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Abstract

In automobile insurance, it is useful to achieve a priori ratemaking by resorting to gene-
ralized linear models, and here the Poisson regression model constitutes the most widely
accepted basis. However, insurance companies distinguish between claims with or without
bodily injuries, or claims with full or partial liability of the insured driver. This paper exa-
mines an a priori ratemaking procedure when including two different types of claim. When
assuming independence between claim types, the premium can be obtained by summing the
premiums for each type of guarantee and is dependent on the rating factors chosen. If the
independence assumption is relaxed, then it is unclear as to how the tariff system might
be affected. In order to answer this question, bivariate Poisson regression models, suitable
for paired count data exhibiting correlation, are introduced. It is shown that the usual
independence assumption is unrealistic here. These models are applied to an automobile
insurance claims database containing 80,994 contracts belonging to a Spanish insurance
company. Finally, the consequences for pure and loaded premiums when the independence
assumption is relaxed by using a bivariate Poisson regression model are analysed.
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1 Introduction

Designing a tariff structure for insurance is one of the main tasks for actuaries. Such pricing
is particularly complex in the branch of automobile insurance because of highly heterogeneous
portfolios. A thorough review of ratemaking systems for automobile insurance, including the
most recent developments, can be found in Denuit et al. (2007).

One way to handle this problem of heterogeneity in a portfolio -referred to as tariff segmenta-
tion or a priori ratemaking- involves segmenting the portfolio in homogenous classes so that all
insured parties belonging to a particular class pay the same premium. This procedure ensures
that the exact weight of each risk is fairly distributed within the portfolio. In the case of auto-
mobile insurance, in order to group the policies in homogenous classes, a series of classification
variables are used (i.e., age, sex and place of residence of driver or horsepower, class and use of
the vehicle). These variables are called a priori ratemaking variables, since their values can be
determined before the insured party begins to drive.

If all the factors influencing a risk could be identified, measured and introduced in the tariff
system, then the classes defined would be homogenous. However, this is not that case as there
are important risk factors that are not considered in the a priori tariff. Some examples are
especially difficult to quantify, such as a driver’s reflexes, his or her aggressiveness, or knowledge
of the Highway Code, among others. As a result, tariff classes can be quite heterogeneous.
Hence, the idea has arisen of considering individual differences in policies within the same class
by using an a posteriori mechanism, i.e., fitting an individual premium based on the experience
of claims for each insured party. This concept has received the name of a posteriori tariff,
experience rating or the bonus-malus system.

Here, only the first step in pricing is studied, the a priori ratemaking. In short, the classi-
fication or segmentation of risks involves establishing different classes of risk according to their
nature and probability of occurrence. For this purpose, factors are determined in order to classify
each risk, and it is statistically tested that the probability of a claim depends on these factors,
and hence, their influence can be measured. A priori classification based on generalized linear

models is the most widely accepted method; see e.g. Dionne and Vanasse (1989), Haberman



and Renshaw (1996), Pinquet (1999), Bermudez et al. (2001) and Boucher and Denuit (2006)
for applications in the actuarial sciences, and Mc Cullagh and Nelder (1989) or Dobson (1990)
for a general overview of the statistical theory.

The most commonly used generalized linear model for this tariff system is the Poisson re-
gression model and its generalizations (Denuit et al., 2007). Introduced by Dionne and Vanasse
(1989) in the context of automobile insurance, the model can be applied if the number of claims
for each individual policy observation is known. Although it is possible to use the total number
of claims as the response variable, the nature of automobile insurance policies (covering diffe-
rent risks) is such that the response variable is the number of claims for each type of guarantee.
Therefore, a premium is obtained for each class of guarantee as a function of different factors.
Then, assuming independence between types of claim, the total premium is obtained from the
sum of the expected number of claims of each guarantee.

Here, two different types of guarantee are assumed: third-party liability automobile insurance
and the rest of guarantees. Following the usual methodology, assuming independence between
types, the premium paid by the policyholder is obtained by summing the premiums for each
type of guarantee and this depends on the rating factors. However, the question remains as
to whether the independence assumption is realistic. When this assumption is relaxed, it is
interesting to see how the tariff system might be affected.

In this study, a bivariate Poisson regression model is introduced. Holgate (1964) provided a
practical basis for the bivariate Poisson distribution but its use has been largely ignored, mainly
because of computational difficulties. Therefore, only a few applications can be found, for
example, Jung and Winkelmann (1993) used a bivariate Poisson regression in a labour mobility
study and Karlis and Ntzoufras (2003) modelled sports data. For a comprehensive review of the
bivariate Poisson distribution and its applications (especially multivariate regression), the reader
should see Kocherlakota and Kocherlakota (1992, 2001) and Johnson, Kotz and Balakrishnan
(1997).

One early application of the bivariate Poisson distribution in the actuarial literature is des-
cribed in Cummins and Wiltbank (1983). In ruin theory, some applications of this distribution
are also to be found, for example Partrat (1994), Ambagaspitiya (1999), Walhin and Paris (2000)
and Centeno (2005). Cameron and Trivedi (1998) studied the relationship between type of health

insurance and various responses that measure the demand for health care by using a bivariate



Poisson regression. In addition, two studies related to fitting purposes should also be quoted,
albeit that no factors are considered. First, Vernic (1997) carried out a comparative study
with the bivariate Poisson distribution based on data related to natural events insurance and
third-party liability automobile insurance. Second, Walhin (2003) compared bivariate Hofmann
and bivariate Poisson distributions by fitting a data set for accidents sustained by members of
a sample of 122 shunters in two consecutive 2-year periods. However, in a ratemaking context,
bivariate Poisson regression models have not been used to model claim counts that depend on
the usual rating factors.

In the next section, the model used here is defined. This model is based on the bivariate
Poisson regression model, which is appropriate for modelling paired count data that exhibit
correlation. In Section 3 the database obtained from a Spanish insurance company is described.
In Section 4 the results are summarised. Finally, some concluding remarks are given in Section

5.

2 Bivariate Poisson regression models

Let N1 and N3 be the number of claims for third-party liability and for the rest of guarantees
respectively and N = Nj+4 N> . The usual methodology to obtain the a priori premium under the
assumption of independence between types of claims can be described as follows. First, the model
assumed is N1 ~ Poisson(A1) and Ny ~ Poisson(Az2) independently, and A; and A2 depend on
a number of rating factors associated with the characteristics of the car, the driver and the use of
the car. Second, with A\; and Ao estimated for each policyholder and following the net premium
principle, the total net premium! () is obtained as m = E[N] = E[N1] + E[Na2] = A1 + 2.

However, an amount inflates the net premium to ensure that the insurer will not, on average,
lose money. Many well-known premium principles can be applied for this purpose. Here the
variance premium principle is used. This principle builds on the net premium by including a
risk loading that is proportional to the variance of the risk. Under the above assumptions,
the variance is equal to the expected value, and the total loaded premium (7*) is equal to
7 = E[N]+ aV[N] = (1 + a)(E[N1] + E[N]).

In bivariate Poisson regression models, the independence assumption is relaxed. The model

! Assuming the amount of the expected claim equals one monetary unit.



can be defined as follows. Let us consider independent random variables X; (i = 1,2,3) to
be distributed as Poisson with parameters \; respectively. Then the random variables N; =

X1+ X35 and Ny = Xo + X3 follow jointly a bivariate Poisson distribution:
(N1, No) ~ BP(\1, A2, A3).

This is the so-called trivariate reduction method that leads to the bivariate Poisson distribution.

Its joint probability function is given by:

n1 \na min(ni,n) i
P(Nl =n, N2 :n2) — e—()\1+)\2+>\3) L)‘L Z <n1> <7’L2) il < )\3 > ‘ (1)

n1! 712! i—0 7 ) )\1)\2

The bivariate Poisson distribution defined above presents several interesting and useful pro-
perties. First, it allows for positive dependence between the random variables N7 and No which
is what we expect for these types of claims?. Moreover Cov(Ny, N2) = A3 and therefore A3 is
a measure of this dependence. Obviously, if A3 = 0 the two random variables are independent
and the bivariate Poisson distribution reduces to the product of two independent Poisson dis-
tributions, referred to as a double Poisson distribution (Kocherlakota and Kocherlakota, 1992).
Second, the marginal distributions for N; and Np are Poisson with E[N;] = A\ + A3 and
E[Na] = X2+ A3

Hence, the total net premium can be obtained with m = E[N] = E[N1]+ E[Na] = A\ + A2 +
2\3. The variance necessary to obtain the loaded premium is now V[N] = A\; + A2 +4\3. Since
A3 is expected to be positive, the relaxation of the independence assumption leads to a variance
greater than the expected value. Overdispersion has often been observed when modelling claim
counts in automobile insurance data (Denuit et al., 2007).

Let us assume that Nj; and Np; denote the random variables indicating the number of
claims of each type of guarantee for the jth policyholder. If covariates are introduced to model

A1, Ao and Ag, a bivariate Poisson regression model can be defined with the following scheme:

(Nij, Noj)  ~ BP(A1j, Agjs Asj),
log(A1j) = x3;01,
log(A2;) = @5 Be,
log(A3j) = x3;0s, (2)

2In case of negatively correlated claims (not considered here) it would be necessary a more general specification.



where j = 1,...,n denotes the observed policies with sample size n, x;; denotes a vector of
explanatory variables and (3; denotes the corresponding vector of regression coefficients (i =
1,2,3).

In the case of the explanatory variables, two aspects should be stressed. First, different
covariates can be used to model each parameter \;;. Second, to facilitate the interpretation,
covariates can not be introduced to model A3. However, they can be included so as to know
more about the influence of the covariates on each pair of variables.

A problem arises when examining the joint probability function given in (1), particularly in
min(ny,ng) when the proportion of (0, 0) is larger than that of other frequencies. Therefore,
it seems reasonable to fit a zero-inflated model.

Few studies to date have discussed zero-inflated models in bivariate discrete distributions.
Such models have been proposed by Li et al. (1999) and Wang et al. (2003) who considered
inflation only for the (0, 0) cell, or Walhin (2001) who discussed zero-inflated bivariate Poisson
models. However, here we follow the zero-inflated bivariate Poisson model proposed by Karlis
and Ntzoufras (2005). In fact, they propose an extension of the simple zero-inflated model which
inflates the probabilities in the diagonal of the probability table. It seems reasonable to believe,
for instance, that there also exists a higher proportion of (1, 1) because the same accident can
lead to one claim of each type being made.

Taking the bivariate Poisson model (BP) defined above as the starting point, the diagonal

inflated bivariate Poisson model (DIBP) is specified by the probability function:

(1 —p) fBp(N1, Na| A1, A2, A3) Ni # Ny
forep(N1, N2) = (3)
(1—=p) fBp(N1, N2 | A1, A2, A3) + pfp(N1]60) Ni= Ny,

where fpp(Ni, Na| A1, A2, A3) is the joint probability function given in (1), fp(N1]6) is a
probability function for a discrete distribution D(N; | @) defined on {0, 1, 2, ...} with parame-
ter vector @ and p is a parameter defined in [0, 1]. Note that two special cases can be obtained
from this more general case. First, the bivariate Poisson model, taking p = 0, and second, the
zero-inflated bivariate Poisson (ZIBP), taking D(Np|6) as a degenerate function at zero.

In contrast to the bivariate Poisson model, the marginal distributions of N7 and N, of a
diagonal inflated model are not Poisson distributed and, as such, they can present underdisper-

sion or overdispersion. Let Ep[N;] and Ep[N?] be the first two moments of D(Ny|6), the



marginal mean and variance for N; are:
Eprgp[N1] = (1—p) (M1 + A3) + pEp[M]

VorsplM] = (1—p) {On + A)2 + O + As)} + pEp[N?] (4)
—{(@=p) (M + A3) + pEp[N])}*.

Finally, in order to calculate the covariance between Nj and Na for this model, Eprpp[N1, No|

needs to be calculated. From (3), it follows that:

Epigp[N1 No] = (1 — p) Egp[N1 No] + p Ep[N7). (5)

Since Ep[Ni] = Ep[N?] = 0 when only cell (0, 0) is inflated, the marginal distributions
in the zero-inflated model are overdispersed and the marginal mean and variance for Nj are:
Ezipp[N1] = (1—-p) (A1 + A3)
(6)
VzigpIN1] = (1—p) {(A1 + A3) + p (M1 + A3)?}.
For the analysis presented in the following sections, the covariance between N; and No
for a zero-inflated model needs to be calculated. First, from (5) a similar expression for the

zero-inflated model can be obtained:

Ezigp[N1 Na] = (1 — p) {A3 + (A1 + A3) (A2 + A3)}.
Thus, the covariance for a zero-inflated model is given by:

Covzrp[N1, No] = (1 —p) {A3 + (A1 + A3) (A2 + A3)}

(7)
—{@=p)2 (M + X3) (A2 + A3)}.

Different algorithms have been provided to implement bivariate Poisson regression models
(Ho and Singer, 2001; Kocherlakota and Kocherlakota, 2001; or adopting a Bayesian point of
view, Tsionas, 2001; Karlis and Meligkotsidou, 2005). Here an EM algorithm provided by Karlis
and Ntzoufras (2005) and its implementation using R (bivpois package) is used. Standard errors
for the parameter estimates are calculated using standard bootstrap methods (boot package in

R).



3 The database

The original sample comprised a ten percent sample of the automobile portfolio of a major
insurance company operating in Spain in 1995. Only cars categorised as being for private use
were considered. The data contains information from 80,994 policy holders. The sample is not
representative of the actual portfolio as it was drawn from a larger panel of policyholders who
had been customers of the company for at least seven years; however, it will be helpful for
illustrative purposes.

Twelve exogenous variables were considered plus the yearly number of accidents recorded for
both types of claim. For each policy, the initial information at the beginning of the period and
the total number of claims from policyholders at fault were reported within this yearly period.

The exogenous variables, described in Table 1, were previously used in Pinquet et al. (2001),
Brouhns et al. (2003), Bolancé et al. (2003) and in Boucher et al. (2007). Moreover, in Table
2, the cross-tabulation for the number of claims for third-party liability (N7 ) and number of
claims for the rest of guarantees ( Ny ) are shown.

For this study, all customers had had a policy with the company for at least three years.
Therefore, variable v7 was rejected and variable v8 retained its definition and its baseline was
now established as a customer who had been with the company for fewer than five years.

The meaning of those variables referring to the policyholders’ coverage should also be clari-
fied. The classification here responds to the most common types of automobile insurance policies
available on the Spanish market. The simplest policy only includes third-party liability (claimed
and counted as Nj type) and a set of basic guarantees such as emergency roadside assistance,
legal assistance or insurance covering medical costs (claimed and counted as N type). This
simplest policy does not include comprehensive coverage (damage to one’s vehicle caused by any
unknown party, for example, damage resulting from theft, flood or fire) nor collision coverage
(damage resulting from a collision with another vehicle or object when the policyholder is at
fault). This simplest type of policies conforms the baseline group, while variable v10 denotes
policies which apart from the guarantees contained in the simplest policies also include com-
prehensive coverage (except fire) and variable v11 denotes policies which also include fire and

collision coverage.



4 Results

4.1 Fitting bivariate Poisson models

First, in order to show the convenience of using the bivariate Poisson model, a simple bivariate
Poisson model (with constant A;, Ay and A3) was fitted. The estimated values for these
parameters were 0.067, 0.088 and 0.014, respectively. AIC equal to 104,573.9 for the bivariate
Poisson model was obtained, which was better than the values obtained for the double Poisson
model (106,546.1). Even with a small correlation between N; and N, including A3 in the
model produced a better fit for the data used.

Once the effectiveness of the bivariate model had been assessed, covariates to model Aj,
Ao and A3 were included. In fact, first the same variables for A1, and Ay were included,
maintaining A3 constant. In Table 3 the results of fitting the bivariate Poisson regression model
(with constant A3 ) and the results for the double Poisson regression model (without A3 term)
are shown.

It can be seen that the intercept for A3 was significant (at the 5% level) indicating that
the bivariate Poisson model is more appropriate for this data than is the model that assumes
independence between N7 and Ny (double Poisson). As regards the fit, the AIC values for
these models also indicate the improvement achieved with the bivariate model.

Focusing on A; (claims for third-party liability), for the bivariate Poisson model the pa-
rameters from v4 to v8 and v10 were significant. For the double Poisson model no important
differences were found except for the parameter v10 which was not significant. This difference
may indicate the convenience of including this covariate to model the covariance term Az (see
Table 4).

Following the discussion above concerning claims for third-party liability, driving experience
(v5 and v6) reduced the expected number of claims, while driving in northern Spain (v4) and
drivers with fewer than 5 years in the company (v8) caused the expected number of claims to
increase for this type of claim. As regards the type of coverage, only in the case of the bivariate
model, when including comprehensive coverage except fire (v10) was the expected number of
claims lowered.

Concentrating on A9 (the rest of claims, except third-party liability), most of the para-

meters were significant and no noticeable differences were found between bivariate and double



Poisson models. In particular, the parameters for v2 to v5, v8 and v10 to v12 were statistically
significant.

Here, some differences with the third-party liability claims were found. First, parameters
related to the type of coverage (v10 and v11) were always significant and their presence increased
the expected number o claims markedly. Second, the car’s horsepower was also significant here.
When if was greater than or equal to 5500cc (v12), the probability of having a claim increased.
Finally, driving in an urban area (v2) became significant and increased the expected number of
claims. As regards the driving zone and driving experience, the sign of the coefficient changed
for v4 and v5 variables with respect to third-party liability claims.

In order to model the covariance term ( A3 ), the covariates were introduced in the bivariate
Poisson model with the result that only the parameter for v10 was significant. In Table 4 the
results for this bivariate model with covariate on A3 are shown. The improvement in AIC
with respect to the bivariate model with constant A3 can be observed. However, no substantial
differences regarding the coefficients were found with the previous bivariate Poisson models from
Table 3. When the policy included comprehensive coverage(v10), the correlation between N;
and N is increased since the parameter for v10 is positive.

Finally, looking at the entries of Table 2, it is clear that the proportion of (0, 0) is larger than
that of other frequencies. Therefore, as it was mentioned in Section 2, two additional models
were fitted using zero-inflated bivariate Poisson models. In Table 5 the results for these models
are shown, the model with constant A3 on the left-hand side and the model with regressor (v10)
on A3 on the right-hand side.

The parameter p referring to this zero-inflated model was significant and relatively large.
Moreover, the AIC values improved substantially with respect to those of the non zero-inflated
models. This suggests that the use of a zero-inflated model is a good choice for fitting this
database (Boucher and Denuit, 2008). Other models with inflation in diagonal were fitted, but
they were rejected because of the non significance of the respective elements of parameter vector
6. Thus, the existence of a higher proportion of (1, 1) or (2, 2) cannot be considered for this

database.
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4.2 Comparing a prior: ratemaking when introducing dependence

An analysis of the impact of using these models in a priori ratemaking was conducted at the
same time as the differences between the models proposed in Section 3 were analysed through
the mean (a priori pure premium) and the variance (necessary for a priori loaded premium) of
the number of claims per year for some profiles of the insured parties.

Five different, yet representative, profiles were selected from the portfolio (Table 6). The
first can be classified as the best profile since it presents the lowest mean score. The second was
chosen from among the profiles considered as good drivers, with a lower mean value than that
of the average for the portfolio (0.1833). A profile with a mean lying very close to this average
was chosen for the third profile. Finally, a profile considered as being a bad driver (with a mean
above the average) and the worst driver profile were selected.

Table 7 shows the results for the five profiles and the five models considered. From these
results, the differences in ratemaking when using a bivariate Poisson model as opposed to two
independent Poisson models can be observed. In general, without distinguishing between bi-
variate models, such models produce higher means for good risks and lower means for bad risks
while maintaining almost equal the average risks. As regards variances, the bivariate models
increased them in most cases. A further difference that should be emphasized with the double
Poisson model is the overdispersion detected in the bivariate models.

In Table 7, it can be observed that the zero-inflated bivariate models did not present any
noticeable differences with the non zero-inflated models in terms of the mean scores, but they
were present in the case of the variance. The bivariate Poisson models (BP1 and BP2) increased
the variances for the good risks more than they did for the bad ones, while the zero-inflated
bivariate models (ZIBP1 and ZIBP2) increased the variances much more for the bad risks.

Finally, the differences between the bivariate models with constant A3 (BP1 and ZIBP1)
and those that included a covariate on A3 (BP2 and ZIBP2) were examined. A comparison
of non zero-inflated models showed that the model including covariate (BP2) presented a mean
and variance lower than those presented by the BP1 model for good risks, yet higher than
those presented by the BP1 model for bad risks. However, no differences were detected between

zero-inflated models.
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5 Conclusions

This paper has tested the independence assumption between claim types given a set of known
risk factors and it has shown that independence should be rejected. The bivariate Poisson model
is presented as an instrument that can account for the underlying connection between two types
of claims arising from the same policy®. The interpretation of a number of bivariate Poisson
models has been illustrated in the context of automobile insurance claims and the conclusion
is that using a bivariate Poisson model leads to an a prior: ratemaking that presents larger
variances and, hence, larger loadings than those obtained under the independence assumption.

For the five models analysed here there seems to be a relationship between the goodness
of fit and the level of overdispersion considered in each model. For the double Poisson model,
where the expected value and the variance (conditional on the risk factors) are equal for both
the marginal (/N7 and N2 ) and the joint (V) distributions, the lowest goodness of fit was
obtained according to the AIC criterion. An improvement in the fit was achieved by using the
bivariate Poisson model, which considers overdispersion only for the joint distribution since the
marginal distributions are Poisson distributed. Finally, the highest goodness of fit is observed
for the zero-inflated models where overdispersion is allowed both in the marginal and in the
joint distributions.

In short, the main finding is that the independence assumption that is implicitely used
when pricing automobile insurance by adding the pure premium for each guarantee (which are
obtained using count data regression models) is insufficient because correlations (conditional
on the covariates) are ignored. A natural extension for this paper would be to identify other
multivariate count data models that might consider correlations in pricing several guarantees

simultaneously in automobile insurance.

3In Frees and Valdez (2008) a hierarchical model allows to capture possible dependencies of claims among the

various types through a t-copula specification.
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Table 1: Explanatory variables used in the model

Variable  Definition

vl equals 1 for women and 0 for men

v2 equals 1 when driving in urban area, 0 otherwise

v3 equals 1 when zone is medium risk (Madrid and Catalonia)
v4 equals 1 when zone is high risk (Northern Spain)

vh equals 1 if the driving license is between 4 and 14 years old
v6 equals 1 if the driving license is 15 or more years old

v7 equals 1 if the client is in the company between 3 and 5 years
v8 equals 1 if the client is in the company for more than 5 years
v9 equals 1 of the insured is 30 years old or younger

v10 equals 1 if includes comprehensive coverage (except fire)

vll equals 1 if includes comprehensive and collision coverages
v12 equals 1 if horsepower is greater than or equal to 5500cc

Table 2: Cross-tabulation of data

N
N1 0 1 2 3 4 5 6 7
0 | 71087 3722 807 219 51 14 4 O
1 3022 686 184 71 26 10 3 1
2 574 138 55 15 8 4 1 1
3 149 42 21 6 6 1 0 1
4 29 15 3 2 1 1 0 0
5 4 1 0 0 0 0 2 0
6 2 1 0 1 0 0 0 O
7 1 0 0 1 0 0 0 O
8 0 0 1 0 0 0 0 O

Nj : number of claims for third-party liability.
N3 : number of claims for the rest of guarantees.
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Table 3: Results for bivariate Poisson and double Poisson models

Bivariate Poisson (BP1)

Double Poisson (DP)

Variables Coeff. St. Err.  P-value Coeff. St. Err.  P-value
A1 Intercept -2.380 0.126 <0.01 -2.329 0.103 <0.01
vl 0.011 0.051 0.822 -0.003 0.042 0.935
v2 -0.049 0.036 0.179 -0.050 0.035 0.145
v3 0.016 0.041 0.695 0.002 0.038 0.958
v4 0.157 0.040 <0.01 0.180 0.037 <0.01
vh -0.228 0.100 0.022 -0.217 0.092 0.018
v6 -0.352 0.110 <0.01 -0.345 0.104 <0.01
v8 0.154 0.043 <0.01 0.151 0.042 <0.01
v9 0.139 0.064 0.031 0.115 0.063 0.068
v10 -0.302 0.054 <0.01 0.061 0.053 0.252
vl1l -0.061 0.039 0.120 0.062 0.033 0.062
v12 0.045 0.045 0.323 0.053 0.038 0.157
A2 Intercept -4.822 0.146 <0.01 -4.436 0.116 <0.01
vl 0.060 0.037 0.107 0.044 0.039 0.264
v2 0.081 0.032 0.010 0.066 0.032 0.040
v3 0.172 0.034 <0.01 0.151 0.033 <0.01
v4 -0.220 0.042 <0.01 -0.146 0.038 <0.01
vb 0.324 0.127 0.010 0.273 0.097 <0.01
v6 0.121 0.131 0.355 0.077 0.104 0.458
v8 0.248 0.042 <0.01 0.235 0.038 <0.01
v9 0.098 0.052 0.060 0.085 0.051 0.096
v10 3.114 0.055 <0.01 2.887 0.055 <0.01
vll 2.150 0.054 <0.01 1.948 0.053 <0.01
v12 0.170 0.053 <0.01 0.165 0.045 <0.01
A3 Intercept -4.437 0.035 <0.01
Log-likelihood -48135.98 -48882.95
AIC 96321.96 97813.9
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Table 4: Results for bivariate Poisson model with regressor on As

Bivariate Poisson (BP2)

Variables Coeff. St. Err. P-value

A1 Intercept -2.383 0.129 <0.01
vl 0.012 0.052 0.811
v2 -0.050 0.035 0.154
v3 0.020 0.042 0.640
v4 0.157 0.045 <0.01
v5 -0.226 0.101 0.025
v6 -0.348 0.114 <0.01
v8 0.154 0.049 <0.01
v9 0.146 0.070 0.037
v10 -0.658 0.067 <0.01
vll -0.032 0.038 0.400
v12 0.045 0.043 0.293
A2 Intercept -4.823 0.137 <0.01
vl 0.062 0.040 0.123
v2 0.084 0.031 <0.01
v3 0.179 0.030 <0.01
v4 -0.228 0.041 <0.01
vo 0.332 0.114 <0.01
v6 0.129 0.120 0.280
v8 0.249 0.038 <0.01
v9 0.102 0.047 0.029
v10 3.043 0.061 <0.01
vll 2.158 0.060 <0.01
v12 0.172 0.049 <0.01
A3 Intercept -4.867 0.051 <0.01
v10 1.767 0.075 <0.01
Log-likelihood -47873.37
AlIC 95798.74
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Table 5: Results for zero-inflated bivariate Poisson models

7Z-1 Bivariate Poisson

constant A3 (ZIBP1)

Z-1 Bivariate Poisson

covariate on Az (ZIBP2)

Variables Coeftf. St. Err.  P-value Coeftf. St. Err.  P-value
A1 Intercept -1.041 0.111 <0.01 -1.055 0.130 <0.01
vl -0.008 0.047 0.874 0.001 0.047 0.981
v2 -0.064 0.035 0.065 -0.063 0.037 0.088
v3 -0.033 0.035 0.345 -0.024 0.044 0.582
v4 0.211 0.046 <0.01 0.203 0.041 <0.01
vH -0.254 0.091 <0.01 -0.249 0.114 0.029
v6 -0.357 0.102 <0.01 -0.362 0.126 <0.01
v8 0.127 0.047 <0.01 0.135 0.045 <0.01
v9 0.099 0.072 0.170 0.105 0.075 0.162
v10 -0.054 0.055 0.323 -0.255 0.068 <0.01
v10 0.044 0.037 0.227 0.046 0.036 0.205
v12 0.044 0.041 0.284 0.045 0.041 0.275
A2 Intercept -3.253 0.120 <0.01 -3.269 0.125 <0.01
vl 0.023 0.030 0.446 0.031 0.035 0.367
v2 0.048 0.024 0.047 0.052 0.025 0.037
v3 0.108 0.024 <0.01 0.118 0.031 <0.01
v4 -0.095 0.037 0.010 -0.114 0.037 <0.01
v5 0.216 0.099 0.030 0.227 0.091 0.012
v6 0.043 0.102 0.676 0.044 0.092 0.630
v8 0.184 0.032 <0.01 0.191 0.034 <0.01
v9 0.049 0.047 0.302 0.053 0.045 0.239
v10 2.917 0.059 <0.01 2.855 0.061 <0.01
vll 2.057 0.059 <0.01 2.050 0.062 <0.01
v12 0.178 0.052 <0.01 0.180 0.043 <0.01
Az Intercept -4.741 0.152 <0.01 -4.879 0.140 <0.01
v10 1.962 0.191 <0.01
D 0.714 0.005 <0.01 0.710 0.006 <0.01
Log-likelihood -45435.06 -45414.80
AlIC 90922.11 90883.6
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Table 6: Five different policyholders to be compared

Profile Kind of Profile v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 vI1l1 wv12

1 Best 0 1 0 0 0 1 0 1 0 0 0 0

2 Good 0 0 1 0 0 1 1 0 0 0 0 1

3 Average 0 1 0 0 0 1 0 1 0 0 1 1

4 Bad 0 0 0 1 0 1 0 1 0 1 0 0

5 Worst 1 1 1 0 1 0 1 0 1 1 0 1

Table 7: Comparision of a priori ratemaking
1st Profile 2nd Profile 3rd Profile 4th Profile 5th Profile

Model | Mean | Variance | Mean | Variance | Mean | Variance | Mean | Variance | Mean | Variance
BP1 0.0955  0.1191 0.1207  0.1444 | 0.1849  0.2086 | 0.2440  0.2677 | 0.6725 0.6962
BP2 0.0873  0.1027 | 0.1131 0.1285 | 0.1804  0.1958 | 0.2824  0.3726 | 0.6920  0.7821
DP 0.0793  0.0793 | 0.1070  0.1070 | 0.1866  0.1866 | 0.2860  0.2860 | 0.6969  0.6969
ZIBP1 | 0.0834  0.1057 | 0.1046 0.1369 | 0.1905  0.2861 0.2816  0.4845 | 0.5500 1.3103
ZIBP2 | 0.0826  0.1037 | 0.1055 0.1371 0.1898  0.2822 0.2771 0.4963 | 0.5562 1.3440
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