Poisson regression models, like the models described

in Karlis and Ntzoufras (2003, 2005) and in Bermúdez (2009) used in the automobile insurance

context for the bivariate case. In the univariate case, zero-inflated models are well understood as

models to account for the excess of zeros observed in certain circumstances. In the multivariate

case, inflation can occur in different patterns. A particulary interesting case in practice, is when

the (0, 0, . . . , 0) cell occurs more often than the assumed model would predict. Multivariate

zero-inflated models have attracted much less interest than univariate and bivariate inflated

models (see, e.g. Li et al., 1999). For an actuarial application see Boucher and Denuit (2008).

We propose zero-inflated versions of the previous models with the following form:

PZI(n1, n2, n3) =





p + (1− p) P (n1, n2, n3) if n1 = n2 = n3 = 0

(1− p) P (n1, n2, n3) otherwise

i.e. the model moves probability from other cells to the (0, 0, 0) cell. A natural interpretation

for this is that most clients never report an accident and thus the number of zeros is larger than

would be expected under a Poisson model. Note that one may define more complicated models

by assuming other kind of inflations. Moreover, one may add covariates to p, implying that

inflation depends on external factors. We will not pursue this here.

It is important that zero inflation introduces overdispersion to the marginal distributions.

One can easily see that the marginal distributions are no longer simple Poisson distributions but

zero-inflated versions. It is well known (see, e.g. Bohning et al., 1999) that zero-inflated Poisson

models are overdispersed relative to simple Poisson models. In the bivariate (multivariate case)

it has been shown that the covariance also increases (see, Wang et al., 2003 and Karlis and

Ntzoufras, 2005). Hence, inflated models can introduce improvements in several aspects of the

data.

2.4 Moments

For the analysis presented in the following sections, some moments and covariances of the four

models presented here need to be calculated. Tables 1 and 2 contain the values for the marginal

expectations and variances, as well as the covariances (for ease of exposition we present the

general form for Ni for the common covariance models, but for the full covariance model we

present it with specific variates N1 and N2 in order to diminish the notational burden; of course

8



Common Covariance Full Covariance

E(Ni) = V (Ni) = θi + θ0 E(N1) = V (N1) = µ1 + θ12 + θ13

Cov(Ni, Nj) = θ0 Cov(Ni, Nj) = θij

E(N) =
3∑

i=1

θi + 3θ0 E(N) =
3∑

i=1

µi + 2(θ12 + θ13 + θ23)

V (N) =
3∑

i=1

θi + 9θ0 V (N) =
3∑

i=1

µi + 4(θ12 + θ13 + θ23)

Table 1: Expectations and variances for CC and FC models.

Z-I Common Covariance Z-I Full Covariance

E(Ni) = (1− p)(θi + θ0) E(N1) = (1− p)(µ1 + θ12 + θ13)

V (Ni) = (1− p)
{
(θi + θ0) + p(θi + θ0)

2
}

V (N1) = (1− p)
{
(µ1 + θ12 + θ13) + p(µ1 + θ12 + +θ13)

2
}

Cov(Ni, Nj) = (1− p) {θ0 + (θi + θ0)(θj + θ0)} Cov(N1, N2) = (1− p) {θ12 + (µ1 + θ12 + θ13)(µ2 + θ12 + θ23)}
−{

(1− p)2(θi + θ0)(θj + θ0)
} −{

(1− p)2(µ1 + θ12 + θ13)(µ2 + θ12 + θ13)
}

E(N) = (1− p)(
3∑

i=1

θi + 3θ0 ) E(N) = (1− p)(
3∑

i=1

µi + 2θ12 + 2θ13 + 2θ23)

V (N) =
3∑

i=1

V (Ni) + 2
∑

i,j, i<j

Cov(Ni, Nj) V (N) =
3∑

i=1

V (Ni) + 2
∑

i,j, i<j

Cov(Ni, Nj)

Table 2: Expectations and covariances for the zero-inflated models (ZICC and ZIFC).

similar formulas are straightforward for the other variables).

Therefore, in Table 1 one can find the expressions for the multivariate Poisson model with

common covariance (CC), and the multivariate Poisson model with full covariance (FC) while

Table 2 presents the respective zero-inflated versions (ZICC and ZIFC). Clearly, for the zero-

inflated models, the formulas are more complicated. It is also obvious that zero inflation increases

both the variances and the covariance, i.e. it adds overdispersion to the data. Finally formulas

for V (N) are rather complicated though numerically their calculation is straightforward.

Note that our MCMC approach, described in the next section, allows to easily estimate any

quantities of interest including moments ever if they are not analytically available.

3 Bayesian estimation

Bayesian approaches are widely used today. Putting aside philosophical issues for and/or against

the Bayesian paradigm, the application of Bayesian methods has certain advantages. First of all,

prior information can be incorporated and used in a convenient and mathematically neat way.
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In actuarial applications, this prior information may be available (e.g. from past experiences)

and hence it is naturally accommodated to the model. Secondly, Bayesian approaches through

Markov Chain Monte Carlo (MCMC) methods allow the treatment of high dimensional problems

with a large number of parameters, especially in problems where classical maximum likelihood

approaches fail or are difficult to use. Moreover, the developments in the Bayesian field over

last decade have meant that the methods are now widely available and can be interpreted by a

wide audience. In this paper we apply a Bayesian approach through MCMC to fit and estimate

the parameters of the models considered.

3.1 Full covariance model

In order to avoid repetition, we will describe only the Bayesian estimation for the model with

full covariance: the model for the common covariance can be deduced in a similar manner, but

we skip the details. In the next subsection, we describe the additional steps for the zero-inflated

models.

The parameters to be estimated are Θ = (θ12, θ13, θ23, β1, β2, β3) where βi are the regression

coefficients and θij the covariance parameters.

We consider non-informative priors for the regression coefficients. Alternatively, with only

minor changes in the code one may assume multivariate normal priors for β’s. Prior information

can be incorporated by locating the prior to specific values and allowing for smaller variance.

Our non-informative approach is equivalent to assuming a prior centered at 0 and a diagonal

covariance matrix, with very large variances so as to represent ignorance. For the covariance

parameters we assume Gamma(a = 0.1, b = 0.1) priors, i.e. gamma distributions with mean 1

and variance 100, i.e. rather diffuse priors implying ignorance. Again based on prior experience

this information can be incorporated appropriately in the priors. However, if the sample size is

large the impact of priors is rather small.

To run MCMC, we use the trivariate reduction technique applied to derive the multi-

variate model in (3). The central idea is that if we had observed all the latent variables

Y1, Y2, Y3, Y12, Y13, Y23 then we could fully represent the data. But as we observe only the Ni’s

i = 1, 2, 3 we cannot fully recover the latent variables. The latent variables, being simple Poisson

variables, have a joint likelihood which is simply the product of Poisson probability mass func-

tions and hence is much more convenient as there is no summation. So, the simple idea behind
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the Bayesian approach is to augment the observed data to the unobserved quantities Y12, Y13, Y23

(note that we really only need these, as the rest can be obtained by simple subtraction). In

what follows, we denote by kijm the realization of the latent variable Yij for the m-th individual.

Clearly we need to obtain the values of kijm for i < j, i, j = 1, 2, 3, m = 1, . . . , n where n is

the sample size, i.e. the number of individuals.

Using µ1i = exp(β1xi), µ2i = exp(β2xi), µ3i = exp(β3xi), and letting (| ·) imply the full

posterior, given all the rest parameters we can derive the full posteriors for all the quantities of

interest as:

k12i | · ∝ θk12i
12

k12i!(n1i − k13i − k12i)!(n2i − k12i − k23i)!

(
1

µ1iµ2i

)k12i

,

k13i | · ∝ θk13i
13

k13i!(n1i − k13i − k12i)!(n3i − k13i − k23i)!

(
1

µ1iµ3i

)k13i

,

k23i | · ∝ θk23i
23

k23i!(n2i − k23i − k12i)!(n3i − k13i − k23i)!

(
1

µ2iµ3i

)k23i

,

for i = 1, . . . , n with

k12i = 0, . . . , min(n1i − k13i, n2i − k23i),

k13i = 0, . . . , min(n1i − k12i, n3i − k23i),

k23i = 0, . . . , min(n2i − k12i, n3i − k13i).

For the covariance parameters we have

θ12 | · ∼ Gamma(a1 +
∑

k12i, b1 + n)

θ13 | · ∼ Gamma(a2 +
∑

k13i, b2 + n)

θ23 | · ∼ Gamma(a3 +
∑

k23i, b3 + n)

while for the regression parameters we have that

β1 | · ∝ exp

(
−

n∑

i=1

exp(β1xi)

)
exp

(
n∑

i=1

β1xi(n1i − k12i − k13i)

)

β2 | · ∝ exp

(
−

n∑

i=1

exp(β2xi)

)
exp

(
n∑

i=1

β2xi(n2i − k12i − k23i)

)

β3 | · ∝ exp

(
−

n∑

i=1

exp(β3xi)

)
exp

(
n∑

i=1

β3xi(n3i − k13i − k23i)

)
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All the above can be used for efficient MCMC. In each iteration we generate the latent

variables using a table look up method, we generate the θij ’s by simply simulating from the

gamma densities, and the β’s using a Metropolis Hastings algorithm, using a multivariate normal

proposal (i.e. random walk Metropolis). For the covariance of the multivariate normal proposal,

in order to achieve good mixing properties we used the covariance matrix of the parameters

derived from simple univariate Poisson regression models. More details can be found in Karlis

and Meligkotsidou (2005).

For the common covariance model the situation is very similar in the sense that again the

latent variables must be augmented to the observed data. We skip the details, as they can be

found in Tsionas (2001).

3.2 Zero-inflated models

When dealing with zero-inflated models, there is one more parameter, the inflation parameter

p. We assume for p a Beta(γ, δ) prior. Following standard Bayesian approaches for treating zero

inflation models, we assume the existence of another latent variable Zi, one for each individual

which takes the value 1 if the observation is inflated and 0 elsewhere. Obviously for observations

that are not of the form (0, 0, 0) i.e. we do not observe a triplet of zeros, Zi = 0. To proceed in

the Bayesian way we need to generate Zi from a Bernoulli distribution with success probability

p′i =
p

p + (1− p) exp(−θi)
,

where p is the current value and θi = µ1i + µ2i + µ3i + θ12 + θ13 + θ23. Then update p by

generating a beta random variable from the Beta(
∑

zi + γ, n−∑
zi + δ) distribution.

The rest of the parameters are updated from the following distributions:

θ12 | · ∼ Gamma(a1 +
∑

(1− zi)k12i, b1 + n−
∑

zi)

θ13 | · ∼ Gamma(a2 +
∑

(1− zi)k13i, b2 + n−
∑

zi)

θ23 | · ∼ Gamma(a3 +
∑

(1− zi)k23i, b3 + n−
∑

zi)

while for the regression parameters we have that

β1 | · ∝ exp

(
−

n∑

i=1

exp(β1xi(1− zi))

)
exp

(
n∑

i=1

β1(1− zi)xi(n1i − k12i − k13i)

)
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β2 | · ∝ exp

(
−

n∑

i=1

exp(β2xi(1− zi))

)
exp

(
n∑

i=1

β2(1− zi)xi(n2i − k12i − k23i)

)

β3 | · ∝ exp

(
−

n∑

i=1

exp(β3xi(1− zi))

)
exp

(
n∑

i=1

β3(1− zi)xi(n3i − k13i − k23i)

)

One can easily see that the steps in the above algorithm are actually very similar to the

previous ones. Similar ideas like the random walk Metropolis are applicable. To our knowledge,

the MCMC scheme derived above for zero-inflated multivariate Poisson models is novel.

4 The database

The original database is a random sample of the automobile portfolio of a major insurance com-

pany operating in Spain in 1996. Only cars categorized as being for private use were considered.

The data contains information from 20,000 policyholders. The sample is not representative of

the actual portfolio as it was drawn from a larger panel of policyholders who had been customers

of the company for at least seven years; however, it will be helpful for illustrative purposes.

Twelve exogenous variables were considered plus the yearly number of accidents recorded

for the three types of claim. For each policy, the initial information at the beginning of the

period and the total number of claims from policyholders at fault were reported within this

yearly period. The exogenous variables, described in Table 3, were previously used in Pinquet

et al. (2001), Brouhns et al. (2003), Bolancé et al. (2003, 2008), Boucher et al. (2007, 2009),

Boucher and Denuit (2008) and Bermúdez (2009).

For this study, all customers had held a policy with the company for at least three years.

Therefore, variable v7 was rejected and variable v8 retained its definition and its baseline was

now established as a customer who had been with the company for fewer than five years.

The meaning of those variables referring to the policyholders’ coverage should also be clari-

fied. The classification here responds to the most common types of automobile insurance policies

available on the Spanish market. The simplest policy only includes third-party liability (claimed

and counted as N1 type) and a set of basic guarantees such as emergency roadside assistance,

legal assistance or insurance covering medical costs (claimed and counted as N3 type). This sim-

plest policy does not include comprehensive coverage or collision coverage (claimed and counted

as N2 type). This simplest type of policies makes up the baseline group, while variable v10
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Variable Definition

v1 equals 1 for women and 0 for men

v2 equals 1 when driving in urban area, 0 otherwise

v3 equals 1 when zone is medium risk (Madrid and Catalonia)

v4 equals 1 when zone is high risk (Northern Spain)

v5 equals 1 if the driving license is between 4 and 14 years old

v6 equals 1 if the driving license is 15 or more years old

v7 equals 1 if the client is in the company between 3 and 5 years

v8 equals 1 if the client is in the company for more than 5 years

v9 equals 1 of the insured is 30 years old or younger

v10 equals 1 if includes comprehensive coverage (except fire)

v11 equals 1 if includes comprehensive and collision coverages

v12 equals 1 if horsepower is greater than or equal to 5500cc

Table 3: Explanatory variables used in the models.

denotes policies which, apart from the guarantees contained in the simplest policies, also include

comprehensive coverage (except fire), and variable v11 denotes policies which also include fire

and collision coverage.

5 Results

We fitted the models described in section 2 in the database described in the previous section by

programming functions in R to implement MCMC algorithms.

5.1 Computational details

We ran the MCMC algorithm for each model 110,000 iterations and used the first 10,000 as a

burn-in period. For the remaining 100,000 iterations we sampled every 100th value to remove

autocorrelation. All values passed standard diagnostic test (we used CODA) for convergence.

The autocorrelation was not significant in any lag.

In all models we used non-informative priors, by considering diffuse priors with large variance.

Recall that due to the large sample size (n = 20, 000) the effect of the prior is negligible.
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5.2 Posterior summaries

The Tables 4, 5, 6 and 7 present the results for the fitted models. We also report the 95%

credible interval so as to give an idea of the uncertainty around the reported mean value. A

variable is considered to be relevant as a predictor of the number of claims when the zero value

is not included in the 95% credible interval (significant parameters are marked in boldface in

the Tables).

In general, no substantial differences regarding the coefficients were found between the four

models considered here. However, there were some differences between zero-inflated models and

non-inflated models, probably due to the relatively large value for the inflation parameter p.

If we focus on the claims for third-party liability (N1), the parameters v2 and v8 were

significant for all the models, v9 was significant for all of them except ZICC, and finally v6

and v10 were almost significant in most cases. The results suggest that driving in an urban

area (v2 ), driving experience (v6 ), drivers with more than 5 years with the company (v8 ) and

including comprehensive coverage except fire (v10 ) caused the expected number of third-party

liability claims to decrease. However, the expected number of claims was higher in young drivers

(v9 ) than in older drivers.

If we focus on the number of claims for automobile collision (N2), the parameters found

significant for all the models were v3, v4, v10 and v11. Moreover, parameters v1 and v8 were

significant for the CC model and almost significant for the others. For this type of claim, we

may conclude that driving in northern Spain (v4 ) and drivers with fewer than 5 years with the

company (v8 ) reduced the expected number of claims, while women drivers (v1 ), drivers from

Madrid and Catalonia (v3 ), and the inclusion of comprehensive coverage except fire (v10 ) or

collision coverage (v11 ) increased the expected number of claims.

Finally, when looking at the number of claims related to the rest of automobile guarantees

(N3), parameters v5, v8, and parameters v10 to v12 were significant for all models, while

parameter v2 was significant only for FC model but almost significant for the rest of models.

As in the case of N1 and N2 claims, drivers with more than 5 years in the company (v8 ) caused

the expected number of claims to decrease. However, driving in an urban area (v2 ), drivers

with intermediate experience (v5 ), the inclusion of comprehensive coverage except fire (v10 )

or collision coverage (v11 ) and vehicles with horsepower greater than or equal to 5500cc (v12 )

15



N1 N2 N3

Coeff. 95% credible int. Coeff. 95% credible int. Coeff. 95% credible int.

Intercept -2.098 -2.457 -1.754 -6.729 -7.556 -5.890 -4.663 -5.263 -4.130

v1 0.004 -0.127 0.142 0.184 0.016 0.351 -0.089 -0.270 0.080

v2 -0.133 -0.232 -0.020 0.043 -0.099 0.185 0.113 -0.020 0.253

v3 0.025 -0.093 0.152 0.363 0.216 0.504 0.023 -0.102 0.161

v4 0.046 -0.092 0.173 -0.330 -0.517 -0.131 -0.094 -0.255 0.061

v5 -0.126 -0.426 0.190 0.320 -0.234 0.936 0.570 0.123 1.085

v6 -0.284 -0.599 0.043 0.267 -0.328 0.959 0.282 -0.171 0.821

v8 -0.219 -0.344 -0.096 -0.187 -0.383 -0.014 -0.196 -0.364 -0.029

v9 0.210 0.021 0.397 0.036 -0.255 0.310 -0.005 -0.250 0.215

v10 -0.110 -0.255 0.037 5.060 4.509 5.642 1.290 1.055 1.513

v11 0.020 -0.092 0.121 2.497 1.936 3.073 1.777 1.597 1.950

v12 0.062 -0.070 0.185 -0.043 -0.277 0.183 0.366 0.161 0.581

θ12 0.00161 0.00109 0.00220

Table 4: Results for the Common Covariance model.

N1 N2 N3

Coeff. 95% credible int. Coeff. 95% credible int. Coeff. 95% credible int.

Intercept -2.064 -2.442 -1.714 -6.761 -7.689 -5.900 -4.963 -5.612 -4.331

v1 0.030 -0.114 0.175 0.177 0.009 0.345 -0.061 -0.237 0.109

v2 -0.128 -0.243 -0.017 0.048 -0.099 0.190 0.168 0.031 0.304

v3 0.022 -0.118 0.152 0.357 0.204 0.514 0.017 -0.130 0.185

v4 0.023 -0.114 0.153 -0.328 -0.528 -0.107 -0.125 -0.312 0.061

v5 -0.210 -0.507 0.096 0.300 -0.280 0.939 0.504 -0.051 1.126

v6 -0.359 -0.668 -0.024 0.254 -0.330 0.911 0.218 -0.320 0.839

v8 -0.229 -0.358 -0.084 -0.176 -0.362 0.018 -0.219 -0.390 -0.056

v9 0.226 0.026 0.412 0.027 -0.244 0.304 0.002 -0.261 0.237

v10 -0.170 -0.371 0.002 5.100 4.593 5.700 1.607 1.355 1.855

v11 -0.054 -0.170 0.064 2.486 1.977 3.116 2.002 1.811 2.209

v12 0.041 -0.097 0.175 -0.037 -0.250 0.195 0.385 0.164 0.606

θ12 0.00187 0.00088 0.00295

θ13 0.00749 0.00619 0.00889

θ23 0.00008 0.00000 0.00058

Table 5: Results for the Full Covariance model.

increased the expected number of claims.

Another interesting point highlighted by the tables is the fact that the inflation parameter

is rather large for both models, while some of the covariance parameters are close to zero. To

explore this result further, we consider the histograms in Figure 1. The figure depicts the

posterior histograms for the covariance parameters θ12, θ13, θ23 and p for the ZIFC model. One

can easily see that while parameters θ12 and θ23 are in fact zero, θ13 is clearly non-zero, implying

that the independent Poisson model is inappropriate. Moreover, zero inflation is evident due to

the large value of p. The fact that some of the covariances are close to zero implies that more

refined modelling can be made by considering different structures for the multivariate Poisson
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N1 N2 N3

Coeff. 95% credible int. Coeff. 95% credible int. Coeff. 95% credible int.

Intercept -0.789 -1.165 -0.399 -5.384 -6.318 -4.553 -3.305 -3.939 -2.682

v1 -0.029 -0.161 0.116 0.111 -0.056 0.257 -0.134 -0.297 0.043

v2 -0.136 -0.247 -0.021 -0.045 -0.197 0.102 0.110 -0.026 0.254

v3 -0.053 -0.175 0.068 0.264 0.113 0.424 -0.075 -0.223 0.065

v4 0.081 -0.054 0.216 -0.231 -0.449 -0.047 -0.033 -0.194 0.130

v5 -0.120 -0.468 0.185 0.366 -0.164 0.979 0.540 0.037 1.092

v6 -0.260 -0.657 0.042 0.332 -0.257 0.964 0.290 -0.252 0.891

v8 -0.189 -0.328 -0.053 -0.129 -0.315 0.081 -0.176 -0.341 -0.008

v9 0.195 -0.018 0.378 0.051 -0.269 0.308 -0.025 -0.260 0.190

v10 -0.121 -0.280 0.027 4.927 4.420 5.447 1.298 1.080 1.511

v11 0.000 -0.111 0.117 2.455 1.959 3.008 1.754 1.588 1.955

v12 0.037 -0.100 0.183 -0.059 -0.282 0.176 0.318 0.114 0.543

θ0 0.00065 0.00007 0.00185

p 0.721 0.705 0.737

Table 6: Results for the Z-I Common Covariance model.

N1 N2 N3

Coeff. 95% credible int. Coeff. 95% credible int. Coeff. 95% credible int.

Intercept -0.837 -1.263 -0.414 -5.366 -6.309 -4.528 -3.543 -4.282 -2.880

v1 -0.014 -0.153 0.129 0.111 -0.063 0.293 -0.119 -0.307 0.069

v2 -0.132 -0.248 -0.015 -0.042 -0.191 0.112 0.125 -0.027 0.253

v3 -0.051 -0.170 0.076 0.271 0.131 0.425 -0.063 -0.229 0.087

v4 0.087 -0.046 0.234 -0.230 -0.435 0.000 -0.022 -0.207 0.156

v5 -0.137 -0.491 0.186 0.377 -0.254 1.138 0.548 0.038 1.129

v6 -0.275 -0.643 0.076 0.336 -0.354 1.097 0.285 -0.260 0.907

v8 -0.197 -0.337 -0.042 -0.127 -0.317 0.066 -0.174 -0.353 0.003

v9 0.209 0.009 0.391 0.063 -0.233 0.369 -0.008 -0.244 0.225

v10 -0.107 -0.282 0.056 4.871 4.411 5.374 1.433 1.214 1.670

v11 0.010 -0.116 0.130 2.388 1.922 2.919 1.891 1.726 2.088

v12 0.040 -0.107 0.179 -0.046 -0.255 0.177 0.361 0.151 0.600

θ12 0.00002 0.00000 0.00017

θ13 0.00788 0.00377 0.01265

θ23 0.00000 0.00000 0.00001

p 0.715 0.698 0.728

Table 7: Results for the Z-I Full Covariance model.
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model described in section 2. We will return to this issue in the discussion.
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Figure 1: Histograms of the posterior values for the covariance and the zero inflation parameters

based on the ZIFC model.

A final interesting point is to examine the goodness of fit of the data. As this measure we

calculated the implied probability P (0, 0, 0), i.e. the probability of no claims, for all models,

and for each iteration. Note that this was the largest frequency in the data. Figure 2 shows the

estimated probability of no claims for the four models. It is clear that without zero inflation the

models fail to take this into account and hence the estimated probability distribution is bad.

Adding a zero inflation parameter the probability is much larger, in fact very close to the true

one (0.87). For other probabilities, again the zero-inflated models provide a much better fit than

the simple models.
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Figure 2: Boxplots of the posterior probability of no claims for each model.

5.3 Actuarial implications

At the same time we analyze the impact of using these models in a priori ratemaking. The

differences between the models proposed in Section 2 were analyzed through the mean (a priori

pure premium) and the variance (necessary for a priori loaded premium) of the number of claims

per year for some profiles of the insured parties. Five different, yet representative, profiles were

selected from the portfolio and classified according to their risk level. The profiles (see Table

8) are the same as in Bermúdez (2009). The first can be classified as the best profile since

it presents the lowest mean score. The second was chosen from among the profiles considered

as good drivers, with a lower mean value than the mean of the portfolio. The third profile

was chosen with a mean score lying very close to the mean of the portfolio. Finally, a profile

considered as being a bad driver (with a mean score above the mean of the portfolio) and the
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Profile v1 v2 v3 v4 v5 v6 v8 v9 v10 11 v12

Best 0 1 0 0 0 1 1 0 0 0 0

Good 0 0 1 0 0 1 0 0 0 0 1

Average 0 1 0 0 0 1 1 0 0 1 1

Bad 0 0 0 1 0 1 1 0 1 0 0

Worst 1 1 1 0 1 0 0 1 1 0 1

Table 8: Hypothetical profiles of clients to be used for illustration.

Best Good Average Bad Worst

Model Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

IP 0.0791 0.0791 0.1194 0.1194 0.1882 0.1882 0.2799 0.2799 0.7011 0.7011

CC 0.0832 0.0930 0.1268 0.1365 0.1896 0.1993 0.2573 0.2671 0.6868 0.6966

FC 0.0907 0.1096 0.1293 0.1482 0.1856 0.2045 0.2608 0.2797 0.6817 0.7006

ZICC 0.0856 0.3121 0.1169 0.4291 0.1918 0.7416 0.2928 1.1741 0.5381 2.3051

ZIFC 0.0845 0.2902 0.1151 0.4017 0.1920 0.7138 0.2915 1.1288 0.5542 2.3168

Table 9: Comparison of different models and different profiles (IP: independent Poisson).

worst driver profile were selected.

Table 9 shows the results for the five profiles and the five models (the four models consi-

dered here plus the independent Poisson model). There are two differences in ratemaking when

using a multivariate Poisson model as opposed to the independent Poisson model. First, mul-

tivariate Poisson models produce higher means for good risks and lower means for bad risks

while maintaining average risks almost equal. Second, multivariate models increase variances

in most cases, meaning overdispersion. This is especially noticeable for zero-inflated models

whose means are similar to non zero-inflated models, but have much higher variances. Finally,

few differences were found between the models with common covariance and the ones with full

covariance. Probably this is due to the fact that only covariance between N1 and N3 seems to

be significant for the zero-inflated full covariance model.

One of the advantages of the MCMC approach is that we can easily obtain samples from

the posterior distribution of any quantity of interest and then examine the variability of this

quantity in a fully inferential way. A summary of the posterior distribution of the premiums for
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all the models and for four different profiles (we skip over the “bad” profile for reasons of space)

can be seen in Figures 3 and 4. Figure 3 refers to the E(N) and Figure 4 to V (N). Hence all

the details about the premium are available and not just a point estimate.
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Figure 3: Boxplots of the posterior values for E(N) derived from the MCMC.

When considering E(N) the four models do not differ so much for the four selected profiles.

For the “worst” profile the differences are greater, especially for the zero-inflated models, the

reason being that a better estimate for the non-claims case exists and hence the mean is not

overestimated as it is when we assume less probability at the (0,0,0) case.

It is worth to go further with this issue. In order to emphasize the importance of refined

modelling for non-claims, consider the five different profiles and the model with full covariance

in their two variants (FC and ZIFC). For each profile we calculated the probability of no-

claims for each iteration, i.e. the posterior summary for P (0, 0, 0). Boxplots in Figure 5 show

these posterior probabilities for each profile and for the two models considered. It is clear
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Figure 4: Boxplots of the posterior values for V (N) derived from the MCMC.

that there are large differences between the different profiles. As expected, the “best” profile

has by far the greatest no-claim probability, while for the “worst” profile the probability is

much less. However, the probability of no-claims when using non zero-inflated model (FC) is

underestimated for all profiles and especially significant for the “worst” profile. This fact would

explain the greater differences observed for the pure premium in Figure 3. The best estimation

of no-claims probability for the “worst” profile can be used for example in order to give bonuses

to claim-free clients. Several other quantities can easily be deduced from the Bayesian output

and used to obtain a better understanding and pricing of the clients.

The case of V (N) is considered is much more variable than expected. For this application,

zero-inflated models have larger variability. Recall that when zero-inflated models are considered,

the marginal distributions are no longer Poisson and hence the assumed variance is larger. This

is depicted in the estimation of V (N). Note also that this is more realistic, as the Poisson

22



0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

ZIFC FC ZIFC FC ZIFC FC ZIFC FC ZIFC FC

Best Good Average Bad Worst

Figure 5: Boxplots of the posterior probability of no claims for each profile, based on the FC

and ZIFC models.

assumption seems to be violated. Hence calculations based on this better V (N) are more

trustworthy.

For illustration, Table 10 presents selected percentiles of the calculated premium E(N) for

all the models and selected profiles. We can assume that the 75% percentile corresponds to

the loaded premium, while the other two percentiles can be of interest for VaR approaches.

If we focus on the calculated loaded premium for the “worst” profile, we observe that zero-

inflated models present lower loaded premiums. Therefore, the observed increase in variance is

compensate for the decrease in mean.

5.4 Model Selection

One interesting question that needs to be answered is to establish which model is better for

describing the dataset. Recall that in practice the different models have different underlying

assumptions. Table 11 presents different information criteria for model selection. Together with

classical AIC and BIC that penalize with respect to the number of parameters to be estimated

we also report Deviance Information Criterion (DIC) (Spiegelhalter et al, 2002) as this criterion
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Best Good

IP CC FC ZICC ZIFC IP CC FC ZICC ZIFC

75% 0.0823 0.0864 0.0942 0.0895 0.0885 0.1256 0.1333 0.1355 0.1241 0.1215

90% 0.0847 0.0897 0.0972 0.0927 0.0927 0.1313 0.1391 0.1425 0.1308 .1286

95% 0.0870 0.0917 0.0997 0.0946 0.0944 0.1368 0.1427 0.1462 0.1346 0.1321

Average Worst

IP CC FC ZICC ZIFC IP CC FC ZICC ZIFC

75% 0.1931 0.1943 0.1905 0.1972 0.1979 0.7440 0.7323 0.7274 0.5775 0.5985

90% 0.1975 0.1990 0.1947 0.2033 0.2040 0.7991 0.7800 0.7762 0.6233 0.6423

95% 0.2009 0.2014 0.1975 0.2078 0.2074 0.8230 0.8179 0.8008 0.6475 0.6678

Table 10: Percentile points for the calculated premium for the different models and profiles.

Model DIC BIC AIC

Independent Poisson 25959.42 26198.64 26073.16

Common Covariance 25863.82 26105.48 25978.78

Full Covariance 25651.56 25896.50 25768.16

Z-I Common Covariance 24256.6 24497.06 24370.96

Z-I Full Covariance 24240.46 24484.08 24356.40

Table 11: Different Information Criteria for selecting the best model for the data.

makes use of the number of “effective” parameters, which in our case is considerable due to the

latent structure imposed.

All the criteria agree that the zero-inflated model with full covariance structure is the best

model. It is also clear that the zero-inflated models are far better than the common covariance

model without zero inflation. This can be also be seen from the values of the inflation parameter,

which is very large. We do not recommend the use of a common covariance term for this

application.

6 Conclusions

In the present paper we considered multivariate Poisson models and their zero-inflated extensions

allowing for correlation between the different types of claims in order to improve the ratemaking
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procedure. Multivariate Poisson models differ in the covariance structures that they present.

We propose the analysis of a multivariate Poisson model with common covariance parameter

and a multivariate Poisson model with a full covariance specification. Finally, zero-inflated

versions of the previous models are considered in order to account for the excess of zeros and

the overdispersion observed in automobile insurance databases.

We apply a Bayesian approach which offers advantages over standard methods; namely,

estimation is feasible even for complicated models with a large number of parameters, and it

allows for the use of prior information. Finally we emphasize that the Bayesian approach allows

better calculation of certain quantities of interest (e.g. the loaded premium) since we obtain

a distribution and not just a point estimate. This also helps to account for the uncertainty

around the quantities of interest. From the modelling perspective, the derived MCMC scheme

for zero-inflated multivariate Poisson regression models is novel.

The interpretation of a number of multivariate Poisson models is illustrated in the context

of automobile insurance claims using a large data set. The conclusion is that even when there

are small correlations between the counts, major differences in ratemaking may appear. In

general, when considering the mean (a priori pure premium) of the number of claims per year,

the expected number of claims given by the multivariate Poisson models does not differ much

from the independent Poisson model; but when the variance (used for a priori loaded premium)

is considered, larger variances are obtained with zero-inflated multivariate Poisson models and

hence larger loadings in premiums must be included. Recall that when zero-inflated models are

considered in order to better model the excess of (0,0,0) occurrences the marginal distributions

are no longer Poisson and hence the assumed variance is larger.

From this conclusion, one can understand that the obtained loaded premiums with zero-

inflated multivariate Poisson models it would be larger than those obtained with the inde-

pendence assumption. However, this is not true for all policyholders, since in some cases the

reduction in mean caused by account for the excess of zeros is larger than the increase in variance

caused by account for the overdispersion.

All the criteria considered here agree that the zero-inflated model with full covariance struc-

ture is the best model for describing the data set and hence for use in a ratemaking procedure.

This implies that claim-free clients who appear more often in the database than would be ex-

pected by a standard multivariate Poisson model. The estimated probability of claim-free clients
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with this model is by far the closest to the true one. This model, as a zero-inflated model, also

corrects for overdispersion relative to simple Poisson models both in the marginals and the joint

distribution and hence allow us to take heterogeneity issues into account. This is especially

relevant in risk measuring (Solvency II in EU).

In addition, closer examination of the fitted model reveals that one may check for the struc-

ture implied by the multivariate Poisson model considered, and derive models that better capture

the structure. For example, in our case there is evidence that for some pairs the correlation is

almost zero, implying that such terms can be removed. In our case going back to the model in

section 2, we found that covariance between N1 and N3 was the only one was significant. Hence

one may consider a model where only this covariance term is kept. For this data set, according

to the results obtained, we may also reduce the ratemaking problem to a bivariate Poisson model

considering N2 and N3 together, as in Bermúdez (2009). This fact does not invalidate the use

of multivariate Poisson models in automobile insurance claims, since we may include other type

of claims for consideration. It is worth mentioning here that it is very interesting to distinguish

in third-liability claims between vehicle damage and personal injury claims, which are expected

to be positively correlated. However, it was not possible to obtain the information needed for

this purpose from the available data set.

A direct application for the models presented here is that the predictive distributions can

be obtained to estimate financial risk measures for portfolios of policies (VaR, CTE, etc.) as

in Frees et al. (2009). With the Bayesian approach to multivariate Poisson models through

MCMC, we can easily derive posterior summaries for several quantities of interest to account

for uncertainty. We did not pursue this problem here as it is beyond the scope of the paper.

Finally, we would like to mention some extensions for this paper. The first would be to include

the cost of claims in the ratemaking procedure, in a similar way as in Frees and Valdez (2008).

The second one, using a larger database panel of policyholders with information for several years,

would be to model the time dependence as well. The third one refers to extending the model

used in several dimensions like a) the use of covariates for the zero inflation parameter, i.e. to

assume that certain covariates also affect this parameter, b) considering some model to allow

for more heterogeneity like bivariate negative binomial regression models and c) by considering

some variable selection approach in order to select the covariates. The latter can be based on

some stepwise technique taking, however, into account that the model allows different covariates
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to each dependent variable and hence the procedures should be adapted appropriately.
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