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Quantum decay of metastable states in small magnetic particles
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We present an imaginary-time path-integral study of the problem of quantum decay of a metastable state of
a uniaxial magnetic particle placed in the magnetic field at an arbitrary angle. Our findings agree with earlier
results of Zaslavskii obtained by mapping the spin Hamiltonian onto a particle Hamiltonian. In the limit of low
barrier, weak dependence of the decay rate on the angle is found, except for the field which is almost normal
to the anisotropy axis, where the rate is sharply peaked, and for the field approaching the parallel orientation,
where the rate rapidly goes to zero. This distinct angular dependence, together with the dependence of the rate
on the field strength, provides an independent test for macroscopic spin tunishi$3-182696)05625-1

[. INTRODUCTION however, does not possess tunneling until a term is added to
the energy(e.g., k’M)Z() that violates its commutation with
Small magnetic particles may have two or more equilib-M,. A number of models have been studfedwhich con-
rium orientations of the magnetic moment. In the presence ofider a more complexthan uniaxial structure of the mag-
a magnetic field only one of them corresponds to the absaaetic ansitropy. The generic problem, however, and the easi-
lute minimum of the energy; the others are metastable. Thegst to implement in practice, is the one of uniaxial anisotropy
decay with time due to thermal overbarrier transitions. Asand the magnetic field applied at a some anglewith the
the temperature goes down, thermal transitions die out but @nisotropy axis. This problem does not possess any symme-
finite probability of quantum transitions remaifis.In such  try and for that reason is more difficult mathematically. It
transitions the uncertainty principle manifests itself on awas first studied by Zaslavskliwithin the approactf that
scale where it has been rarely seen. As many &sfids can  Maps the spin problem onto a particle problem. The corre-

coherently tunnel out of a metastable magnetic state, placin on_tljing_ partri]cle Ir—llamiltonian, while d]if:‘ere?t.from the S?i”
this effect in the domain of macroscopic quantum tunneling ‘2@Miltonian, has the same structure of low-lying energy lev-

(MQT).4 els. Using this method and the semiclassical approximation,
Any disturbance of the ferromagnetic order on a scale Iesgaslavsku calculated _the tunneling exponent, the_ preexpo-
than the domain wall thickneséypically ~100—1000 A nental factpr, and thelr temperature dependence; in the limit
. of low barrier. In this paper we shall study the uniaxial case
costs large exchange energy. For a nanometer scale partic direct calculation of the imaginary-time path integral for
a stiff magnetic momen¥l that can rotate but not change its the magnetic moment® For the problem at hand, both
absolute value is believed to be a good approximation.aWhefhethodS make a number of approximations; the exact solu-
such a particle is embedded in a nonmagnetic maix, tion is impossible to obtain. One may worry, therefore, how
interacts weakly with the microscopic degrees of freedomreliable their predictions are for the dependence of the tun-
phonons, conducting electrons, nuclear spins, etc. The infltaeling rate on the magnitude and the orientation of the field.
ence of these interactions on the tunneling rate can bin Sec. lll, we shall demonstrate that angular and field de-
noticeablé=® but, apparently, does not kill the effect. Experi- pendences of the tunneling exponent obtained by
ments have been report&d'’ which indicated the possible Zaslavskii's method and by the path-integral method coin-
presence of magnetic tunneling in small particles and in largeide precisely. The tunneling exponent must be robust with
magnetic molecules. Applications of this phenomenon haveespect to the exact positions of spin energy levels. On the
been discussed which include the reliability of small mag-contrary, the prefactor for tunneling between nonequivalent
netic units in memory devices and their use in quantumwells must be strongly affected by the positions and widths
computers® Beautiful topological interference effects have of the levels(see Sec. I}, Fortunately, the exponent is the
been suggested, which have no analogy in other MQTeasiest to measure. Our purpose is to analyze the problem in
problemst®2° All this makes magnetic tunneling an exciting terms of observable variables, to make a connection with
area for theoretical research and a challenging experimentateviously studied tunneling problems, to establish the range
problem. of validity of the semiclassical approximation, and to make
Experiments performed to date were done on ensemblesuggestions for future experiments.
of small particles or on individual particles of large size. The solution of this problem elucidates some important
Both systems exhibit stochastic behavior that precludes themoints with regard to the two models which have been dis-
from direct comparison with theory. It is likely, howevEr, cussed in literature: with the field parafleland
that in the nearest future measurements of individual nanonmperpendiculdr to the anisotropy axis. We will show that
eter particles will become possible. The simplest choiceeven a very small misalignment of the field with the above
would be a uniaxial magnetic particle whose magnetic antwo orientations completely changes the results. For the
isotropy can be approximated If8,,= —kM?2. This model, strictly uniaxial case no tunneling is expected when the field
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FIG. 2. The# dependence of the potential for different values of
FIG. 1. The geometry of the problem. Vectas shown by the field.
dashed and solid lines correspond to the metastable and stable
states, respectively. 0°=60,<90°, is a metastable state, while another, with
90°< 6 =<180°, corresponds to the absolute minimum of
is parallel to the anisotropy axis. It turns out, however, thathe magnetic energy. We are interested in the quantum decay
the tunneling exponer depends ord, via |cot¢9,4,|1’6 Cor-  of the metastable state.
respondingly, to notice the freezing of a metastable state at The magnetic energy of the particle is a sum of its anisot-
0,=180°, the field must be well aligned with the anisotropy ropy energy and Zeeman energy,
axis. Another interesting conclusion concerns the field de-
pendence oB. For particles of a considerable sizé¢,must E=—kM2—M,H,—M,H,, (1)
be close to the critical fieldH, at which the barrier disap-
pears; otherwise the lifetime Wlth respect to quantum decay yrherek>0 is a dimensionless anisotropy constant. For an
of a metastable state becomes exponentially large. The smafbitrary orientation oM the energy can be rewritten as
parameter of the theory is=1—H/H.. In a wide range of
anglesBx %4 not ¥ as was previously obtained for some E=—H,M(3cos0+h,cosf+h,sinfcosp),  (2)
special symmetric cases. The crossover from asymmetric to
symmetric tunneling will be discussed in Sec. Ill. For mea-
. . . and dimensionless components of the magnetic field,
surements of a single particlB,~30— 35 should be optimal h,,=H,,/H,, 6 and ¢ being the conventional spherical
(see Sec. Y. At e~ 102 this would correspond to tunneling %2 a 9 P
of a total spinS~30 000 by an angle of more than 4° on a coordinates of the fixed-length vectdd. The metastable
time scale of a few hours. We shall argue in Sec. Ill that thestate exists aH,<0. It corresponds td/ in the XZ plane
semiclassical approximation must be rather good in this caséthat is, $=0) at a some anglé= 6,. Near this point the
The prefactor of the tunneling rate and the crossover fronpotential has the form of a canyon with the bottom at
guantum to thermal regime will be discussed in Sec. IV.¢=0 satisfyingE=(H,M)E,, where
Besides small particles, some of our predictions can be tested L
in Mn,, molecular complexes which have strong uniaxial Eg=—3c0S0—hcog - 6y). <)

magnetic anisotropySec. V). In this case, a great® and, Here we have switched tody and h=H/H, from
correspondingly, a much longer lifetime are anticipated. h.=hsing, and h,=hcoss,. The dependence d&, on ¢

near 6y, at different values of the field, is schematically
Il. FORMULATION OF THE PROBLEM shown in Fig. 2.

The metastable state satisfies

where we have introduced the anisotropy fiéld=2kM

Consider a uniaxial single-domain particle whose anisot-
ropy direction coincides with the axis. In the absence of the sin20,+ 2hsin( 6, — ) =0 ()
field there are two equilibrium orientations bf: along and
against the direction. Let us now assume that the magneticwhich follows from JE,/96=0. The point§=6, is the
90°< #=<180° with thez axis. If the fleld is below some state to decayM must either quctuate to the top of the
critical valueH.(6y) (to be computed M has two equilib-  barrier at6=6; or tlfnnel under the barrier to the escape
rium orientations shown in Fig. 1. One of them, with point §=#6,. Since M is considered to be a macroscopic
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Ill. COMPUTATION OF THE TUNNELING EXPONENT

The tunneling rate can be written Bs= Aexp(—B), with
the exponentB being determined by the imaginary time

actiont—319.20
M.
I=fdr(|—¢7(1—cose)+E(0,¢) , (10

he o5t e Y
where 7=it, vy is the gyromagnetic ratio, anB(6,¢) is
given by Eq.(2). Introducingw,= yH,, the dimensionless
imaginary timer=w,r, and the total spin of the particle,
S=M/hy>1, we get

0.0 : ! = —ﬁsf drli ¢p—tcosf— 1)+ 2co2h+ h,cosd
902 120° 150° 180°

8, +h,sindcosp]. (11

To obtain the tunneling exponent, one must consider the ex-
FIG. 3. The dependence of the critical value of the field on thetremal trajectories of Eq11):
field orientation. _
i 67=h,sing,
variable, an appreciable escape rate is expected only when _
the barrier is lowered by tunneling the external field to the i ¢7sind=h,cosfcosp — h,sind— coshsing. (12

critical field h(6y). At h=h, all three angles in Fig. 2 . .
coincide, o= 6,= 6,= 6., and both the first and the second Here ¢ plays the role of the coordinate while @bglays the

derivatives ofE, become zero ab=6,.% This gives two role of the momentum. The latter is imaginary under the
equations forg Handh . ¢ barrier, which explains the presenceioin Eq. (12). Note
C Cc-

that, as usual, the generalized coordinate and momentum can

sin26,+ 2h,sin 6, — 6) =0, be interchanged_ in our calculation. Inst_ead _of co_nsidering
real ¢ and imaginary co% one can consider imaginary

and reald. In fact, the latter is the only appropriate choice

COS2e+2NCO O~ 6) =0. ® because, according to the chosen geom@ieg Fig. 1, 6 is
Solving them we obtain the real tunneling coordinate whik=0 in both initial and
final states.
sirff,=hsinby, Equations(12) have a solutior(an instantopthat carries
out the underbarrier rotation & to the escape point. For
cos' .= —h.cosy, (6)  this solution bothd and ¢ depend onr. It starts atd= 6,
¢$=0 at r=—o, comes tod=0,, =0 at7=0, and then
h.= (sin?3,+ |coss,,|23) 372 (7)  bounces back t@= 6y, $=0 at7=+c. The general solu-

tion is difficult to obtain. We shall recall that we are inter-
Note that all signs in Eq6) are in accordance with the fact ested in the case of low barrier whir-h. In this case the
that 0°< §,=<90° while 90°< #,;=<180°. The dependence of potential in Fig. 2 becomes nearly flat and thderivative of

h. on 6y is plotted in Fig. 3. 6 must be proportional to a some power of a small parameter
Let us now consider the field that is slightly lower than e. This is the approximation of alow instanton, which is
the critical field, easy to understand if one notices that the instanton corre-

sponds to the classical motion in the inversed potential
h=h.1-¢), (8) (which is now almost flat According to the first of Egs.

] ) (12), this means that the instanton involves only smail
wheree<1. Such a field still preserves the metastable statehat is, the classical trajectory lies near the bottom of the
The corresponding equilibrium value @f is now slightly  potentialcanyon close to theXZ plane. The phase term in
lower thand., 6.— 6o=A<1. Expanding Eg/(24) near. We  gq (11), proportional tog—(not the ¢=cosd term, is im-
obtain, with the help of Eqd5), A=(2¢€/3)"". Then intro-  ,5rant for tunneling between equivalent minidig°For the
ducing a positives=(6—6,)<1, and expanding Eq3)  closed instanton trajectory described above it gives a zero
nearé,, we get up to third order id, contribution to the integral and, therefore, can be omitted.
The tunneling exponeri follows from the path integral

E(6) — Eq(6p) = 35in20,(\6€5°— 5%). ©9)
I
The escape point i$,= 6,— 6,=6e. This concludes our f D{¢>(T)}f D{cosi( T)}eXP( - g) (13

study of the classical problem and brings us to the problem
of the quantum decay of the metastable state described lyver the continuum of trajectories which start and end at the
Eq. (9). metastable stat®=6,, ¢=0 and which are close to the
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instanton. After integratingg-cosin Eq.(11) by parts, with
account of the boundary conditigh( =) =0, and using the
smallness ok along the instanton, the path integral that we
have to compute becomes

f D{o(7)} f D{cosﬂ(r)}exp[—s f:d?(—ié;hﬁsine)

(¢sm0)2+ E 4 0))] (14)

+ 2sing

whereE ,4(0) is given by Eq(3). One can now select the new
variables of the functional integratiogsing and co®, and
notice that the integration ovefsing is Gaussian. This gives

ﬂf 6%sing,
B= sf ahesing, HEAO)—Ed00)|. (19

Note that we put= 6. andh=h, in the first term because
6 already has a smallness of ord& coming from ther
derlvatlve so that this term is proportional ¢é§2 and is of
the same order ire as other terms in Eq(15) (justified
below). A constantE,(6,) is added to makeB=0 at
6(7)=6,. The 7 integration must now be performed over
the instantond(7) that minimizesB. This simplifies the
problem tremendously, compared to the problem where th
action depended o (7) andé(7), though a complete math-
ematical equivalence to the initial problem is preserved. W
shall now use the fact that in the limit of small barrier the
instanton involves small deviations frofig and replace) in
Eq. (15 by 6+ 6. With the help of Eq(9) we obtain

» 82sinf, 1
B=sf_ dr ’—.C+Zsinzac(@52—

2hsindy ' (16)
The extremal trajectory of Eq16) is
5(r)= — 22 1
(1)= costt(wgT)’ 17
where
1/4 112 1/6
o 3\ sint2g,|cosdy| . 18
°"l8 sirt®0, + |cos9y| 222"

Expressiong6) and(7) have been used to obtain the depen-
dence ofwy on 6. As required, the instanton starts at
6=0 (0= 6,) at 7=—0o0, comes to the escape poidit 5,
(6= 0,) at =0, and then bounces back =0 (6= 6,) at
7=+, The substitution of Eq(17) into Eq. (16) gives,
with the help of Eqs(6) and(7), a simple formula foiB,

16X 614
B=— Se®4 cotdy| /6. (19

Note that this expression can be obtained frd®) without
knowing the explicit form of the instanton, Eq&l7) and
(18). It is instructing, however, to see from E(L7) how
tunneling occurs via rotation of the magnetic moment in

3.0 T T

25 - h

B(6,) / B(1359)

0.0 . .
90° 120° 150° 1802

0

H

FIG. 4. Angular dependence of the tunneling exponent.

Equation (19) should be compared with EQq(8) of
Zaslavskii?t Working out the correspondence of his param-
etersB,C,Bg, 6 to our variablesS, ¢, and 6 we find that
the two expressions coincitfeif one replacesS+1/2 in
éaslavskii’s formula byS, which is justified in the limit of
>1.
The angular dependence Bfis plotted in Fig. 4. We see

§hat it has a rather unexpected distinct dependence on the

orientation of the field. It is almost flat fof; not close to

90° or 180°, rises sharply &%, approaches 180° in accor-
dance with the fact that at,=180° M, commutes with the
Hamiltonian, and rapidly drops &,—90°. The latter result
must be taken with caution becausefgt=90° the problem
possesses a symmetry that has not been explicitly taken into
account. It becomes the problem of the tunneling between
equivalent minima studied, e.g., in Refs. 1,3. In this case the
potential is of the forms?— 5* and the answer foB reads
B=4Se®? Consequently, the result(19 holds for
6,=90°+ B, wherep is large compared te*2. This means
that for, e.g..e=10"2, Eq.(19) is certainly true outside the

1° vicinity of 90°. Of course, one should remember that all
our conclusions on the angular and field dependence of tun-
neling are only valid in the limit of low barrier. For a particle

of a considerable size, this is the only limit accessible experi-
mentally. The angular dependence in general case is un-
known.

Finally one should analyze the validity of the semiclassi-
cal approximation. Obviously, for the method to be valid, the
tunneling probability must be small; that i8>1 is re-
quired. This may not be enough, however. One should also
worry that the energyiw of zero-point oscillations at the
bottom of the metastable well is sufficiently small compared
to the height of the barriet). As follows from Eq.(16), the
zero-point energy ig¢w=2hwy. The barrier height can be
computed from Eq(9),

€ 3/2

U=+ waS( 3 sin26 . (20

imaginary time. We shall also need the instanton frequency

(18) for computing the crossover temperature in Sec. IV

Working out the ratio, we obtain
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U

fiw

5

= 355 (22)

The optimal range oB in experiments on single particles
should beB~ 30— 35 (see Sec. Y In this case the semiclas-
sical approximation should be already rather good. In the
case of a large number of identical tunneling objdetg.,
Mn,, molecule$, the long lifetime of a metastable state
should be of lesser concern, so that greater valu@&aufuld

be allowed. The corresponding conditions $mand € to be
used in experiment will be discussed in Sec. V.

To(8,) / T(1359)

IV. TUNNELING RATE AND THE CROSSOVER
TO THERMAL REGIME

0.0 1 1
90° 120° 150°

We shall now discuss the value of the preexponential fac- 180°

tor A in '=Ae B, Contrary toB, it is sensitive to the struc-
ture of quantum levels in the potential shown in Fig. 2. If the

0

H

potential to the right from the escape poif was un-
bounded from below, tunneling would occur into the con-

tinuum of states. In this case the prefactor for the potentia?

52— 6% (our low barrier limiy is known (see, e.g., Ref.)4

|

However, the potential given by E3), as well as the full

1/2

15
- Bllzwo .

2

A (22

FIG. 5. The dependence of the crossover temperature on the
rientation of the magnetic field.

Let us now concentrate on the transition exponent which
is usually addressed by experiments. At a sufficiently large
temperature it must cross to the Boltzmann expongfi.
Then, equatind® of Eq. (19) to U/T, whereU is given by
Eq. (20), we obtain that the crossover from the quantum to

potential(2), is certainly bounded. Correspondingly, the tun—the thermal regime occurs at

neling occurs onto the quantized quasilevels in the right well.
Physically this means that the magnetic moment, after tun-
neling through the barrier, precesses about the direction of

the effective fieldH —H,&,, with the frequency of the pre- where we have used Eq&) and (7). Another methotf to
cession being quantized. Of course, the same problem existbtain the crossover temperature is based upon the analysis
for a particle in an asymmetric double well. However, for aof the ¢(7), 6(7) solutions of Eq(12) which are periodic in
spin, unlike a particle, the two wells are intrinsically 7 with the period%/T. At finite temperature only such tra-
bounded. The only attempt to approach this problem quantijectories contribute to the path integral. Equati¢h2) on a
tatively, known to the authors, has been made by Gatg. class of periodic trajectories have a bifurcation at
argued that the answer depends crucially on the width of th& =7 /27 where w is the frequency of small oscillations
excited levels in the right well. If the width is sufficiently near the bottom of the inversed potential in Fig. 2. Above
large, so that the levels overlap, the problem is more or lesthis temperature the only trajectory of interest which is for-
equivalent to the tunneling into the structureless continuummally periodic with the period/T is a static solution of Eq.

In this case, of course, Eqd.9) and(22) must be altered for (12): 6=0,, ¢=0. It corresponds td/ at the top of the
dissipation in the spirit of Caldeira and Leggétrong dis- potential barrier. Substitution of this solution into Ed.1)

sipation is hardly the case for magnetic systénisso that givesB=U/T. A simple analysis yields»= 2wy, that is,
Eq. (19 is expected to hold and EQ?2) is expected to give

the correct order of magnitude for the prefactor. In the case
of narrow levels, the tunneling rate at zero temperature
become$

5

18 49

TC ﬁwo,

1
T.= 7Tﬁwo. (25
The comparison of Eq24) and Eq.(25 shows that they
differ by a factor~1.15, and, therefore, can both be used as
the definition of the crossover temperature.

Because of the exponential dependence of the thermal rate
whereA,, is the WKB amplitude of the transition from the on temperature the transition from thermal to quantum re-
left-well level E, onto the right-well leveE,,, andy, is the gime, as the temperature is lowered, must be rather sharp,
width of the E, level. In this case Eq(19) must give the with a well-defined crossover. The dependencd obn 6y,
correct answer for the exponent but the prefactor is totallys plotted in Fig. 5. The plot suggests that the observation of
different. It has been argu#tf®°that it should oscillate on the quantum decay of a metastable statef;at-90° and
the applied field. It is not clear, however, what should be the?;— 180° requires much lower temperatures than for inter-
effect of finite temperature on these findings. The full analy-mediate orientations of the field. Again, the vicinity of 90°
sis of spin tunneling onto the precession levels remains amust be treated with caution. In that regidp does not, in
open problem. fact, go to zero but is proportional to the higher power of a

_ 2 Yn
r=2 A (B, —E)7 T 024" 29
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small parametere,® " instead of e for intermediate tion of M corresponds to an appreciable change of the ori-
angles. Writingfy as 90% 8 we again find that our result entation, 5,= \/6e rad >4°. Greatere will give a larger
for T¢ is correct forg> €, that is, quite close to 90° for angle and a higheF, but will move the maximal allowed

e<10 2. S to lower values. Smallee are dangerous because of the
interaction ofM with nuclear sping.

V. CONCLUSIONS AND SUGGESTIONS We suggest the following experimental procedure. First,

FOR EXPERIMENT the anisotropy axis of the particle must be precisely deter-

state of a uniaxial single-domain particle placed at a som Y other methods. The position of the particle must then be

angle with the magnetic field. Our interest in this problem!x€d at a certain angléy, with the field; see Fig. 1. The
has been stimulated by the fact that the corresponding exfi2gnitude oft should then be slowly increased to obtain
periment would be most easy to perform and to interpret. If1€ critical fieldH (6y) at which the barrier dissapears. The
gives the experimentalist three control parameters for cométastable state should then be created again and the field
parison with theory: the orientation of the fief , the field ~ Should be tuned to the valug.(1—e) just belowH.. By
strengthe=1—H/H., and the temperature. According to ~ 'ePeating this procedure many times the transition rate must
Egs. (18), (23), and (24), the crossover temperature is pro- be obtained. The field orientation then should be changed
portional to the anisotropy field. Thus, selecting a particle?"d the whole procedure repeated for different values of
with H,=1T would ensure that a reasonably low tempera-f+ @ndHc(6) but with the same value of. This would

ture is required. A weak dependence®f on e, T.x e give the transition rate as a function 6f;, which can be

works to the advantage of an experimentalist. For, e.g.compared with the theoretical prediction given by Et0)
H,=1T ande=10"3 we obtainT (135°)~ 30 mK . Note and illustrated in Fig. 4. To ensure that quantum, not ther-
a Cc "

that e~ 102 requires that the field be controlled with an mal, transitions are measured, the temperature independence

accuracy higher thami e, that is, better than 10 Oe for ©Of the rate should be checked at afly. e
H,~1T. This poses no problem. The above experiment requires very high sensitivity if it

If the experiment is to be performed with a large number_has to be p_erfO”T"E:‘d with a single particle_, or it requires
of identical magnetic entities, the long lifetime of a meta- |dent|cz_il particles if it has_ to k_)e_ performed ‘.N'th an ensemble
stable state will not necessarily interfere with the possibilityOf partmles._ The latter is difficult to _achleve for s_mgle—
to detect the effecfcompare with radioactive decayn the dor_nam part|cles_but comes naturally if one ta_lkes big mag-
case of a single particle, however, a very long, as well adetic r_nolecules instead. In the last years evidence of spin
very short, lifetime can be a serious obstacle, so that speciﬁl‘nr_‘mIng has bele(? r(_aported_ Mny, mole_cular q_)mplefxes_
consideration should be given to the selection of the approtaVing very weakly interacting magnetic entities of spin

10 14-17 A TRl
priate size of the particle. Fdf,~1T the prefactor of Eq. > 10-" ~ The system is uniaxial with high accuracy. The

(22) is of the order of 18! s~1. Consequently, the tunneling '€POrted anisotropy field is very high,~10 T. This makes

exponent which is significantly less than 30 will make tun-t @ 900d candidate for the experimental study suggested
neling very fast and, therefore, difficult to observe. It will above, thqugh Wwe cannot guarantee our th_eory to work well
also invalidate the semiclassical approximation employed i’ the spin as low as 10. Some correlations between the
this paper, as has been discussed at the end of Sec. I1l. G€Cry and experiment should exist, however. One of them
the other hand, foB greater than 30—35 the lifetime of the MaY be the weak dependence of the ztémnellng rate on the
metastable state may significantly exceed the time of th@rentation of the field observed Mn,,.

experiment. ThusB~30—-35 seems to be optimal for the
observation of tunneling and, at the same time, for remaining
in the domain of MQT . According t¢19), this means that at M.C.M. acknowledges support from the Generalitat de
e~10"3 the total spin of the particl& should be no more Catalunya. The work of E.M.C. has been supported by the
than 3<10*. This certainly falls in the domain of MQT. U.S. National Science Foundation through Grant No. DMR-
Note that even foe as small as 10° the underbarrier rota- 9024250.

We have studied quantum decay of a metastable magnetgined by allowing it to orient freely in the magnetic field, or
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