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We present an imaginary-time path-integral study of the problem of quantum decay of a metastable state of
a uniaxial magnetic particle placed in the magnetic field at an arbitrary angle. Our findings agree with earlier
results of Zaslavskii obtained by mapping the spin Hamiltonian onto a particle Hamiltonian. In the limit of low
barrier, weak dependence of the decay rate on the angle is found, except for the field which is almost normal
to the anisotropy axis, where the rate is sharply peaked, and for the field approaching the parallel orientation,
where the rate rapidly goes to zero. This distinct angular dependence, together with the dependence of the rate
on the field strength, provides an independent test for macroscopic spin tunneling.@S0163-1829~96!05625-1#

I. INTRODUCTION

Small magnetic particles may have two or more equilib-
rium orientations of the magnetic moment. In the presence of
a magnetic field only one of them corresponds to the abso-
lute minimum of the energy; the others are metastable. They
decay with time due to thermal overbarrier transitions. As
the temperature goes down, thermal transitions die out but a
finite probability of quantum transitions remains.1–3 In such
transitions the uncertainty principle manifests itself on a
scale where it has been rarely seen. As many as 106 spins can
coherently tunnel out of a metastable magnetic state, placing
this effect in the domain of macroscopic quantum tunneling
~MQT!.4

Any disturbance of the ferromagnetic order on a scale less
than the domain wall thickness~typically ;10021000 Å!
costs large exchange energy. For a nanometer scale particle,
a stiff magnetic momentMW that can rotate but not change its
absolute value is believed to be a good approximation. When
such a particle is embedded in a nonmagnetic matrix,MW
interacts weakly with the microscopic degrees of freedom:
phonons, conducting electrons, nuclear spins, etc. The influ-
ence of these interactions on the tunneling rate can be
noticeable5–9 but, apparently, does not kill the effect. Experi-
ments have been reported10–17 which indicated the possible
presence of magnetic tunneling in small particles and in large
magnetic molecules. Applications of this phenomenon have
been discussed which include the reliability of small mag-
netic units in memory devices and their use in quantum
computers.18 Beautiful topological interference effects have
been suggested, which have no analogy in other MQT
problems.19,20All this makes magnetic tunneling an exciting
area for theoretical research and a challenging experimental
problem.

Experiments performed to date were done on ensembles
of small particles or on individual particles of large size.
Both systems exhibit stochastic behavior that precludes them
from direct comparison with theory. It is likely, however,13

that in the nearest future measurements of individual nanom-
eter particles will become possible. The simplest choice
would be a uniaxial magnetic particle whose magnetic an-
isotropy can be approximated byEan52kMz

2 . This model,

however, does not possess tunneling until a term is added to
the energy~e.g., k8Mx

2) that violates its commutation with
Mz . A number of models have been studied,1–3 which con-
sider a more complex~than uniaxial! structure of the mag-
netic ansitropy. The generic problem, however, and the easi-
est to implement in practice, is the one of uniaxial anisotropy
and the magnetic field applied at a some angleuH with the
anisotropy axis. This problem does not possess any symme-
try and for that reason is more difficult mathematically. It
was first studied by Zaslavskii21 within the approach22 that
maps the spin problem onto a particle problem. The corre-
sponding particle Hamiltonian, while different from the spin
Hamiltonian, has the same structure of low-lying energy lev-
els. Using this method and the semiclassical approximation,
Zaslavskii calculated the tunneling exponent, the preexpo-
nental factor, and their temperature dependences in the limit
of low barrier. In this paper we shall study the uniaxial case
by direct calculation of the imaginary-time path integral for
the magnetic moment.1–3 For the problem at hand, both
methods make a number of approximations; the exact solu-
tion is impossible to obtain. One may worry, therefore, how
reliable their predictions are for the dependence of the tun-
neling rate on the magnitude and the orientation of the field.
In Sec. III, we shall demonstrate that angular and field de-
pendences of the tunneling exponent obtained by
Zaslavskii’s method and by the path-integral method coin-
cide precisely. The tunneling exponent must be robust with
respect to the exact positions of spin energy levels. On the
contrary, the prefactor for tunneling between nonequivalent
wells must be strongly affected by the positions and widths
of the levels~see Sec. IV!. Fortunately, the exponent is the
easiest to measure. Our purpose is to analyze the problem in
terms of observable variables, to make a connection with
previously studied tunneling problems, to establish the range
of validity of the semiclassical approximation, and to make
suggestions for future experiments.

The solution of this problem elucidates some important
points with regard to the two models which have been dis-
cussed in literature: with the field parallel3 and
perpendicular1–3 to the anisotropy axis. We will show that
even a very small misalignment of the field with the above
two orientations completely changes the results. For the
strictly uniaxial case no tunneling is expected when the field
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is parallel to the anisotropy axis. It turns out, however, that
the tunneling exponentB depends onuH via ucotuHu1/6. Cor-
respondingly, to notice the freezing of a metastable state at
uH5180°, the field must be well aligned with the anisotropy
axis. Another interesting conclusion concerns the field de-
pendence ofB. For particles of a considerable size,H must
be close to the critical fieldHc at which the barrier disap-
pears; otherwise the lifetime with respect to quantum decay
of a metastable state becomes exponentially large. The small
parameter of the theory ise512H/Hc . In a wide range of
anglesB}e5/4, not e3/2 as was previously obtained for some
special symmetric cases. The crossover from asymmetric to
symmetric tunneling will be discussed in Sec. III. For mea-
surements of a single particle,B;30235 should be optimal
~see Sec. V!. At e;1023 this would correspond to tunneling
of a total spinS;30 000 by an angle of more than 4° on a
time scale of a few hours. We shall argue in Sec. III that the
semiclassical approximation must be rather good in this case.
The prefactor of the tunneling rate and the crossover from
quantum to thermal regime will be discussed in Sec. IV.
Besides small particles, some of our predictions can be tested
in Mnm molecular complexes which have strong uniaxial
magnetic anisotropy~Sec. V!. In this case, a greaterB and,
correspondingly, a much longer lifetime are anticipated.14

II. FORMULATION OF THE PROBLEM

Consider a uniaxial single-domain particle whose anisot-
ropy direction coincides with thez axis. In the absence of the
field there are two equilibrium orientations ofMW : along and
against thez direction. Let us now assume that the magnetic
field is applied in the ZX plane, at an angle
90°<uH<180° with thez axis. If the field is below some
critical valueHc(uH) ~to be computed!, MW has two equilib-
rium orientations shown in Fig. 1. One of them, with

0°<uH<90°, is a metastable state, while another, with
90°<uH<180°, corresponds to the absolute minimum of
the magnetic energy. We are interested in the quantum decay
of the metastable state.

The magnetic energy of the particle is a sum of its anisot-
ropy energy and Zeeman energy,

E52kMz
22MxHx2MzHz , ~1!

wherek.0 is a dimensionless anisotropy constant. For an
arbitrary orientation ofMW the energy can be rewritten as

E52HaM ~ 1
2 cos

2u1hzcosu1hxsinucosf!, ~2!

where we have introduced the anisotropy fieldHa52kM
and dimensionless components of the magnetic field,
hx,z5Hx,z /Ha, u and f being the conventional spherical
coordinates of the fixed-length vectorMW . The metastable
state exists atHz,0. It corresponds toMW in the XZ plane
~that is,f50) at a some angleu5u0 . Near this point the
potential has the form of a canyon with the bottom at
f50 satisfyingE5(HaM )Eu , where

Eu52 1
2 cos

2u2hcos~u2uH!. ~3!

Here we have switched touH and h5H/Ha from
hx5hsinuH and hz5hcosuH . The dependence ofEu on u,
near u0 , at different values of the field, is schematically
shown in Fig. 2.

The metastable state satisfies

sin2u012hsin~u02uH!50, ~4!

which follows from ]Eu /]u50. The point u5u1 is the
saddle point of the potentialE(u,f). For the metastable
state to decay,MW must either fluctuate to the top of the
barrier atu5u1 or tunnel under the barrier to the escape
point u5u2 . SinceMW is considered to be a macroscopic

FIG. 1. The geometry of the problem. VectorsMW shown by
dashed and solid lines correspond to the metastable and stable
states, respectively.

FIG. 2. Theu dependence of the potential for different values of
the field.

54 389QUANTUM DECAY OF METASTABLE STATES IN SMALL . . .



variable, an appreciable escape rate is expected only when
the barrier is lowered by tunneling the external field to the
critical field hc(uH). At h5hc all three angles in Fig. 2
coincide,u05u15u25uc , and both the first and the second
derivatives ofEu become zero atu5uc .

23 This gives two
equations foruc andhc :

sin2uc12hcsin~uc2uH!50,

cos2uc12hccos~uc2uH!50. ~5!

Solving them we obtain

sin3uc5hcsinuH ,

cos3uc52hccosuH , ~6!

hc5~sin2/3uH1ucosuHu2/3!23/2. ~7!

Note that all signs in Eq.~6! are in accordance with the fact
that 0°<uc<90° while 90°<uH<180°. The dependence of
hc on uH is plotted in Fig. 3.

Let us now consider the field that is slightly lower than
the critical field,

h5hc~12e!, ~8!

wheree!1. Such a field still preserves the metastable state.
The corresponding equilibrium value ofu is now slightly
lower thanuc , uc2u05D!1. Expanding Eq.~4! nearuc we
obtain, with the help of Eqs.~5!, D5(2e/3)1/2. Then intro-
ducing a positived5(u2u0)!1, and expanding Eq.~3!
nearu0 , we get up to third order ind,

Eu~u!2Eu~u0!5 1
4 sin2uc~A6ed22d3!. ~9!

The escape point isd25u22u05A6e. This concludes our
study of the classical problem and brings us to the problem
of the quantum decay of the metastable state described by
Eq. ~9!.

III. COMPUTATION OF THE TUNNELING EXPONENT

The tunneling rate can be written asG5Aexp(2B), with
the exponentB being determined by the imaginary time
action1–3,19,20

I5E dtS i Mg ḟt~12cosu!1E~u,f! D , ~10!

where t5 i t , g is the gyromagnetic ratio, andE(u,f) is
given by Eq.~2!. Introducingva5gHa , the dimensionless
imaginary timet̄5vat, and the total spin of the particle,
S5M /\g@1, we get

I52\SE dt̄@ i ḟ t̄ ~cosu21!1 1
2 cos

2u1hzcosu

1hxsinucosf#. ~11!

To obtain the tunneling exponent, one must consider the ex-
tremal trajectories of Eq.~11!:

i u̇ t̄ 5hxsinf,

i ḟ t̄sinu5hxcosucosf2hzsinu2cosusinu. ~12!

Heref plays the role of the coordinate while cosu plays the
role of the momentum. The latter is imaginary under the
barrier, which explains the presence ofi in Eq. ~12!. Note
that, as usual, the generalized coordinate and momentum can
be interchanged in our calculation. Instead of considering
real f and imaginary cosu, one can consider imaginaryf
and realu. In fact, the latter is the only appropriate choice
because, according to the chosen geometry~see Fig. 1!, u is
the real tunneling coordinate whilef50 in both initial and
final states.

Equations~12! have a solution~an instanton! that carries
out the underbarrier rotation ofMW to the escape point. For
this solution bothu andf depend ont. It starts atu5u0 ,
f50 at t52`, comes tou5u2 , f50 at t50, and then
bounces back tou5u0 , f50 at t51`. The general solu-
tion is difficult to obtain. We shall recall that we are inter-
ested in the case of low barrier whenh→hc . In this case the
potential in Fig. 2 becomes nearly flat and thet̄ derivative of
u must be proportional to a some power of a small parameter
e. This is the approximation of aslow instanton, which is
easy to understand if one notices that the instanton corre-
sponds to the classical motion in the inversed potential
~which is now almost flat!. According to the first of Eqs.
~12!, this means that the instanton involves only smallf;
that is, the classical trajectory lies near the bottom of the
potentialcanyon, close to theXZ plane. The phase term in
Eq. ~11!, proportional toḟ t̄ ~not the ḟ t̄cosu term!, is im-
portant for tunneling between equivalent minima.19,20For the
closed instanton trajectory described above it gives a zero
contribution to the integral and, therefore, can be omitted.

The tunneling exponentB follows from the path integral

E D$f~t!%E D$cosu~t!%expS 2
I

\ D ~13!

over the continuum of trajectories which start and end at the
metastable stateu5u0 , f50 and which are close to the

FIG. 3. The dependence of the critical value of the field on the
field orientation.
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instanton. After integratingḟ t̄cosu in Eq. ~11! by parts, with
account of the boundary conditionf(6`)50, and using the
smallness off along the instanton, the path integral that we
have to compute becomes

E D$f~t!%E D$cosu~t!%expH 2SE
2`

`

dt̄S 2 i u̇ t̄ ~fsinu!

1
hsinuH
2sinu

~fsinu!21Eu~u! D J , ~14!

whereEu(u) is given by Eq.~3!. One can now select the new
variables of the functional integration,fsinu and cosu, and
notice that the integration overfsinu is Gaussian. This gives

B5SE
2`

`

dt̄S u̇2sinuc
2hcsinuH

1Eu~u!2Eu~u0! D . ~15!

Note that we putu5uc andh5hc in the first term because
u̇ t̄
2 already has a smallness of orderAe coming from thet̄
derivative, so that this term is proportional toe3/2 and is of
the same order ine as other terms in Eq.~15! ~justified
below!. A constant Eu(u0) is added to makeB50 at
u( t̄)5u0 . The t̄ integration must now be performed over
the instantonu( t̄) that minimizesB. This simplifies the
problem tremendously, compared to the problem where the
action depended onf( t̄) andu( t̄), though a complete math-
ematical equivalence to the initial problem is preserved. We
shall now use the fact that in the limit of small barrier the
instanton involves small deviations fromu0 and replaceu in
Eq. ~15! by u01d. With the help of Eq.~9! we obtain

B5SE
2`

`

dt̄S ḋ t̄
2sinuc

2hcsinuH
1
1

4
sin2uc~A6ed22d3! D .

~16!

The extremal trajectory of Eq.~16! is

d~t!5
d2

cosh2~v0t!
, ~17!

where

v05S 38D
1/4

e1/4
sin1/2uHucosuHu1/6

sin2/3uH1ucosuHu2/3
va . ~18!

Expressions~6! and~7! have been used to obtain the depen-
dence ofv0 on uH . As required, the instanton starts at
d50 (u5u0) at t52`, comes to the escape pointd5d2
(u5u2) at t50, and then bounces back tod50 (u5u0) at
t51`. The substitution of Eq.~17! into Eq. ~16! gives,
with the help of Eqs.~6! and ~7!, a simple formula forB,

B5
16361/4

5
Se5/4ucotuHu1/6. ~19!

Note that this expression can be obtained from~16! without
knowing the explicit form of the instanton, Eqs.~17! and
~18!. It is instructing, however, to see from Eq.~17! how
tunneling occurs via rotation of the magnetic moment in
imaginary time. We shall also need the instanton frequency
~18! for computing the crossover temperature in Sec. IV.

Equation ~19! should be compared with Eq.~8! of
Zaslavskii.21 Working out the correspondence of his param-
etersB,C,B0 ,d to our variablesS, e, anduH we find that
the two expressions coincide24 if one replacesS11/2 in
Zaslavskii’s formula byS, which is justified in the limit of
S@1.

The angular dependence ofB is plotted in Fig. 4. We see
that it has a rather unexpected distinct dependence on the
orientation of the field. It is almost flat foruH not close to
90° or 180°, rises sharply asuH approaches 180° in accor-
dance with the fact that atuH5180°Mz commutes with the
Hamiltonian, and rapidly drops atuH→90°. The latter result
must be taken with caution because atuH590° the problem
possesses a symmetry that has not been explicitly taken into
account. It becomes the problem of the tunneling between
equivalent minima studied, e.g., in Refs. 1,3. In this case the
potential is of the formd22d4 and the answer forB reads3

B54Se3/2. Consequently, the result~19! holds for
uH590°1b, whereb is large compared toe3/2. This means
that for, e.g.,e51022, Eq. ~19! is certainly true outside the
1° vicinity of 90°. Of course, one should remember that all
our conclusions on the angular and field dependence of tun-
neling are only valid in the limit of low barrier. For a particle
of a considerable size, this is the only limit accessible experi-
mentally. The angular dependence in general case is un-
known.

Finally one should analyze the validity of the semiclassi-
cal approximation. Obviously, for the method to be valid, the
tunneling probability must be small; that is,B@1 is re-
quired. This may not be enough, however. One should also
worry that the energy\v of zero-point oscillations at the
bottom of the metastable well is sufficiently small compared
to the height of the barrier,U. As follows from Eq.~16!, the
zero-point energy is\v52\v0 . The barrier height can be
computed from Eq.~9!,

U5\vaSS 2e

3 D 3/2sin2uc . ~20!

Working out the ratio, we obtain

FIG. 4. Angular dependence of the tunneling exponent.
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36
B. ~21!

The optimal range ofB in experiments on single particles
should beB;30235 ~see Sec. V!. In this case the semiclas-
sical approximation should be already rather good. In the
case of a large number of identical tunneling objects~e.g.,
Mn12 molecules!, the long lifetime of a metastable state
should be of lesser concern, so that greater values ofB could
be allowed. The corresponding conditions onS ande to be
used in experiment will be discussed in Sec. V.

IV. TUNNELING RATE AND THE CROSSOVER
TO THERMAL REGIME

We shall now discuss the value of the preexponential fac-
tor A in G5Ae2B. Contrary toB, it is sensitive to the struc-
ture of quantum levels in the potential shown in Fig. 2. If the
potential to the right from the escape pointu2 was un-
bounded from below, tunneling would occur into the con-
tinuum of states. In this case the prefactor for the potential
d22d3 ~our low barrier limit! is known ~see, e.g., Ref. 4!:

A5S 152p D 1/2B1/2v0 . ~22!

However, the potential given by Eq.~3!, as well as the full
potential~2!, is certainly bounded. Correspondingly, the tun-
neling occurs onto the quantized quasilevels in the right well.
Physically this means that the magnetic moment, after tun-
neling through the barrier, precesses about the direction of
the effective field,HW 2Haêz , with the frequency of the pre-
cession being quantized. Of course, the same problem exists
for a particle in an asymmetric double well. However, for a
spin, unlike a particle, the two wells are intrinsically
bounded. The only attempt to approach this problem quanti-
tatively, known to the authors, has been made by Garg.9 He
argued that the answer depends crucially on the width of the
excited levels in the right well. If the width is sufficiently
large, so that the levels overlap, the problem is more or less
equivalent to the tunneling into the structureless continuum.
In this case, of course, Eqs.~19! and~22! must be altered for
dissipation in the spirit of Caldeira and Leggett.4 Strong dis-
sipation is hardly the case for magnetic systems,5–9 so that
Eq. ~19! is expected to hold and Eq.~22! is expected to give
the correct order of magnitude for the prefactor. In the case
of narrow levels, the tunneling rate at zero temperature
becomes9

G5(
n

D0n
2 gn

~E02En!
21gn

2/4
, ~23!

whereD0n is the WKB amplitude of the transition from the
left-well levelE0 onto the right-well levelEn , andgn is the
width of theEn level. In this case Eq.~19! must give the
correct answer for the exponent but the prefactor is totally
different. It has been argued25,26,9 that it should oscillate on
the applied field. It is not clear, however, what should be the
effect of finite temperature on these findings. The full analy-
sis of spin tunneling onto the precession levels remains an
open problem.

Let us now concentrate on the transition exponent which
is usually addressed by experiments. At a sufficiently large
temperature it must cross to the Boltzmann exponentU/T.
Then, equatingB of Eq. ~19! to U/T, whereU is given by
Eq. ~20!, we obtain that the crossover from the quantum to
the thermal regime occurs at

Tc5
5

18
\v0 , ~24!

where we have used Eqs.~6! and ~7!. Another method27 to
obtain the crossover temperature is based upon the analysis
of thef(t), u(t) solutions of Eq.~12! which are periodic in
t with the period\/T. At finite temperature only such tra-
jectories contribute to the path integral. Equations~12! on a
class of periodic trajectories have a bifurcation at
Tc85\v/2p wherev is the frequency of small oscillations
near the bottom of the inversed potential in Fig. 2. Above
this temperature the only trajectory of interest which is for-
mally periodic with the period\/T is a static solution of Eq.
~12!: u5u1 , f50. It corresponds toMW at the top of the
potential barrier. Substitution of this solution into Eq.~11!
givesB5U/T. A simple analysis yieldsv52v0 , that is,

Tc85
1

p
\v0 . ~25!

The comparison of Eq.~24! and Eq.~25! shows that they
differ by a factor;1.15, and, therefore, can both be used as
the definition of the crossover temperature.

Because of the exponential dependence of the thermal rate
on temperature the transition from thermal to quantum re-
gime, as the temperature is lowered, must be rather sharp,
with a well-defined crossover. The dependence ofTc on uH
is plotted in Fig. 5. The plot suggests that the observation of
the quantum decay of a metastable state atuH→90° and
uH→180° requires much lower temperatures than for inter-
mediate orientations of the field. Again, the vicinity of 90°
must be treated with caution. In that regionTc does not, in
fact, go to zero but is proportional to the higher power of a

FIG. 5. The dependence of the crossover temperature on the
orientation of the magnetic field.
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small parametere,3 e1/2 instead of e1/4 for intermediate
angles. WritinguH as 90°1b we again find that our result
for Tc is correct forb.e3/2, that is, quite close to 90° for
e<1022.

V. CONCLUSIONS AND SUGGESTIONS
FOR EXPERIMENT

We have studied quantum decay of a metastable magnetic
state of a uniaxial single-domain particle placed at a some
angle with the magnetic field. Our interest in this problem
has been stimulated by the fact that the corresponding ex-
periment would be most easy to perform and to interpret. It
gives the experimentalist three control parameters for com-
parison with theory: the orientation of the fielduH , the field
strengthe512H/Hc , and the temperatureT. According to
Eqs. ~18!, ~23!, and ~24!, the crossover temperature is pro-
portional to the anisotropy field. Thus, selecting a particle
with Ha>1T would ensure that a reasonably low tempera-
ture is required. A weak dependence ofTc on e, Tc}e1/4,
works to the advantage of an experimentalist. For, e.g.,
Ha51T and e51023 we obtainTc(135°); 30 mK . Note
that e;1023 requires that the field be controlled with an
accuracy higher thanHae, that is, better than 10 Oe for
Ha;1T. This poses no problem.

If the experiment is to be performed with a large number
of identical magnetic entities, the long lifetime of a meta-
stable state will not necessarily interfere with the possibility
to detect the effect~compare with radioactive decay!. In the
case of a single particle, however, a very long, as well as
very short, lifetime can be a serious obstacle, so that special
consideration should be given to the selection of the appro-
priate size of the particle. ForHa;1T the prefactor of Eq.
~22! is of the order of 1011 s21. Consequently, the tunneling
exponent which is significantly less than 30 will make tun-
neling very fast and, therefore, difficult to observe. It will
also invalidate the semiclassical approximation employed in
this paper, as has been discussed at the end of Sec. III. On
the other hand, forB greater than 30–35 the lifetime of the
metastable state may significantly exceed the time of the
experiment. Thus,B;30235 seems to be optimal for the
observation of tunneling and, at the same time, for remaining
in the domain of MQT . According to~19!, this means that at
e;1023 the total spin of the particleS should be no more
than 33104. This certainly falls in the domain of MQT.
Note that even fore as small as 1023 the underbarrier rota-

tion of MW corresponds to an appreciable change of the ori-
entation,d25A6e rad .4°. Greatere will give a larger
angle and a higherTc but will move the maximal allowed
S to lower values. Smallere are dangerous because of the
interaction ofMW with nuclear spins.7

We suggest the following experimental procedure. First,
the anisotropy axis of the particle must be precisely deter-
mined by allowing it to orient freely in the magnetic field, or
by other methods. The position of the particle must then be
fixed at a certain angleuH with the field; see Fig. 1. The
magnitude ofH should then be slowly increased to obtain
the critical fieldHc(uH) at which the barrier dissapears. The
metastable state should then be created again and the field
should be tuned to the valueHc(12e) just belowHc . By
repeating this procedure many times the transition rate must
be obtained. The field orientation then should be changed
and the whole procedure repeated for different values of
uH andHc(uH) but with the same value ofe. This would
give the transition rate as a function ofuH , which can be
compared with the theoretical prediction given by Eq.~19!
and illustrated in Fig. 4. To ensure that quantum, not ther-
mal, transitions are measured, the temperature independence
of the rate should be checked at anyuH .

The above experiment requires very high sensitivity if it
has to be performed with a single particle, or it requires
identical particles if it has to be performed with an ensemble
of particles. The latter is difficult to achieve for single-
domain particles but comes naturally if one takes big mag-
netic molecules instead. In the last years evidence of spin
tunneling has been reported inMn12 molecular complexes
having very weakly interacting magnetic entities of spin
S510.14–17 The system is uniaxial with high accuracy. The
reported anisotropy field is very high,Ha;10 T. This makes
it a good candidate for the experimental study suggested
above, though we cannot guarantee our theory to work well
for the spin as low as 10. Some correlations between the
theory and experiment should exist, however. One of them
may be the weak dependence of the tunneling rate on the
orientation of the field observed inMn12.
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