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Abstract  

 

 Several chemometric methods have been used to explore, analyze and interpret 

information regarding potable and waste water quality in this Thesis. The analyzed data 

were obtained from (a) drinking water disinfection processes, (b) wastewater treatment 

processes, (c) sensorial analysis comprising panelists’ water taste evaluations, and (d) 

laboratory experiments.  

 This Thesis attempts to improve our knowledge regarding several common 

water quality problems, such as the formation of trihalomethanes (THMs) disinfection 

by-products (in the Sant Joan Despi Drinking Water Treatment Plant of Barcelona, SJD-

DWTP) and the main factors affecting their formation. Furthermore, the Thesis 

illustrates how to facilitate the monitoring of water quality in a Wastewater Treatment 

Plant of Girona town (WWTP) by applying chemometric methods. Further objectives of 

the Thesis include the development of a chemometric method for source apportionment, 

where drinking waters with different origins were blended (as it usually occurs inside 

the Barcelona drinking Water Distribution System, WDS) using measured ultraviolet 

absorbance and physicochemical parameters. This Thesis additionally considered the 

problem of water taste by developing models, where water taste is explained and 

predicted based on the mineral content of tap and bottled waters using trained panelists.   

 The chemometrics methods, applied in this Thesis, have been applied to multi-

parametric data matrices generated  using different instrumental analyses techniques, 

such as laboratory UVVIS spectrophotometer, Gas Chromatograph with Electron 

Capture Detector (GC-ECD) and Inductively Coupled Plasma Optical Emission 

Spectrometer (ICP-OES). Additionally, data was obtained by implementation of 

standard methods for estimation of different physicochemical parameters or by multi-

parametric data extractions from the Laboratory Information Management System 

(LIMS). Data was also acquired from an automatic multi-parametric station for online 

monitoring and from carefully designed sensorial experiments.  

 In this Thesis, different linear projection based methods, such as Principal 

Component Analysis (PCA), Principal Component Regression (PCR) and Partial Least 

Squares regression method (PLS), have been used and shown as appropriate for 

handling data. Different linear regression methods have been compared to powerful 
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nonlinear regression methods such as Kernel radial basis function Partial Least Squares 

(K-PLS) and Support vector machine regression (SVR) methods. 

 Among the most significant findings of this Thesis was the identification of a set 

of parameters, which are highly relevant for the trihalomethanes formation, such as 

water temperature, organic matter fractions and concentration, chlorine concentrations, 

turbidity, bromide/chloride ions concentrations, wells supply flow levels and carbon 

filters age. Chemometric models, with very low prediction errors for all four THMs 

species and their total sum, have been developed at SJD-DWTP. The most important 

physicochemical parameters for panellist water taste liking were found to be: HCO3
- , 

SO4
2-, Ca2+, and Mg2+ at moderate concentration of the overall mineralization and pH. 

Temporal variation with a different data frequency (daily, monthly and annual cycles) 

were observed in WWTP water quality and suggested different plant management and 

operational procedures. A chemometric model was developed to predict source 

apportionment inside the Barcelona WDS. Five different water sources were detected in 

water blends.  

 Finally, different chemometric techniques for visualization and data 

interpretation have been tested and evaluated for their usefulness for water quality 

analyses. The prediction ability of linear or nonlinear regression methods have been 

compared when they were  used to develop empirical models and predict water quality 

parameters such as THMs concentrations in drinking waters, nitrates, phenols, organic 

matter in wastewaters, water source apportionments in water distribution system and 

panelists taste ratings of water samples.    

Last but not least, this Thesis had as an objective to demonstrate the advantages 

of using chemometric methods for water quality assessment. This work showed that 

complex problems can be resolved using a multivariate modeling methodology with a 

few experiments. Therefore, this methodology is a significant improvement over 

unvaried approaches which are based on expensive and time-consuming measurements.
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1.1 General objectives  

 

 Different data sets obtained from different real water quality case studies at 

drinking and waste water treatments plants in Catalonia were analyzed using 

multivariate chemometrics methods.  

The main objective of this Thesis was the development, application and 

promotion of practical chemometric methods for analysis and interpretation of data 

concerning sanitary and esthetic water quality problems in producing potable water and 

monitoring of wastewater quality.  

This Thesis includes six different studies, more specifically five studies of 

potable water management and one study of wastewater management. 

 This main objective was divided as follows:  

 

Objectives regarding water quality analysis and monitoring  

 

 Development of reliable empirical regression models for predicting 

trihalomethane formation inside the Sant Joan Despí drinking water treatment 

plant, applying different linear and nonlinear chemometric methods and using 

environmental and operational water quality plant parameters that describe the 

disinfection process; 

 Review and interpretation of the most important DWTP parameters for the 

THMs formation using chemometric visualization techniques, which facilitate 

water quality monitoring and control; 

 Comprehensive assessment of natural organic matter (NOM) role in THMs 

formation and THMs speciation in disinfection conditions from specially 

designed experiments; 

 Development of chemometric regression models which are able to predict water 

source apportionments of water blends from up to five different water sources, 

using their UV spectral profiles and other physicochemical parameters; 

 Using chemometrics methods, the identification of the most influential 

physicochemical water parameters which can be associated with the panellists’ 

water taste liking of mineral bottled and tap waters; 
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 Evaluation of chemometrics methods which can improve online monitoring and 

control of wastewater treatment plant management using different techniques 

and routines for regular water quality monitoring;  

 Selection of a reduced number of UV spectral channels (wavelengths) for 

monitoring online WWTP operational processes.   

 

Objectives regarding the application of chemometrics methods  

 

 Development, application and validation of linear and nonlinear chemometrics 

methods in analysing water quality data, using parameters measured in-situ or in 

laboratory from different water treatment processes; 

 Comparing predictive abilities of linear and non-linear regression methods for 

the formation of THMs; 

 Identification of the most efficient techniques and tools in visualizing and  

evaluating the more important variables (parameters) in linear models; 

 Application of visualization techniques for nonlinear regression techniques (K-

PLS and SVR) and their subsequent comparison to linear methods; 

 Adaptation of experimental design techniques (DoE) with the objective to obtain 

representative and economic calibration data sets; 

 Evaluation of “Variable Importance of Projection” pre-selection technique in 

PLS modelling of water quality data and selection of a reduced number of 

variables with a sufficient strong predictive power. 

 

 

1.2 Structure of the Thesis 

 

 This Thesis is divided into two main parts. The first introductory part contains a 

general description of common water quality problems such as the formation of THMs, 

and water taste esthetic issues in drinking water, as well as the presentation of existing 

methods for improving of wastewater quality monitoring. This part also presents a brief 

introduction of the applied chemometrics methods used in this Thesis. The second part 

contains the empirical results of performed studies. Published scientific articles, along 

with a background introduction and a short discussion of the obtained results, are 
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included. This second part concludes with the literature references cited throughout the 

Thesis. 

The Thesis consists of the following six chapters: 

 In Chapter 1, the objectives of the Thesis are presented, followed by the 

explanation of the Thesis structure. In this part, the list of publications is 

also included. 

 In Chapter 2, the state of the art of the main water quality problems and 

chemometric methods applied in this Thesis are briefly outlined. This 

chapter contains the following blocks. First, previous research regarding 

THMs formation and the European legislation concerning regulated 

levels of THMs, and the importance of natural organic matter in THMs 

formation are presented, along with selected epidemiological studies 

regarding THMs sanitary risk. Second, the drinking water sources and 

WDS of Barcelona are discussed. Examples of a classical DWTP and of 

a WWTP treatments plants are provided. The main water quality 

parameters, regularly monitored in such facilities, are presented.  A brief 

discussion of existing automatic systems based on UV sensors for online 

water quality monitoring is included.  Third, relevant esthetical aspects 

regarding water taste are discussed. This chapter concludes with a review 

of the applied chemometrics methods used in this Thesis. 

 In Chapter 3, the obtained results from the case studies, included in this 

Thesis, are discussed. This chapter is divided into three blocks as 

follows: 

1. In the first block, three articles that deal with chemometric 

modeling of the THMs formation from laboratory experiments 

and from a real monitoring of water quality in SJD-DWTP are 

included;   

2. In the second block, two articles that deal with the chemometrics 

study of drinking and waste water quality monitoring are 

presented. In the first article, a drinking water source 

apportionment study of the main water supply sources from 

Barcelona was performed. The second article presents a study 

that focuses on the chemometric modeling of wastewater quality 
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parameters using standard laboratory techniques and from on-line 

automatic monitoring system;  

3. In the third block, the results from an article using a sensorial 

analysis of different bottled mineral and tap water samples are 

presented. The main objective of this study was to associate 

physicochemical parameters and ratings of trained panelists. 

 

 In Chapter 4, the conclusions of this Thesis are presented. 

 In Chapter 5, a brief summery in Spanish language is given. 

 The Thesis finishes with the reference list. 

 

 

 

1.3. List of scientific papers presented in this Thesis 
 

 

1. Article 1 – Platikanov, S., Puig, X., Martin, J. and R.  Tauler. Chemometric 

modeling and prediction of trihalomethane formation in Barcelona’s water 

works plant. Water Research 41 (2007) 3394-3406. 

 

2. Article 2 – Platikanov, S.,  Martin, J. and R.  Tauler. Linear and non-linear 

chemometric modeling of THM formation in Barcelona's water treatment plant. 

Science of Total Environment 432 (2012) 365-374. 

 

3. Article 3 – Platikanov, S.,  Tauler, R., Rodriguez, P., Antunes, M., Pereira, D. 

and J. Esteves da Silva. Factorial Analysis of the trihalomethane formation in 

the reaction of colloidal, hydrophobic and transphilic fractions of DOM with 

free chlorine. Environmental Science and Pollution Research 17 (2010) 1389-

1400. 

 

4. Article 4 – Platikanov, S., Garcia, V., Landeros, E., Devesa, R., Matía, L.,  

Tauler, R., Determination of water supply sources in the Barcelona distribution 

system by UV spectrophotometry and PLS. Water Science and Technology- 

Water Supply 11 (2011) 45-54. 
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5. Article 5 – Platikanov, S., Rodriguez-Mozaz, S., Huerta, B., Barcelo, D., Cros, 

J., Battle, M., Poch, G., Tauler, R.  Chemometrics quality assessment of 

wastewater treatment plant effluents using physicochemical parameters and UV 

absorption measurements. Journal of Environmental Management 140 (2014) 

33-44. 

 

6. Article 6 – Platikanov, S., Garcia, V., Fonseca, I., Rullan, E., Devesa, R., 

Tauler, R., Influence of minerals on the taste of bottled and tap water: A 

chemometric approach. Water Research 47 (2013) 693-704. 
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2.1 Literature review of the main water quality problems studied in 

this Thesis 

 

2.1.1 Urban water cycle 

 

The Barcelona Metropolitan Area (BMA) is characterized (see Figure 1) by its 

multi-source urban water cycle (Marín et al., 2012). The resources of raw water used for 

potabilization include surface water (i.e., the Ter River), brackish water (i.e., the 

Llobregat River), underground water (i.e., the Besòs and the Llobregat aquifers), and 

seawater (i.e., the Mediterranean Sea). There is a large variability in water quality 

among such sources, which have different water stressors’ characteristics.  

To remove contaminants and pathogens, raw water must be first treated prior to 

its distribution and use as potable water. The design of an appropriate treatment process 

is driven by the water quality of different sources. Today, drinking water treatment 

facilities in the BMA employ various treatment technologies such as: (a) a classical 

disinfection with chlorine, ozonation, granular activated carbon (GAC) filtration;  (b) 

ultra-filtration; (c) brackish and seawater reverse osmosis (RO); (d) electrodialysis 

reversal (EDR) desalinization, and (e) water remineralization. 

 

 

 

 

 

 

 

 

Figure 1. The urban water cycle for the Barcelona Metropolitan Area 
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After disinfection treatment, water is distributed to customers through a 

pressurized system of pipes, pumps, valves, and storage tanks - parts of the Water 

Distribution System (WDS) of BMA.  The water distribution represents the second 

stage in the urban water cycle. The supplied potable water is used for various purposes, 

including industrial manufacturing, cleaning, cooking, bathing, laundry, drinking. After 

consumption, used water is transferred to the sewers system for wastewater collecting. 

The wastewater is conveyed by gravity to a wastewater treatment facility, using a 

network of increasingly large pipes.  

A typical urban wastewater stream contains more than 99% water and 

approximately 1% waste (Venugopala Rao, 2005). To the extent that water quality has 

been seriously deteriorated, a wastewater treatment is required before water could be 

released in natural habitats, such as rivers or the Mediterranean Sea. As a result, 

wastewater treatment plants play an important role in the urban water cycle by 

implementing various physical, chemical and biological processes designed to remove 

wastes from the influent and restore water quality. Conditional on being effectively 

treated, the water effluent is returned into the rivers for example. 

Although each component from the urban water cycle is designed such that to 

generate beneficial social and economic outcomes, it is a challenge to efficiently 

manage the process. Among the main difficulties to make the cycle functioning are the 

appropriate maintenance of all water treatment processes, and the enforcement of 

efficient water quality monitoring and control systems. In order to be able to develop 

sustainable water solutions, we first need to understand these challenges. 

 

2.1.2 Drinking water quality  

  

The access to drinking water is among the main drivers of the human development 

around the world. The general understanding is that the drinking water should be clear, 

pleasant to taste and without odors. The history of drinking water however is 

controversial, especially over the past centuries, when water actually has facilitated the 

spread of major diseases. The establishment of treatment procedures has influenced the 

attitude towards drinking water, leading to the predominant understandings nowadays 



  Chapter 2. Introduction 

15 

 

that drinking water treatments allow the consumption of water that is both 

microbiologically and chemically safe. 

 Aiguas de Barcelona (AGBAR) is responsible for the delivery of drinking water 

to more than 3 million residents (Paraira and West, 2015) of the Barcelona Metropolitan 

Area (BMA). Supplying drinking water to such a large population and simultaneously 

to every household in compliance with the strict regulatory norms is a major challenge 

from an operational management.  

The list of main operational problems regarding water quality for the BMA 

includes:   

 Pollution of raw river water with an industrial and agricultural character; 

 Raw water scarcity primarily due to the over-exploitation of the main water 

sources, i.e., the two rivers nearby Barcelona;   

 Formation of undesired disinfection bi-products (DBPs) in drinking water after 

disinfection process;  

 Formation, distribution and behavior of these DBPs inside the water distribution 

network; 

 Water taste improvement; 

 Among the main sources of river water pollution are (1) the concentration of 

industrialization and the growth rate of agricultural activities along the river basins, (2) 

financial and technological constraints, and (3) lack of–enforcement or bypassing of 

public laws. Furthermore, the weather conditions in Catalonia are often unfavorable 

from the perspective of DWTP management (Martin-Alonso, 2006). More specifically, 

scarce snowfalls are likely to cause long and severe droughts, whereas flushing 

spring/summer rainfalls may generate floods with an adverse effect on the water quality. 

Additionally, river water quality is negatively affected by accidental sewage discharges, 

industrial spills (for instance, mining activities in the middle part of the Llobregat River 

basin), and sources of pollution such as agricultural and urban run-off (Ginebreda et al., 

2012).  Although classical raw water disinfectants reduce the microbial risk, they have 

as a disadvantage the generation of disinfection by-products. Recent findings suggest 

that there are more than 250 different types of DBPs in drinking water (Sadiq and 

Rodriguez, 2004).  

As a result, exhaustively and expensive physicochemical treatment procedures 

are required in order to overcome the strong fluctuations in the raw water quality and 
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the formation of undesired DBPs in drinking water.  The existing practice in water 

companies is to implement advanced membranes technologies (Rahardianto et al., 2007; 

Valero et al., 2013; Wang et al., 2006) thus improving raw water quality and reducing 

DBPs formation. Such technologies however request an additional process of water 

remineralization (García et al., 2015), which improves the taste of drinking water.  

The proper functioning of drinking water treatment and supply processes 

requires constant monitoring which is required to guarantee important aspects of the 

process, including hygiene, environment sanitation, storage and disposal, and the supply 

of high-quality drinking water to Barcelona. 

 

2.1.3 Wastewater quality  

 

An integrative part of the urban water cycle is the wastewater treatment and quality 

controls. To the extent that the demand for water sources is high, local authorities and 

business are interested in possible new water sources, conditional on being financially 

and socially acceptable in promoting efficiency and economic development (Hespanhol, 

1997).  

The ongoing trend towards increasing urban populations caused the 

accumulation of large quantities of wastewater at the municipal level. Because 

environmental and water pollution became a significant policy issue over the last 

decade, different parties in the water process increased their awareness of whether 

wastewaters are safely and economically beneficially disposed. Among the possible 

uses of wastewater is agriculture, especially when such disposals may compensate for 

the relatively scarce water resources in some areas (Al-Mutaz, 1989). The wastewater 

use in agriculture therefore may lead to the conservation of higher quality water and its 

efficient usage beyond irrigation. Although it has beneficial applications, wastewater 

treatment processes present a serious challenge in terms of implementation and control 

(Talaiekhozani et al., 2016). It is largely recognized that wastewater treatment processes 

are dynamic and complex, due to the variations of the quality in the municipal 

wastewater influent.  The wastewater influent is characterized with a dynamic flow rate 

and a diverse chemical composition related to household and industrial activities, and 

urban runoffs during rain episodes.  As a consequence, the municipal wastewater treated 

discharge can adversely affect the surface water quality of the rivers or the 

Mediterranean Sea (Amine et al., 2012). Therefore, the constant monitoring of 
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wastewater quality is highly relevant in managing more efficiently the urban water 

cycle, implementing environmental protection, and achieving sustainable growth.   

 

2.1.4 European legislation 

 

The EU environmental policy is focused on the water pollution and water resources 

deterioration. The first attempts of legislation were accepted by the European Council at 

1973. In the last decades, the most important EU water directives had a focus on distinct 

issues and target specific problems: 

 Directive concerning the quality required for surface water intended for the 

abstraction of drinking water in the Member States (75/440/EEC); 

 Directive concerning the quality of bathing water (76/160/EEC); 

 Directive on pollution caused by certain dangerous substances discharged into 

the aquatic environment of the Community (76/464/EEC); 

 Directive relating to the quality of drinking water intended for human 

consumption (80/778/EEC prior to 2008 and 98/83/EC since then); 

 Directive concerning urban waste water treatment (91/271/EEC). 

 

There are a couple of European Union directives, which are directly related to the 

topic of this Thesis: a) Directive 98/83/EC on the quality of drinking water, and b) 

Directive 91/271/EEC concerning urban waste water treatment:  

 

a) Directive 98/83/EC relating to the quality of drinking water intended for human 

consumption 

Directive 98/83/EC has an objective to set new quality standards for many 

microbiological, chemical and organoleptic parameters, which must be implemented by 

the EU member countries in monitoring the quality of drinking water quality. The 

Directive 98/83/EC regulates a maximum concentration of total sum of THMs to 100 

μg/l, which prior to the enactment of this Directive was 150 μg/l (Directive 80/778/EC). 

Spain adopted the European Directive in December 2003 (Real Decreto 140/2003), thus 

allowing for the total sum of THMs to be with a maximum concentration of 100 μg/l. 

The stated goal of this Directive is to protect consumers’ health in the EU member 

countries by safety drinking water.  
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This Thesis includes studies on the regulated group of trihalomethanes (THMs) in 

Directive 98/83/EC.  Three articles investigate THMs and their undesired formation, 

using chemometric modeling. 

  

b) Directive 91/271/EEC concerning urban waste water treatment 

Directive 91/271/EEC calls for a pollution reduction in surface waters, for example, 

by improving the quality of the discharged urban wastewaters. This directive calls for 

improvement of the technological processes inside the wastewater treatment plants 

(WWTP). An improvement of water quality monitoring process can contribute to the 

overall improvement of the technological process in WWTP.  

In this Thesis, chemometric modeling of wastewater quality is proposed as a useful 

approach for monitoring. More specifically, water quality of the influent/effluent in an 

urban WWTP is monitored using chemometric methods with simultaneous modelling of 

various physicochemical parameters and pollutants. The application of multivariate 

analysis methods in the concept of continuous monitoring is proposed to facilitate and 

improve the control of WWTP operational processes, as well as to decrease the 

pollution effect specified in the Directive 91/271/EEC. 

Besides the above mentioned directives, there are others which establish specific 

limits or emission standards for certain target compounds. Today, approximately 25 EU 

directives and decisions are directly or indirectly related to the management of the water 

resources. The large number of specific EU directives is a consequence of the lack of an 

integrated legal system at the level of the European Union. To address this problem of 

legislative multi-systems and the complexity of multilevel ecological systems of the 

water resources, the European Union adopted the Water Framework Directive (WFD 

2000/60/EEC).  

Today, the WFD is the most recent and comprehensive initiative of the European 

Union in the area of water protection. Its main goal was to overcome recurring problems 

in the integrative nature of water management for all EU members. The WFD represents 

a new fundamental approach of water legislation and includes many of the previously 

established regulation and specific directives (such as the above mentioned Directives 

directly related to the topic of the Thesis).  WFD promotes for a new technical 

management control of river basins; endorses the protection and conservation of aquatic 

ecosystems by reducing the presence of long list of water pollutants. WDF also calls for 
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adequate technical systems for treatment of drinking and waste waters in order to meet 

new established standards. 

The results and conclusions of this Thesis can contribute for the better 

understanding, efficient monitoring and control of water quality using chemometric 

modeling and analysis, thus facilitating the effective enforcement of the Water 

Framework Directive (2000/60/EEC). 

 

2.1.5 Water resources and water treatment facilities for Barcelona 

Metropolitan Area (BMA) 

AGBAR is one of the larger water suppliers, delivering drinking water to more 

than 3 million people of Barcelona through a large and complex water distribution 

system (WDS). The second largest water supply company operating in the BMA is 

Aigües Ter-Llobregat (ATLL).  

There are several natural resources which are employed to supply water to the 

large Barcelona Metropolitan Area (BMA): (a) superficial water from two rivers (the 

Llobregat and the Ter), underground water from two aquifers (the Baix Llobregat and 

the Bessos), and the Mediterranean Sea. 

Over the past years, the main source of potable water in Catalonia, Spain were 

two rivers (the Llobregat and the Ter). Largely driven by the growth in demand for 

urban consumption, the water supply became limited, especially in periods of serious 

natural droughts, such as in 2006 (Martin-Alonso, 2006). Both rivers have 

Mediterranean hydrological regimes   characterized by irregular flows and seasonal 

fluctuations (i.e., from predominantly dry periods to sudden torrential flows). 

The quality of potable water from the two rivers differs in terms of salinity. 

More specifically, the Llobregat River water is characterized by its higher salinity than 

the Ter River water. Also, the two rivers differ in water quality due to their different 

composition of the natural organic matter, largely explained by the different 

geomorphological, vegetation and industrial characteristics of their river basins.  

The Llobregat River 

The Llobregat River is a major water resource of the BMA. The river is 156.5 

km long with a watershed of 4948 km2. It covers around 40% of the total water demand 
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for Barcelona (Martin-Alonso et al., 2007). There are three dams along the river basin, 

located in the upper part, and many smaller contributors along its catchment area. In the 

upper and middle part of Llobregat basin, the mineral composition of water is strongly 

affected by the river passing through sedimentary rocks such as limestone, marls, 

gypsum, and halite. The most distinguished mineral composition includes: Ca2+, Mg2+, 

HCO3
-, Sr2+, Ba2+, SO4

2-, Na+, K+ and Cl- (Marcé et al., 2012). The water mineral 

composition is also strongly enhanced by the potash mining activities in this area. 

Additionally, a very strong industrial area of Catalonia is situated in the Llobregat 

valley, where there are also extensive agricultural activities. The industrial area includes 

textile production, pharmaceutical industries and hydropower generation. There are two 

DWTPs (see Figure 2) which operate using the Llobregat river downstream water (the 

Abrera DWTP and the Sant Joan Despı DWTP).   

The downstream raw Llobregat water is characterized by its low water quality, 

largely  due to the high level of mineralization (dry residue 900 mg/l). The origin of 

such mineralization is the evaporate-bearing geological formations and the sodium and 

potassium chloride mining activities in the upper and middle parts of the river basin 

(Fernandez-Turuel et al., 2003). Several contamination episodes have been recorded and 

they were caused by industrial discharge of dicyclopentadiene and derivatives (Ventura 

et al., 1997), dioxanes/dioxolanes (Romero et al., 1998), and creosote (Ventura et al., 

1998). Boleda et al. (2007) conducted a comprehensive review of detected taste and 

odor events in the BMA over the period 1990-2004 and suggested that industrial 

contamination generates more frequently contamination episodes in comparison to 

natural phenomena. Devesa et al. (2007) documented the  contamination with diacetyl 

or butanedione and its further successive elimination. Both studies reviewed a large 

number of analytical chromatographic and spectral techniques, which were used in 

detecting possible sources of contamination produced by a large number of existing 

pollution compounds. 

The Ter River 

The Ter River is another major water resource of the BMA. The river is 208 km long 

with a watershed of 3010 km2 and is situated in the North-East of Catalonia. Similarly 

to the Llovregat river, the Ter river has a Mediterranean-type regime.  It is responsible 

for the supply of approximately 55% of the total water demand for Barcelona city 

(Céspedes et al., 2007). The river runs mostly over calcareous substratum (Sabater and 
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Armengol, 1986). In the upper part of the Ter river’s basin, the water mineral 

composition charge is poor, largely because the river goes through thought siliceous 

bedrock. Although salinity and the organic matter are significantly higher in the 

medium and downstream part of the river basin, these levels are lower in comparison to 

the Llobregat river (dry residue around 400 mg/l). The most characteristic mineral 

constituents of the Ter water are Ca2+, Mg2+, HCO3
-, Na+ and K+ (Sabater and 

Armengol, 1986). Urban and industrial pollution accidents usually occur in the middle 

and downstream part of the basin, where industry activities are more intensive (Sabater 

et al., 1990).  The main pollution sources of Ter River’s water quality are the intensity 

of agricultural activities in the area, as well as the presence of metallurgic, pulp mill, 

textile and tannery industries (Espadaler et al., 1997; Céspedes et al., 2006).  

The quality of Ter water is positively affected by three reservoirs in the middle 

part of the basin. The Cardedeu DWTP (see Figure 2) receives the Ter raw water 

through a 60km-long pipeline directly from the reservoirs.  

 

 

 

 

 

 

 

 

Figure 2. Drinking Water Treatment Plants supplying water for BMA. WTP1 

refers to  the Cardedeu DWTP; WTP2 – Sant Joan Despí DWTP; WTP3 and 

WTP4 – Abrera DWTP; SWRO-  Llobregat Seawater Reverse Osmosis 

Desalination Plant. 
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The BMA is spread over 635 km2 with a population of approximately 4.5 

million habitants (López-Roldán et al., 2015). Surface waters from the Ter and 

Llobregat rivers are used to supply around 85% of the total drinking water, whereas the 

remaining supply of approximately 15% is coming from groundwater. The serious 

drought in 2008 and the strong pressure stemming from the contamination, stimulated 

the adoption of new alternative water resources and the development of new 

infrastructures over the past years. Recently, a new modern DWTP supplying 

desalinated water from the Mediterranean Sea, using a reverse osmosis technology 

(SWRO) has been introduced. Furthermore, a new technology based on electrodialysis 

reversal (WTP4-EDR) has been installed in the Abrera DWTP. Some years ago, a 

reverse osmosis membrane technology has been also introduced in the SJD DWTP. At 

present, the two main DWTP installations include the following components: 

- Abrera DWTP, has a new treatment line incorporating electrodialysis 

reversal; and 

- Sant Joan Despí DWTP, has incorporated ultrafiltration and low 

pressure reverse osmosis. 

 

Both DWTPs have implemented classical disinfection treatments with 

coagulants, flocculants, chlorine, chlorine dioxide, ozone and granulated carbon 

filtering, which are located in the lower-middle basin of the Llobregat River, and they 

supply approximately 40% of the drinking water to the BMA. 

The other important DWTP installations of the BMA for water supply are: 

- Cardedeu DWTP treating Ter River water with a classical process 

including coagulation, flocculation and activated carbon filtration; 

- El Prat Seawater Reverse Osmosis Desalination Plant (SWRO);  

- Numerous groundwater wells at the Llobregat and the Besòs Rivers 

basins (García et al., 2015).  

The three DWTP in Cardedeu, Sant Joan Despí and Abrera (WTP1, WTP2, and 

WTP3 on Figure 2) are responsible for operating treatment in serving more than 95% of 

the potable water to the BMA. There are significant differences among the three DWTP 

in terms of treatment procedures, explaining the variation in drinking water quality 

supplied to the area.  
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Table 1. The main DWTP supplying water to BMA  

Installation Resource 

Production 

capacity 

(hm3) 

DWTP Abrera Llobregat River 126 

DWTP Sant Joan Despí 
Llobregat River  

Aquifer Llobregat 
167 

DWTP Cardedeu Ter River 252 

SWRO Llobregat Mediterranean sea 60 

DWTP Besòs Aquifer Besòs 12 

 

 

In continuation, the typical treatment processes at each facility are outlined (CETaqua 

and Chris Fife-Schaw, 2010).  

 

a) Sant Joan Despí DWTP 

The Sant Joan Despi DWTP (SJD-DWTP) is located nearby Sant Joan Despi, which is 

located in the outskirts of Barcelona city and is using the Llobregat River as a water 

source. The DWTP has a water production capacity of 5.3m3. Since its foundation in 

1955, the DWTP has undertaken various reconstructions, re-modernizations and 

upgrades. The latest significant upgrade in the water treatment process of this plant was 

the implementation of ultrafiltration and reverse osmosis filtration in 2009. The purpose 

of this technological innovation is to eliminate the main THMs precursors, thus meeting 

the required sanitary limits in THMs formation. 

In this Thesis, two studies are conducted using archival data from the end of 

2003. The traditional operational stages of the water disinfection process in SJD-DWTP 

at that time were as presented in Figure 3. 
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Figure 3. Traditional water treatment process in the Sant Joan Despí DWTP in 

2003. 

 

 

 Captation: The main water source is the raw river water from the Llobregat 

River. In the captation, raw water passes through a gallery of bar screen systems, 

removing sufficiently large solids. At this stage, groundwater from the Llobregat 

aquifer in Cornella might be directly used without the requirement to receive 

some treatment. This water source is employed only when surface river water 

flow is too poor or scarce. 

 Pre-treatment: Following capitation, raw river water is subjected to preliminary 

pre-oxidation with gaseous chlorine and chlorine dioxide. Chlorine removes 

ammonia in water by producing chloramines. Additionally, chlorine dioxide is 

used as a disinfectant, primarily due to fact that it produces less THMs in 

comparison to the molecular chlorine. Despite its advantages, it cannot be 

employed in certain conditions, namely when the ammonia concentration in the 

incoming water is relatively high (more than 1 mg/L). In this situation, the water 

flow is slowed down to facilitate sedimentation and sand particles removal. 

Also, coagulants (aluminum salts) and flocculants are added to the process and 

water is pumped up into the clarifiers, where the precipitation of small particles 

takes place.  

 Sand filtration: Following pre-treatment step, the water has to be filtered. The 

procedure requires that the water flow goes through  sand filters, retaining all 

particles that were not precipitated  and retained at earlier stages. 
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 Groundwater addition: Sand filtration may be followed by addition of 

groundwater from the Llobgregat aquifer. In this case, groundwater will be 

pumped into the main flow. River water and groundwater are usually mixed 

when the flow of the first one is not sufficiently high to meet water demand in 

the BMA. 

Disinfection process: Following the addition of groundwater (if applicable), the 

treated water is divided in two treatment lines: (a) a traditional treatment with 

ozone and filtration with granulated active carbon (GAC), and (b)ultrafiltration 

and reverse osmosis membrane filtration processes, which are followed by a 

specific reminalization procedure, which improve the water taste. The 

conventional treatment based on ozonation uses ozone as a biocide and oxidant. 

There are numerous microorganisms, which can be eliminated with ozone, and 

with the benefits of oxidizing the residual organic matter at the same time. As a 

result, the ozonation leads to significant improvements in the water organoleptic 

quality. The use of granulated active carbon filters additionally help in reducing 

organic matter and metal oxides (including iron, manganese, and nickel,). 

Finally, water from the GAC filtration and from the ozonation process is mixed 

with water from the ultrafiltration and RO membrane treatment. To improve the 

taste of drinking water, it is often and increasingly popular to have 

remineralization procedures with carbonic anhydride and using a calcic bed. 

 Post-chlorination: Treated water is chlorinated with chlorine gas and stored in 

deposit tanks, where residual chlorine is maintained at certain levels so that 

water is disinfected prior to its distribution into the WDS. 

The treatment and disinfection processes in SJD-DWTP are subjected to extensive 

controls and inspections. For example, physicochemical parameters  - such as 

temperature, turbidity, color, Cr6+, NH4-N, UV absorption at 254nm, TOC, Cd, Pb, Ni, 

detergents, conductivity, pH - are constantly monitored in the raw river water. The 

purpose of such extensive checks and monitoring is to have the DWTP operation 

processes well-functioning by detecting unusual pollution events in advance. DWTP 

processes which are constantly monitored for these parameters are: (a) raw river water 

intake, (b) water from decanters, (c) water after sand filtration, (d) groundwater, (e) 

water after ozonation and GAC filtration, (f) fully disinfected water after 
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postchlorination and inside the WDS at different locations. Other physicochemical 

parameters which are monitored in the water treatment and disinfection are: dissolved 

oxygen, chlorides, bromides, heavy metals, odour, flocculation and coagulation doses, 

chlorine doses and the residual chlorine, THMs and other DBPs. To detect undesired 

pathogens growth and distribution, a regular permanent microbiological control is 

implemented 

b) Abrera DWTP 

 

The Abrera DWTP uses water from the Llobregat River and it is located nearby the 

municipality of Abrera. There are two water treatment and production lines. The first 

one is the conventional treatment process and it is composed by the following 

operations: a) water captation and bars screening which remove large suspended solids 

in water, b) sand decanters and preliminary treatment with KMnO4 in order to oxidize 

organic and inorganic matter, c) pre-chlorination with chlorine  and chlorine dioxide, d) 

flocculation and particle settling, e) chlorination with chlorine dioxide, f) sand and GAC 

filtration, g) post-chlorination with chlorine gas before to be transferred to storage 

tanks. The second line of production is the electrodialysis reversal treatment (EDR) line, 

which operates together with the traditional process. EDR process targets to reduce the 

high salinity (especially bromide concentrations) of the raw Llobregat river water and to 

reduce THMs formation. The incorporation of EDR processes required the 

incorporation of water remineralization processes also in the operational scheme of 

DWTP (Valero and Arbós, 2010).  

 

c) Cardedeu DWTP   

The DWTP Cardedeu is located in the municipalities of Cardedeu and Llinars La Roca 

del Vallès, Catalonia (Spain). It started its operation in 1966. Currently, it has a capacity 

of to manage 8m3/s. The treatment process contains the following phases and 

operations: (1) Water captation using an underground pipe and water from the three Ter 

river’s dams (i.e., the Sau, the Susqueda and the El Pasteral); (2) An initial pre-

oxidation of river water intakes using KMnO4, NaClO and O2.; and (3) Coagulation-
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flocculation and first pre-chlorination with chlorine and chlorine dioxide, followed by 

decantation in tanks, GAC filtration and final post-chlorination. 

 

d) Llobregat SWRO  

The Llobregat SWRO is located nearby the Llobregat municipality, close to 

Barcelona. It was constructed after the severe drought in 2008 and has a water flow 

capacity of 2 m3/s. The seawater desalination process includes: water extraction, 

flotation, microfiltration, reverse osmosis membrane treatment and posttreatment 

including remineralization processes, pH adjustments and disinfection procedures. 

e) Besos DWTP   

The Besos DWTP is in Barcelona city. In 2002, the DWTP was reopened as a 

source of supply water. It uses groundwater from the aquifer below the delta of the 

Besos River, Catalonia (Spain). The plant has a production line using nano-filtration 

with capacity of 5.200m3/d and three reverse osmosis lines with capacity of 8.700m3/d 

each.  

 

2.1.6 Formation of trihalomethanes during water disinfection   

 

Brief history of water disinfection 

 

 The ancient civilizations were largely concentrated around large sources of 

sweet water. The availability of large enough water quantity was the driving reason in 

choosing the location of ancestors’ villages. The water quality was only of a secondary 

importance. The main criteria of quality for our predecessors was that the water is 

transparent, tasteless and without smell. For this reason, the river and lake waters were 

preferred over water from swamps. Several decades back in time, health problems 

stemming from poor water quality would not be a concern.  

 There are different sources (Kroehler, 2014.) which suggest that ancient 

Egyptians had some treatment practices, namely they were using the chemical alum to 

settle down particulates in the water, thus achieving some water visual effects 
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(turbidity). The ancient Greeks were using primitive aeration installations alongside 

their primitive water distribution systems, which transported water to the megapolises. 

The ancient Romans are known for using spring and wells water, which was transported 

via aqueducts, the first water distribution network system. Inside towns, the romans had 

plumbing systems with the purpose to avoid water contamination. In the Middle Ages, 

the lack of an appropriate disinfection and water distribution system was the reason for 

several epidemic diseases, including cholera and dysentery.  Back then, primitive filters 

were first adopted. Historical documents suggest that in 1685, the first filter system 

consisted on settling and sand filtration was invented in Italy (AWWA, 2005). Various 

materials, including wool, sponges and charcoal, were used as a filter. Over time, 

around the beginning of 1800s, sand filtration was largely employed in the European 

countries.  

The first scientific results in the field of water cleaning go back to Louis Pasteur 

(1822-1895), who provided evidence that microorganisms increase the probability of 

transmitting waterborne diseases. Over the next decades, the health effects of water 

pollution became a concern of an increasing importance. As a result of such trends, sand 

and charcoal filter plants were built in Scotland and France.  However, only after 

chlorine was first used in 1854 as a response to the outbreak of cholera in London 

(White, 1986), the modern disinfection procedures have actually started. Soon after, the 

chlorination of potable water was adopted as a common practice throughout modern 

European countries, resulting in the successful reduction of typhoid, cholera and other 

water-borne disease outbreaks (Baxter, 1995).   

Today, chlorine is the most used disinfectant in water treatment plants across the 

world (USEPA, 2006). In addition to chlorine, numerous other chemical reagents and 

techniques, including chloramines, chlorine dioxide, ozone and ultraviolet (UV) 

radiation, are largely employed nowadays for water disinfection (AWWA, 2000). 

 

Chlorine disinfection 

 

 Numerous books and articles examine the basic chlorine chemistry for potable 

water disinfection. Two popular publications on the topic are: (a) White's handbook of 

chlorination and alternative disinfectants” with its 5th Edition by White (2010), and (b) 

the chapter titled “Disinfection” by Haas in “Water quality and Treatment” (1999).  
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There are three forms in which chlorine can be applied in water for disinfection 

purposes: as a compressed gas, as sodium hypochlorite solution, and as solid calcium 

hypochlorite. These forms can be presented as: 

 

 Gaseous chlorine -  Cl2 + H2O ↔ H+ + Cl- + HOCl                                           (1) 

 Sodium hypochlorite – NaOCl + H2O ↔ H2O + Na+ + OCl-                             (2) 

 Calcium hypochlorite . Ca (OCl)2 + 2H2O ↔ Ca2+ + 2OH- + 2HOCl               (3) 

 

The chemical reaction of gaseous chlorine and calcium hypochlorite with water 

produces hypochlorous acid. In contrast, sodium hypochlorite in water gives 

hypochlorite ion. Furthermore, hypochlorous acid can also dissociate in water, thus 

producing a hypochlorite ion as well. 

The above equations show that chlorination reactions are reversible and  the 

dissociation of hypochlorous acid strongly depends on pH and on the temperature. More 

specifically, high pH will lead to the predominance of hypochlorite ion, whereas lower 

pH - to the predominance of hypochlorous acid (see Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  The pH effect of the distribution of hypochlorous acid (HOCl) and hypochlorite 

ion (OCl-) in water at different values and at 20 oC (see Haas, 1999). 

 

 

 Figure 4 shows that at pH value of 5, HOCl will be approximately 100% and 

OCl- would not exist in water. In contrast, at  pH value of 10, OCl- will be close to 

100%. Comparing both species, high concentration of HOCl is more important than 
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OCl- for water disinfection purposes, because it has more disinfection power onto 

pathogens (i.e., neutral molecule HOCl penetrates easily the negatively charged 

pathogens). As a result, it is common nowadays to add chlorine at lower pH values than 

pH 9 in DWTPs. An important operational consideration is that when chlorine is 

applied as gas, the pH value of treated water decreases (AWWARF, 1996). Apart from 

pH, several other parameters should be also considered for the chlorine disinfection, 

such as temperature, initial chlorine concentration, contact time between chlorine and 

the pathogens, and the type of pathogens. 

 The sum of the three concentrations of Cl2, HOCl and OCl- (so-called free 

available chlorine) is a very important operational parameter in DWTP which is 

constantly monitored during the treatment process. When associated with other 

compounds (ammonia and organic matter), chlorine is called combined chlorine. The 

sum of free available and combined chlorine defines the total chlorine, which is one of 

the most important operational parameters in DWTPs’ monitoring. 

 Chlorine reacts with many organic and inorganic compounds in water and acts 

as a non-selective oxidant. Vasconcelos et al. (1997) and  Deborde and von Gunten 

(2008) suggested that some metals in reduced state of valence, such as iron and 

manganese or halides (e.g., bromide and sulphide), are among the most reactive 

inorganic compounds. The rates of such reactions can be very fast and may last for 

seconds or hours. In contrast, the reaction between chlorine and organic compounds is 

slower, requiring more time. Since organic and inorganic compounds have different 

concentrations and react differently with chlorine, it is expected that the concentration 

of chlorine in water changes over time. Clark and Sivaganesan (1998) showed that 

approximately the half-life time of chlorine in disinfected water can vary from hours to 

days. Therefore, it is of high importance to consider the effect of concentrations and 

reactions over time, when monitoring residual chlorine levels. This problem is 

especially relevant for the BMA, where the entire water distribution system (WDS) is 

long, thus requesting sophisticated maintenance and special considerations in research 

chlorine decay modeling. 

  

Chlorine decay 

Because of the permanent reactions between chlorine and organic, and inorganic 

substances in water, the loss of chlorine in the WDS is a constant process. 
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  There are two types of chlorine decay, which have been identified in the existing 

literature: (a) bulk chlorine decay, referring to the consumption of chlorine in the bulk 

aqueous phase, and (b) wall chlorine decay referring to the chlorine consumption from 

the pipe walls due to biofilms (Vasconcelos et al., 1997). It is commonly accepted that 

the sum of the bulk and wall chlorine decay is called the chlorine demand, which is 

specific and characteristic for every water source (Warton et al., 2006) 

 The chlorine demand in bulk water varies with the water source, largely due to 

the different organic and inorganic compounds and their concentrations present in 

different water sources.  Because it is practically impossible to isolate different 

reactions (i.e., between the chlorine and various, both organic and inorganic, 

compounds), the scientific attention is focused primarily on reaction rates at different 

levels of chlorine (Vieira et al., 2004).  

 Numerous studies model the reaction kinetics of chlorine decay. However, there 

are also specific models containing defined disinfection scenarios with water from 

various sources. Vieira et al. (2004) summarized different kinetics models regarding the 

chlorine decay, including zero-order decay, first order decay, parallel first order decay, 

second order reaction kinetics and others specific models. The general assumption is 

that chlorine decay is characterized by two types of kinetic reactions, namely a rapid 

reaction taking place very fast in the initial seconds, and a slow reaction which can 

continue for several hours (Clark and Sivaganesan, 2002; Vieira et al., 2004). 

According to USEPA (1992), the chlorine decay has three stages: (a) an initial rapid 

reaction (less than 5 minutes), (b) a medium fast reaction (between 5 minutes and 5 

hours), and (c) a slow reaction (more than 5 hours). 

  

Disinfection by-products (DBPs) 

 

 There are two studies, which independently reported the first DBPs in 

chlorinated drinking water, Rook (1974) and Bellar et al. (1974). The trihalomethanes 

(THMs) were the first to be identified as a DBP. Since then, there have been numerous 

studies which were primarily interested in finding other DBPs.  

To the extent that DBPs have significant implications for public health, the 

importance of this topic in relation to the drinking water quality has increased over the 

past decade (Richardson, 2003). Richardson et al. (2007) showed that, in 2007, there 

were more than 1000 DBPs  scientifically documented in the literature. Nevertheless, as 
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of today, more than 50% of  the total possible  DPBs in drinking water are still 

unknown. As a result, our knowledge about the potential toxicity of most DBPs and 

their impact on human health is limited.  

The more common types of halogenated organic  DBPs according to USEPA 

(2001) are: (1) Trihalomethanes (chloroform, bromodichloromethane, 

dibromochloromethane and bromoform);(2) Haloacetic acids (monochloroacetic, 

dichloroacetic, trichloroacetic, monobromoacetic and dibromoacetic acids); (3) 

Haloacetonitriles (dichloroacetonitrile, bromochloroacetonitrile, dibromoacetonitrile, 

trichloroacetonitrile); (4) Haloketones (1,1-dichloropropanone and 1,1,1-

trichloropropanone);  (5) Chlorophenols (2-chlorophenol, 2,4-dichlorophenol, 2,4,6-

trichlorophenol), and (6) others such as chloropicrin,  chloral hydrate and others. These 

groups are also among the more examined and regulated types of DBPs. Other 

compounds, which are also regarded as major DBPs, include disinfectant residuals, 

including free chlorine, chloramines, chlorine dioxide. Other inorganic species such as 

chlorite, chlorate and bromate ions, aldehydes, and ketones, are also classified as DBPs.  

  

Trihalomethanes (THMs) 

In the early 80s, extensive work on DBPs focused on the trihalomethanes 

(THMs): chloroform CHCl3, bromodichloromethane CHCl2Br, chlorodibromomethane 

CHBr2Cl, and bromoform CHBr3. Such compounds represent the largest fraction, 

approximately 50%, of all halogenated DBPs in treated water (Krasner et al., 1989). 

Currently, this group is in the scope of many international and local legislation entities 

(WHO, 2005). THMs are a set of compounds ubiquitously formed in water disinfection 

(Rook, 1974; Richardson et al., 2002). They have three halogen atoms and one carbon - 

CHX3. The brominated and chlorinated forms are most frequently found in potable 

water in comparison to iodinated and fluorinated forms. The THMs are formed when 

individual carbon atoms are attacked with halogen disinfectants. Small hydrocarbon 

chains are cracked from natural organic matter (NOM) molecules and the reaction of the 

halogen species lasts until THMs are finally formed (USEPA 2001). 

The chemical reaction leading to the formation of THMs during chlorination can 

be represented as follows:  

 

 HOCl + Br - + I- + NOM → THMs  + other  Halogenated DBPs                      (4) 
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More specifically, the compounds considered as THMs are chloroform (CHCl3), 

bromodichloromethane (CHCl2Br), chlorodibromomethane (CHBr2Cl), and bromoform 

(CHBr3). The sum of their concentrations is suggested to be an important parameter in 

quality monitoring (Amy et al., 1987). Typically, the measurement of these four THMs 

quantities is largely dependent on water qualities (Clark et al., 2001). Although THMs 

are volatile compounds and soluble in most organic solvents,  their solubility in water is 

quite limited being less than 1 mg/ml at 25°C (WHO, 2005).  

 

Precursors for THMs formation 

The formation of THMs and their speciation is largely dependent on the water 

quality and the operating conditions in the DWTP. The most important precursor for 

THMs formation is the content of natural organic matter content (NOM) and its 

concentration (Kitis et al., 2001).  Recently, a large number of studies showed that 

NOM includes different organic fractions which affect the THMs formation and 

speciation in various ways (Reckhow et al., 2004). Other important THMs precursors 

and factors affecting the THMs formations are residual chlorine, reaction time, pH, and 

bromide concentration. 

  

Natural organic matter (NOM) 

The formation of THMs is mainly determined by the NOM’s concentration and 

characteristics (Leenheer et al., 2001). In terms of concentration, high concentrations of 

NOM in water implied that the demand for chlorine is high, and therefore, it is likely to 

produce an increase of the THMs formation during disinfection. Regarding NOM 

characteristics, empirical work showed that they play an important role in the THMs 

formation, especially for THMs speciation (von Gunten et al., 2001). Croué et al., 

(1999), for instance, found that different fractions of NOM resulted in different 

chlorinated by-products when the chlorination conditions were quite similar.  

 Natural organic matter (NOM) is present in every kind of water. Despite that 

they are often the driving factor for organoleptic problems of drinking water, NOMs are 

not harmful. When NOM reacts with chlorine, the formation of chlorinated DBPs, such 

as trihalomethane (THMs) and haloacetic acids (HAAs) naturally occurs. The natural 

organic matter in water exists as a heterogeneous mixture of humic, fulvic acids, 

proteins, lipids, carbohydrates, carboxylic acids, amino acids and hydrocarbons 

(Leenheer, 2004).  NOM involves particular and dissolved organic matters fractions 
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(POM and DOM). DOM is suggested to be the most important factor in the DBPs 

formation. In terms of physicochemical content, a major part of NOM comprises two 

fractions, namely humic  substances, which are composed of fulvic and humic acids, 

and non-humic substances, which include carbohydrates, lipids, and amino acids 

(Thurman and Malcolm 1981). The humic fraction is typically heavy on molecular 

weight aromatic molecules and is less soluble in water. The non-humic fraction is 

soluble in water and contains smaller on size molecules. Each of the NOM fractions can 

be additionally divided into acidic, alkaline and neutral subgroups. 

  The humic fraction mainly consists of humic and fulvic acids. The humic acid 

fraction is regarding as being more reactive in comparison to the fulvic acid fraction. It 

additionally has a higher molecular weight, a larger size, and a lower solubility in water. 

In contrast, fulvic acid is less reactive, has a lower molecular weight, is smaller in size, 

and has higher water solubility (Krasner et al., 1996). 

 Typical water quality parameters representing NOM in water, which are 

constantly monitored in DWTPs, include: total organic carbon (TOC), dissolved organic 

carbon (DOC), the ultraviolet absorbance at 254nm (V254), and water color (Owen et al., 

1993). Another important parameter in monitoring is the specific ultraviolet absorbance 

(SUVA). It is calculated when the UV absorbance is divided by DOC and serves as an 

indicator for aromatic and hydrophobic nature of the organic matter (Eikebrokk et al., 

2006).   For monitoring purposes, TOC and DOC are measured using the amount of 

CO2 produced by UV-oxidation or by the combustion of the organic matter, in both 

cases detected though specific analysers. UV absorption characterizes the different type 

of double bonds in aromatic rings of the organic matter. Colour is an indicator of 

molecular complexity of NOM, characterizing multiple bonds and highly substituted 

aromatic groups (Newcombe et al., 1997).  

 

pH 

Academic research demonstrated that the rate of formation and the quantities of 

THMs increases when pH is high (Reckhow and Singer, 1985; Krasner et al., 1989). 

According to Trussell and Umphres (1978), THM formation involves a hydrolysis step 

which is facilitated by high values of  pH.  In contrast, prior work found that lower 

levels of pH reduce THMs formation (Chowdhury and Champagne, 2008), but also lead 

to an increase of other DBPs, such as HAAs (Nokes et al., 1999). 
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Temperature 

The temperature as a factor in THMs formation plays a dual role. Laboratory 

studies found that an increase in temperature of up to 30°C causes an increase in THMs 

formation (Krasner et al., 1989; Rodriguez and Serodes, 2001). Higher temperatures 

also increase the THM formation reaction rate. The increase in temperature is the cause 

of higher rates of hydrolysis, thus water molecules dissociate to hydrogen and hydroxyl 

ions (Garcia et al. 2005).  This process facilitates the break of the aromatic bonds of 

organic matter molecules, thus leading to halogenation and THMs formation.  Krasner 

(1999) used field data of 35 DWTP in the United States and demonstrated that the mean 

THM formation was higher in the summer and lower over the in the winter. 

Although, temperature has a positive correlation on the THMs formation, it is 

plausible that this effect is not linear. For temperature levels above 40 °C, for instance, 

it is likely that there is a decrease of THMs concentrations in water because of the 

evaporation processes.  

 

Bromide/chloride concentration ratio 

Bromide ion concentration is another factor with a significant role in the 

formation of brominated THMs. Its importance is related to the fact that the presence of 

free bromide ions affects the chemistry of chlorine disinfection. Bromide ions substitute 

chlorine ions of the hypochlorous acid to form hypobromous acid (HOBr) and 

hypobromite ion (OBr-), which is considered 20 times more reactive in comparison to 

its acid (Singer 1999; Chang et al., 2001). The reaction can be represented as follows: 

 

 HOCl + Br-  =  HOBr + Cl-                                                                                (5) 

 

Both, HOBr and OBr- react with the organic matter to form mixed bromo 

chloromethanes and bromoform. 

Over the past years, there has been an increasing interest in bromide ions in 

relation to the THMs formation and speciation (Nokes et al., 1999; Chang et al., 2001; 

Elshorbagy et al., 2000) since brominated THMs were considered also dangerous for 

the human health. 

 

Free chlorine 



  Chapter 2. Introduction 

36 

 

The presence of chlorine has a strong role in the THMs formation. The general 

understanding is that the THMs formation is favored by the increase of free chlorine 

concentration (Adin et al., 1991). Such a positive correlation however can be observed 

only when the concentration of chlorine is enough to fulfill the chlorine demand. If 

there is an excess of free chlorine, no additional increase of THMs is observed. In this 

case, the formation reaction will be additionally limited by the NOM concentration 

(Carlson and Hardy, 1998).  Moreover, Reckhow and Singer (1985) demonstrated that 

when there is an increase of chlorine dosage as an excess of free residual chlorine, 

haloacetic acids, instead of THMs, are likely to be formed. 

 

Epidemiological studies of THMs 

 

The academic interest in THMs has significantly increased over the past decade, 

especially after they were associated with cancer risks, various chronic human health 

problems, low birth weights and pre-term births, and neural tube defects, among others 

(Richardson et al. 2002; Villanueva et al. 2004). Human health can be exposed lifelong 

to the effects of THMs by drinking potable water, by inhalation during showering, or by 

swimming in pools, among others. This permanent and frequently contact with THMs 

increases the risk to human health. Several epidemiological and toxicological studies 

examine such exposures to THMs using experiments conducted with laboratory 

animals. Mills et al., (1998), Villanueva et al. (2004) and Wang et al. (2007)  showed a 

significant  association between different exposures, such as oral ingestion, inhalation 

and dermal absorption, and risk of cancer,  particularly bladder and rectal cancers. Some 

authors, including King and Marrett (1996), directly attributed a number of human 

bladder cancers in Ontario to the higher conentrations of THMs in the drinking water. 

Nieuwenhuijsen et al. (2000), Graves et al. (2001) and Villanueva et al., (2007), among 

others, reported THMs reproductive effects, such as intrauterine growth retardation, low 

birth weight, preterm birth, congenital malformations, and stillbirth. Furthermore, 

Dodds and King (2001) found that THMs at exposure concentrations above 20 ug/L or 

higher increase the probability of developing neural tube defects.  

Existing studies with animals suggest that there are at least three THMs - 

chloroform, bromodichloromethane and bromoform, which are carcinogens. Although 

dibromochloromethane is also considered to be a carcinogen, at present it is suggested 

in animal studies that its impact on health is not so severe; moreover, there is no 
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evidence from other studies with human participants that this compound behaves as a 

carcinogen (USEPA 2001). Table 2 shows the main four THMs and their toxicology 

characteristics according to USEPA (1999). 

Although many epidemiological surveys that relate directly THMs with a 

particular disease or health effect, empirical results are not so conclusive yet. The 

majority of related studies have been conducted with animals and THMs at very high 

concentrations, which are not possible during the actual disinfection processes of 

potable water. In fact, levels of THMs normally found in water are of significantly 

lower concentrations (Freese and Nozaic, 2004). 

 

 

 

Table 2. Toxicology for THMs (USEPA, 1999) 
 

   

Effects1 

Toxicity to 

human2 

  

THMs Disinfectant Animal Human RfD SF 

Chloroform Chlorine 
Liver 

tumours 
B2 0.01 0.01 

Bromodichloromethane Chlorine 
Kidney 

tumours 
B2 0.02 0.062 

Dibromochloromethane Chlorine 
Liver 

tumours 
C 0.02 0.0084 

Bromoform 
Chlorine, 

ozone 

Colon 

tumours 
B2 0.02 0.0079 

      

 1 B2: Probable human carcinogen (sufficient laboratory evidence); C: Possible human 

carcinogen 

2 RfD: Reference dose (mg/kg day); SF: Slope factor (mg/kg day)-1 
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European legislation for trihalomethanes 

 

Under Directive 98/83/EC, the European Union recently modified the maximum 

allowed concentration of total sum of THMs from 150 μg/l (prior to 2009, under 

Directive 80/778/EEC) to 100 μg/l. Spain had adopted the European Directive in 2003, 

permitting the total sum of THMs to reach a maximum concentration of 100 μg/l (Real 

Decreto 140/2003). Table 3 presents the actual norms about THMs levels according to 

the currently existing legislation. 

 

 

Table 3. Existing standards related to THMs (mg/l) according to the main 

international regulators 

THMs WHO(2005)1 USEPA(2006) EU 

Chloroform 0.3002   

Dichlorobormomethane 0.060   

Dibromochloromethane 0.100   

Bromoform 0.100   

TTHM  0.080 0.100 

1 Maximum contaminant level goals 

2 WHO: World Health Organization; USEPA: US Environmental Protection Agency; 

EU European Union 

 

Modelling THMs formation 

 

In the literature, there are three groups of predictive THM models (Chowdhury 

et al., 2009). The first group of predictive models has an objective to identify all 

significant natural and operational water quality parameters, which are likely to affect 

the THMs formation. The second group of models is centered on the kinetics of the 

THMs formation and the third group of models is developed to predict THMs 

concentrations in field monitoring studies. The second and third groups of models were 

developed as an alternative to the classical standard methods for THMs control, which 

are time-consuming and require quite expensive GC-MS methods. 

The most of the predictive models are focused on parameters such as TOC, 

DOC, UV254, SUVA, which are typical for NOM; natural water quality parameters such 
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as pH, temperature, raw water bromide/chloride concentration ratio; and operational 

parameters like chlorine doses and reaction time. The existing knowledge suggests that 

such parameters have a strong effect on THMs formation (Sadiq and Rodriguez, 2004). 

Following the establishment of significant correlation, scientific studies aimed at 

establishing prediction models on the basis of important parameters, thus generating 

reliable estimations for THMs formation. In general, such predictive models are using 

data from the field or from laboratory-scaled studies.  

Field-study data are obtained during the monitoring of disinfection processes 

within DWTPs or inside WDS. Among the modelled parameters, we can usually find 

raw water quality parameters, operational parameters from prechlorination and post 

chlorination processes, and some other water quality parameters from the finished 

drinking water. In contrast, laboratory-scaled models are based on an experimentally-

designed, batch analysis, using raw or treated water with pre-selected quality. 

Laboratory-scaled studies usually include chlorine dose, pH, contact time, temperature, 

and bromide concentration as modelling parameters.  

It is generally considered that laboratory-scaled empirical models are more 

reliable in comparison to field studies.  The perceived advantage of laboratory-scaled 

models is that there is a complete control over the investigated parameters and that they 

have easily adjustable values and initial water quality information about the water. 

Nevertheless, such laboratory-scaled models have an important disadvantage which is 

the lack of information about further THMs formation along WDS, and the possible 

presence of unknown dynamic processes including multiple parameters of water 

treatment with a significant influence over THMs formation in DWTPs. Moreover, 

models from laboratory experiments can be only applied to small, in terms of scale, 

DWTPs, and only provide basic indications about THMs formation. The general 

expectation is that these models are unlikely to report highly accurate predictions, 

largely because they do not account for the large number of DWTP processes and the 

real correlations among all parameters, producing significant effects on the THMs 

formation along DWTPs (i.e., flocculation-granulation process, granulated active carbon 

filtering, among others). 

A significantly improvement over laboratory-scaled models is the application of 

experimental design (DoE) strategies. More specifically, DoE can minimize the 

uncertainties in predicting THMs formation by using pre-determined concentration 

ranges of monitored parameters. Among the disadvantages of field-scaled models is the 
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lack of information about the contact time between disinfectants and organic matters. 

Such information is not available or difficult to obtain at the DWTP-level. Moreover, 

the complex nature of organic matters is oftentimes difficult to be characterized without 

comprehensive laboratory analyses, which are likely to be quite expensive. In addition, 

the uniqueness of  a particular geographic area (affecting the NOM content) would 

make the raw water quality and the DWTP disinfection procedures site-specific, thus 

impeding the generalization of field-scaled  developed models and their large-scale 

application (or transfer) to other distinctive settings (i.e., other plants or WDS) 

(Rodriguez et al., 2000). Furthermore, the seasonal variation of NOM content is also 

site-specific, and therefore it should be thoroughly considered when applied to field-

based model predictions.  

A comprehensive review of the existing literature suggested that a universal 

mechanistic-kinetic model has not been developed yet, primarily because of the 

uncertainty of the reaction between chlorine and complex organic matter. Over the past 

decades, several reviews summarize the research on predictive models (presented in a 

chronological order): Amy et al. (1987), Clark et al. (2001), Sadiq and Rodriquez 

(2004), Chowdhury et al (2009). Approximately fifty scientific publications reported 

more than 118 DBP formation models over the period 1983-2009 (Chowdhury et al., 

2009). Forty-two out of these  50 articles contain THMs models. Additionally, 

approximately 49 models on TTHMs formation, 12 models - chloroform formation, 8 

models - bromodichloromethane formation, 6 models - dibromochloromethane 

formation, and 6 models - bromoform formation, were reported.  

Published models (see Table 4) usually have been based on empirical equations 

with THMs concentrations, and different raw water and operational parameters. Only 

few articles reported kinetic models and used factorial design approaches (e.g., 

Rodriguez et al., 2007). In these factorial-design studies, the authors investigated the 

effects of selected parameters as main factors, and studied the interaction between these 

parameters by varying their concentrations or values.   

A significant part of developed predictive models has been based on empirical 

and semi-empirical kinetic equations. These equations have been developed using linear 

and non-linear regression analysis. The majority of such predictive models, based on 

multiple parameters, were following the proposed model by Amy et al. (1987), 

described as: 

TTHM = k × (t)a × (C0)
b × (TOC)c × (T)d × (pH)e × (UV254)

f × (Br)g                            (6) 
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where TTHM  stands for total trihalomethanes 

 k        -  Reaction constant 

 t        - Time 

 C0       -Initial chlorine concentration at t=0 

 TOC  - Total Organic Carbon (mg/L) 

 T     - Temperature (°C) 

 pH    - pH 

 UV254 –  UV absorbance at 254 nm 

 Br      - Bromide concentration (mg/L) 

 a-g    - Reaction constants  

 

Table 4. Predictive models for trihalomethanes formation reported in the 

literature for the period of 1983-2009 (according to Chowdhury et al., 2009) 

Authors, 

year 

Model characteristics R2 Data 

source 

Milnear and 

Morrow, 1983 

TTHM = -3.91 + (Br-)0.15 + 0.23(log(Cl2)) + 0.24(pH) + 100.009T + 0.26(NVTOC) in 

(µmol/L) 

>0.9 Labor

atory 

 

Urano et al.,1983 TTHMs = 0.00082 (pH-2.8) TOC (Cl2)0.25 (t)0.36 NR Labor

atory 

Engerholm and 

Amy, 1983 

CHCl3=k1k2(TOC)0.95 (Cl2/TOC)0.28 (t)z NR Labor

atory 

Milnear and 

Morrow, 1987 

TTHM = -3.91+(Br-)0.15 + 0.23(log(Cl2)) + 0.24(pH) + 100.009T + 0.26(NVTOC) in 

(µmol/L) 

TTHM = -3.94 + (Br-)0.19 + 0.35(log(Cl2)) + 0.24(pH) + 100.009T + 0.27(NVTOC) in 

(µmol/L) 

TTHM = -2.42 + (Br-)0.15 + 0.24(log(Cl2)) + 0.24(pH) + 10-204.5T + 0.25(NVTOC) in 

(µmol/L) 

>0.9 

NR 

NR 

Labor

atory 

Amy et al., 1987 TTHM = 0.0031(UV254.TOC)0.440(Cl2)0.409(t)0.265(T)1.06(pH-2.6)0.715(Br-+1)0.0358 in (µmol/L) 0.9  

Adin et al.,1991 TTHM = K1.K2.TOC[(1/((K1 + K3)(K2 + 0.19))) + (1/(K1 + K3 – K2 – 0.19)) x (((1/(K1 + 

K3))exp-(K
1
 + K

3
) (tc)) – ((1/(K2 +0.19))exp-(K

2
 + 0.19) (tc))] as K1=4.38 x 10-8(Cl2), K2=11.36x10-

7(Cl2), K3=7.14x10-13(Cl2)2 in (µg/L) 

0.9 Labor

atory 

Harrington et al., 

1992 

TTHM = 0.0039(TOC.UV254)0.44(Cl2)0.409t0.265T1.06 (pH-2.6)0.715(Br- + 1)0.03 

in (µg/L) 

NR Field 

Malcolm Pirnie 

Inc., 1992 

CHCl3 = 0.078(TOC.UV254)0.616(Cl2)0.391t0.265T1.15(pH-2.6)0.8(Br- + 1)-2.23 

in (µg/L) 

BDCM = 0.863(TOC.UV254)0.177(Cl2)0.309t0.271T0.72(pH-2.6)0.925(Br- + 1)0.722 

in (µg/L) 

DBCM = 2.57(UV254/TOC)-0.184(Cl2)-0.0746t0.252T0.57(pH-2.6)0.8(Br- + 1)-2.23 

in (µg/L) 

NR Field 

Malcolm Pirnie 

Inc., 1993 

THMs = 7.21(TOC)0.004(UV254)0.534(Cl2−7.6×NH3–N)0.224 (t)0.255 (Br−+1)2.01    

(T)0.480(pH−2.6)0.719 in (µg/L) 

BDCM = 4.05(TOC)0.567(UV254)0.567(Cl2−7.6×NH3–N)−0.351 (t)0.366 (Br−)0.291 

(T)0.568(pH−2.6)0.568 in (µg/L) 

CHCl3 = 0.997(TOC)0.580(UV254)0.580(Cl2)0.814 (t)0.278 (Br−+1)−4.27 

(T)0.569(pH−2.6)0.759 in (µg/L) 

DBCM=22.9(TOC)0.253(UV254)0.253(Cl2−7.6×NH3–N)−0.352 (t)−0.292 (Br−)1.04 (T)0.491 

(pH−2.6)0.325 in (µg/L) 

CHBr3=1.28(TOC)−0.167(UV254)−0.167(Cl2−7.6×NH3–N)−2.22 (t)0.294 (Br−)1.48 (T)0.553 

(pH−2.6)0.198 in (µg/L) 

NR  

 

NR  

 

NR  

 

NR  

 

NR 

Field 

Montgomery 

Watson, 1993 

CHCl3=0.064(TOC)0.329(UV254)0.874(Br−+0.01)0.404 (pH)1.161 (Cl2)0.561 (t)0.269 (T)1.018  in 

(µg/L) 

BDCM=0.0098(Br−)0.181(pH)2.55(Cl2)0.497(t)0.256(T)0.519 (for Cl2/Br−<75) 

in (µg/L) 

0.88 

 

0.80 

 

Labor

atory 

 

Labor
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BDCM=1.325(TOC)−0.725(Br−)0.794(Cl2)0.632(t)0.204(T)1.441 (for Cl2/Br−>75) 

in (µg/L) 

DBCM=14.998(TOC)−1.665(Br−)1.241(Cl2)0.729(t)0.261(T)0.989 (for Cl2/Br−<50) 

in (µg/L) 

DBCM=0.028(UV254)−1.175(TOC)−1.078(Br−)1.573(pH)1.956(Cl2)1.072(t)0.2(T)0.596 (for 

Cl2/Br−>50)  in (µg/L) 

CHBr3=6.533(TOC)−2.031(Br−)1.388(pH)1.603(Cl2)1.057(t)0.136 in (µg/L) 

0.92 

 

0.82 

 

0.83 

 

0.86 

atory 

 

Labor

atory 

 

Labor

atory 

 

Labor

atory 

 

Labor

atory 

Lou and 

Chiang, 1994 

TTHM=TTHMo+7.01(pH−2.3)0.11 (NVTOC)1.06 (t)0.748(Cl2)0.764(β)  in (µg/L) 
 

NR Field 

Ibarluzea 

et al., 1994 

CHCl3=10.8+0.04(Flu)+1.16(pH)+0.12(T)+1.91 (Co) in (µg/L) 0.82 Field 

Siddiqui 

et al., 1994 

CHBr3=2.68(DOC)1.28(pH)−1.31(O3)0.742(Br−)1.55(T)0.956(tm)0.353  in (µg/L) 0.78 Field 

Rathbun, 1996a CHCl3=0.442(pH)2(Cl2)0.229(DOC)0.912(Br−)−0.116 in (µg/L) 

BDCM=17.5(pH)1.01(Cl2)0.0367(DOC)0.228(Br−)0.513 in (µg/L) 

DBCM=26.6(pH)1.80(Cl2)−0.0928(DOC)−0.758(Br−)1.2 in (µg/L) 

CHBr3=0.29(pH)3.51(Cl2)−0.347(DOC)−0.330(Br−)1.84  in (µg/L) 

0.97 

0.86 

0.94  

0.78 

Labor

atory 

Labor

atory 

Labor

atory 

Labor

atory 

Rathbun, 1996b TTHM=14.6 (pH−3.8)1.01 (Cl2)0.206 (UV254)0.849 (t)0.306 in (µg/L) 0.98 Labor

atory 

Chang et al., 

1996 

TTHM=12.72 (TOC)0.291 (t)0.271 (Cl2) −0.072 in (µg/L) 

TTHM=108.8(TOC)0.2466 (t)0.2956(UV254)0.9919 (Cl2)0.126  in (µg/L) 

TTHM=131.75(t)0.2931(UV254)1.075 (Cl2)0.1064  in (µg/L) 

0.94 

0.97 

0.95 

Labor

atory 

Labor

atory 

Labor

atory 

Garcia-Villanova 

et al., 1997a 

ln(CHCl3)=0.348+0.00059(T)3−0.000023(T)4+0.0237(pH)2+d+e 

in (µg/L) 

0.65 Field 

Garcia-Villanova 

et al., 1997b 

ln(CHCl3)=0.81Y+0.162N+0.00047(T)3−0.0000204(T)4+0.00339(pH)2+e 

in (µg/L) 

0.86 Field 

Golfinopoulos 

et al., 1998 

TTHMs=13.5ln(Chla)−14.5(pH)+230(Br−)−140(Br−)2−25.3(S)+110.6(Sp)−6.6(T.Sp)+1.48

(T.D) 

in (µg/L) 

0.98 Field 

Amy et al. 

(1998) 

TTHMs=0.00412(DOC)1.10(Cl2)0.152(Br−)0.068(T)0.61 (pH)1.60 (t)0.260 in (µg/L) NR Labor

atory 

Rodriguez et al., 

2000 

TTHM=0.044(DOC)1.030 (t)0.262 (pH)1.149 (Cl2)0.277 (T)0.968  in (µg/L) 

TTHM=1.392(DOC)1.092(pH)0.531(T)0.255 in (µg/L) 

0.90 

0.34 

Labor

atory 

Field 

Sung et al., 2000 TTHM=a(OH−)j(Cl2(1−e−kt))(UV254)n(algae)p 

CHCl3=2.3×106(OH−)0.52(Cl2(1−e−kt))0.56(UV254)0.57(algae)−0.10 in (µg/L) 

 

0.93 

Field 

Westerhoff et 

al.,2000 

TTHM=bo+b1(DOC)+b2(Cl2)+b3(Br−10%)+b4(T)+b5(pH)+b6(t) in (µg/L) NR Field 

Elshorbagy 

et al. ,2000 

TTHMt+Δt=TTHMt+0.582(Clt+Δt−Clt)  in (µmol/L) NR Field 

Golfinopoulos 

and 

Arhonditsis,2002 

TTHM=−0.26chla+1.57pH+28.74Br−66.72Br2−43.63S+1.13Sp+2.62T.S−0.72T.D in 

(µg/L) 

CHCl3=−0.32chla+0.68pH+2.51Cl2+1.93Sp−22.07S+1.38T.S−0.12T.D 

BDCM=−0.37chla+0.32pH+1.16Br−29.82Br2+1.88Cl2+5.17S−0.37T.Sp−0.12T.D 

0.52 

0.51 

0.62 

Field 

Field  

Field 

Gang et al.,2002 TTHMs=αCl2(1−fe−ktr−(1−f)e−kts) NR Labor

atory 

Serodes et al., 

2003 

TTHM=16.9+16.0(TOC)+3.319(Cl2)−1.135(T)+1.139(t)  in (µg/L) 

log(TTHM)=−0.101+0.335(TTHMo)+3.914(TOC)+0.117(t)   in (µg/L) 

TTHM=21.2+2.447(Cl2)+0.499(t)  in (µg/L) 

0.78 

0.89 

0.56 

Labor

atory 

Labor

atory 

Labor

atory 

Nikolaou et al., logTTHM=0.33pH−0.02pH2+0.12t−0.004t2 in (µg/L) 0.53 Labor
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2004 logTTHM=−0.44pH+7.53logpH−1.10Cl2+0.2Cl2
2 in (µg/L) 

logTTHM=0.98log(pH)+1.1log(t)−0.01(t).(Cl2)+1.59log(Cl2) in (µg/L) 

0.58 

0.38 

atory 

Labor

atory 

Labor

atory 

Al-Omari et al., 

2004 

[TTHM]=4.527t0.127 Cl2
0.595 TOC0.596 Br0.103 pH0.66 in (µg/L) NR Field 

Kolla, 2004 TTHM=0.0001Cl2
3.14 pH1.56 TOC 0.69 t0.175  in (µg/L) 0.77 Labor

atory 

Lekkas and 

Nikolaou, 2004 

logTTHM=1.546+0.631pH2+0.569log(t)+0.385log(Cl2) in (µg/L) 0.87 Labor

atory 

Sohn et al., 2004 TTHM=10−1.385(DOC)1.098(Cl2)0.152 (Br-)0.068(T)0.609(pH)1.601(t)0.263                      in (µg/L) 

TTHM=0.42(UV254)0.482(Cl2)0.339(Br−)0.023 (T)0.617(pH)1.601(t)0.261                          in (µg/L) 

TTHM=0.283(DOC*UV254)0.421(Cl2)0.145 (Br−)0.041 (T)0.614(pH)1.606(t)0.261      in (µg/L) 

TTHM=3.296(DOC)0.801(Cl2)0.261 (Br-)0.223(t)0.264                                                              in (µg/L) 

TTHM=75.7(UV254)0.593(Cl2)0.332 (Br-)0.0603(t)0.264                                             in (µg/L) 

TTHM=23.9(DOC*UV254)0.403(Cl2)0.225 (Br−)0.141(t)0.264                             in (µg/L) 

TTHM=(TTHM pH=7.5, T=20 °C)*1.156(pH−7.5)1.0263(T−20)                                in (µg/L) 

0.90 

0.70 

0.81 

0.87 

0.90 

0.92 

0.92 

databa

se 

Uyak et al.,2005 TTHM=0.0707(TOC+3.2)1.314(pH−4.0)1.496 (Cl2−2.5)−0.197(T+10)0.724 in (µg/L) 0.98 Field 

Uyak and Toroz, 

2005 

Log(TTHM)=1.078+0.398log(TOC)+0.158log(T)+0.702log(Cl2)   in (µg/L) 0.83 Field 

Rodriguez et al., 

2007 

THMs=16.0+1.6FA+0.1Cl2+0.3T−0.8FA×T−1.2FA2−2.8Cl2
2     in (µg/L) 

CHCl3=3.5+0.8FA+0.02 Cl2+0.07T−0.3T2                  in (µg/L) 

BDCM=4.5+0.7FA+0.04 Cl2−0.8Cl2
2+0.4T2  in (µg/L) 

DBCM=4.0+0.4FA+0.05 Cl2+0.1T−1.0Cl2
2−0.7FA2  in (µg/L) 

CHBr3=4.0−0.2FA+0.03 Cl2+0.09T−0.6 FA×T−0.5 FA2−0.8Cl2
2       in (µg/L) 

NR 

NR 

NR 

NR 

NR 

Labor

atory 

Labor

atory 

Labor

atory 

Labor

atory 

Labor

atory 

Hong et al., 2007 TTHM = 10−1.375 t0.258(Cl2/DOC)0.194 pH1.695 T0.507(Br−) 0.218    in (µg/L) 

BDCM=10−3.201t0.297.pH2.878T0.414(Br−)0.371               in (µg/L) 

CHCl3 = 10−0.748t0.210(Cl2/DOC)0.221 pH1.374 T0.532 (Br−)−0.184            in (µg/L) 

0.87 Labor

atory 

Semerjian et al., 

(2009) 

TTHM2=17.31+10.52Cl2
2+259728.60(SUVA)2  in (µg/L) 

TTHM2=42.10+29.23Cl2
2+353375(UV254)2        in (µg/L) 

TTHM2=−471.11+0.48t2+1856.07(Br−)2+404.38Cl2
2    in (µg/L) 

0.39 

0.33 

0.31 

Field, 

Lab 

Chen and 

Westerhoff, 2010 

CHCl3=1805(DOC)0.11(UV254)1.22(Br-+1)-2.19 

BDCM=137(DOC)0.16 (UV254)0.94(Br-+1)3.66 

TTHM=1147(DOC)(UV254)0.83(Br-+1)0.27 

0.88 

0.60 

0.87 

lab 

Chowdhury et al, 

2010 

TTHM=-51.408 + 8.449(DOC) + 13.529(Cl2) + 2.997(pH) +0.803(T) + 0.504(t) + 

0.141((Cl2 -4.47)(T-15.03)) 

  

Singh et al., 2012 TTHM=71.439 + 8.159(Cl2/DOC) – 2.411(Cl2/DOC)2 + 31.014(pH) + 4.921(pH)2 +   

3.747(Br-) + 3.061(Br-)2 +16.086(T) -2.424(T)2 +26.467(t) -12.474(t)2 + 

2.775((Cl2/DOC)(pH)) -2.036((Cl2/DOC)(Br-)) + 1.785 ((Cl2/DOC)(T)) + 

2.537((Cl2/DOC)(t)) + 5.7004((pH)(Br-) + 8.309((pH)(T)) + 14.961(pH)(t)) – 0.706((Br-

)(T)) + 1.717((Br-)(t)) + 6.434((T)(t)) 

0.99 lab 

Abdullah and El-

dien 

Hussona,2013 

TTHM= 1.58(UV254 x TOC)0.38(Cl2)1.14(t)0.6(T)0.5(pH-2.6)0.96(Br-)0.6 0.88 lab 

Bach et al., 2015 CHCl3= 10.7 + 6 (HA) + 6.5 (ClO-) + 4.3 pH 

CHBr3= 12.7 + 4.4(HA) + 7.8(ClO-) + 8.7T + 5.4pH 

0.9 Lab 

 

TTHM= total sum of trihalomethanes; CHCl3= chloroform; BDCM=bromodichloromethane; 

DBCM=Dibromochloromethane; CHB3=bromoform; NVTOC=nonvolatile total organic carbon 

(mg/L); TOC=total organic carbón (mg/L);DOC=dissolved organic carbon  (mg/L);UV254= 

ultraviolet absorption at 254nm (cm-1); SUVA =specific UV absorbance(L/mg-m) at 254nm in 

m-1 divided on TOC; Cl2=chlorine dose (mg/L); T = temperature in °C; t= reaction time (hours); 

tm=reaction time in minutes; t= reaction time (hours); tm=reaction time in minutes; u= rate 

constant(min-1); CA0= initial concentration of chlorine(mg/L); K=dimensionless constant; Br-

=bromide ion concentration (mg/L); NH3-N= ammonia nitrogen (mg/L); q=dimensionless time; 

C0= residual chlorine at plant (mg/L); 03=ozone dose;  Chla= chlororphyll-a (mg/m3);OH-

hydroxide concentration; k=rate constant; ; Q outflow= outflows in the finished water reservoirs; 

V0 volume of the tank; FA=fulvic acid (mg/L); ClO-hypochlorite ion (mg/L); γ= reactivity of 

HOBr times stronger than that of HOCl. 
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The work by Amy et al. (1987) has received high recognition in the literature and it is 

among the most frequently cited references on the topic of THMs formation modelling. 

Additionally, their modeling equation is included in the WRc OTTER water treatment 

modelling commercial package for DWTPs (Bridge, 2005). Their equation includes all 

parameters, which are known to affect the kinetic formation of TTHMs. Their model 

was based on the assumption that chlorine residual concertation was constant during the 

reaction period of a week, and that TTHMs are formed continuously during this period. 

Parameters were transformed into natural log forms, and multiple linear regression 

(MLR) was used. More specifically, the model explains the variance in the the natural 

log of TTHM formation as a function of the natural logs of time, temperature, initial 

chlorine concentration, the product of UV absorbance and TOC concentration, bromide 

concentration and pH.  To obtain the actual TTHM concentration level, its anti-log 

transformation is calculated at the end of modeling. 

A large number of models, both empirical (i.e., field studies) and kinetic (i.e., 

laboratory-scaled studies) were developed using multiple linear regression method. The 

main advantages of this regression method is that it allows obtaining and performing 

post-estimation diagnostics of the coefficients of determination (R-square), correlation 

coefficients, mean errors of prediction, thus evaluating model performance. MLR is also 

appropriate in many of these studies, given that they had a small number of parameters, 

which are likely not to be correlated. However, the high correlation existing between the 

independent parameters in the equation will present a serious concern in empirical 

analysis, giving unstable regression coefficients and unreliable standard errors. In 

addition to the possible multicollinearity concern, another limitation of a large number 

of published models was the absence of an external model validation procedure. 

Namely, the estimated models are not tested with external samples. This is required to 

obtain and report generalizable predictions. Furthermore, many models have been built 

using a field data sets obtained over a relatively short time interval. As a result, such 

models did not actually take into account the temporal changes in the investigated 

parameters, which may vary significantly over time, such as organic matter that can 

vary in its composition seasonally (Teixeira and Nunes, 2011).  
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2.1.7 Water distribution system (WDS) 

Treated and disinfected water is transferred to large storage deposits before its 

final transfer to the WDS. Barcelona WDS includes more than 5500km of pipe network 

and approximately 150 smaller deposits.   The two rivers (the Llobregat river and the 

Ter river), the underground water and the sea water have different water quality 

properties, which, along with the different treatment procedures in the five DWTPs 

explains why the supply of drinking water has different quality and organoleptic 

characteristics in the BMA. There are various blending processes, implemented in the 

distribution network to homogenize water quality prior its consumption. To facilitate 

this process, new distribution network interconnections were recently constructed with 

the objective to facilitate the blending of different water sources, to standardize the 

aesthetic water characteristics and to assure the constant supply of drinking water in the 

BMA (Valero and Arbós, 2010). An important element of the efficient management of 

this water distribution is the possibility to identify the water sources for the blending 

process inside the WDS. This analysis is critical for the proper functioning of the WDS, 

as well as the elimination of pipes corrosion (Lahav et al., 2009). Therefore, a 

methodology to distinguish different water sources would significantly facilitate the 

identification of the origins of contamination during accidents, as well as the source of 

organoleptic complains and illegal consumption alongside the network. Hence, the 

global management of WDS would significantly be improved with the application of 

such technology. 

Currently, there are only few predictive models that are able to distinguish the 

water origins using hydraulic models and physiochemical tracers, such as conductivity 

parameter. Rubulis et al. (2011), for instance, studied the supply of drinking water to the 

city of Riga (Latvia), where six water sources with different conductivity values were 

mixed prior to consumption. Although the objective was to distinguish different water 

sources, this was not achieved for at least two reasons. First, the experiments were 

based only on one parameter, and second, sophisticated data analysis and  modeling 

were required. In a different geographic region (Shanghai, China), Shu et al. (2010) 

developed prediction models using the decay of chlorine along the distribution network, 

among others. Similar to Rubulis et al. (2011), the models were not sufficiently precise 

in distinguishing water origins. The reason for such inaccurate predictions was that 

chlorine was incorporated in two instances (i.e., in the intake and during the water 
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transport in the WDS), resulting in a complex formulation which was notable to 

disguise the water origin. 

 

2.1.8 Wastewater Treatment Plant of Girona, Trargisa S.A. (WWTP) 

Wastewater is accumulated at the municipality level, by the industry in the area and 

from the urban runoff. After being aggregated, it is transported using sewers systems to 

the urban wastewater treatment plant (WWTP). WWTP is a complex of installations, 

where the wastewater is subjected to a series of physical, chemical and biological 

treatment processes for a removal of pollution, thus ensuring the quality of water, as 

required by the existing legislation, prior to its release in nature or reuse (Ostace et al., 

2013). 

The WWTP of Trargisa is situated nearby Girona city (Catalonia, Spain) and it 

has a capacity of up to 55,000 m³/day. Figure  5 shows  the main installations of the 

WWTP Trargisa . It can manage the collected wastewater from a population area with 

approximately 200.000 population equivalents. WWTP design includes a coarse pre-

inlet pumping station, pre-treatment (screens removal, sand removal and degreasing), 

physico-chemical primary treatment, biological secondary treatment reactors, secondary 

clarifiers, and collecting purified water outlet to the River Ter. Perhaps, one of the most 

characteristic features of the WWTP (Trargisa) is the biological treatment with 

elimination of nitrogen and phosphorus, followed by a tertiary treatment. 
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Figure 5. Installations of WWTP TRARGISA at Girona, Catalonia, Spain (source 

Google maps). 

 

Urban wastewater is primarily produced as a result of human activity.  Water 

pollution in urban areas is associated to the use of water in domestic and public 

services, such as cleaning, bathing, and transport, the activities of households, and the 

urban runoff.  The main contamination of domestic wastewater is from the degradable 

organic matter in suspension and in solution. Therefore, the primary contributors to the 

wastewater are: 

 Fecal waters; 

 Waters from domestic washing and small industrial processes; 

 Water from the drainage system of streets; 

 Rainwater and leachate. 

Although urban waste water is largely homogeneous, in terms of composition 

and pollutant charge, such characteristics have a large variance. The reasons for this 

variance are the socio-economic characteristics of different municipalities, the nature 

and intensity of business activities in the area, and the climatic conditions, among 

others.  

Different parameters can characterize a particular wastewater system (Metcalf 

abd Eddy, 2003). To quantify the level of wastewater contamination, usually, laboratory 

analyses of a set of parameters, which are commonly used as indicators of water quality 
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changes during the treatment processes, are performed. The parameters, commonly used 

to characterize and measure the water quality along the plant, are: 

 

 Biochemical oxygen demand (BOD):  

BOD is defined as the amount of dissolved oxygen consumed by 

microorganisms (e.g., aerobic bacteria) in the oxidation of organic matter during 

the biological processes under certain conditions and at a given time. One of 

most important parameter to monitoring is called BOD5, which indicates the 

oxygen consumed by microorganisms in 5 days, during the oxidation process of 

organic matters. 

 

 Chemical oxygen demand (COD) 

COD is a method for an indirect measurement of the amount of water pollution, 

which cannot be biologically oxidized. The COD measurement  is based on the 

chemical decomposition of organic and inorganic contaminants, dissolved or 

suspended in water. COD value  indicates the amount of water-dissolved oxygen 

(expressed as parts per million or milligrams per liter of water) consumed by the 

contaminants, during two hours of decomposition by a solution of boiling 

potassium dichromate.  

 

 Total suspended solids  (TSS)  

TSS is composed by organic and inorganic solid materials, including suspended 

in the water.  Organic solids include proteins, hydrocarbons, fats and others that 

come from human activity. Inorganic solids include inert compounds such as 

salts, sands and soils. Aquatic microorganisms also play important role in TSS. 

This group includes viruses, bacteria, protozoa, algae, and others. A high 

concentration of TSS indicates a low water quality. TSS absorbs sunlight, which 

produces heating and a decrease of dissolved oxygen necessary for aquatic life. 

TSS also can clog rivers and even fish gills.  Usually, TSS result from erosion 

from urban runoff, small industrial wastes, bank erosion, algae growth or 

wastewater discharges. 

http://www.businessdictionary.com/definition/method.html
http://www.businessdictionary.com/definition/measurement.html
http://www.businessdictionary.com/definition/amount.html
http://www.businessdictionary.com/definition/pollution.html
http://www.businessdictionary.com/definition/test-procedure.html
http://www.businessdictionary.com/definition/decomposition.html
http://www.businessdictionary.com/definition/organic.html
http://www.businessdictionary.com/definition/inorganic.html
http://www.businessdictionary.com/definition/contaminant.html
http://www.businessdictionary.com/definition/parts-per-million-PPM.html
http://www.businessdictionary.com/definition/milligram.html
http://www.businessdictionary.com/definition/liter.html
http://www.businessdictionary.com/definition/solution.html
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 Temperature 

The water temperature is one of the more important parameters for water quality, 

primarily because it has a strong influence on both, on the development of 

aquatic life, and on the chemical reactions and reaction rates. Additionally, 

biological treatment and nitrification processes are strongly affected by 

temperature changes.  Severe temperature dynamics can cause increased 

mortality of the aquatic life. In a number of instances, high temperatures can 

lead to the proliferation of aquatic plants. 

 

 Dissolved oxygen (DO) 

DO is critical for the development of living beings and therefore it is considered 

a basic water quality parameter for the control of wastewater as it is used for 

biological secondary treatment control. The increase in oxygen in water is due 

to: 

- Transportation of the  oxygen through the interface surface water - air. 

- Photosynthesis, mainly due to green algae. 

- Lowering of temperature. 

- Dilution processes (usually when raining). 

In contrast, the amount of oxygen in the water decrease because of: 

- Micro and macro organisms respiration. 

- Temperature increase. 

- Chemical reactions. 

- Microorganisms enzyme reactions. 

Dissolved oxygen at high amounts is desirable and useful for prevention of the 

formation of unpleasant odors in wastewaters. 

 

 pH 

Urban waters provide  favorable conditions for the aquatic life at pH close to 7. 

If there is a significant increase or decrease in wastewater pH, this is an 

indication of possible industrial discharge pollution. It is necessary to control pH 

levels between 6.2 and 8.5, because fault inhibition of the biological processes 

would take place in this range of pH. 
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 Nitrogen 

Serving as a nutrient, nitrogen is an essential element for plants growth. To the 

extent that it is important for the protein synthesis, it is a critical parameter to 

follow its availability and concentration in water, thus evaluating biological 

processes and as a possibility of wastewater treatment. Lower concentrations of 

nitrogen would require an additional supply of nitrogen to the wastewater. 

Nitrogen is measured as total organic nitrogen (NT), ammonium-nitrogen 

(NH4
+-N), nitrites and nitrates (NO2

--N and NO3
--N). In contrast, higher 

concentrations of nitrogen, released in nature, can cause excessive growth of 

algae and other plants, leading to accelerated eutrophication, and occasional loss 

of dissolved oxygen. 

 

 Phosphorus 

Phosphorus is an important factor for microorganisms’ growth in water. Because 

it acts as a nutrient for the microorganisms, it also affects biological treatment 

processes in the plant. Phosphorus is presented in water, either in dissolved form 

(phosphates or polyphosphates) or in suspension.  In urban wastewaters, 

possible sources of phosphorus are detergents and septic tanks. Food and 

agricultural industry activities may also discharge phosphorus in wastewater.  

 

There are also other parameters, which are constantly monitored in WWTP with 

the objective to characterize wastewater quality. Parameters such as the total organic 

carbon (TOC), conductivity, amounts of sand and fats, chlorides, are many times 

included in WWTP’s water quality monitoring programs. 

In conclusion, there are numerous interactions and possible pollutants in 

WWTP, which increase the complexity of control and monitoring activities. Therefore, 

the demand for chemometric methods to summarize and interpret simultaneously all 

variables and their interactions, is high and can significantly facilitate monitoring by 

describing and predicting various processes. The development of chemometric methods 

would be valuable for wastewater quality control, providing practical and effective 

applications in WWTP. 
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2.1.9 Monitoring techniques for drinking and wastewater water quality  

 

 In order to comply with the legislative norms, a constant quality control of the 

raw water, of the DWTP processes, of the water quality in WDS, and of the WWTP 

processes is required.  A large number of environmental pollutants, DBP compounds, 

and water quality physicochemical parameters need to be permanently monitored. The 

most common techniques for monitoring include a comprehensive analysis using (a) 

standard laboratory analytical methods for measurements, (b) sensor measurements, and 

(c) sophisticated analytical instruments.  

Physicochemical water quality parameters, such as water temperature, turbidity, 

salinity, TOC, conductivity or pH, can be measured using a sensor detection methods or 

applying a standard analytical methodology, which are usually not expensive and do not 

demand trained staff. On the contrary, the analysis of compounds, such as pesticides, 

pharmaceutical formulations, endocrine disruptors, DBPs and others, require the 

employment of sophisticated instrumental techniques, which can detect low 

concentrations (in pg/L) of them. However, such analysis turns to be expensive and only 

highly trained personal are capable of conducting it. The most popular instrumental 

analytical techniques for these compounds include: (a) a solid phase extraction followed 

by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis (Kuster et 

al., 2008), or (b) using the time-of-flight detection (LC-TOF/MS) technique (Martínez 

Bueno et al., 2007) 

 In-situ analyzers and portable water quality devices are generally preferred, 

when there are large and/or remote areas to be monitored in a short period of time. For 

example, the field test kit for determination of residual chlorine (based on the N, N-

diethyl-p-phenylenediamine colorimetric method) is popular for the control in WDS ( 

APHA 1995). Such tests are cheap and easy to use. A significant advantage of the in-

situ sensors is the continuous measurements of water quality parameters providing data 

at real time. They are usually preferred when a high frequency of measurements is 

required like in storms, leaching, and chemical contamination events. The use of sensors 

also is a cost-efficient solution, because they do not require frequent field visits by 

technical staff but only maintenance. Another advantage of the sensors is that they can 

be simultaneously operated as automatic multiparametric water quality stations. The 

trends in the field of sensor monitoring technology are towards the development and 
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testing of new probes, new data recorders, and new telemetry equipment, which are 

likely to facilitate the monitoring of new parameters of water quality (WMO, 2013). 

Recently, technologies, which are based on ultraviolet absorbance (UV), have 

become more popular, especially for applications where continuous monitoring of 

organic compounds in drinking and wastewater is required (Langergraber et al., 2004; 

Rieger et al., 2006). Furthermore, UV can be adapted for use in in-line monitoring 

instruments. Modern signal processing and high-technology optics have enabled the 

monitoring of a large number of chemical compounds in a single measurement. For 

example, nitrites, nitrates, and organic matter were monitored by UV online sensing. 

Because most organic compounds in raw water, drinking water and wastewater absorb 

UV radiation, the UV spectroscopy become an inexpensive alternative to other 

sophisticated instrumental techniques. Furthermore, sensors have another advantage: 

they can generate a large amount of data in a short period of time. The water quality 

data, which is recorded with sensors, can be further used for multivariate analysis of all 

parameters altogether. This data-collection strategy can be very useful in obtaining 

information about the evolution of the water quality over time, determining the spatial 

variability (i.e., sampling locations) of water quality in DWTP, WWTP or WDS. 

Moreover, multivariate analysis of water quality can be applied for real-time event 

detection, thus providing early-warning signals. Additionally, real-time multivariate 

models permit the generation of water quality predictions at different locations where a 

sensor or a multi-parametric automatic station is located.  

 

2.1.10 Taste and odor 

The classical physicochemical procedures of water treatment in DWTP serve to 

disinfect raw water and to eliminate pathogens. New technologies are continuously 

implemented with the objective to further improve raw water quality (Raich-Montiu et 

al., 2014). More specifically, membrane filtering (EDR and RO) methods can remove 

efficiently almost all potential contaminants and organic matter (Valero and Arbós, 

2010). An inconvenience of all these procedures, however, is the significant effect 

which they may have on the organoleptic water properties.  Supplied drinking water 

should not only comply with the legislative sanitary norms, but also it has to take into 

account consumers for its aesthetical characteristics, including taste, odor, and color. 
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Re-mineralization procedures are further required (Vingerhoeds et al., 2016), 

because the concentration of the main minerals decrease significantly during membrane 

filtering procedures, leaving water tasteless, odorless, and with worse health properties 

(e.g., due to the lack of minerals, which have vital nutritional effects). Therefore, re-

mineralization provides consumers with the required concentration of a number of main 

salts and also reducing the probability of pipe corrosion. Remineralization takes place in 

calcite filters and in contact chambers (García et al., 2015), where the osmotic water 

passed through a bed of calcite (calcium carbonate, CaCO3). During this process, there 

is a possibility to add carbon dioxide (CO2), and thus favor the dissolution of calcite 

required for the optimal remineralization level. 

For several decades, the focus in the potable water production sector was on the 

water taste improvement. In 1980, a specialized “Off Flavors in the Aquatic 

Environment” group was created to deal with possible issues regarding water taste. 

Recently, a new specialized group called “Tastes, Odors, and Algal Toxins in Drinking 

Water Resources and Aquaculture” was formed by the International Water Association 

(IWA) in compliance with the guidelines developed by the first group in1980. 

Water taste strongly depends on the chemical composition of dissolved minerals. 

Both cations and anions contribute in different ways to the formation of water taste. 

They can interact among themselves through synergism and antagonism (Burlingame et 

al., 2007). Apart from dissolved inorganic salts (i.e., total dissolved solids, TDS), 

volatile organic compounds also affect water taste. Such compounds can also affect 

retro-nasal mechanisms when drinking water (Dietrich, 2009). Therefore, the general 

perception of water, especially for drinking water, seems to be flavor rather than taste 

(Dietrich, 2006). The mineral content of bottled natural water is determined by the 

composition of rocks and geochemical processes (van der Aa, 2003).  Similarly, the 

potable tap water is also characterized by its specific mineral and organic contents 

(Meng and Suffet, 1997), where the major source of raw water is the surface water 

influenced by the local vegetation. Finally, disinfection procedures with chlorine can 

also contribute to the ultimate flavor of drinking water.  

TDS has become the most common and monitored parameter in water taste 

studies (Burlingame et al. 2007; Whelton et al. 2007; Devesa et al.  2010; Gallagher and 

Dietrich, 2014; García et al. 2015). For this reason, TDS has been regulated by several 

international legislative associations: (a) In the U.S. and Canada, USEPA (2015) and 
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Health Canada (2012) set the maximum level of TDS to 500 mg/L; (b) WHO 

Guidelines regulated the maximum levels of 1000 mg/L (WHO, 2011); and (c) In 

Europe, a TDS level of 1600 mg/L the established maximum (98/83/EC). It was shown 

that high levels of minerals (i.e., high concentration TDS) are disliked by the consumers 

(Teillet et al. 2010). Some specific salts were also shown to affect the water taste 

(Burlingame et al. 2007). These studies demonstrated that cations and anions are likely 

to interact among themselves, thus increasing the complexity of water taste even further. 

Rey-Salgueiro et al. (2013) focused their research on bottled water taste suggesting a 

new wheel of water descriptors especially modified for this type of water. 

 

Barcelona Water Panel 

 

Over the past three decades, the AGBAR Company has significantly advanced 

in both, research and control of the taste and odor of supplied drinking water. In 1989, 

the Barcelona Water Panel was established (Devesa, 2004). The participants in the panel 

are women and men (panelists), who are highly trained in the organoleptic analysis of 

natural and drinking water. Usually, small groups of 5 to 6 panelists participate in a 

taste- and-odor session. Following water tasting, the panelists would be required to 

share their opinion regarding the water taste. The panel would analyze the results using 

the modified Flavour Profile Analysis method (FPA), which is based on an individual 

explanation of the taste and odor of the sampled water,  using series of descriptors and 

their intensities (APHA, 2005). The panel uses the wheel of water descriptors (see 

Figure 6), which has been modified by AGBAR so that to meet the goals of thier own 

water quality studies. In implementing this method, the results can be standard, because 

all panelists share a common language to describe the water taste. After data collection, 

a statistical analysis of the collected results follows.  

The water taste and odor wheel contains four tastes (sweet, salty,bitter and acid) 

and all major odors and senstations. The area of odor is presented with the highest 

number of descriptors, divided in two subgroups: natural descriptors (soil, coolness, 

decay) and chemicals (chlorine, farmaceuticals, detergents, dissolvent, rubber). 

However, a further break-down to subdivisions is also possible and acceptable. 
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Figure 6.  Wheel of water descriptors in order to perform organoleptic description 

(Suffet and Rosenfeld, 2007) 

 

The water odor description is usually done in closed, glass Erlenmeyer flasks, 

served at 45 ºC. For taste sessions, water samples should be served at 25 ºC. The 

intensity usually is spanned from 1 (not detectable) up to 12(maximum intensity), but 

modifications are allowed.   

The taste and odor sessions are organized in rooms, which are specially designed 

to provide comfort to the panelists. For instance, the water-tasting room has to be free of 

external odors and with sufficient individual space to each participant, because (s)he 
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would first work individually, before sharing opinions and discussing results with the 

rest of the group at the end of the water-tasting session. 

There are different designs of the taste and odor experiments (Naes and Risvik, 

1996). These discrimination tests include:  

 Paired test, where several samples are presented in duplicates and the panelists 

have to pair the same water samples; 

 Triangular test, where three water samples are provided to the panelists, with 

two of three being of the same origin and one sample being of a different origin. 

The task of the panelists is to identify the distinct sample;   

 Double-triple test, where water samples is given as reference samples. Then, two 

water samples are served and one of them is the first reference sample. The task 

of the panelists is to detect the distinct water sample; 

 Two from five tests, where two out of five water samples are the same and the 

other three samples have the same origin. The task of the panelists is to identify 

both groups; 

 Yes/No test, where a reference water sample is presented to the panelists, who 

have to identify it in a group of different samples. 

Another type of taste-and-odor tests of water samples are the tests of acceptance such 

as: 

 Ranking test, where the panelists have to rank the proposed water samples 

according to their preferences 

 Rating test, where the panelists have to score the presented water samples using 

a scale from 0 (worst) to 10(excellent) 

In this Thesis, the rating test is used in developing chemometrics applications, because 

it provides a variable (i.e., panelists’ ratings) which can be directly related to water 

minerals of the selected waters. 
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2.2 Chemometric methods 
 

Svante Wold and Bruce R. Kowalski introduced the term of ‘chemometrics’ for 

the first time in 1972 (Otto, 1999). In general, chemometrics is a chemical discipline 

that uses common methods from mathematics, statistics and information technology 

(Massart et al., 1988). For the last forty years chemometrics has become an important 

field of investigation in analytical chemistry, dealing with techniques such as UVVIS, 

NIR, Raman, nuclear magnetic resonance, fluorescence spectroscopy, chromatography 

and etc. (Brereton, 2003). The growth of chemometrics applications has become 

substantial over the last two decades handling large datasets acquired from 

environmental, pharmaceutical, food chemistry and other fields. Chemometrics has also 

many applications in analysis and control of industrial processes (Bakeev, 2005).  

One major benefit of chemometrics is the possibility of obtaining useful 

information from raw data. Water quality monitoring involves the application of 

numerous laboratory instruments and sensors, which have become more and more 

complex and sophisticated in data acquisition. These instruments and sensors have led 

to the accumulation of raw data, which require a reliable interpretation, and hence, the 

application of chemometrics to extract the most relevant information. 

 In this Thesis, different chemometric techniques and methods from different 

areas, such as experimental design, exploratory data analysis and multivariate 

calibration, have been applied in several real case water quality studies.  

 

2.2.1. Data structure 

 

A successful application of chemometric methods requires having the experimental data 

properly structured.  

 Experimental data sets, analyzed in this Thesis, have been organized in two 

dimensional data tables, where in the rows are samples or observations and in the 

columns are usually a set of measured variables for each sample.  These tables are also 

called data matrices, such as this one shown in Figure 7. Each data matrix has two 

directions or modes (two-way or two-mode data set).  
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Figure 7. Structure of two-way experimental data, included in papers 1 and 2 from 

this Thesis. Samples at different days of measurements of multiple operational 

plant parameters in Sant Joan Despi DWTP. 

  

 

The rows of these tables (samples) usually represented time series data (daily, 

hourly, weekly measurements over large period of time), or spatial distribution (samples 

taken at the inlet-outlet of WWTP) or batch measurements (experimentally designed 

mixture samples). Columns (variables) have measurements about certain set of 

physicochemical parameters, spectral absorbance or taste evaluations for a number of 

panellists. 

 When two or more data tables have the same number of rows or have the same 

number of variables, they can be appended in a row- or column-wise direction. Such a 

data manipulation could increase the possibility of richer interpretation (Måge et al., 

2012).  The combined use of two or more data sets from different analytical methods 

gives also a more robust strategy for data analysis than the use of a single data matrix. 

In Paper 6 of this thesis, for instance,  two tables (one containing measurements 

of physicochemical parameters – A, and another containing mean scores of panellists 

preferences – B, for the same set of water samples) were being concatenated in the row-

wise direction as shown in Figure 8. This initial augmentation made possible the 
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application of PCA to relate the individual panellists’ taste preferences to particular 

physicochemical parameters. 

  

Figure 8. Row-wise augmented data set after concatenation of data matrix A (20 

watere samples x 14 physicochemical parameters) and data matrix B (the same 20 

water samples x 17 mean score panellists vectors). 

 

 

2.2.2. Initial data treatment  

 In order to improve subsequent chemometric analysis and its proper 

interpretation, preliminary data treatment usually is required. Such data pre-treatment 

usually involves a process following various steps. The initial step of every data 

pretreatment is related to problems associated with data collection loss or absence of 

certain data values, which are called, missings (Stanimirova, 2013). Values below the 

instrumental limit of detection are considered censored data.  The second step of data 

pretreatment includes application of different mathematical techniques to improve the 

quality of the measured signal (data). Properly applied pre-treatment procedures would 

allow for a better performance of the selected chemometrics methods and further 

improvement of results interpretation.  

 

Missing data (missing values) 

Missing values and censored data occur often in the analysis of multivariate 

environmental data sets and also have been frequent problems in this Thesis. In general, 

missing values and censored data encountered in data sets included in this Thesis could 

be characterized according the following situations (Rubin, 1976) 

 Missing values occur Completely At Random, MCAR 
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 Missing values do not occur at random, NMAR 

  and combinations from both above 

 

 

  

 

Figure 9. Graphical representation of missing values common for this Thesis. a) 

Missing values are distributed completely at random trough the table; b) missing 

values are distributed not at random; c) combination of both. 

 

 

 MCAR type of missing (see Figure 9a) gives independent observations of all 

variables.  In this case, missings are distributed randomly without forming any 

particular pattern (Fig. 9a). MCAR observations observed in data sets from this Thesis 

were missing measurements for a particular physicochemical parameter monitored in 

the DWTP plant. Some parameters were not measured at specific time due to a 

malfunction of analytical instruments, or due to the high cost of a particular 

measurement.  

 In contrast, when data sets include incompletely observed variables and censored 

data (values below LOD), it is observed NMAR type of missing (see Figure 9b). In such 

case, NMAR values typically form distribution patterns. This is the case for example of 

values of particular physicochemical parameters below the instrumental limit of 

detection (LOD) for a long time. NMAR was also observed in the sensory analysis 

study, presented in paper 6. Some panellists could not attend a particular taste session. 

As a result, their rates for 5 water samples, presented in this taste session, were missing. 

Also, missing values of UVVIS spectral measurements in paper 5 of this Thesis were 

observed. The optical probe failed to take records when spectral readings were out of 

the detector range or due to an expected electrical failure for a long period of time.  

 Experimental data may contain either elements missing completely at random 

(MCAR), or not (NMAR), but they often are present simultaneously in concatenated 

data sets (Figure  9c). 
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 Many methods for missing data imputation exist and many of them are based on 

iterative algorithms (Walczak and Massart, 2001a, b). 

 In this thesis, an imputation function, based on Principal component analysis 

(PCA) method  (Jollife, 2002) for the estimation of the missing values of MCAR type, 

was used. In this imputation, initially the estimation was performed replacing empty 

values by zeroes and then performing PCA. Subsequently, zero values are replaced by 

the new predicted values by PCA with a determined number of components, and with 

these new predicted values, again, a new PCA model is recalculated. This process is 

repeated until the empty values estimated by PCA converge – giving the same values.  

Measured values, observed below the LOD in this Thesis are considered of 

NMAR type. They were replaced with the half of their detection limit. This has been 

shown to be a proper method to deal with up to 30% below LOD values (Jain and 

Wang, 2008). 

 When missing  values are observed in large regions of UVVIS spectral data, or 

when panelists were not attending at a particular taste session, the substitution method 

was rather subjective and it was decided in function of the size of missing data. Entire 

rows (entire spectrum) or columns (panelists evaluations for different sessions) were 

eliminated from data analysis. In cases of recorded spectral data with small number of 

missing values, PCA imputation method was preferred.  

 

Data preprocessing 

The application of data pre-processing is required in order to facilitate the extraction of 

useful information from experimental data. There is no single, universal method of pre-

treatment to be generalized for all environmental data sets. The selection of the most 

appropriate pre-treatment techniques depends on several factors related to the data set 

structure, to the used techniques of measurement, to the type of information that is 

investigated, or to the prior knowledge about the data nature. With other words, the 

choice of the most appropriate method is subjective and depends mainly on the type of 

environmental problem or on the phenomenon under study. However, some 

recommendations can be given 

 Data pre-treatment methods, most frequently applied throughout this thesis have 

been autoscaling and meancentering procedures. Scaling methods were required since in 

all studies physicochemical parameters, UV spectral data or panellists rating data had 

differences in their units and scales. 
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- Meancentering 

This method subtracts the total mean from a variable (in column direction) for each 

observation. Thus, all mean-centered variables have zero means: 

zij = xij – 
_

x j          i = 1,...,I          j = 1,...,J  

I

ij_
i 1

j

x

x
I




                              (7)   

where zij is the new meancentered value, xij is the value of the sample i of the original 

variable j ; 
_

x j is the average of values for the original variable j.  

Meancentering performs a translation of the origin of coordinates from zero to the mean 

value of the data, thus variations from the mean are easier to visualize. This part of 

information, which does not change and is constant for the data matrix, is discarded. On 

the contrary, the preprocessed data emphasize the information related to the variance. 

Meancentering adjusts all values to vary around zero instead of around their mean. One 

drawback of this method is that it is not adequate for data with sub-populations with 

different variability (for example parameters measured in different units). 

Meancentering, then, is usually used in combination with other scaling methods. 

- Scaling 

Scaling is frequently used in environmental studies as a pre-treatment method. Its 

application is required when data sets consist of variables measured in different units, 

like data sets with physicochemical parameters such as pH, conductivity measured in 

S/m, concentrations of ions measured in mg/L and other parameters.  Scaling is 

performed as follows: 

ij

ij
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z

s
            i = 1,...,I          j = 1,...,J                                                       (8) 

where zij is the new scaled value and  sj is the standard deviation of all values of variable 

j . 

This method divides all values of a variable by its standard deviation. The goal is to 

obtain variables with homogeneous distribution in order to be easily compared. Every 

variable has standard deviation of 1 after scaling. Thus all scaled variables in the final 

data set have the same relative importance.  

- Autoscaling 
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This pre-processing method is a combination of meancentering and scaling. It is well–

known in chemometrics. It consists of mean-centering followed by scaling of all 

variables, both in column-wise direction.  

_

jij

ij

j

x x
z

s


            i = 1,...,I          j = 1,...,J                                                                 (9) 

where zij is the new autoscaled value, xij is the value of the sample i of the original 

variable j ; 
_

x j is the average of all values of variable j and sj is its standard deviation. 

 As a result, the mean of the variables is zero and their variance is adjusted to 

one. Thus, this method adjusts the independent variables to similar variance and makes 

them comparable. The distribution of the values of variables obtained after applying 

autoscaling is similar to the case of scaled but at the same time, variables experience a 

translation of their origin due to their meancenter. 

One possible pitfall of autoscaling is that sometimes meaningless variables can 

appear to be important just because scaling noise make them larger. In the framework of 

this thesis, autoscaling was used thoroughly as preliminary pre-processing technique for 

initial data screening and for more advanced chemometric analyses. Specifically, 

autoscaling was the preferred data pre-treatment for PCA, because in this case the main 

focus was on the description and investigation of data variance. 

 

2.2.3 Experimental Design 

 

Experimental design (Fisher, 1971) or design of experiments (DoE) is an 

important area of chemometrics. In a particular laboratory experiment, one or more 

variables (or factors) are usually changed to observe the effect that these changes have 

on one or more response variables (Martens and  Naes, 2001). Using DoE appropriately 

the obtained data will lead to valid conclusions. 

 In this Thesis, Paper 3 includes a DoE study to assess the effect of 

several important factors on trihalomethanes (THMs) formation in water treatment 

process. The investigated factors were the concentration of different DOM fractions, 

chlorine disinfectant dose, pH, bromide anion concentration and temperature. DoE 

offered the possibility to avoid expensive numerous experiments in order to obtain an 

optimal combination of investigated parameters. DoE designed a procedure in which the 

overall number of measurements was significantly reduced, thus, it resulted to be less 



  Chapter 2. Introduction 

64 

 

expensive, time efficient method. DoE resulted to be a very useful and effective 

approach compared to traditional techniques of analyzing one single variable at a time 

(OVAT).  In summary, the benefits from DoE over OVAT in this study were: 

1. DoE permitted to investigate several variables simultaneously and take into 

account their interactions under investigation (OVAT could not); 

2. DoE provided a global knowledge (in the whole experimental domain), while 

the OVAT would give only a local knowledge (only where the experiments 

have been performed); 

3. The quality of the information obtained by DoE in each point of the 

experimental domain was higher. 

4. The number of experiments required by the experimental design was optimal at 

reduced time.  

  

 As a first step of DoE, the objective function should be defined. In our case of 

study, the objective was to investigate the conditions, which favor the formation of 

target disinfection by-products (particular THMs). The second step included the 

determination of the set of factors (such as temperature, pH, organic matter 

concentration and etc) that affect the target and to select the most important of them for 

the study. The third step included the selection and planning of the experimental design 

(DoE permits laying out a detailed experimental plan in advance of doing the 

experiment). The fourth step included performing the experiment and the fifth step was 

analysis of the results using statistical techniques such as the analysis of variance 

(ANOVA), multiple linear regression (MLR) and response surface strategies.  

 Two designs - the Plackett–Burman (AMC, 2013) and the Box-Behnken design 

(Box and Behnken, 1960), have been used in Paper 3 in order to analyze the effects of 

factors such as concentration, temperature, pH on THMs formation. 

 Plackett–Burman screening design (PB) was chosen as a very economical DoE 

approach for preliminary screening among several factors with the goal of selection of 

the most influential. PB gives information only on the effects of single factors with two 

levels:  high level encoded as +1 and low lever encoded as –1.  PB allows studying the 

main effects of a large number (n) of variables with no more than n + 4 experiments. 

This method is well suited to establish whether the formation of a particular THM was 

affected by changes in the investigated factors without having preliminary knowledge. 

In Paper 3, five parameters (concentrations of organic matter, bromide ion, chlorine, 
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temperature and pH) were initially being considered, resulting with just eleven 

experiments to be carried out. The major drawback of PB design is that it does not 

account for the interactions between factors and therefore a new design for a more 

detailed factor investigation is needed. 

 A Box-Behnken design (BB) was chosen as a response surface design. The Box-

Behnken design enabled precisely to study the effect of the selected 3 factors -organic 

matter concentrations, chlorine and temperature, as well as to obtain response surfaces 

with a relatively few number of experiments. Three levels for each of the factors were 

used. It was especially useful to study the quadratic behavior of the factors.  One 

advantage of BB was that extreme combinations were avoided.  The corner points of the 

design are extreme points in terms of design region (concentration, or temperature 

range) where the experiment is performed (see Figure 10a). Also, BB has the possibility 

of a detailed assessment of the data information using the response surface methodology 

(RSM). The main goal of RSM was to visualize the surface of response of the selected 

parameters (see Figure 10b) in order to quantify their relationship and their response 

surfaces (Kwak, 2005).  

 

 

 

 

 

 

 

 

Figure 10. a) Graphical representation of Box-Behnken design; b) Response 

surface methodology plot of CHBr3 formation versus pH and bromide. 
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2.2.4 Principal Component Analysis 

 

 Principal Component Analysis (PCA) (Jollife, 2002) is probably the most used 

method in multivariate statistical analysis of data in the laboratory and in environmental 

monitoring studies.  

 PCA is based on the hypothesis that there are a small number of dominant 

factors (components) in the original data set with significant influence and which 

present the main sources of data variation.  These factors cannot be measured directly 

and usually are called hidden factors, since they cannot be directly experimentally 

observed.  

 Generally, a large part of the information contained in the experimentally 

measured variables is redundant (instrumental noise, natural variance, variables 

correlated with other variables and etc.) and therefore irrelevant for the problem under 

study. The purpose of PCA is to find and extract a new set of orthogonal coordinate 

axes called principal components (PCs), based on the linear combination of the original 

variables.  The projection of the original data onto these new axes provides a better and 

easier interpretation of the underlying phenomena or sources that are causing the 

observed data variance (see Figure 11). One advantage of PCA is that these new 

principal components are orthogonal. This means that the variance (information) 

explained by one principal component is different to the variance explained by another 

principal component, avoiding the overlapping of the information. In addition, the first 

component is calculated in the direction that explains the largest amount of variance, the 

second component the same for the residual variance, and successively the same for the 

following components.  

 

 

 

  

 

 

 

 

Figure 11 . Graphical representation of dimension reduction in PCA. New orthogonal axes 

calculated as linear combination of original variables. 
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 In matrix notation, the original data matrix is decomposed using a bilinear 

model, giving the product of two orthogonal matrices, T and PT  

D = TPT + E                                                                                                                  (10) 

 

 

 

Figure 12. PCA decomposition of sensory data matrix using three principal 

components  

 

 

where, D (for example – a sensory data containing fourteen panellist evaluations for a 

set of 25 water samples, Figure 12) contains the original experimental data; T is the 

scores matrix (map of samples), PT is the matrix of loadings (map of the variables) and 

E is the matrix of residuals. The product of the scores and loadings matrices for a 

defined number of PCs gives back to the original data matrix after noise reduction. 

Also, it is possible to write the PCA decomposition of X as the sum of a number of ti 

and pi vectors, where r is this number or the rank of the data matrix X, 

X = t1p
T

1 + t2p
T

2 + ... + tkp
T

k + ... + trp
T

r + E                                                               (11) 

r is usually much lower than the smaller dimension of X (rows or columns).  ti, pi  score 

and loading vector pairs are ordered by the amount of captured variance. ti  score 

vectors give information on how the samples relate to each other. pi loading vectors 

give information on how the variables relate to each other. 

The two most commonly used methods for data matrix decomposition are 1) the 

eigenvector decomposition of the covariance or correlation matrix and 2) the singular 

value decomposition or SVD of the data matrix. 

  

- Eigenvector decomposition of the covariance or correlation matrix 

The classical algorithm of data decomposition by PCA is based on the eigenvector 

decomposition of the covariance (when data have been mean-centered) or correlation 

matrix (when data have been autoscaled) of the variables. It is a relevant algorithm 
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when the number of samples is huge and the number of variables is small.  For a given 

data matrix X with m rows and n columns, the covariance matrix of X is defined as: 

1
)cov(




m

XX
X

T

,                                                                                                           (12) 

In the PCA decomposition, the pi vectors are called eigenvectors of the covariance 

matrix; that is, for each pi: 

cov(X)pi = λi pi ,                                                                                                           (13) 

where λi is the associated eigenvalue to the eigenvector pi.  The scores then are 

calculated as linear combination of the original X variables defined by the 

corresponding eigenvector:  

Xpi = ti ,                                                                                                                       (14) 

The scores ti are just projections of X onto the pi (Wise et al., 1990).  

 

- Singular value decomposition 

The most frequently used algorithm to decompose the original data matrix is the 

singular value decomposition or SVD (Golub and Van Loan, 1996). This data matrix 

decomposition is described by the following equation: 

D= U Λ1/2 VT,                                                                                                              (15) 

where Λ1/2 is the diagonal matrix with singular values as diagonal elements (square root 

of eigenvalues). 

The link between the eigenvector decomposition of covariance matrix in PCA 

and SVD  of the original data matrix can be figured out as follow: 

D=TPT (for eigenvector decomposition)                                                                    (16) 

D= U Λ1/2 VT  (for SVD decomposition),  and consequently:                                       

(14) 

T= U Λ1/2                                                                                                                     (17) 

P=V                                                                                                                             (18) 

 In PCA modelling, the most important step is to select a reduced number, r, of 

the most important principal components explaining meaningful information (variance). 

The remaining components (usually explaining only a small amount of the total data 

variance) give the residual PCA unexplained data matrix E. Thus, the main advantage 

of PCA  is to summarize only the relevant information that is contained in the original 

data matrix (eliminating the corresponding noise, error and natural variance). 
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 The selection of a number of components, throughout the studies of this Thesis, 

was done mainly by observing the size of the eigenvalues associated with these 

components. The eigenvalues are the square of the singular values found by SVD, and 

they reflect the amount of variance explained by each new component. So, the first 

eigenvalues are larger, and the rest of components vary very little for every new 

component. The number of components was chosen in a way that the addition of a new 

component provided additional relevant information in the context of the problem, or on 

the contrary, it was discarded and considered that it explained only experimental noise. 

The selected number of principal components has to be related to the number of sources 

and patterns of lineally independent variation present in the analyzed data.  

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 13. Plot of the eigenvalues versus principal components calculated for the 

water physicochemical parameters data example. 

 

 

For example, Figure 13 reports eigenvalues assigned for every PCs in the 

decomposition of the pre-treated original data matrix containing physicochemical 

parameters, measured for a set of water samples (analysed data in  Paper 6 , Material 

and Methods section).  The selected number of components was four in this case. The 

2nd, 3rd and fourth PC explain rather similar amounts of variance and since all al them 

presented an associated eigenvalue larger than 1 (with explained variance higher than 

the average per component), a model with four PC was selected.  
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 From the fifth component, the eigenvalues decreased smoothly and changed very 

little. Depending on the magnitude of the explained variance and on the individual 

contribution of original variables on each PC, it is possible to deduce the importance of 

the various environmental components, and also it is possible to determine the noise 

level of the experimental data. It is also useful to investigate the shape (profile) of the 

score and loading vectors. 

Loadings values (PT matrix of loadings) indicate the magnitude of the 

contribution of every original variable to every principal component. In case of water 

quality data, loadings will indicate the chemical composition or chemical profile of the 

identified sources. Variables with large values of loadings on the same component are 

assumed to correlate. If they present the same sign, they present a positive correlation. 

On the contrary if they present opposite signs, they correlate inversely (negatively). On 

Figure 14, two groups of inversely correlated physicochemical parameters are shown. 

Chloride, sodium and silica ions are positively correlated between them, but they are 

inversely correlated to pH, magnesium, calcium, bicarbonate and nitrate ions, which on 

the other side correlate positively between them. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 14.  PC2 loadings plot for the water physicochemical parameters data set. 

  

 The projections of the samples in the new space defined by the new principal 

components give the scores (T scores matrix). According to their distribution it is 

possible to group some samples according to the similarity of their score values. Also it 

is possible to elucidate the presence of samples with extreme score values. In the water 
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quality studies, the scores contained information about the water samples’ spatial 

distribution, time distribution or about the different water origins, as hidden patterns in 

the data.  For example in Figure 15, two sets of samples – bottled waters in red 

triangles, and tap waters in green asterisk, are easily distinguished by their visualization 

of the PC1 versus PC3 space.  

 

 

 

 

 

 

 

 

 

 

Figure 15.  PC1 versus PC3  loadings plot for  water samples presenting two types 

of water – bottled mineral (red triangles) and tap (green asterisks). 

 

 

 Generally, for a correct interpretation of the hidden data patterns, scores and 

loadings plots are analyzed together.  

 To resume the main benefits that can be obtained from the analysis of score and 

loading plots in PCA, the following aspects are considered 

On scores plot graphics: 

1. The distance among samples indicates similarity. Closely distributed samples 

show higher similarity than others plotted at a certain distance. 

2. It is possible to detect clusters of samples that show higher similarity among 

themselves. 

3. Using external information (meta-analysis), it is possible to distinguish the 

origin of these clusters (natural origins, chemical composition, physicochemical 

characteristics and etc.) 

4. Samples that are distributed far away from the centre of the plot can be 

considered as extreme observations or outliers. 

On the loadings plot: 
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1. The most important variables for the model should show larger loading absolute 

values. 

2. Variables close to the centre of the plot (close to zero on the two PC axes) do not 

contain relevant information to describe variance patterns. 

3. It is possible  to detect direct or inverse correlations among variables 

 

 

2.2.5 Multivariate calibration. Linear regression methods 

 

 Multivariate Calibration (Martens and Naes, 1991) is a very important area of 

chemometrics. This Thesis includes various studies which required the application of 

multivariate calibration methods in order to achieve prediction models.  Different 

concentrations of target analytes such as THMs, TOC and others (as predicted 

variables) were used in multivariate calibration methods to investigate analytical 

datasets, containing various quality control parameters (as predictors) such as 

physicochemical parameters or UVVIS spectral data. Also, the sensorial responses of a 

group of panellists were related to physicochemical parameters of different sets of water 

samples. The obtained, regression models could be used next to predict unknown 

concentrations or unknown sensorial responses from new samples. Generally, 

these regression models predict values of dependent (predicted) variable, indicated by 

the vector y, using a regression function, which is applied to the variables of the block 

of independent (predictor) variables, which are collected into the data matrix X 

(Martens and Naes, 1991). 

Multivariate calibration finds a mathematical relationship (regression) between 

these two blocks of variables: 

y = f(X),                                                                                                                         (19) 

 Among the most used multivariate calibration methods are the multiple linear 

regression (MLR), the principal component regression (PCR), the partial least squares 

regression (PLS) and the support vector machine regression (SVR) methods (the last for 

non-linear type of data). 

  

Multiple linear regression (MLR) 

 MLR relates the concentrations of a target analyte y (for example one of the four 

target trihalomethanes concentrations, THMs, modelled in Paper 1 of this Thesis) to a 
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series of recorded DWTP parameters collected in X matrix, using a regression vector b 

(Brereton, 2003): 

 

y = Xb + E,                                                                                                                  (20) 

 

where E is a residual matrix with the same dimensions as X.  

 Each row of X corresponds to a set of DWTP operational parameters measured 

at different plant locations at define time. Each row of y corresponds to the 

concentrations of a specific THMs target analyte measured at the same time at the exit 

of plant.  

 MLR models the relationship between these DWTP predictor parameters and the 

predicted target analyte values by fitting a linear equation. MLR maximizes the 

covariation between X and y to obtain the best estimation of y.  

The b regression coefficient vector is estimated by the equation: 

b= (XTX)-1XTy,                                                                                                            (21) 

 

where XT is the transposed matrix of X (rows in X become  columns and vice versa). 

The “-1” indicates that (XTX) have been inversed. (XTX)-1XT  is called the pseudo 

inverse matrix of X, because X is not square in general and cannot be inverted. 

Each bi regression coefficient represents the change in yi relative to a one unit 

change in the respective Xi independent variables. For instance, b1 is the change in y1 

relative to a one unit change in X11, holding all other independent variables constant 

with fixed values. Very important step in MLR modelling   is to undergo statistical test 

to assess whether each regression coefficient is significantly different from zero. This 

process selects the more important DWTP parameters (X variables) for the target THM 

compound formation. 

In the second step of multivariate calibration, the prediction of the concentration 

of  the target analyte is possible  from a new dataset by  multiplying the new dataset by 

the previously obtained regression vector during calibration,  

 

yunknown = Xnew b,                                                                                                          (22) 

 

 

The main drawback of MLR is the co-linearity problem in X variables. This 

happens in situations where some of the variables (columns in X) are linear combination 
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of the other variables apart from the noise. In other words, when a linear dependence 

exists among the variables (Martens and Naes, 1991). Many multicollinear variables 

would result in an unstable regression equation (because of the difficulty in precise 

estimation of X pseudoinverse) with a consequent difficult interpretation of regression 

coefficients and unreliable prediction (Todeschini et al., 2004). 

             

Stepwise Multilinear Regression (SWR) 

Stepwise Multilinear Regression (SWR, Draper and Smith, 1981) is a particular 

case of MLR, based on the forward (or backward) selection, which consists of first 

classifying the predictor variables according to their statistical significance, and next 

including one variable at a time at different steps. At the end of the process only 

statistically significant variables are included to build the model. Again, problems may 

happen when predictor variables are highly correlated and when there is the possibility 

of one input variable masking the effect of another input variable. Very often, the 

achieved models include variables depending on starting choices and insertion strategies 

(Esbensen et al, 2000). Regression coefficients are obtained using finally selected 

variables and ordinary least squares estimation. 

 

Principal component regression (PCR) 

 Principal component regression combines first PCA data compression of the 

predictor data matrix X and a further MLR regression step after data compression 

(Geladi and Esbensen, 1991). Calculation of the pseudo inverse matrix of the data with 

orthogonal PCs is improved, rather than with the original X variables. PCR estimates 

first PCA scores (T) and loadings (P), and then then as a second step, MLR is carried 

out using the following equation: 

y =Tq + e,                                                                                                                     (23) 

where y denotes actual values of the  predicted variable, q are the  y-loadings for PCR 

model and e is the error vector (unexplained part of y by the PCR model). The y-

loadings q are calculated using the least squares approach:  

q=T+y (TTT)-1TTy                                                                                                        (24) 

In case of multicolinearity, PCR provides a very stable matrix inversion (TTT)-1TT in 

contrast to the MLR matrix inversion shown in Equation (21), because the PCA scores 

are orthogonal to one another.  

Regression coefficients can be calculated as follow: 
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bpcr=Pq,                                                                                                                         (25) 

and they are used for further prediction of unknown samples. 

The main drawback of PCR is the possible data overfitting in case of too many 

PCs included in the model, leading to a very sensitive model for unforeseen 

disturbances. The proper selection of PCs includes several model validation procedures 

(discussed in section 2.2.8). Another drawback of PCR modelling is that it relies on 

using the principal components as predictors for the responses, but principal 

components do not necessarily correlate well with Y. As possible solution to overcome 

such a problem, some authors (Mason and Gunst, 1985) suggested selecting only the 

latent variables, correlating maximally with the responses, or more common in 

chemometrics using the PLS method (see below) 

 

Partial least squares regression (PLS) 

 MLR and PCR show some limitations because both assume that there is no error 

within y measurements. Thus a new chemometric method dealing with the experimental 

noise in y such as the partial least squares regression (PLS) method was needed. 

 The PLS regression (Geladi and Kowalski, 1991) belongs to the family of 

inverse regression methods in which the calculated model relates the latent variables X 

(matrix of predictor variables) with the y (predicted variable), intending to maximize the 

covariance between X and y.  

The general equation of the inverse regression methods model is defined as: 

y = Xbpls,                                                                                                                       (26) 

 Where X  (matrix of predictor variables with dimensions m x n) and y (vector of 

predicted variable with dimensions m x 1) are represented by their latent variables:  

X= TplsPpls’ + E,                                                                                                            (27) 

y= Tplsq + f,                                                                                                                   (28) 

and b (m x 1) is the vector of calculated regression coefficients in the calibration step.  

The matrix W (weight matrix) in the next equations reflects the covariance structure 

between the X predictors and y predicted variable and it is calculated and used in the 

estimation of the regression vector. 

 

bpls= X+y,                                                                                                                      (29) 

bpls=Wpls(PT
plsWpls)-1q,                                                                                                (30) 

Therefore, the b regression vector can be expressed as function of T, P, W and q. 
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There are two main versions of PLS models based on the number of predicted 

variable. In PLS1, only one variable (y vector) has to be predicted and in PLS2, several 

variables (Y matrix) are simultaneously predicted. In this Thesis only PLS1 method was 

used to predict one by one different target properties such as concentrations of  

individual THMs; the mean liking vector of all panelists ratings of water samples and  

nitrate and total organic matter concentrations in wastewater samples. 

 

The interpretation of latent variable scores, loading and weights plots are similar 

to the interpretation of score and loading plots from PCA model. 

Several criteria have been followed to build a PLS model: 

1. Data pretreatment. This is an important step in order to achieve a 

good PLS model. Both X matrix and y vector should be 

pretreated simultaneously in order to compensate offset 

differences (meancentering) or differences in the measurement 

scale of all variables (autoscaling). However, other methods are 

useful also and depend on the case of study. 

 

2. Selection of the number of latent variables in PLS modeling. One 

common method to select the number of LVs is the cross-

validation in the internal calibration of the PLS model, in which 

different samples are used to construct the model and to validate 

it. The optimal number of selected LVs of PLS model has to 

report the smallest residual variance of y in the cross-validation. 

However for a particular practical application, the best selection 

of latent variables will be achieved when external validation 

procedures are used (see section 3.8). In both cases, the 

percentage residual variance is calculated as: 
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where ŷij is the predicted value and yij is the actual (measured) value. 

 Due to the large number of variables (physicochemical parameters or spectra) 

included in the studies of this Thesis, a variable selection method was needed to identify 

the most relevant variables to give a better interpretation of the results or to conduct 

more specific work as it was described in paper number 5 (development of an automatic 

system with an optical probe based on the measurement of a reduced number of UV 

wavelengths). 

 The Variables Importance in Projection method (VIP)  is a variable-selection 

technique, used to summarize the influence of individual X-variables on the PLS model 

(Wold et al., 2001). VIP is calculated from the weighted sum of squares of the PLS 

weights, w*, which take into account the amount of explained y variance by each latent 

variable. VIP scores works as a summary of the variables which contribute to the most 

of the y variance. For a given model and problem there is one VIP-vector, summarizing 

the importance of X variables  for the prediction of y. 

The VIP value for the jth variable is given as  

                                                           (32) 

Where wjf is the weight value for variable j component f, SSYf is the sum of squares of 

explained variance for the fth component and J number of variables. SSYtotal is the total 

sum of squares explained of the dependent variable, and F is the total number of 

considered components. VIPj is a measure of the contribution of each X variable 

according to the y variance explained by each PLS model. Since the average of squared 

VIP scores equals to 1, the ‘greater than one rule’ is generally used as a criterion for 

variable selection (Chong and Jun, 2005). Figure 16 shows a typical plot of VIP for 

physicochemical parameters used as predictors (X data matrix) in the PLS modelling of 

overall water taste liking (y predicted vector) in Paper 6. Parameters like Cl-, NO3, Na 
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and others present VIP scores above the threshold value of one and, thus they are 

considered to be significant  for the PLS model. 

 

 

  

 

 

 

 

 

 

Figure 16. Plot of VIP (variable importance in projection) scores for 

physicochemical parameters related to the water taste liking. Parameters with VIP 

scores above the threshold value of one (red dotted line) were considered 

significant in the PLS model. 

 

 

2.2.6 Outliers inspection 

 

The detection and elimination of outliers is a crucial step in many circumstances 

for a proper PCA, PCR and PLS modelling. 

A very useful chart for the detection of outliers is presented on Figure 17, where 

T2 hotelling values (leverage) presents the sum of the normalized squared scores and Q 

residuals, which is the measure of the difference, or residual, between a sample and its 

projection on the k principal components retained in the model.  

 For a suspected sample to be considered as an outlier, it is recommended to 

observe its leverage in the model and to check if the model explains it correctly. 
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Leverages of a PCA model indicate how much influence each sample has on the model.  

The leverage of a sample is related to the magnitude of the score for this sample. 

Samples with high leverage cause the principal components to rotate towards them. 

Leverages can be used to find very important observations as well as detecting potential 

outliers.  

 Another useful statistics for outlier detection is Q statistics of a sample. The Q 

statistics indicates how well a particular sample conforms to the model. It gives a 

measure of the difference, or residual, between a sample and its projection on the k 

principal components retained in the model. Samples with very high residual are not 

well explained by the model.  

On the graphics of leverages versus residuals (Figure 17), samples that present a 

large leverage and a large residual (upper right part of the plot) can be considered to be 

outliers and should be omitted from the data, and the model should be recalculated. 

Samples with high leverage but with low Q residuals (bottom right part of the plot), can 

be considered to be extreme objects and to be the most influential in the model, 

however, after subsequent investigation of their origins and nature. Samples with high 

Q residuals and with low leverages (upper left part of the plot) present observations that 

are not well explained by the model. After subsequent inspection of their nature and 

origins, they can be retained as part of the data for analysis, expecting to feature a new 

pattern, still not explained by the actual model. Samples with low Q residuals and low 

T2 (bottom left part of the plot) can be considered to be well explained by the model and 

should be retained. 
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Figure 17. Plot of Hotelling's T2, and of Q residuals contributions of different 

samples. Four different cases can be encountered for different combinations of T2 

and Q. 

 

 

2.2.7 Multivariate calibration. Non-linear regression methods 

Multivariate linear techniques, such as MLR, PCR and PLS, are usually used in 

water quality investigations, but they strictly rely upon the hypothesis that relationships 

between the predictor variables and the target analyte have a linear dependence with 

little departure of this condition. In practice, however, some water chemical systems and 

processes can display nonlinear relationships (Milot et al., 2002; Baxter et al., 2001). 

Thus, linear methods may be inappropriate for modelling them.  

 Modelling nonlinear chemical systems is a challenging task, since the analytical 

form of the relationship between measured variables and the target property of interest 

is generally unknown.  

 Several nonlinear techniques have been proposed to cope with nonlinearity in 

chemical data such as: smoothing with a multiple additive regression technique, 

SMART (Friedman , 1984); multivariate adaptive regression splines, MARS (Friedman 

, 1991);  artificial neural networks, ANN (Himmelblau, 2008); and radial basis function 

networks ,RBFN (Moody and Darken, 1989) and others. 

 These nonlinear methods can handle a large number of nonlinear chemical 

problems, but also they show significant drawbacks. For example, many of these 

methods require many terms and parameters to be adjusted. This task is usually time-
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consuming and tedious, thus they are difficult to be used for routine applications. On the 

other side, ANN  suffers from local minima and usually reports too optimistic results 

(due to over-fitting problems) resulting in not stable, inaccurate models, and showing 

poor prediction results for samples not included in the calibration set (Shawe-Taylor 

and Cristianini, 2004).  

 Among the possible nonlinear modelling techniques to use for the goals of this 

study, a particular class of methods, i.e. kernel-based methods like Support Vector 

Machines, SVM (Vapnik, 1998) and kernel-PLS methods (Dayal and MacGregor, 1997) 

were used in this Thesis. These two methods were distinguished from the rest because 

they are relatively easy to use and they usually report very accurate prediction results.  

 The advantage of these two methods comes from: 1) the original data are 

transformed using the so called kernel trick; 2) a linear PLS regression or in case of 

SVM – the e-insensitive linear lost function (Vapnik, 1995) are applied to the kernel 

transformed data. Thus, if non-linear aspects exist in the data, they can be captured by 

the kernel, and the simplicity and good statistical properties of linear regression 

techniques can still be reserved.  

Many kernel functions can be used and the choice of kernel transformation is user 

dependent. The simplest kernel is just the dot product of the data matrix by its transpose 

(the covariance data matrix), called also linear kernel. Probably the most popular kernel 

function is the radial basic function RBF (Rosipal and Trejo, 2001). RBF has a tuning 

parameter - the Gaussian width, which is necessary to be optimized, because it has an 

influence on the predictive ability of the model. 

 

 

Radial Basis Functions - Partial Least Squares Regression (RBF-PLS) 

 

Walczak and Massart (1996a) proposed a radial basis function kernel to perform this 

kernel transformation, followed by the application of PLS regression. RBF kernel 

performs a nonlinear transformation of the input variables X into a new feature higher 

dimensional space, which is called the activation matrix A, which uses the following  

radial basis mapping function, 
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where   is the RBF, characterized by the center and the width parameters. The most 

frequently used type of RBF is the Gaussian function, which calculates every element 

from A as it is follows: 

2

2)(
exp)(

j

ij

ijij

xx
xxa




 ,                                                                         (34) 

where i = 1,2, …,m; and j = 1,2,…m. The center and width of the jth radial basis 

function are xj and σj respectively. The Euclidian distance measure is denoted as . 

 The obtained activation matrix A is a squared symmetrical matrix (m x m) with 

ones on its diagonal. A is also independent of the number of variables in the original 

data, and it is only determined by the number of samples in the data (Walczak and 

Massart 1996b). 

Such kernel-transformed data is multicollinear and the regression problem cannot be 

solved with the standard multiple linear regression method (MLR). PLS regression 

offers a good solution for handling multicollinearity and it is then applied to model the 

relation between the matrix A and the target property, y. 

 Centered data from A and y are then projected onto the low dimensional score 

matrices  T and U respectively (see equations 35  and 36), during PLS modeling. 

A=TP’+E,                                                                                                                     (35) 

y= Uq’ + f,                                                                                                                    (36) 

The linear inner relation between the score matrices T and U became as follows: 

U =T +H,                                                                                                                      (37) 

and finally 

y= Tq’ + f,                                                                                                                    (38)                                                              

 where  E, f , f* and H are residual vectors or matrices.  

This avoids calculating the coordinates in the feature space which is a rather 

difficult task for a highly dimensional feature space. The major benefit of RBF-PLS is 

that using the kernel function (i.e. the dot products in the feature space) avoids non-
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linear optimization procedures and allows the use of much simpler and more reliable 

linear PLS regression algorithm later. 

 A cross-validation procedure (please refer to section 2.2.8) should be used to 

select the optimal number of factors. The performance of RBF-PLS depend 

significantly on the width of the Gaussian functions (Walczak and Massart, 1996a) and 

this parameter has to be optimized by searching over a predefined range without any a 

priori knowledge about the data distribution. Once the RBF-PLS model is constructed, 

it can be used for prediction of new samples.  

 A user-friendly graphical interface, based on a collection of MATLAB m-files, 

called TOMCAT, Toolbox for Multivariate Calibration Techniques, was used in the 

work for RBF-PLS calculations (Daszykowski et al., 2007).  The graphical user 

interface and their routines are freely available. 

 

Support vector machines regression (SVR) 

 Support vector machine (SVM) is a method developed in the frame of the 

machine learning theory (Vapnik, 1995), implemented for structural risk minimization. 

 SVM gained recently interest because of its advantages to find global optima, 

and to provide a good generalization with a reduced number of samples in sparse and 

high-dimensional spaces (Cristianini and Shawe-Taylor, 2000). Initially, SVM was 

applied to solve classification problems, but later it was extended to solve non-linear 

regression problems with the introduction of the ε-insensitive loss function for 

regression.  

Support vector regression methods (SVR) start with the mapping of the original 

data matrix X (in a similar way as RBF-PLS) into a higher-dimensional feature space 

using a kernel function and then, a linear regression is performed. Using mathematical 

notification, the linear model  f(x, ω) in the feature space can be written as follows:  

f(x)= bxx
m

ji

ji 
1,

)()(  ,                                                                                      (39) 

where , is the nonlinear transformation (nonlinear mapping function) of the original 

variables X, and ω (weight vector) and  b (bias) are the coefficients of the linear model 
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that can be obtained by solving a quadratic programming optimization problem. The 

usual process of building SVM models includes an approximation performed by using 

different types of kernel functions. The SVR regression equation described above, can 

be rewritten including the mapping function (kernel function) notation as follows: 

  f(x)=  bxxK ji

m

j




),(
1

  ,                                                                                   (40) 

where the kernel function K(xi,xj) can be a linear, a polynomial, a sigmoid or the one 

previously mentioned and used in this Thesis – the radial basis function (RBF). In this 

way, the nonlinear separable problem becomes linearly separable once the original data 

is mapped onto a high-dimensional feature space. 

The coefficients of the regression model are estimated by minimizing a square 

error function, which can be defined as an empirical risk loss function, which indicates 

the quality of the estimation (Kao et al., 2013). SVR calculates a loss function (ε-

insensitivity loss function) defined as the one which at most has an ε- deviation from the 

expected values, for all the training data, and at the same time it is as flat as possible 

(Martinčič et al, 2015). The loss function (L) used to measure the quality of the 

estimation is: 
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Where, y is the target property (the concentrations of a particular THM), and ε is a user 

–defined parameter for the region of ε-insensitivity. Zero is observed when the 

predicted values do not exceed the defined band region. On the contrary, if the predicted 

values are out of the band region, the loss equalizes the difference between the predicted 

values and the margin (Kao et al., 2013). 

The weigh vector ω is calculated by minimizing the following regularized  

empirical risk function as follows: 
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Where, the objective function 
n

  is a regularization term, which specifies the 

trade-off between the model complexity and the approximation to the accuracy of the 

model. Thus, this model would show better generalization properties. C is a user 

defined regularization parameter, which affects the trade-off between the regularization 

term and the empirical risk. 

Taking into account the empirical risk and the structure risk, the optimal solution is 

transformed into the following constrained expression with slack variables (Vapnik, 

1998), which can be solved as a quadratic optimization problem: 

Minimize )(
2

1 *

1

2

i

n

i

iC   


,                                                                      (43) 

subjected to the constraints: 
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Where *

ii  are called the slack variables and they should be positive on sign. They are 

used to measure the deviation of training samples outside the -insensitive region. In 

other words,  the model complexity consists of the error of the training data with an 

added penalty term as *

ii  slack variables (Liu et al., 2014). 

As mentioned before, Equation 43 can be solved as quadratic programing problem using 

the Lagrange multipliers. The general expression of SVR function can be presented as 

follows: 

  f(x)=  bxxK jii

n

j

i 


),()( *

1

 ,                                                                     (45) 

where 
*, ii  ≥ 0 are called the Lagrange multipliers , which satisfy the equalities 

CC ii  *0;0   and C is the above mentioned regularization parameter, that 

specifies the tradeoff between the model simplicity (and hence its generalization), and 

the training error, allowing for some data fit losses (Üstün et al., 2007). Some of the 
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Lagrangian multipliers are zero corresponding to the data concerning the inside of the e-

insensitive tube. Data values with nonzero Lagranjgian multipliers *, ii  are called 

support vectors. In other words, support vectors are those data points that “support” the 

construction of the regression function. There are two types of support vectors (Noori et 

al., 2011). A first type of support vectors have values of the weights less than C and 

thus, are called margin support vectors. A second type of support vectors have values 

equal to C and thus, are called error support vectors. The margin support vectors are 

found on the margin of the ɛ-insensitive tube, while the error support vectors are outside 

the tube (see Figure 18). 

 
Figure 18.  SVM  non-linear regression function with ɛ-insensitive band and ξ slack 

variables 

The complete SVR equations can be found in Schölkopf and Smola, (2002), 

Vapnik (1995) and  Vapnik (1998).  

Once SVR calibration model is constructed, it can be used to predict unknown y 

values from new X values.  

SVR performance (estimation accuracy) depends on the proper adjustment of the 

parameters C,  and of the kernel parameters, which are usually user-defined. The most 
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popular method for parameter optimization (also applied in this Thesis) is the cross 

validation procedure, using a comprehensive grid search procedure over all possible 

values of the parameters (Luts et al., 2010). Many software packages like STATISTICA 

(StatSoft, Inc., Tulsa, OK, USA), PLS_toolbox (Eigenvector Research, Manson, WA, 

USA) and also toolboxes such as libSVM (Chang and Lin, 2001) or the SVM package 

of Steven Gunn (Gunn, 1998), provide MATLAB routines for  SVM regression 

calculations.   

 

2.2.8 Model validation and error measurements 

 

The purpose of model validation is to evaluate the performance of multivariate models 

for discrimination and prediction purposes. The goal is to obtain a good model able to 

make accurate predictions when applied to new data and to give reliable and 

interpretable results. 

Usually, first PCs or LVs capture (when dealing with PCA or PLS respectively) 

the most significant part of the variance, while the noise is being modelled by the other 

higher PCs or LVs. To reach the optimal number of PCs and LV to build a good model, 

its proper validation is required. There are many validation methods to optimise a 

particular model and thus, to assess its future performance. In the six case-studies of this 

Thesis, different techniques have been used for validation such as the prediction of 

training set of data or self-prediction, the internal cross validation and the external 

model validation, which are described next in more details. 

 

- Prediction of training set of data (self-prediction)    

 

This is obtained using the root mean square error of calibration (RMSEC). RMSEC is 

a measure of how well the model fits the data: 

 

n
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where the iŷ  are the values of the predicted property (for example trihalomethanes 

concentrations) and yi are the actual measured experimental values for calibration (training)   

samples included in the development of the model and n was the number of them.  Usually as 

the number of components increases, the RMSEC decreases and therefore this method was not 

preferred due to the always improving fitting just by increasing the number of components, 

leading to overfitting.  

 

 

- Internal model validation (cross-validation, CV) 

 

The use of internal model validation or cross validation is usually an important step in the 

correct selection of the number of components. Using this method (Brereton, 2003), a few 

samples are left out from the calibration data set and the model is built with the remaining 

samples. Then, the values of the left out samples are predicted and the prediction errors 

calculated. The process is repeated then with another subset of the calibration samples until all 

samples had been left out.  

Various schemes of samples subsetting for CV are available. A very popular method is the 

Leave-One-Out (LOO) CV method. However it works properly only for small data sets 

(citation).  Figure 19 illustrates graphically the process of this method: 

 

 

 

 

 

 

 

 

 

 

Figure 19. Graphical representation of leaving-one-out procedure. 

 

 

LOO method extracts one sample (row) from both X and y, which  is left out, then a 

new model is built (with a number of components) with the remaining samples, and used to 

predict the y data from all X. Finally, the predicted residual error sum of squares (PRESS) is 

calculated as follows: 

 

,                                                                          (47) 

 

PRESS   is calculated from the squared differences of actual (true) yi and predicted 

values yi for every particular sample extracted and for every model with m principal components 

or latent variables. This process is repeated with all of the samples so that each row will have 
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been left out and predicted once. The sum of PRESSm values gives the cumulative 

PRESS (CUMPRESS) value for the model with m components. 

The root mean square error of cross validation (RMSECV) is obtained using the 

expression as follows:    

 

 

,                                                                                           (48) 

 

where I is the total number of samples in the calibration set. This is repeated for the 

different tested models with different number of components.  

Other methods for cross-validation are: 

1. Segmented cross-validation, where data are divided in certain random 

segments (typical number for instance is 10 segments or 10% of samples per segment) 

2. Systematic segmented cross-validation, where a constant number of samples 

is left out at a time (typical example includes samples with replicates). 

RMSECV is plotted as a function of the number of components. The minimum 

of this curve usually agree with the optimum number of components (or latent 

variables) to consider in the final model. 

 

- External model validation 

 

This is certainly the most accurate and reliable method of model validation. The 

models should be successful in prediction of new, unknown samples. When CV is used, 

the influence of intrinsic sources of errors and instrument noise can be diminished, 

however, CV is not able to account for the correlation among dependent variables Y. In 

order to validate externally a model, the data have to be split (usually randomly) first on 

two data subsets. The most frequently used method for random splitting of data on two 

sets has been the Kennard –Stone method (Kennard and Stone, 1969). The first set is 

called the calibration (or training) subset and the second is called the validation subset 

(test data).  

The root mean square error of prediction (RMSEP) is calculated as follows: 
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where the iŷ  are the values of the predicted values by the model, yi are the actual 

measured values of the external validation (test) samples and n was the number of them. 

 In practice, RMSEC, RMSECV and RMSEP (if possible) are plotted against the 

number of components (as in Figure 20). Whereas RMSEC (very often) and RMSECV 

(sometimes) can give misleading results and overfitting problems, the independent 

external dataset validation is more accurate.  

 

 

 

 

 

 

 

 

Figure 20. Examples of PLS prediction errors in calibration (RMSEC), in internal 

cross validation (RMSECV) and extrernal validation (RMSEP). 

 

From the plot above (Figure 20), RMSEC does not suggest a define number of LVs 

to be selected. On the contrary, RMSECV and RMSEP clearly point out that the correct 

number for LVs would be 2.   

Some others errors estimations used for model efficiency diagnostics are: 

 - Relative errors of concentration prediction in percentage, for both, calibration 

and prediction step: 

 Rel. error in % = 
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 - Bias or average values of residuals between the actual and predicted values: 
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bias = 
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where iŷ and yi were defined above:         

 -  SEP, Standard error of performance, which is calculated as follows: 
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This section summarizes six articles suggesting the application of various chemometric 

methods for water quality research. The articles are organized in three main blocks 

according to the main objectives. More specifically, the blocks contain the presentation 

and analysis of experimental data obtained: 1) in the Sant Joan Despí drinking water 

treatment plant (SJD-DWTP); 2) in laboratory experiments with simulated water 

disinfection conditions; 3) in laboratory experiments with water sources from the water 

distribution system of Barcelona (WDS); 4) in the TRARGISA wastewater treatment 

plant (WWTP); and 5) in sensory tasting experiments.  

 

 

3.1 Chemometrics modeling of the trihalomethanes formation in a 

DWTP and in laboratory conditions 

   

The formation of trihalomethanes (THMs) in Sant Joan Despí drinking water 

treatment plant (SJD-DWTP) Barcelona is associated with potabilization procedures 

employed to guarantee sufficiently high quality of drinking water. To the extent that 

such procedures may result in the formation of high THMs concentrations and may 

impede compliance with the established sanitary limits according to the EU guidance, it 

is important to identify which are main factors affecting THMs formation.  

 In this subsection, the empirical results of three papers dealing with the THMs 

formation are discussed. The papers comply with the main objectives of the Thesis in 

the following aspects: 

 

2. Development of reliable empirical models for trihalomethanes formation based 

on multivariate analysis of real DWTP parameters data by applying and 

comparing different linear and nonlinear chemometric methods; 

3. Review of the most important parameters influencing THMs formation from the 

achieved models; 

4. Comprehensive assessment of natural organic matter (NOM) role in THMs 

formation when DWTP operational disinfection conditions were simulated in 

specially designed experiments. 

 

 The first two papers present results from chemometric modeling of THMs 

disinfection by-products (CHCl3, CHBr3, CHCl2Br, and CHBr2Cl) generated in water 
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treatment processes implemented at the SJD-DWTP. Both papers investigate the linear 

and nonlinear relationships among THMs in finished drinking water and various 

operational parameters, monitored in different treatment processes and plant locations. 

Various chemometrics techniques, such as principal component analysis (PCA), 

multilinear regression (MLR), stepwise MLR (SWR), principal component regression 

(PCR) and partial least squares regression (PLS), Kernel type (radial basis functions) 

Partial Least Squares (K-PLS) regression and Support Vector Machines (SVR) 

regression, have been used and compared to model, predict and visualize the complex 

behaviour observed for the measured trihalomethane concentrations. The major 

operational parameters have been determined in order to match targeted objectives. 

 The third article of this block proposes a chemometrics assisted methodology for 

the interpretation of THMs speciation, when natural organic matter (NOM) reacts with 

chlorine in simulated disinfection reactions, conducted in laboratory. Two experimental 

design strategies were applied in order to evaluate and describe some of the major 

factors determining the reaction of THMs formation. Results suggest that NOM 

fractions are of high relevance for THMs speciation during their formation.  

 

 

3.1.1  Article 1 – Platikanov, S., Puig, X., Martin, J. and R.  Tauler. 

Chemometric modeling and prediction of trihalomethane formation in Barcelona’s 

water works plant. Water Research 41 (2007) 3394-3406. 

  

Introduction 

It is of great importance to set different treatment or operational strategies in DWTP that 

reduce THMs formation in finished drinking water.  The literature provided different 

types of THMs formation models such as kinetic models in laboratory conditions, 

deterministic models from laboratory and field studies, and multivariate empirical 

regression equations from field studies.  Although traditional empirical regression 

models can be adequate in some cases, such models require the use of many operational 

parameters that are monitored over a large period of time.  

 Chemometrics provides different tools and techniques which may be particularly 

useful to work with multivariate data obtained from DWTP processes. The most popular 

chemometrics methods to empirically analyse THMs formation according to the 

literature as shown in Table 4 of Section 2.1.6, were multiple linear regression (MLR) 
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and nonlinear neural networks regression approach (NN).  Because MLR has limitations 

(such as the inclusion of a large number of multicorrelated parameters in the estimated 

model) and Neural Networks is a rather complex approach for application on a daily 

basis, other chemometrics regression methods are proposed. In this paper, chemometrics 

regression techniques such as Principal Component Regression (PCR) and Partial Least 

Squares Regression (PLS) were suggested for data modelling and compared with MLR.  

 The data consisted of twenty-three physicochemical parameters generated in the 

SJD-DWTP operational processes (i.e., explanatory variables), along with four THMs 

concentrations and their total sum (i.e., dependent variables). A feature of the data that 

is worth mentioning is that these data contained operational parameters monitored at the 

sand filtration, at the carbon filtration, after post-chlorination and at the exit of the plant 

(please refer to Figure 1 of the Article 1). Data were generated for 162 days including 

all four seasons during one year. Data were split into a calibration subset, containing 

samples for 144 days, and a subset for external model validation, containing samples for 

18 days. Detailed information about all analyzed parameters is provided in Table 1 of 

Article 1. After data were conveniently organized for multivariate analysis in matrices, 

they were autoscaled with the objective to eliminate offsets and changes in 

measurement units prior to the multivariate analysis. 

 The first stage was to perform multivariate data exploration by examining 

descriptive statistics and by applying Principal Component Analysis (PCA) method. At 

the second stage, a linear regression analysis was conducted. More specifically, the 

estimated model had DWTP operational parameters as independent variables and the 

THMs concentrations as dependent variables. In this part, four chemometrics linear 

regression methods were used and compared: Multilinear Regression (MLR), Stepwise 

Regression (SWR), Principal Component Regression (PCR) and   Partial Least Squares 

Regression (PLS). The regression analysis included first, model calibration, and then, a 

subsequent model validation. 



98

Available at www.sciencedirect.com

journal homepage: www.elsevier.com/locate/watres

Chemometric modeling and prediction of trihalomethane
formation in Barcelona’s water works plant

Stefan Platikanova, Xavier Puiga, Jordi Martı́nb, Romà Taulera,�
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a b s t r a c t

Formation and occurrence of trihalomethanes (CHCl3, CHBr3, CHCl2Br, and CHBr2Cl) are

investigated in water chlorination disinfection processes in the Barcelona’s water works

plant (WWP). Twenty-three WWP variables were measured and investigated for correlation

with trihalomethane formation. Multivariate statistical methods including principal

component analysis (PCA), multilinear regression (MLR), stepwise MLR (SWR), principal

component regression (PCR) and partial least squares regression (PLSR) have been used and

compared to model and predict the complex behavior observed for the measured

trihalomethane concentrations. The results, obtained by PCA as well as the evaluation of

the statistical significance of the coefficients in the linear regression vectors, revealed that

the most important WWP variables for trihalomethane formation were: water temperature,

total organic carbon, added chlorine concentrations, UV absorbance and turbidity at

different sites of the WWP, as well as other variables like wells supply flow levels and

carbon filters age. Overall, MLR and PLSR methods performed the best and gave similar

good predictive properties. Best results were obtained for the total sum of trihalomethane

concentrations, TTHM, with average modeling and prediction relative errors of 12% and

16%, respectively. Among the individual trihalomethanes, the concentrations of CHBr3

were the worst predicted ones with average modeling and prediction relative errors

between 21–25% and 29–31%, respectively, followed by CHCl2Br with 23–26% and 25–27%.

Better predictions were obtained for the concentrations of CHBr2Cl with relative modeling

and prediction errors varying between 14–17% and 21%, and for the concentrations of

CHCl3 with 21–24% and 23–25% errors, respectively.

& 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Trihalomethane compounds (THMs) are a set of compounds

ubiquitously formed by the interaction between organic

chemical compounds present in surface river waters with

disinfection oxidant products like chlorine and chlorine

dioxide (Rook, 1974; Richardson, 2002). In particular, the

compounds considered in this study are chloroform ðCHCl3Þ,
bromodichloromethane ðCHCl2BrÞ, chlorodibromomethane

ðCHBr2ClÞ and bromoform ðCHBr3Þ. The presence of these

compounds in domestic waters is undesirable because of

their negative effects on human health (McGeehin et al., 1993;

Simpson and Hayes, 1998). Their formation is a consequence

on one hand of the presence of organic matter in surface

waters and, on the other hand, of potabilization procedures

usually used in water supply plants. Since these procedures

are usually necessary to guarantee the quality of consume

waters, the main question is therefore, to have quality control
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procedures to predict and avoid the raising of trihalomethane

concentrations to levels below the recommended limits for

sanitary purposes. In this context, it is important to point out

the existence of the EU guidance (EEC, 1998) setting the limits

of these compounds for consume water (150mg=l until

December 31st 2008 and 100mg=l from 2009).

In this work, the case of study is the formation of THMs in

the Sant Joan Despı́ Water works plant (WWP) in Barcelona,

Spain, which supplies around 30% of the consumed water in

the Barcelona metropolitan area. The input water source to

the plant is mostly from Llobregat river, located in Catalonia,

NE Spain. The hydraulic regime of the Llobregat River is of the

Mediterranean type: low average flows during ordinary

conditions with peak events of heavy floodings. The water

flow range is extremely wide: from absolute dryness up to

2000m3=s. When this source is scarce, water fromwells in the

Baix Llobregat large aquifer (Martı́n-Alonso, 2003) is also

pumped and provides a very important complementary

source of raw water to the plant. Despite its limited

extension, the presence of halides (including chloride and

bromide) in a limited amount in the upper part of the basin

has had a dramatic impact on water quality since the

establishment of three salt mines. The halides and the

organic matter in the river lead to a surplus of chlorinated

and brominated compounds when treated with disinfection

products (Ventura and Rivera, 1985).

In order to monitor water quality and to control water

treatment procedures, different variables and parameters are

continuously measured along the water treatment plant

(WWP variables) as well as formation and concentrations of

trihalomethane compounds (THM variables). The first set of

variables was considered to be the predictor block of variables

and the second set was the predicted block of variables. The

goal of this study is to build a predictive model, which relates

the two data blocks, i.e. a model, which may help to predict

the formation of THMs from the WWP measured variables.

First, an exploratory multivariate data analysis has been

performed using principal component analysis (PCA) (Jolliffe,

1986) of the augmented data set formed by the two data

blocks ½X;Y� . And second, different multivariate regression

methods, including multilinear regression (MLR) (Massart

et al., 1998), stepwise regression (Draper and Smith, 1981),

principal component regression (PCR) (Naes and Martens,

1988) and partial least squares regression (PLSR) (Geladi and

Kowalski, 1986; Höskuldsson, 1988) have been used to build

predictive models to correlate the two data blocks, WWP

variables and THM concentrations.

Several investigations have been carried out to improve the

understanding of the relation between water-quality para-

meters, WWP managing, and concentrations of THMs in

drinking water. Natural organic matter (NOM) in surface

waters is a heterogeneous mixture of substances, such as

humic acids, fulvic acids and others. As reported by Gallard

and von Gunten (2002) and Rodrigues et al. (2007), different

fractions in humic and fulvic substances, have been con-

sidered as the main precursors of THMs. Other parameters

that influence the formation of THMs are chlorine residual

concentrations, reaction time, pH and temperature. Bromi-

nated THMs are also formed especially in waters containing

bromide ion. According to Clark et al. (2001) and Nikolaou

(2004) the presence and concentration of bromide ion affects

the overall formation of halogenated THMs. There are

different types of THMs formation models described in recent

literature. Data are obtained from field studies (Garcia-

Villanova et al., 1997; Rodrı́guez et al., 2003a) or at labora-

tory-scale (Nikolaou, 2004). Some models, based on studying

the kinetic reaction of THMs formation, were developed

(Clark, 1998; Li and Zhao, 2006). Other models are based on

multivariate empirical regression equations including a

number of operational and water-quality parameters as

predictors and the generated THM concentrations as pre-

dicted variables (Amy et al., 1987; Rodrı́guez and Sérodes,

2001). Until now, chemometric methods more widely applied

for modeling formation of THMs have been MLR analysis

(Golfinopoulos et al., 1998; Golfinopoulos and Arhonditsis,

2002; Nikolaou et al., 2004) and non-linear methods such as

neural networks and logistic regression analysis (Milot et al.,

2002; Rodrı́guez and Sérodes, 2004). Most of these previous

investigations have been performed under rather limited

experimental conditions in the laboratory or under well-

controlled conditions and short monitoring time periods and

situations. There is still an urgent need to develop reliable and

robust models to predict THM formation in WWP. These

models should be applied under real plant conditions and

should allow for the on-line control of the formation of THMs

and to obtain the conditions under which their formation is

limited to levels below the established legal and sanitary

limits. This investigation has been oriented to improve

quality assessment and optimal management of Barcelona’s

WWP disinfection procedures and to provide more efficient

tools to avoid possible human health risks produced by

consume waters contaminated by THM compounds.

2. Materials and methods

2.1. Experimental data set

Water samples were collected from the Sant Joan Despı́ WWP,

Barcelona, Spain. It has a design capacity of 500000m3=d and

it is of conventional design. Major features include pre-

chlorination sites, coagulation, flocculation, sedimentation,

sand filtration, ozonation, carbon filtration and post-chlor-

ination. Fig. 1 shows the process and the location of sampling

and chlorination points. Samples were taken at the following

locations: after sand filtration, after carbon filtration, after

post-chlorination and at the exit of the plant.

In Table 1, WWP variables measured at the plant are given.

UV absorbance, total organic carbon (TOC) concentrations

as well as residual chlorine concentrations, chloride concen-

tration and water turbidity, were measured after sand and

carbon filtration at one or two sites. Wells water amount,

added to the system to supply the insufficient river water

level, was measured too. Water temperature was measured

after the location where mixing of the well water with the

water coming after the sand filtration was taking place.

Finally the influence of emergently added chlorine was

assessed immediately after post-chlorination location point

at two sites of the plant. Concentrations of different THMs

were measured at the water exit of the plant.
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All these variables were measured at the plant over the

whole year 2003 and were used to build up the block of X

variables (data matrix X). For a total number of 162 days

during 2003, concentrations of the different THMs were

measured (THM variables, block of Y variables). Since

measurements of THM concentrations were performed only

for some days, only those measurements of the WWP

variables (X) being coincident in time (the same day) with

measurements of THM concentrations ðyiÞ were finally

considered, where i refers to concentration of the considered

trihalomethane compound, CHCl3, CHCl2Br, CHBr2Cl, CHBr3
or TTHM. These 162 measurements were spread over the

whole year, although for some months there were more

measures (21 in January) than for others (5 in August). For one

month, measurements were not available (June). Concentra-

tions of the four THMs were determined using standard

chromatographic methods (Head Space GC-ECD, Gallard and

von Gunten, 2002). Samples were analyzed using a Fisons

8130 gas chromatograph with a DB-624 30m� 0:32mm�
1:8mmmm film thickness fused silica column. Automatic

injections of 0.5ml were made in split mode ð 110Þ, with helium

as a carrier gas and nitrogen as a make up gas. Detection

and quantification limits were estimated to be around 0.10

and 0:25mg=l. Trihalomethane standard solutions were pre-

pared in the range of 0:528mg=l . The total amount of THMs

(variable TTHM) was calculated as the sum of the concentra-

tions of the four individual compounds. Therefore, a total

number of five yi variables were defined. UV absorbance

measurements in Abs/100cm units were carried out at

254nm using 1-cm quartz cells and then reporting values

for a 100cm path length (i.e. multiplying them by 100).

Residual free chlorine was measured according to the DPD

colorimetric method and chloride was measured volumetri-

cally using Mohr method (APHA et al., 1998). TOC concentra-

tion in mg/l of the samples was determined using a TOC

analyzer. Turbidity was measured in FNU using nephelome-

try. Estimated measurement errors for quality control were

below 35% for THM concentrations, below 25% for turbidity,

below 15% for halides, below 15% for chlorine and below 15%

for TOC. Only accredited and validated (ISO17025, ISO9000)

methodswere used and applied for routine treatment control.

Influence of chlorine dioxide was studied and if the assay is

run properly (i.e. reaction times) there was no interference at

the levels of dosage.

Two data subsets were prepared, one to build the model and

another to validate the model. Validation data are a reduced

data subset of the whole set of values selected to cover the

different situations observed during different months and

seasons of the year (one or two samples per month), where

temperature and river flow may change considerably. The

data subset for model calibration covered WWP and THM

concentration variables measured for a total number of 144

days. The validation data set covered the same variables

measured for the rest of days, with a total number of 18 days.

2.2. Data treatment

Preliminary exploratory data analysis was performed using

univariate descriptive statistics. Each variable was plotted

individually for the different measurements performed dur-

ing the whole period of investigation. Histograms and box

plots were analyzed for tendencies and outliers. Pair-wise

correlations among all the variables were also evaluated.

Once experimental data were properly arranged in data

matrices, they were autoscaled (column mean centered and

scaled). This preliminary data treatment eliminated offsets,

changes in measurement units and focused the analysis on

proper modeling of observed variances in measured variables.

This data pretreatment is frequently used in multivariate data

analysis (Massart et al., 1998).

ARTICLE IN PRESS

Fig. 1 – Barcelona’s water works plant scheme and locations of sampling. For variable abbreviations, see Table 1.
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2.2.1. Multivariate data exploration
Preliminary multivariate data exploration was performed

using PCA (Jolliffe, 1986). This is a projection method, which

gives information about the latent (hidden) structure of the

data set. It transforms a large number of (possibly) correlated

original variables into a smaller number of uncorrelated,

ARTICLE IN PRESS

Table 1 – System variables (variables 1–23) and predicted variables (variables 24–28) measured in the water works plant

Variable Abbreviation Description Average Minimum Maximum Standard
deviations

1 ABSUVS1 UV absorbance after sand filters at site 1 8.05 5.26 12.36 1.42

2 ABSUVS2 UV absorbance after sand filters at site 2 8.04 4.43 12.05 1.36

3 CLORS1 Residual Cl2 concentration in mg/l after sand

filters at site 1

0.194 0.017 7.925 0.635

4 CLORS2 Residual Cl2 concentration in mg/l after sand

filters at site 2

0.160 0.004 1.581 1.358

5 TOCS1 Organic carbon total concentration in mg/l

after sand filters at site 1

5.1 2.4 7 0.6

6 TOCS2 Organic carbon total concentration in mg/l

after sand filters at site 2

5.2 2.6 7.1 0.7

7 TERBS1 Turbidity measured in FNU after sand filters at

site 1

0.71 0.23 3.05 0.44

8 TERBS2 Turbidity measured in FNU after sand filters at

site 2

0.63 0.17 5.75 0.60

9 ABSUV UV absorbance after carbon filters 4.00 1.2 7.8 1.0

10 CLORC1 Residual Cl2 concentration in mg/l after carbon

filters site 1

0.97 0.80 1.71 0.11

11 CLORC2 Residual Cl2 concentration in mg/l after carbon

filters site 2

0.96 0.82 1.23 0.08

12 Chloride Chloride concentration in mg/l after carbon

filters

289.7 160 532 67.3

13 TOC Total organic carbon concentration in mg/l

after carbon filters

3.47 2.07 4.83 0.58

14 TEMP Water temperature in Celsius after carbon

filters

14.5 7.3 25.2 4.9

15 TERBC1 Turbidity measured in FNU after carbon filters

site 1

0.18 0.12 0.34 0.04

16 TERBC2 Turbidity measured in FNU after carbon filters

site 2

0.18 0.12 0.33 0.04

17 CABPOUTOTAL Input wells water total amount per day in liters 784984.5 0 3240700 883577.9

18 POSCL2 Emergency added Cl2 concentrations in mg/l

after carbon filters site 2

0.30 0 31.86 2.64

19 POSCL1 Emergency added Cl2 concentrations in mg/l

after carbon filters site 1

0.02 0 0.67 0.10

20 CABALPOSCL2 Emergency added Cl2 volume in liters/day after

carbon filters site 2

40.4 0 2793.3 295.6

21 CABALPOSCL1 Emergency added Cl2volume in liters/day after

carbon filters site 1

2.3 0 192.3 17.7

22 AVERAGE Average time of life of carbon filters from last

regeneration in days

214.14 155.25 295.95 32.99

23 SUM Total time of life of carbon filters from last

regeneration in days

4282.8 3105 5919 659.9

24 TTHM Sum of the concentrations in mg=l of the four

trihalomethane compounds measured at the

exit of the water treatment plant

75.58 40.87 121.55 14.91

25 CHBr3 Concentration in mg=l of bromoform measured

at the exit of the water treatment plant

18.75 6.67 61.00 5.51

26 CHBr2Cl Concentration in mg=l of

chlorodibromomethane measured at the exit of

the water treatment plant

24.41 12.55 45.00 5.87

27 CHCl3 Concentration in mg=l of chloroform measured

at the exit of the water treatment plant

15.19 6.00 30.85 4.79

28 CHCl2Br Concentration in mg=l of

bromodichloromethane measured at the exit of

the water treatment plant

17.24 3.67 35.70 6.28
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orthogonal variables explaining maximum variance called

principal components. Samples or objects are projected on

them giving the samples scores. Plots of variable loadings in

principal components allow interpretation of main sources of

data variance and describe the relationships among the

variables. The main advantage of PCA is that it reduces the

dimensionality of the problem (number of variables) but

retains most of the original variability in the experimental

data and filters noise and minor sources of variance. There-

fore, PCA allows for a simpler interpretation of variance

sources in a particular data set.

2.2.2. Multivariate regression methods
The main goal of this study was to build a multivariate model

able to explain and predict the changes observed in the

concentration of the different investigated trihalomethane

compounds (yi variables) as a function of the measured WWP

variables (X block of variables). This is to find a mathematical

relationship between these two data sets of variables. In

particular, in this paper, four different multivariate linear

regression methods are evaluated for the modeling of

trihalomethane formation by WWP disinfection procedures.

(a) Multilinear regression (MLR): This linear method max-

imizes the covariation between X and y data sets to obtain

best estimations of y. Difficulties will come if there are many

highly correlated variables, which will lead to an unstable

regression equation with a difficult interpretation of regres-

sion coefficients. These regression coefficients are estimated

by ordinary least squares.

(b) Stepwise multilinear regression (SWR): Stepwise Multilinear

Regression (Draper and Smith, 1981), based on forward

selection, consists of first classifying the explanatory vari-

ables according to their statistical significance and next

including one variable at a time at different steps. At the

end only statistically significant terms are used to build the

model. Again, problems may happen when predictor vari-

ables are highly correlated andwhen there is the possibility of

one input variable masking the effect of another input

variable. Very often, the achieved models include variables

depending on starting choices and insertion strategies.

Regression coefficients are then obtained using selected

variables and ordinary least squares estimation.

(c) Principal component regression: PCR (Naes and Martens,

1988) is a widely used technique to build regression models

when independent or predictor variables are strongly corre-

lated. PCR uses PCA decomposition of the WWP variables X

data before the regression with y variables. The regression

vector is calculated using the loadings and score matrices of

the PCA decomposition of X data.

(d) Partial least squares regression: PLSR (Geladi and Kowalski,

1986) is related to both PCR and MLR. PLSR attempts to

maximise the covariance between X and y. PLSR searches for

the factor space most congruent to both matrices, and its

predictions are sometimes better than using PCR (Donachie et

al., 1999). A new matrix of weights (reflecting the covariance

structure between the X predictors and y response variables)

is calculated and included for the estimation of the regression

vector.

The selection of optimal number of components (latent

variables) in PCR and PLSR was done using cross validation

(leaving-out-one sample at a time) and optimal prediction of

yi values.

2.3. Figures of merit

The following figures of merit were calculated to evaluate and

validate the different applied methods:

(a) Root mean squared error of calibration and prediction

(RMSEC and RMSEP), calculated as follows:

RMSEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðŷi � yiÞ2
n

s
, (1)

where ŷi are the values of the predicted trihalomethane

concentrations and yi are the actual measured values, when

calibration samples are included in the development of the

model and n is the number of samples. RMSEC is a measure of

how well the model fits experimental THM concentrations.

RMSEP is calculated exactly as RMSEC except that the

estimates are now the values for external validation samples.

RMSEP is a measure of how well the model will make

predictions of THM concentrations.

(b) Relative errors of THM concentrations in percentage, for

both calibration and prediction steps are calculated as

follows:

Rel: error in% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðŷi � yiÞ2Pn
i¼1ðyiÞ2

s
� 100. (2)

(c) Bias or average values of residuals (non-explained

differences) between the actual and predicted THM concen-

tration values are calculated as follows:

bias ¼
Pn

i¼1ðŷi � yiÞ
n

, (3)

where ŷi and yi were defined above.

(d) SEP, standard errors of prediction, values are calculated

as follows:

SEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðŷi � yi � biasÞ2
n� 1

s
. (4)

Quality assessment of the obtained results was discussed

by comparison of predicted values versus measured values,

both for calibration and validation data sets. For this purpose,

different tools were used, like plots of predicted versus

measured values and linear regression between them, to

estimate the slope, offset, Pearson correlation and determi-

nation coefficients of the best fitting line. A slope close to one,

an offset close to zero and a correlation coefficient close to 1,

mean a good agreement between calculated and experimen-

tal values. This evaluation is performed for calibration and

validation data.

2.4. Software

Initial data preparation and data arrangement of different X

and yi data sets were performed using EXCEL (Microsoft,

Redmon, WA, USA). All calculations were performed using

PLS Toolbox 3.5 (Eigenvector Research, Manson, WA, USA) and

MATALAB 6.5 software (The Mathworks, Natick MA, USA).
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3. Results and discussion

3.1. Descriptive statistical data analysis (WWP and THM
variables)

Fig. 2 shows that CHClBr2 seasonal average concentration

levels were higher than for other THMs. Its concentration

varied considerably from 12.55 to 45mg=l, with its highest

average value in spring. CHCl2Br and CHBr3 concentrations

ranged from 3.7 to 35:7mg=l and between 6.7 and 61mg=l,

respectively. The maximum average concentration for

CHCl2Br was in the spring again and followed the same trend

levels than for CHClBr2, also for the other of seasons. The

average seasonal CHBr3 concentration levels varied lower in

comparison to those of the other three THMs. CHCl3
concentrations showed a different seasonal behavior. Its

maximum average concentration level was found in the

summer, while for the other three seasons, the average

concentration levels of this compound were almost equal or

lower. CHCl3 concentrations varied between 6 and 30:9mg=l

with significant fluctuations.

ARTICLE IN PRESS

Fig. 2 – Seasonal variation of average THM concentrations.

Fig. 3 – Pair-wise correlations among WWP variables and THMs. For variable abbreviations, see Table 1. All correlation

coefficients among arrow marked variables are statistically significant ðpo0:05Þ.
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Since three of the THM compounds were found to have

maximum average concentration levels in the spring, the

total concentration of them or TTHM average concentration

level had its maximum in this season too. Summer time was

the next season with higher TTHM average concentration

values. TTHM concentrations varied between 40.9 and

121:6mg=l. Colder seasons, autumn and winter, were char-

acterized by relatively lower THM concentration levels

ARTICLE IN PRESS

Fig. 4 – Annual trends of some important WWP and selected THM variables. Some dates with significant trends in the WWP

or THM variables are given in the plots. For variable abbreviations, see Table 1.
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compared to spring and summer. Overall, the average

concentration levels of brominated THM compounds ex-

ceeded those of CHCl3 for 2003.

Fig. 3 shows pair-wise correlations among THMs and WWP

variables. The examination of these relationships revealed

that the highest positive pair-wised correlations were found

between CHCl3, CHBr2Cl and TTHM on one side and carbon

filter age variables (Average and SUM) on the other side. Water

temperature (TEMP) was also found to have a high positive

correlation with CHCl3 concentration levels. High positive

correlations were also found between TOC concentrations

and CHCl2Br, and between water turbidity after carbon filters

at site 2 (TERBC2) and CHBr2Cl. Highest negative correlation

coefficients were found for the input wells water amounts

(CABPOUTOTAL) and all five THM variables. This would

indicate that input of wells water could prevent the formation

of THMs.

Changes in concentrations of CHCl2Br, CHBr2Cl and TTHM

follow the same trends as carbon filter age and temperatures

(see Fig. 4). Higher input wells water values agree with those

days with THM decreasing concentration values. Rising of

THM concentrations with increasing carbon filters age and

temperature was also clearly detected. After carbon filter

regenerations (30.04.2003), and even with water temperature

increasing, THMs concentrations felt down suddenly

(12.05.2003). Then, THMs concentrations kept growing until

the time of new carbon filters regeneration took place. It was

obvious, that during summer time, addition of wells water

and regeneration of carbon filters were crucial points for the

relatively low THMs concentrations encountered during this

season, in spite of the higher water temperatures and of the

relatively constant trends of the other WWP variables.

3.2. PCA exploration of WWP and THM variables

In Table 2, results of PCA analysis of the complete (autoscaled)

data set including 162 daily observations of the 28 measured

variables (23 WWP variables and five THM concentrations)

are given. For these autoscaled variables, eight components

were needed (with an eigenvalue 41 ) to explain 80% of

the data variance (see Table 2). The four more important

principal components explained around 57% of the total data

variance, with the first one explaining approximately 21%

of it. This indicates that the measured variables are rather

independent.

Fig. 5 shows PCA loadings plots. Variables are well

distributed on PC1–PC2 subspace, with no one being pre-

dominant (Fig. 5a). The first PC1 is differentiating WWP

variables measured after sand filters (giving negative load-

ings) from WWP variables measured after carbon filters

(giving positive loadings). Moreover, most of THM concentra-

tions (except for CHBr3) exhibit also relatively large positive

PC1 loadings. This indicates that the formation of most of

THMs is favored by high water temperatures (TEMP), carbon

filters age (Average and SUM) and water turbidity after carbon

filters (TERBC1 and TERBC2). The opposite happens for all

measured variables after sand filters. According to PC2 (as

they give loadings with different signs), the formation of

TTHM, CHCl2Br and CHBr2Cl is negatively correlated with

input wells water flows, chloride concentrations and variables

measured after sand filters. It is on the other hand out-

standing the high correlation (according to PC1 and PC2)

between the formation of CHCl3 with turbidity after carbon

filters (TERBC1 and TERBC2) and with water temperature

(TEMP). It has to be pointed out, however, that the amount of

explained variance considering PC1 and PC2 is still rather low

(35.5%) and therefore, that the other PC plots should be

explored to understand the whole problem. PC1–PC3 loadings

plot (Fig. 5b) reveals similar trends for TTHM, CHCl2Br and

CHBr2Cl according to PC1. According to PC3, it is obvious that

water turbidity after carbon filters are not so influential for

the formation of CHCl3, since they take a different sign.

Interesting information is obtained from PC2 to PC3 loadings

plot (Fig. 5c). In this case, TTHM, CHCl2Br, CHBr2Cl and even

CHBr3 (in smaller extend) show a high correlation with TOC

and UV absorbance (ABSUV), measured after carbon filters.

On the other hand, the formation of CHBr3 did not exhibit any

significant correlation for the first four principal components,

showing a rather independent and a more complex behavior

of this compound, compared to the other THMs, and also in

relation to the other measured WWP variables. Everything

explained until now confirms that formation of THMs exhibit

a very complex pattern.

3.3. Modeling and prediction of trihalomethane formation
concentrations using multivariate regression methods

Table 3 gives the detailed results obtained by the application

of different multivariate linear regression methods for the

modeling and prediction of THM formation from WWP

system variables. Two data sets were used; the first one was

for calibration of the model and the second one for validation

of the model (see Materials and Methods section). First of all,

it has to be emphasized that all data values came from real

measured data values in the WWP, and that they were not

obtained in the laboratory under well-stipulated and con-

trolled conditions. It is considered that all possible sources of

variance during the investigated year were included. It is

expected therefore, that these data will be more complex and
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Table 2 – PCA analysis for the complete data set

PCA results ½X;Y� ð162; 28Þ

PC Nr l % var % cum var

1 5.84 20.86 20.86

2 4.06 14.49 35.35

3 3.43 12.24 47.59

4 2.59 9.26 56.85

5 2.02 7.20 64.04

6 1.91 6.81 70.86

7 1.56 5.56 76.42

8 1.08 3.85 80.27

PC Nr, number of principal component; l, eigenvalue; % var,

percentage of variance of each eigenvalue; % cum var, cumulative

percentage of variance.
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difficult to interpret than those reported in previous related

works obtained under much more controlled conditions

(Garcia-Villanova et al., 1997).

Overall, MLR and PLSR performed best and gave similar

good predictive properties. Both methods, MLR and PLSR,

explained relatively the same percentage of variance of the

ARTICLE IN PRESS

Fig. 5 – Loadings plots of the first principal components for WWP variables and THMs. Encircled or pointed by arrows are

some WWP variables and some trihalomethanes, which resulted to be strongly correlated. For variable abbreviations, see

Table 1.
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THM concentrations (see R2 in Table 3). Calibration errors

(RMSEC), prediction errors (RMSEP) and percentage relative

errors were also similar for these two methods. For instance,

for the prediction of total trihalomethane concentrations,

TTHM, modeling errors in calibration were, respectively

(RMSEC and Rel. error %) 8.9% and 11.7% for MLR and 9.0%

and 11.8% for PLSR, and in validation were, respectively

(RMSEP and Rel. error %) 12.5% and 16.2% for MLR and 12.7%

and 16.4% for PLSR. Similar tendencies were observed for the

prediction of individual THM concentrations. Errors in

calibration and validation obtained by PCR and SWR were

always higher in comparison to MLR and PLSR errors. The

only exception was for CHBr3 using PCR, which gave more

accurate estimations than using MLR or PLSR. Bias in

calibration was always practically zero, whereas in validation

bias values were always different than zero, although it is

difficult to infer any systematic trend.

In Table 3, slopes, offsets and correlation coefficients of the

best lines, obtained when measured and predicted values of

the trihalomethane concentrations were compared, are given.

For calibration data, slope and offset values were always one

and zero, respectively, for all the compared methods and for

all THMs. Correlation coefficients were always around 0.7 and

0.8, which can be considered rather good taking into account

the nature of the data. In all cases, the two best methods were

MLR and PLSR, especially for total trihalomethane concentra-

tions, TTHM (0.798 and 0.792), and for CHBr2Cl (0.797 and

0.783). The same tendency was observed for validation data,

although now with worse values for the slope, offset and

correlation coefficient values. Especially bad was the case of

CHBr3, where the results were rather poor, with slopes around

0.5, offsets around 9 and correlation coefficients around 0.3.

The models for CHBr3 always failed because of the difficulty

to model the presence of a little number of days with very

extreme concentration values, while the rest of days showed

practically constant CHBr3 concentration values without

showing any clear dependency with WWP variables. On

average, CHBr3 prediction errors for validation data were

around 29–30% for all methods. Slightly better predictions

were obtained for CHCl3 with average relative errors around

23–25% for validation data, and also with better agreement

between experimental and predicted concentrations, with

slopes close to one, lower offsets and correlation coefficients

around 0.7. Even better results were obtained for CHBrCl2 and

CHBr2Cl, with average relative prediction errors closer to 20%

for validation data. For calibration data the improvement of

figures of merit followed the ranking CHBr3 (worse), CHBrCl2,

CHCl3, CHBr2Cl, TTHM (best).

Comparison between predicted and actual experimental

values of total trihalomethane (TTHM) concentrations using

the external validation data set is shown in Fig. 6a for all the

tested methods. Predicted values for TTHM concentrations

followed the same trend than experimental values. However,

predictions were worse in some cases for some extreme

experimental observations. Five days can be distinguished in

this validation data set where all methods gave system-

atically lower concentrations than measured ones and three

other days where the opposite occurred, giving systematically

higher concentrations than they should be. These differences

were, however, always around or below 20% of the total

concentration. When WWP variables were carefully exam-

ined for these five extreme observations, nothing unusual

could explain why these THM concentrations were so

extreme for these days. There was no method, which could

explain consistently why these extreme high and low

concentrations did happen because WWP variables did not

show any trend for these days. For calibration data, PLSR

predictions (Fig. 6b) were better, but the presence of extreme

concentrations for some days was also present. Therefore, the

final conclusion is that these extreme values could not be well

explained by the measured WWP variables whatever was the

regression method used.

When loading weights for this first PCR and PLSR latent

variables together with statistically significant coefficients at

ARTICLE IN PRESS

Fig. 6 – Predicted and actual experimental values of TTHM: (a) using external validation data set and all regression methods;

(b) using calibration data set and PLSR.
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the 5% level, obtained with MLR and SWR, were examined,

the more influential WWP variables for CHCl2Br, CHCl2Br,

CHCl3 and TTHM formation were UV absorbance after sand

filters (at site 2) and after carbon filters, total organic carbon

concentration after carbon filters, total amount of input wells

water, water temperature, water turbidity after carbon filters,

carbon filters age and post-chlorination at site 1. It was

difficult to reveal the most important WWP variables in the

case of CHBr3 formation since according to their loading

weights, they had very little influence on it.

Some possible model improvements were also investigated.

First, the possibility of a time lag between measurements was

considered. In fact, measurements were not performed at

exactly the same time instant. In some cases, they were

averaged over the whole day and in other cases they were

simply punctual measured at a particular time instant.

However, attempts to improve these results using different

time shifts and measure delays did not improve significantly

the results. A second possibility was the presence of experi-

mental measurement errors in THM concentrations, but lab

analysis did confirm that extreme values were correct. Even

after log or other non-linear transformation of X and yi data

were applied, no significant improvement in THM concentra-

tion predictions were obtained. Selection of variables using

methods like genetic algorithms (Leardi, 2001) did not either

improves the results in terms of predictive properties for the

different validation data sets.

4. Conclusions

The main conclusions derived from the present work are the

following:

(1) Due to water disinfection techniques and procedures

implemented in Sant Joan Despı́ WWP (Barcelona, Spain),

THM compounds are ubiquitously formed at relative large

amounts, especially in spring season, and with predomi-

nance of brominated type of compounds over chloroform.

(2) Twenty-three differentWWP variables weremeasured and

investigated for their possible correlation with measured

concentrations of the different THM compounds at the

exit of the plant. Among these WWP variables, water

temperature, carbon filters age, water turbidity after

carbon filters, as well as input wells water amount, UV

absorbance, total concentration of organic carbon (the two

later after carbon filters) and post-chlorination were found

to have significant correlations and influence formation of

THM compounds. Some of these variables, like carbon

filter age and input wells water can be modulated by

appropriate plant management to decrease the levels of

THM concentrations at the exit of the plant.

(3) Using these WWP variables, multivariate regression

techniques, such as MLR and PLS, allowed for a good

average THM concentration modeling and prediction.

Average relative errors ranged between 12% and 23% for

the modeling of THM concentrations in calibration

samples and between 16% and 29% in external valida-

tion samples for all investigated trihalomethanes. Total

trihalomethane concentrations were predicted the best,

showing an average effect for this variable compared to

the other individual THM concentration variables, more

difficult to predict in general, and especially for bromo-

form.

(4) Some extreme THM concentration values (very low or very

high) were not well explained yet, especially for bromo-

form and chloroform concentrations. One possible ex-

planation for this is that additional WWP variables

reflecting better the changes in trihalomethane concen-

trations were needed. Current research work is also

performed about the possible application of non-linear

modeling methods such as neural networks (Rodrı́guez et

al., 2003b), or of other more complex non-linear methods

(Lin and Yeh, 2005). Future work will also consider the

possible use of bromide anion concentrations, pH, tem-

perature of wells water, reaction times after chlorination,

potential of THM formation and others, which have been

also suggested to be influential (Nikolaou, 2004).
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Results and Discussion 

- Results of descriptive statistical analysis of THMs 

 Preliminary data inspection was performed to detect and remove outliers, as well 

as to preliminarily identify data trends.  

The preliminary inspection and visualisation of the observed concentrations of all 

four target THMs and of their total sum (TTHM) revealed that the concentrations of 

mixed chloro-bromo THMs were higher than the concentrations of chloroform and 

bromoform during the sampling year. However, the main problem was detected to be 

the formation of high concentrations of multi-brominated THMs in the SJD DWTP. 

Their average concentration levels were found to exceed those of the multi-chlorinated 

THMs, most likely due to the high concentrations of bromide ions, which are naturally 

present in the Llobregat River. 

The seasonal average concentrations of CHClBr2 were found to be the highest 

concentration during the sampled period. The CHClBr2 considerably varied from 12.55 

to 45 µg/l, with the highest average value found in spring. The second and third levels 

of concentration formation were CHCl2Br and CHBr3, ranging from 3.7 to 35.7µg/l and 

between 6.7 and 61 µg/l respectively. CHCl3 formation was lower in SJD DWTP but an 

increase in its concentrations was observed for the summer season. CHCl3 

concentrations varied between 6 and 30.9 µg/l. Additionally, a seasonal trend in THMs 

formation was found, where the highest concentrations of total THMs were detected 

during spring. The next season with highest total THMs concentrations was summer. 

Winter and autumn seasons were characterized with lower formation of THMs 

concentrations.  TTHM concentrations varied between 40.9 and 121.6 µg/l.  

- Results of pair-wise correlation statistical analysis of DWTP operational 

parameters and THM concentrations 

The pair-wise correlations between CHCl3, CHBr2Cl and TTHM concentrations 

and the age of carbon filters variables were found high and positive (please refer to 

Figure 3 of Article 1). Water temperature was also found to have a high positive 

correlation with CHCl3. High positive correlations were also observed between 

CHCl2Br and total organic carbon, and between CHBr2Cl and water turbidity measured 

after carbon filters. The highest negative correlation was observed between the added 

amounts of underground water and all four THMs variables. 

An alternative presentation of the levels and significance of pairwise correlations 

is Figure 4 of Article 1, where annual trends of some of the most important operational 
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parameters and selected THMs variables were plotted over time. The figure displays, for 

example, that the annual trend of carbon filter age and temperature were largely similar 

to those observed for CHCl2Br, CHBr2Cl and TTHM concentrations. Higher input of 

underground water amounts (i.e., a large increase of the trend line) coincide with THMs 

decreased concentrations (i.e., a large decrease in the trend line). An interesting trend 

was observed on 30.04.2003, when a significant decrease of THMs was captured and 

this pattern conceded in time with carbon filters regeneration. On the basis of these 

trends, a conclusion can be drawn that large volumes of underground water pumped to 

fulfil water demand in summer and regeneration of carbon filters, result in a reduction 

of THMs concentrations. 

These findings suggested that the aging of carbon filters is significantly associated 

with a decrease of their efficiency, resulting in increased turbidity. Thus, the formation 

of THMs was favoured by the turbidity increase. It was additionally observed that 

higher temperature in summer season had also favoured THMs formation. This factor 

was particularly relevant for CHCl3 formation. The observation that pumping 

underground water reduced THMs could be attributed to the produced dilution effect on 

THMs precursors such as organic matter (measured as TOC) and Br- ions 

concentrations thus preventing the formation of THMs. 

The univariate statistics analysis was extended to multivariate data analysis to 

better understand the SJD DWTP processes. 

 

- Results of Principal Component exploratory data Analysis (PCA) of 23 SJD 

DWTP operational parameters and THMs concentrations 

PCA analysis was performed on the autoscaled dataset containing 162 daily 

observations of the 28 measures (23 DWTP variables and 5 THM concentrations).The 

obtained model was found to be very complex, because eight principal components 

(PCs) with an eigenvalues larger than 1 were required to explain 80% of data variance 

(please refer to Table 2 in Article 1). The first four PCs explained approximately 57% of 

the total data variance, with PC1 explaining approximately a third (21%).  

 The detailed examination of PC1 loadings suggested that the formation of THMs 

was favoured by high water temperatures, carbon filters age and water turbidity after 

carbon filters, and that it was negatively correlated with DWTP parameters monitored 

after sand filters (the previous process in the SJD-DWTP operational scheme, see 

Figure 3). According to PC2 and PC3 loadings, the formation of TTHM, CHCl2Br and 
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CHBr2Cl was negatively correlated with input underground water amounts, chloride and 

chlorine residual concentrations after carbon filter. In contrast, TTHM, CHCl2Br, 

CHBr2Cl and even CHBr3 (to a smaller extend) showed a high positive correlation with 

total organic carbon (TOC) and UV absorbance, measured after carbon filters. Taken 

together, the analysis suggested that the formation of brominated THMs is likely to be 

highly dependent on the residual amounts of organic matter, left after filtration 

processes.  

 

- Results of application of linear empirical models for trihalomethanes formation 

prediction 

 The comparison of linear regression results obtained following the application 

of SWR, MLR, PCR and PLS regression methods are presented in Table 3 of Article 1.  

The results obtained from MLR and PLS predictions suggested that both methods had 

good predictive properties for THMs modeling and performed better than SWR and 

PCR. For instance, prediction errors for TTHM calibration (RMSEC/Rel. error %) were 

of 8.9 - 11.7% for MLR and of 9.0-11.8% for PLS. At the external validation stage, 

prediction errors (RMSEP/Rel. error %) were respectively of 12.5-16.2% for MLR and 

of 12.7-16.4% for PLS. Similar results were observed for the prediction of the 

individual THM concentrations. Prediction errors in calibration and external validation 

obtained with PCR and SWR methods were always higher (around 3-4 %) in 

comparison to MLR and PLS prediction errors, except for CHBr3 using PCR, which 

gave more accurate estimations than using MLR or PLS. Interestingly, MLR performed 

well in these cases. Most probably, this fact was observed because of two reasons: 1)  

the most important operational parameters for the THMs formation were rather 

independent among them, and 2) a large number of samples have been included in the 

calibration data. 

 On average, at the validation stage, the CHBr3 prediction errors were around 29-

30% for all methods. Better predictions were obtained for CHCl3 with average relative 

errors of approximately 23-25% for validation data, and also with better agreement 

between experimental and predicted concentrations, with slopes close to one, smaller 

offsets and correlation coefficients of about 0.7. The best results were obtained for 

CHBrCl2 and CHBr2Cl, with average relative prediction errors closer to 20% for 

validation data. For calibration data, the improvement of figures of merit had the 
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following order (worse to best): CHBr3 (worse) > CHBrCl2 > CHCl3 > CHBr2Cl > 

TTHM (best). 

Figure 6a of Article 1 compares predicted and actual experimental values of 

total trihalomethane (TTHM) concentrations using the external validation data set for 

all tested regression methods. The obtained prediction values for TTHM concentrations 

followed a trend similar to such of the experimentally observed values. However, 

predictions were worse in some cases, especially for extreme experimental 

observations. Five days, when all methods gave systematically lower concentrations 

than the measured ones, were distinguished in this validation data set.  In three different 

days, the reverse trend was observed, where predicted concentrations were 

systematically higher than the real data. However, such differences were always around 

20% of the total concentration. No method could consistently explain such extreme 

high and low concentrations, likely because DWTP variables did not exhibit a 

particular trend during these days. For calibration data, PLS predictions were better, but 

extreme concentrations for some days were also present (please refer to Fig. 6b of 

Article 1). Thus, the final conclusion is that these extreme values could not be 

explained by the measured DWTP variables, independently of the linear regression 

method used.  

- Evaluation of more important variables in linear regression models for 23 

DWTP operational parameters and THMs 

 

The most influential DWTP parameters for CHClBr2, CHCl2Br, CHCl3 and TTHM 

formation were found after examining loadings and loadings weights for the first PCR 

and PLS latent variables, along with the statistically significant coefficients (obtained 

by MLR and SWR).  UV absorbance measurements after sand and carbon filters, total 

organic carbon concentration after carbon filters, total amount of input underground 

water, water temperature, water turbidity after carbon filters, carbon filters age and 

post-chlorination were among the most important and statistically significant DWTP 

operational parameters for the THMs formation. In the case of CHBr3 formation, the 

most important WWP variables were difficult to identify. 
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3.1.2 Article 2 – Platikanov, S., Martin, J. and R.  Tauler. Linear and non-linear 

chemometric modeling of THM formation in Barcelona's water treatment plant. Science 

of Total Environment 432 (2012) 365-374. 

 

Introduction 

This paper builds on our previous research work by augmenting the model with new 

parameters using the data from DWTP in Sant Joan Despí, Barcelona. In the first study, 

23 WTP variables representing the late stages of the disinfection process in the plant 

(such as after the sand filtration process) were monitored inside the plant (see Figure 3). 

Predictions for externally validated data had average errors between 15 and 30% for the 

concentrations of all THMs. However, several important DWTP parameters were 

previously ignored in the analysis and such parameters were expected to be critical for 

improving the predictive power of estimated models. The literature review suggested 

that some DWTP parameters, including raw water quality and the prechlorination pre-

treatment, were important for the THMs formation process. As a result, eighteen new 

plant parameters from the two earlier stages of the DWTP operational processes were 

included in the new dataset analysis in order to improve the THMs prediction results of 

the first article. The new investigation, included in second article, considered the 

interactions among 41 DWTP parameters over a period of 162 days, similar to the first 

study. A significant improvement over the first study was the inclusion in the regression 

models of all observable DWTP operational parameters: from raw water quality at the 

entrance to the drinking water at the exit of the plant. The expectation was that the 

inclusion of a comprehensive set of DWTP parameters would describe better the THMs 

formation reaction in the plant. 

  Another novelty of this study was the application of non-linear regression 

techniques, such as Kernel type Partial Least Squares Regression (K-PLS) using radial 

basis functions kernel and Support Vector Machine Regression (SVR), to model 

possible non-linear relationships among all monitored DWTP variables and THMs 

concentrations in finished drinking water. Additionally, a new visualization technique 

was applied to capture complex relationships among operational variables and THMs 

concentrations. 
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The complex behavior observed for the dependence of trihalomethane formation on forty one water treat-
ment plant (WTP) operational variables is investigated by means of linear and non-linear regression
methods, including kernel-partial least squares (K-PLS), and support vector machine regression (SVR).
Lower prediction errors of total trihalomethane concentrations (lower than 14% for external validation sam-
ples) were obtained when these two methods were applied in comparison to when linear regression
methods were applied. A new visualization technique revealed the complex nonlinear relationships among
the operational variables and displayed the existing correlations between input variables and the kernel ma-
trix on one side and the support vectors on the other side. Whereas some water treatment plant variables like
river water TOC and chloride concentrations, and breakpoint chlorination were not considered to be signifi-
cant due to the multi-collinear effect in straight linear regression modeling methods, they were now con-
firmed to be significant using K-PLS and SVR non-linear modeling regression methods, proving the better
performance of these methods for the prediction of complex formation of trihalomethanes in water disinfec-
tion plants.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Water disinfection procedures using chlorine are a global practice
for reducing the health risk of pathogenic growth in drinking water
treatment processes. Despite the crucial importance of this strategy,
several classes of undesirable disinfection by-products (DBP) are usu-
ally identified in potable waters (Rook, 1974). Chlorine reacts with
natural organic matter (NOM) in raw water, resulting in the forma-
tion of trihalomethanes (THMs), haloacetic acid, haloacetonitriles
and other chemical compounds (Richardson, 2003). This study focus-
es on the formation of trihalomethanes, in particular, of chloroform
(CHCl3), dichlorobromomethane (CHCl2Br), dibromochloromethane
(CHBr2Cl), bromoform (CHBr3) and of the total sum of them
(TTHM) during a classical water treatment procedure. The presence
of THMs in drinking water is undesirable since they are considered
possible carcinogen products and they have been related with repro-
ductive and development problems (Calderon, 2000; Reif et al.,
1996). Health-risk concerns have resulted in setting out new fixed
limits for maximum TTHM concentration levels equal to 100 μg/l
since the year 2009 in EU countries (EC, Council Directive 98/83/EC).

THM formation depends significantly on raw water quality as well
as on water treatment procedures. Natural organic matter and

especially its dissolved fractions in water (DOM, humic and fulvic
acids) have long been recognized as the main precursors for THM for-
mation (von Gunten et al., 2001). Recently, it was found that the con-
centration, functionality and aromaticity characteristics of the organic
matter are important due to different reactivity of DOM fractions with
chlorine, originating from different DBP (Croué, 2004). Among other
important factors in THM formation, the presence of relatively high
bromide anion concentrations, water temperature, ammonia and
other variables have been described to be important (Nikolaou,
2004). Also, THM formation depends on operational procedures
implemented in water treatment plants (WTP), such as chlorine
dose, contact time between chlorine and organic matter, pH and
others (Navalon et al., 2008; Sadiq and Rodriguez, 2004).

Previous investigations have been carried out to obtain knowledge
about the existing relationship among raw water variables, opera-
tional plant managing variables and THM formation in drinking
water. Different types of models for THM formation have been de-
scribed in the literature both, in WTP real studies (Rodríguez et al.,
2003), and in laboratory-scale studies (Nikolaou, 2004). Some of
these models have been based on the study of the kinetics of the for-
mation of THMs (Gallard and von Gunten, 2002). Other models have
been based on chemometric multivariate empirical regression
methods including a number of operational and water quality vari-
ables as predictors and the generated THM concentrations as
predicted variables (Rodríguez and Sérodes, 2001; Toroz, and Uyak,
2005). Different chemometric methods have been already proposed
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for THM formation modeling, such as the multilinear regression anal-
ysis (Golfinopoulos and Arhonditsis, 2002), MLR, and partial least
squares regression, PLSR (Serrano and Gallego, 2007). Additionally,
non-linear methods such as the neural networks and logistic regres-
sion analysis (Milot et al., 2002; Rodríguez and Sérodes, 2004) have
also been shown to give reasonably good predictions. A lot of infor-
mation about the existing models of disinfection by-product
formations is collected in the review article of Chowdhury et al.
(2009)

Most of the existing investigations at present have been per-
formed over short monitoring times using a reduced number of ex-
perimental and operational WTP variables. In THM research field,
there is still a demand for reliable and robust models for in-situ pre-
diction of THM formation. These models should be applied under
real time plant operations and should allow for the on-line control
of THM formation. Also, information about spatial and temporal
THM formation conditions at the plant, when their concentrations
are too high or when they should be limited to levels below
established legal and sanitary limits, is an important aspect to consid-
er (Rodríguez and Sérodes, 2001). In this work, an investigation is
performed about which factors determine the THM formation in
WTP by classical chlorination disinfection procedures. This study con-
tinues our previous research work (Platikanov et al., 2007) taking as
model example the WTP located in Sant Joan Despí, Barcelona,
Spain. Nowadays, this plant provides drinking water for around 50%
of Barcelona's area population of 3,000,000. In the first investigated
time period, only 23 WTP variables were monitored inside the plant
and they were selected during the late stages of the disinfection pro-
cess in the plant, e.g. after the prechlorination step. Predictions for ex-
ternally validated data gave average errors between 15 and 30% for
the total concentrations of all THMs. Several important missing WTP
variables were suspected to be influential for a possible improvement
of prediction models. Especially, the information related with incom-
ing raw water quality (Ventura and Rivera, 1985) and variables that
characterize the prechlorination pre-treatment procedures were
missing, although they were considered to be influential in THM for-
mation (Nissinen et al., 2002).

It is for this reason that in this new study, eighteen new plant vari-
ables were included in the data analysis to improve previous results
and allow for an optimal management and design of water treatment
plant and prediction of THM formation under disinfection procedures.
The present investigation monitors the interactions among 41 WTP
variables (in previous study they were only 23) including those
from incoming raw river water, at the prechlorination step, filtering
and at the postchlorination step. This new study investigates the ef-
fects of including these new variables and the possible non-linear re-
lationships among all monitored WTP variables. Therefore, in this
work, apart from the prediction abilities of linear models like MLR
and PLSR, new nonlinear modeling methods like the support vector
machine, SVR, (Smola and Schölkopf, 2004) and kernel partial least
squares, K-PLS (Walczak and Massart, 1996a), regression methods
have been used for optimal prediction of THM formation at plant con-
ditions. Support vector machine methods are now already well
established chemometric procedures to solve complex classification
and regression problems. It is preferred to other methods like the ar-
tificial neural networks (ANN) for its higher generalization perfor-
mance and for its ability to model non-linear relationships in a
unique and global manner (Scholkopf and Smola, 2002). K-PLS, on
the other side, has been shown (Walczak and Massart, 1996b) to be
also a very powerful and easy to apply regression technique, with
equal or even better prediction abilities of non-linear data sets than
other methods. Both nonlinear techniques, SVR and K-PLS, use a ker-
nel function making possible the non-linear relationship modeling in
an optimal way. This kernel function projects input data variables,
usually non-linearly related to the associated output, into a multi-
dimensional feature space where the non-linear relationship is

represented in a linear form. In this study, SVR and K-PLS were
applied as prediction regression tools. In recent literature (Krooshof
et al., 2010; Postma et al., 2011; Üstün et al., 2007), different
procedures have been proposed to visualize and understand K-PLS
and SVR models based on the visualization and interpretation of ker-
nel matrix correlations with input variables. One of these techniques
has been also tested and discussed in this work and it is proposed as a
useful tool for process monitoring and control of water-disinfection
plant performance.

2. Theory

The main goal of this study is to build a multivariate regression
model able to explain and predict the formation and changes ob-
served in the concentration of the different investigated trihalometh-
ane compounds (yi variables) as a function of 41 measured WTP
variables (X block of variables). This implies finding a mathematical
relationship between these two sets of variables, X and y. In particu-
lar, in this work, four different multivariate regression methods have
been tested for optimal modeling of trihalomethane formation in
WTP disinfection procedures: multilinear regression (MLR), partial
least squares regression (PLSR), kernel partial least squares regres-
sion (K-PLS) and support vector machine regression (SVR). The first
two are examples of linear regression methods and the latter two
are examples of non-linear regression methods (Rosipal and Trejo,
2001). Only a brief description of the main aspects of them will be
given and previous references are given for a more detailed descrip-
tion of them.

2.1. Multilinear regression (MLR)

MLR method maximizes the covariance between X and y data sets
to obtain optimal estimations of y. MLR predictive models will suffer
from the presence of many highly correlated variables in the X data
matrix block, which leads to unstable regression equations with a dif-
ficult interpretation of regression coefficients. These regression coeffi-
cients are estimated by ordinary least squares (Massart et al., 1998).

2.2. Partial least squares regression (PLSR)

PLSR (Geladi and Kowalski, 1986) maximizes the covariance be-
tween X and y, as it searches for the factor subspace of latent vari-
ables most congruent to both matrices, and its predictions are
usually expected to be better than using MLR, when variables in
the X matrix are highly correlated. A matrix of weights (reflecting
the covariance structure between the X predictors and the y re-
sponse variables) is calculated providing rich factor interpretation
information. The selection of the optimal number of components
(latent variables) in PLSR is done by using cross validation tech-
niques (leave-one out sample at time) and optimal prediction of
yi values for external validation samples. Recently, the variable im-
portance in projection or VIP scores have been proposed as a use-
ful tool for the interpretation of PLSR models (built from several
latent variables), (Chong and Jun, 2005). The interpretation of
VIP scores, obtained for a particular regression model, is a useful
tool for the evaluation of the importance achieved by each variable
in the final PLS projection, and it may be also used for variable se-
lection procedures. As a general rule, it is considered that a vari-
able with a VIP score greater than 1 (one) is being considered to
be highly significant for a given model.

2.3. Kernel partial least squares regression (K-PLS)

Walczak and Massart (1996a) proposed a nonlinear extension of
the PLS regression method using RBF kernels. In this approach, a
nonlinear transformation of the input variables X into a new feature
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higher dimension space, A, by means of a kernel function like the ra-
dial basis mapping function, RBF, is assumed

ϕ : Χ∈RΝ→ϕ Χð Þ∈A:

In other words, the goal of the K-PLS models is to build a linear PLS
regression model into a higher dimension feature space, A. The algo-
rithm, named RBF-PLS, performs PLS regression on φ (X). In the calcu-
lation of the PLS components, the matrix product XX′ is replaced by
the new matrix product:

φ Xð Þφ Xð Þ′;

using the so-called kernel trick, which allows for the calculation of
dot products in the higher dimensional feature space using simple
dot product functions defined on pairs, i,j, of input individual sample
patterns (matrix X rows):

φ xið Þφ xj

� �
′ ¼ K xi;xj

� �
:

This avoids calculating the coordinates in the feature space which
could be a difficult task for a highly dimensional feature space. The ben-
efit of this procedure is that using the kernel functions corresponding to
the dot products in the feature space avoids non-linear optimization
procedures and allows the use of much simpler and more reliable linear
PLS regression algorithm.

2.4. Support vector machine regression (SVR)

Originally developed to solve classification problems, support vec-
tor machines can also be adapted to non-linear regression problems
with the introduction of the so called ε-insensitive loss function.
The theory of SVR has been discussed in details in Vapnik (1995,
1998). Briefly, in SVM regression analysis, the data matrix X is first
mapped (in a similar way like in K-PLS) into a higher-dimensional
feature space by the use of a kernel function and then a linear regres-
sion is performed in the feature space. In this case, the linear model,
f(x, ω), proposed in the feature space is as follows:

f x;ωð Þ ¼
Xm
i;j¼1

ωϕ xið Þϕ xj

� �
þ b;

where ϕ(x), is a nonlinear transformation of the original variables X,
and ω and b are the coefficients of the linear model that can be
obtained by solving a quadratic programming optimization problem.
The appropriate non-linear mapping φ(x) is in general unknown in
advance and it is therefore difficult to determine. An approximation
is performed using different types of kernel functions. Therefore, the
SVM regression equation described above, can be rewritten as

f x;ωð Þ ¼
Xm
j¼1

ωK xi;xj

� �
þ b

where the kernel function K(xi,xj) can be a linear, a polynomial, a sig-
moid or a more sophisticated function as the one previously mentioned
and often used in K-PLS, the radial basis function, RBF. The Lagrangian
multipliers λ obtained in the solution of the quadratic programming
problem, are then used for the calculation of the weights in the regres-
sion equation, ω and the function f(x) can be rewritten as follows:

f xð Þ ¼
Xm
i;j¼1

λi−λ
�
i

� �
K xi; xj

� �
þ b;

where λiλi*=0, λi,λi*≥0 and the data points corresponding to non zero
values for (λi−λi*) are called support vectors. After building a model on

the calibration data set, SVR can be used to predict unknown y values
from the new X values. The complete SVR equations are fully described
in Smola and Schölkopf (2004) and Vapnik (1995, 1998) and they are
not repeated here in this work for brevity. Another parameter, typically
denoted as C in the SVM literature, sets the tradeoff between the model
simplicity (and hence its generalization), and the training error, all-
owing for some data fit losses (Üstün et al., 2007). Although several ker-
nel functions can be used, in this work, the radial basis function, RBF, has
been selected as a preferred kernel function to be compared with the re-
sults obtained using the K-PLS method. All parameter optimization and
selection were done by cross validation, using a comprehensive grid
search procedure over all possible values of the two parameters, ε and C.

2.5. Details of data modeling using K-PLS and SVR procedures

Both, K-PLS and SVR, include first the mapping of the input data
variables to the feature space by using a kernel function and a kernel
matrix. This mapping leads to linearization of the problem: the non-
linear regression problem is transformed into a high dimensional (fea-
ture) space in which the solution of the problem is directly considered
to be a linear problem. The choice of the kernel function and especially
its parameter settings is an important aspect to consider in order to
solve the problem adequately. If the kernel parameters of the selected
kernel function are not chosen properly, valuable information is lost,
and the application of K-PLS or of SVR methods will not solve the re-
gression problem adequately. Thus, the selection of the optimal kernel
function and of its accompanying parameters to describe the nature of
the original input data is a crucial step. Many techniques have been
described in the literature about the kernel selection and about the
kernel parameter adjustment, using for instance exhaustive grid
search or genetic algorithms (GA) followed by an optimization proce-
dure like simplex or others. In this work, we have used a systematic
grid search procedure for the RBF function σ (function spread) param-
eter optimization and for the selection of C and ε‐loss function values.

Calibration and predictions in K-PLS have been performed using
the TOMCAT toolbox (Daszykowski et al., 2007) and MATLAB. The
RBF Gaussian width was optimized using a grid search procedure
starting from 0.1 to 1.0, with increments of 0.01. A leave-one out
cross validation was considered in the modeling.

Calibration and predictions in SVM modeling were performed
using STATISTICA (STATSOFT, Inc.) commercial software. The default
value for the of γ optimization parameter was set to be equal to 1/k,
where k is the number of input variables (in this work k was equal
to 41). The parameter C in the grid search procedure was from 0.1
to 10, with increments of 0.1 and the parameter ε was from 0.01 to
0.5 with increments of 0.01. A tenfold cross-validation was employed
in this study.

The RBF kernel defines a square symmetrical matrix, called activi-
ty matrix A, which represents the similarity between pairs of objects.
Each row (and column) in the activity matrix represents the similar-
ity of a specific object with all other objects in the training set. Since
the RBF function is used here, the element values of this activity ma-
trix will vary between zero and one. A value close to zero indicates
that two objects are very different, whereas a value close to one cor-
responds to two almost similar objects. As mentioned above the map-
ping of the original input data variables into the activity matrix, will
cause the loss of information about them. This information can be
however very relevant to interpret adequately what original variables
are finally significant in the built regression model. It was shown
(Üstün et al., 2007) that the correlation between each column (vari-
able) of the original input data matrix (X(n×m)) with each row or
column of the kernel matrix, A(n×n), can be used for the recovery
of the information about the relation between the kernel matrix and
the input variable space. Since each column of X contains the infor-
mation of the input variables and each row/column of A represents
the similarity between the objects, the elements of the calculated
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correlation matrix (R(m×n)) will reveal the individual contribution
of each input WTP variable to the kernel matrix. A correlation value
close to zero indicates that the respective input variable has no rele-
vant contribution to the specific row of the kernel matrix, A, while a
value close to +1 or −1 indicates that this is an important variable.

To calculate the contribution of each individual variable in the final
K-PLS or SVM regression models is necessary to make explicit what is
the relation between the obtained support vectors (λ‐values in SVR)
and b-regression vector values (in K-PLS) with the original variables
in X. Since the kernel matrix, A, does not contain information about
the original variables; it has no sense to relate the λ-values directly
to the kernel matrix rows. The relationship between the λ‐vector
values and the original input data variables has to be investigated in
another way. The quadratic programming optimization part of the
SVR algorithm returns a vector of λ‐values (which is comparable to
the b-regression vectors in MLR, PLS and K-PLS) having a length
equal to the number of objects whose elements satisfy the constraint
λiλi*=0, λi,λi*≥0. As a consequence, each sample (object) in the orig-
inal input space is weighted by its assigned λ-value. The samples hav-
ing λ-values equal or very close to zero are not important because
these samples do not contribute to the SVR model. By calculation of
the inner product between the contributing input samples (original
rows of data matrix X) and their corresponding λ-vector, a new vector
p with the length of the number of input variables is obtained. Plotting
this new vector will reveal the profile of the variables which contrib-
ute more significantly to the overall model.

For brevity, in this study the relative prediction errors of THM con-
centrations in percentage are included and compared, for both cali-
bration and prediction steps and they are calculated as follows:

Rel: error in % ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ŷi−yi
� �2

Pn
i¼1

yið Þ2

vuuuuuut � 100:

3. Material and methods

Forty-one WTP operational variables were measured and investi-
gated as possible factors affecting trihalomethane formation within
the Sant Joan Despí WTP in Barcelona, Spain. Table 1 and Fig. 1
show measured plant variables and locations of sampling and chlori-
nation in the plant operational scheme. Variables selected for this
study were obtained from the laboratory information management
system (LIMS). These variables give analytical information from sev-
eral locations at the plant and they cover the entire water treatment
process (input river water quality, first pre-chlorination, after sand
filtration, after carbon filtration, after post-chlorination, and output
supplied water quality). The investigated variables were analyzed in
the plant over the whole year 2003 and were used to build-up the
block of X variables (data matrix X).

For a total number of 162 days during 2003, concentrations of the
different THMs were measured (THM variables, block of y variables)
at the exit of the plant.

Concentrations of the four THMs were determined using standard
chromatographic methods (Head Space GC-ECD, Ventura and Rivera,
1985). Samples were analyzed using a Fisons 8130 gas chromato-
graph with a DB-624 30 m×0:32 mm×1:8 μm film thickness fused
silica column. Automatic injections of 0.5 ml were made in a split
mode (1:10), with helium as a carrier gas and nitrogen as a make
up gas. Detection and quantification limits were estimated to be
around 0.10 and 0.25 μg/l. Trihalomethane standard solutions were
prepared in the range of 0.5–8 μg/l. The total amount of THMs (vari-
able TTHM) was calculated as the sum of the concentrations of the
four individual compounds. Therefore, a total number of five yi

variables were defined. UV absorbance measurements in Abs/
100 cm units were carried out at 254 nm using 1-cm quartz cells
and then reporting values for a 100 cm path length (i.e. multiplying
them by 100). Residual free chlorine was measured according to the
DPD colorimetric method and chloride was measured volumetrically
using the Mohr method (APHA et al., 1998). TOC concentration in
mg/l of the samples was determined using a TOC analyzer. Turbidity
was measured in FNU using nephelometry. Estimated measurement
errors for quality control were below 35% for THM concentrations,
below 25% for turbidity, below 15% for halides, below 15% for chlorine
and below 15% for TOC. Only accredited and validated (ISO17025,
ISO9000) methods were used and applied for routine treatment con-
trol. Influence of chlorine dioxide was studied and if the assay is run
properly (i.e. reaction times) there was no interference at the levels
of dosage.

Two data subsets were prepared, one to build the calibration
model (144 days) and another to validate the model (18 days).

Initial data preparation and data prearrangement of different data
blocks (X and yi data sets) were performed using EXCEL (Microsoft,
Redmon, WA, USA). All calculations were performed using PLS Tool-
box 5.8 (Eigenvector Research, Manson, WA, USA), TOMCAT toolbox
(Daszykowski et al., 2007) and MATLAB 7.0 software (The
Mathworks, Natick MA, USA) and STATISTICA 8 for Windows
(StatSoft, Inc., Tulsa, OK, USA).

4. Results and discussion

4.1. Linear and non-linear regression predictions

Table 2 summarizes the prediction errors obtained for the model-
ing of THM concentration changes as well as for the prediction of
their total sum. MLR and PLSR predictions were now better than in
our previous study (Platikanov et al., 2007). Prediction errors for
chloroform and bromoform formation were now around 4% lower
than in our previous work (Platikanov et al., 2007). When considering
the performance of nonlinear regression techniques, the prediction
results achieved by K-PLS and SVR were better than those obtained
previously by MLR and PLSR, with 4–5% lower prediction errors for
external validation samples. It was possible to conclude that
nonlinear interactions among the variables could be better captured
and modeled now by these two nonlinear techniques. Comparing
the results obtained by them, K-PLS predictions were slightly better
than those from SVR, although this could be due to the difficulty in
the optimal tuning of SVM parameters during the modeling step.
Moreover, K-PLS modeling provides additional features which facili-
tate better modeling performance and interpretability (see below).

The average calibration and external validation relative prediction
errors for the total trihalomethane (TTHM) concentrations over the
full investigated period (1 year) were equal to 14%, using either K-
PLS or SVR methods. For the individual trihalomethane compounds,
a significant improvement in the prediction of bromoform concentra-
tions was obtained in external validation samples, with an error de-
crease from 29% (before) to 21% (now), using the proposed
nonlinear techniques. Also, the prediction of chloroform did improve
when K-PLS was used with an almost 10% overall prediction error im-
provement for external validation samples compared to previous re-
sults. Finally, the ranking of prediction performances for the
different THMs, in both, calibration and external validation steps,
was: CHBr3 (the worst), CHBrCl2, CHBr2Cl, CHCl3and TTHM (the
best). Again, as an additional remark, prediction results using the
whole 41 plant variables resulted to be better than those previously
reported (Platikanov et al., 2007) using only 23 of the plant variables,
especially for the modeling of bromoform and chloroform formation.
Recently, the application of KPLS–SVM has been proposed and its pos-
sible application in the context of similar studies is a matter of discus-
sion (Rosipal et al., 2003; Jin, 2009).
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4.2. WTP variables which were more significant on THM formation

4.2.1. MLR statistical significant variables and PLSR–VIP scores
The global contribution of all 41 individual variables to the linear

regression models was estimated by the evaluation of the statistical
significance of the MLR regression coefficients or by using VIP scores
in PLSR analysis (Chong and Jun, 2005). Table 3 summarizes what
WTP variables resulted to be more influential for the modeling and
prediction of trihalomethane formation during the different plant
treatments using both linear models.

Table 3 shows that some variables like TEMP, TURBc1, TURBc2,
Average, Wellswat, Chlorc1 and Chlorc2 characterized the late
stages of the disinfection processes at the plant and they are impor-
tant for the prediction of all THMs. According to the MLR and PLSR
results, some of the new included variables from the incoming
river water quality and from the prechlorination step, resulted to

be also significant, especially for the formation of multichlorinated
THMs (like TEMPRiv, OXIDAB, TURBRiv, CONDRiv, CLconsumL1-1
and ClconsumL1-2, see Table 3).

The formation of multibrominated compounds appeared to take
place predominantly at the very last stages of the disinfection process
at the plant. Dibromochloromethane formation did not show any
clear dependence with the variables measured in the incoming river
water or with variables monitored at the prechlorination stage,
whereas, the formation of bromoform did appear as a very complex
process. Many WTP variables were found to be significant for the
bromoform formation by the MLR and PLSR models. At the begging
of the disinfection process, the most important variables for the
bromoform formation appeared to be the incoming water conductiv-
ity. Probably, this fact indicates the dependence of bromoform forma-
tion from the quality of organic matter in the incoming river water.
Also, it was found that chlorine consumption in the prechlorination

Table 1
Variables monitored in the water disinfection process at Sant Joan Despí WTP.

Variable Process stage Abbreviation Description Average Minimum Maximum Standard
deviations

1 1. River water quality TEMPRiv River water temperature in Celsius 14.38 5.45 28.22 5.84
2 ChlorideRiv River chloride concentration in mg/l 253.73 140.00 449.67 54.59
3 absUVRiv River water UV absorbance in Abs/100 cm 10.74 7.27 22.60 2.25
4 BRKPTRiv Chlorination breakpoint 9.35 3.50 32.60 4.61
5 FlowRiv Incoming river flow in m3/s 11.72 2.00 70.00 9.65
6 CONDRiv River water conductivity (20 °C) in μS/cm 1319.34 948.00 2064.50 157.41
7 TOCRiv River total organic carbon concentration in mg/l 6.3 3.39 11.40 1.17
8 NH3Riv River ammonia concentration in mg/l 0.97 0.08 4.54 0.74
9 OXIDAB River water oxidability (KMnO4) 4.16 1.62 10.70 0.85
10 TURBRiv River water turbidity in UNF 87.64 4.58 1597.10 158.48
11 2. Pre-chlorinationa CLconsumL1-1 Chlorine consumption in kg/h Linia 1 at site 1 68.10 0.00 112.22 23.96
12 CLconsumL1-2 Chlorine consumption in kg/h Linia 1 at site 2 15.39 0.00 72.37 18.17
13 CLconsumTotL1 Total chlorine consumption in kg/h Linia 1 83.49 4.09 178.95 31.84
14 DoseTotPreClL1 Total prechlorination dose in mg/l Linia 1 11.50 0.71 55.89 5.83
15 CLconsumL2-1 Chlorine consumption in kg/h Linia 2 at site 1 51.96 0.00 100.16 23.07
16 CLconsumL2-2 Chlorine consumption in kg/h Linia 2 at site 2 7.59 0.00 47.81 10.29
17 CLconsumTotL2 Total chlorine consumption in kg/h Linia 2 59.55 4.55 108.10 22.56
18 DoseTotPreClL2 Total prechlorination dose in mg/l Linia 2 9.24 1.91 20.54 3.19
19 3. Sand filtration absUVs1 UV absorbance after sand filters at site 1 in Abs/100 cm 8.05 5.26 12.36 1.42
20 absUVs2 UV absorbance after sand filters at site 2 in Abs/100 cm 8.04 4.43 12.05 1.36
21 Clors1 Residual Cl2 concentration in mg/l after sand filters at site 1 0.194 0.017 7.925 0.635
22 Clors2 Residual Cl2 concentration in mg/l after sand filters at site 2 0.160 0.004 1.581 1.358
23 TOCs1 Organic carbon total concentration in mg/l after sand filters at site 1 5.1 2.4 7 0.6
24 TOCs2 Organic carbon total concentration in mg/l after sand filters at site 2 5.2 2.6 7.1 0.7
25 TURBs1 Turbidity measured in FNU after sand filters at site 1 0.71 0.23 3.05 0.44
26 TURBs2 Turbidity measured in FNU after sand filters at site 2 0.63 0.17 5.75 0.60
35 4. Water pumping from

well water aquifer
Wellswat Input well water total amount per day in liters 784,984.5 0 3,240,700 883,577.9

27 5. Active carbon filtration absUV UV absorbance after carbon filters in Abs/100 cm
28 Chlorc1 Residual Cl2 concentration in mg/l after carbon filters at site 1 0.97 0.80 1.71 0.11
29 Chlorc2 Residual Cl2 concentration in mg/l after carbon filters at site 2 0.96 0.82 1.23 0.08
30 Chloride Chloride concentration in mg/l after carbon filters 289.7 160 532 67.3
31 TOC Total organic carbon concentration in mg/l after carbon filters 3.47 2.07 4.83 0.58
32 TEMP Water temperature in Celsius after carbon filters 14.5 7.3 25.2 4.9
33 TURBc1 Turbidity measured in FNU after carbon filters at site 1 0.18 0.12 0.34 0.04
34 TURBc2 Turbidity measured in FNU after carbon filters at site 2 0.18 0.12 0.33 0.04
40 Average Average time of life of carbon filters from the last regeneration in days 214.14 155.25 295.95 32.99
41 SUM Total time of life of carbon filters from the last regeneration in days 4282.8 3105 5919 659.9
36 6. Postchlorination POSCl1 Emergency added Cl2 concentrations in mg/l after carbon filters at site 1 0.30 0 31.86 2.64
37 POSCl2 Emergency added Cl2 concentrations in mg/l after carbon filters at site 2 0.02 0 0.67 0.10
38 FlowPOSCl2 Emergency added Cl2 volume in liters/day after carbon filters at site 1 40.4 0 2793.3 295.6
39 FlowPOSCl1 Emergency added Cl2 volume in liters/day after carbon filters at site 2 2.3 0 192.3 17.7
42 Water at the plant exit CHCl3 Concentration in μg/l of chloroform measured at the exit of the

water treatment plant
15.19 6.00 30.85 4.79

43 CHCl2Br Concentration in μg/l of bromodichloromethane measured at the
exit of the water treatment plant

17.24 3.67 35.70 6.28

44 CHBr2Cl Concentration in μg/l of chlorodibromomethane measured at the
exit of the water treatment plant

24.41 12.55 45.00 5.87

45 CHBr3 Concentration in μg/l of bromoform measured at the exit of the
water treatment plant

18.75 6.67 61.00 5.51

46 TTHM Sum of the concentrations in μg/l of the 4 trihalomethane compounds
measured at the exit of the water treatment plant

75.58 40.87 121.55 14.91

a Variable position in the X matrix.
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step (CLconsumL1-1 and CLconsumL2-1 variables) were important
for bromoform formation. Finally, many WTP variables like water
temperature inside the plant, UV absorbance and turbidity at differ-
ent sites of the WTP, TOC, post added chlorine concentrations, as
well as well-supply flow levels, and carbon filter age, were found af-
fecting significantly the formation of multibrominated THMs.

4.2.2. Visualization of kernel matrix in K-PLS modeling of TTHM
Since the nonlinear techniques appeared to predict more accurately

than the MLR and PLSR linear methods, a visualization of the WTP var-
iable contribution from nonlinear method application would be of in-
terest for a better understanding of the different THM formation steps.

The correlation plot depicted in Fig. 2, distinguished those vari-
ables with higher correlation values (both positive and negative)
from those variables with very low correlation values (close to zero)

after kernel transformation in K-PLS modeling of TTHM. These plant
variables with high positive or negative correlation values are rele-
vant for the kernel function, thus are also important for THM forma-
tion, in contrast to variables with low correlation values close to zero.

In Fig. 2, variables number 1 (river temperature) and numbers 40
and 41 (carbon filter life) show very strong positive (dark red, close
to +1) and negative (dark blue, close to −0.8) correlation values.

Table 2
Relative prediction errors in % using different chemometric methods for calibration and
validation.

MLRa MLR PLSR K-PLS SVR

Calibration
Chloroformb 20.9 17.2 20.4 10.6 9.4
Dichlorobromomethaneb 23.3 17.7 18.6 5.1 6.1
Dibromochloromethaneb 13.9 12.6 13.2 5.0 6.7
Bromoformb 21.2 17.9 18.8 5.5 10.9
Total trihalomethanesb 11.7 10 10.9 7.3 2.5

External validation
Chloroform 24.8 20.9 21.5 14.1 17.4
Dichlorobromomethane 25.1 22.4 21.6 16.1 16.5
Dibromochloromethane 21.1 21.2 20.7 15.6 15.9
Bromoform 28.6 24.6 25.8 20.8 20.8
Total trihalomethanes 16.2 17.5 17.5 13.6 13.9

a Predictions obtained by previous MLR analysis of 23 plant variables (Platikanov
et al., 2007).

b Parameter optimizations: Chloroform: PLSR 4LVs; K-PLS 6LVs, σ0.5; SVR γ0.024
C10 ε0.1 SVs101. Dichlorobromomethane: PLSR 5LVs; K-PLS 6LVs, σ0.64; SVR γ0.024
C3.1 ε0.2 SVs79. Dibromochloromethane: PLSR 6LVs; K-PLS 7LVs, σ0.64; SVR γ0.024
C2.4 ε0.16 SVs70. Bromoform: PLSR 7LVs; K-PLS 8LVs, σ0.56; SVR γ0.024 C10 ε0.45
SVs50.

Table 3
MLR and PLSR results. WTP variables which were more important on the THM
formation.

MLR results

Compound Variablesa statistically significant at 5%

Chloroform TEMPRiv; OXIDAB; TURBRiv; CLconsumL1-1;
ClconsumL1-2;TEMP; TURBc1; TURBc2; Average;

Dichlorobromomethane TEMPRiv; CLconsumL1-1; CLconsumL1-2;absUVs2;
Chlors2; absUV; TEMP; FlowPOSCl1; Average;

Dibromochloromethane TEMP; TURBc2; TEMPRiv;
Bromoform TEMPRiv; CONDRiv; CLconsumL1-1; CLconsumL2-1;

TURBs1; absUV; Chlorc1; Chlorc2; TOC; TEMP; TURBc1;
TURBc2; Wellswat; POSCl1; FlowPOSCl1;

Total trihalomethanes TOC; TEMP; POSCl1; Average; TEMPRiv

PLSR results

Compound Variablesa with VIP scores more than threshold value of
one

Chloroform TEMPRiv, OXIDAB; CLconsumL1-1;CLconsumTotL1;
ClconsumL2-1; CLconsumTotL2; DosetotPreClL2;
Chlors2; TOC; TEMP; Average; SUM

Dichlorobromomethane ChlorideRiv; CONDRiv; CLconsumL1-1; CLconsumTotL1;
absUVs2; absUV; Chloride; TOC; TEMP; TURBc1;
TURBc2; Wellswat; POSCl1; FlowPOSCl1; Average; SUM

Dibromochloromethane TEMPRiv; absUVRiv; absUVs1; absUVs2;TOCs1; TOC;
TEMP; TURBc1; TURBc2; Average; SUM

Bromoform CONDRiv; CLconsumL2-1; absUVs2; TOCs1, TOCs2;
TURBs1; absUV; Chlorc1; Chlorc2; TOC; TEMP; TURBc1;
TURBc2; Wellswat; POSCl1; FlowPOSCl1;

Total trihalomethanes TEMPRiv; absUVRiv; absUVs2; Chlors2; TOC; TEMP;
TURBc1; TURBc2; POSCl1; Average; SUM

a For variable identification, see Table 1.

Fig. 1. Plant organization scheme and plant locations where the 41 WTP variables were measured.
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These three variables were considered to be very relevant. On the
other hand variables with numbers 38 and 39 (emergency added
Cl2 volumes) had very close to 0 correlation values (light green
color) and therefore they could not be considered relevant for the
kernel function, therefore not important either for THM formation.

Some of the new variables with higher positive or negative corre-
lation values like the river water temperature, river water chloride
concentration and break point chlorination did appear to be very rel-
evant for the better performance of K-PLS regression.

Many of the new variables monitored at the prechlorination stage
like total chlorine amounts and total chlorine doses were found to be
relevant for the kernel transformation. The correlation plot given in
Fig. 2 shows a rather complex behavior for the monitored variables
during the last disinfection stages since many variables on the plot
did show higher correlation values. Variables like TOC, turbidity at
specific locations, added amounts of well water and especially, the
carbon filter age, resulted to be also very relevant in the kernel
transformation.

4.2.3. Interpretation of SVR models
Fig. 3 shows the plots of the p-vectors calculated by SVR for the

prediction of the trihalomethane concentrations. In these plots
some WTP variables had higher contributions to the SVR model
(high arbitrary values on the y axis) than the others (close to 0 values
on the y-axis). The SVR model for chloroform formation (Fig. 3a) sug-
gests the importance of new variables like river water TOC and
breakpoint of chlorination, and also confirmed the importance of
the other river water quality variables which were already reported
to be significant in linear models. Also some other variables moni-
tored during the prechlorination stage like total chlorine doses were
found to play an important role in the modeling of chloroform con-
centration. SVR modeling also underlined those variables from the fil-
tration and postchlorination stages that were also reported as
significant in the linear models.

Very similar patterns can be noticed for the SVR results obtained for
the concentrations of mixed chloro-bromomethanes and bromoform
(Fig. 3b, c and d). Variables that were monitored throughout the entire

disinfection process from the input river water quality to the last
postchlorination stages could be correlated to the concentration of
one of the THMs containing bromine. It must be highlighted that the
presence of variable concentrations of chloride in river water had a
strong effect on the SVR modeling of all brominated THMs. Although
in this study the bromide concentration could not be directly incorpo-
rated as a known independent variable to the models (they were not
experimentally available), its effects can be deduced indirectly due to
the known fact that the bromide concentrations are very closely related
to the chloride concentrations of input river water since the bromide/
chloride concentration ratio (Davis et al., 1998) should be rather con-
stant in the river waters. In the case of Barcelona WTP, this ratio is
known to be approximately equal to 0.002.

Fig. 3e summarizes the average effect of the WTP variables in
the SVR modeling of the TTHM concentrations. In addition to the
results mentioned above in the section Visualization of kernel
matrix in K‐PLS, strong contributions to the SVR model for the
prediction of TTHM concentrations were found for water oxidability
and river flow volumes (a variable especially important for TTHM
concentrations). Other WTP operational variables from the
prechlorination, filtering and postchlorination steps, previously
reported as important in the linear modeling and in the kernel
visualization approach, were found to be also important in SVR
modeling.

4.3. Interpretation of the achieved results

Analyzing all these results, we can conclude that the THM forma-
tion in water treatment plants is a really complex process and that the
eighteen variables newly incorporated in this study, characterizing
the river water quality and first prechlorination steps, did allow for
a better description of the THM formation in Barcelona's plant.
These results did suggest that the formation of multichlorinated and
multibrominated compounds did occur at different plant locations
during the whole disinfection process.

Multichlorinated THMs were already generated at the beginning of
the disinfection process immediately after the implementation of the

Fig. 2. Correlation plot between the original matrix X (WTP variables) and the kernel matrix achieved after kernel transformation in K-PLS modeling of TTHM. The y-axis is the
samples. The x-axis depicts the original variables. For variable identification, see Table 1.
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first two prechlorination steps (see Fig. 1). Variables characterizing
the incoming river water quality were not possible to be changed dur-
ing the management, and therefore, special attention should be paid
to their natural variation, mostly due to seasonal changes. Since the
Mediterranean climate area determines very different conditions for
Barcelona's WTP operational procedures (from very intensive long
drought periods to short huge flooding periods), significant fluctua-
tions of river water flow and quality challenge the plant management,
affecting the THM formation in different ways that have to be consid-
ered. A long term monitoring program, properly planned and
established, on the river water quality variables in relation to THM

formation would be very interesting for the optimal design of further
consecutive disinfection procedures.

In order to avoid the formation of multichorinated THMs at the
beginning of the plant, proper WTP management procedures should
be considered at the prechlorination stage, especially in applying a
proper chlorine dosage.

On the other hand, since multibrominated THM formation
depended in a much higher extent from variables measured at the latest
stages of the disinfection process like filtering, and postchlorination,
many variables like total organic matter, adsorption effectiveness of
sand or carbon filters, added post chlorination amounts, and added

Fig. 3. Plot of inner-products (p-vectors) between the original calibration data set matrix X and the λ‐vectors obtained by each SVR model: a) for chloroform; b) for bromoform;
c) for dichlorobromomethane; d) for dibromochloromethane and e) for TTHM. The y-axis is given in arbitrary units. The x-axis depicts the original variables. For variable identifi-
cation, see Table 1.
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amounts of well water became important now and they should be man-
aged properly. For instance by mixing river and well water when high
concentrations of TOC are occurring, to avoid the increasing formation
of multibrominated THMs at the last stages.

The fact that the total amount of TOC in incoming river water did
not appear as a significant parameter in linear regression models, can
be explained considering the fact that this parameter was rather con-
stant for all the analyzed data and also considering that more than the
total amount of incoming organic matter, what has been shown to be
important for THM formation is the chemical composition, of the dif-
ferent organic matter fractions (Croué, 2004). This fact was clearly
corroborated in this work by the significance of variables like
OXIDAB (permanganate oxidability) and CONDRiv (conductivity or
river water) in the results of the linear models.

5. Conclusions

Formation of trihalomethanes is shown to depend strongly on sev-
eral environmental and/or operational water treatment plant vari-
ables monitored during the disinfection processes. It has been
concluded that trihalomethane formation takes place predominantly
at three distinct locations of water treatment plants, i.e. after the
first pre-chlorination stage, after the carbon filtration stage – proba-
bly due to desorption of already retained trihalomethanes – and
after the post-chlorination stage. This formation also strongly de-
pends on the quality of incoming raw water. One of the most impor-
tant variables to be monitored in water treatment plants for
trihalomethane formation predictions resulted to be input water tem-
peratures at the beginning of the disinfection process and inside the
plant. Some other variables associated to the organic matter quality,
such as water oxidability and water conductivity resulted to be also
important, as well as prechlorination, especially for the nonlinear
models. Carbon filter aging, water turbidity after carbon filters, as
well as the amount of input well water, UV absorbance, total organic
carbon concentrations (the latter two after carbon filters) and post-
chlorination variables were also confirmed to be important in both
linear and nonlinear models. General improvement for external vali-
dation predictions for the concentration of chloroform and
bromoform was achieved with the inclusion of these new variables
and with the use of nonlinear modeling methods, with prediction er-
rors decreasing up to 10%, in comparison to previous application of
linear modeling methods. Total trihalomethane concentration was
the best predicted variable, followed by concentrations of mixed
bromo–chloro trihalomethanes and chloroform. Bromoform concen-
tration was still the worst predicted parameter, probably (at least in
part) due to a lower precision of its reference values. Results
obtained by K-PLS and SVR methods confirmed the presence of
nonlinear interactions among the operational variables, and the vi-
sualization of kernel transformations proved to be especially useful
for this purpose.

Developed models for the Barcelona's WTP could be adapted to
other WTPs. There will be specific characteristics of the incoming
raw water and of the particular treatment procedures, like for
instance addition of well water, which will change from plant to
plant, and need model recalibration and updating. A proper WTP
management plan should be the result of the implementation of
on site-specific models covering all possible local conditions of
work, but they will use similar chemometric methods (like KPLS
and SVR) and similar calibration–validation strategies like those
used in this work.
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Results and Discussion 

- Prediction improvement after the insertion of the new 18 DWTP operational 

parameters in linear regression models 

 

MLR and PLS predictions with the augmented model in Article 2 were better than 

such obtained with 23 plant variables in Article 1. The inclusion of new variables 

measuring  the raw river quality and representing the pre-chlorination process had a 

positive effect on the THMs prediction. For example, the prediction results for 

chloroform improved around 4-5% in the external validation. This result was consistent 

with previous literature because the kinetic reaction of CHCl3 formation is fast and 

occurs immediately when DOM and chlorine disinfectant enter in contact (Johnson and 

Jensen, 1885) during the prechlorination stage. Moreover, in the case of the SJD 

DWTP, the results suggested that CHCl3 and CHCl2Br are predominantly formed at the 

prechlorination stage of the process.  The model predictions regarding the formation of 

CHBr3 and CHClBr2 have not significantly improved with the extended set of 41 

variables included in the model. 

This result is likely due to the fact that multibrominated THMs form at lower rate 

and hence such compounds occur at later stages of the disinfection process (Al-Omari et 

al., 2014).  Among the main conclusions for the SJD DWTP operational management 

was that there is a fast formation of CHCl3 and CHCl2Br at the prechlorination step, and 

that formation of brominated THMs was common at other stages of potabilization 

procedures.  

 

- Comparison of the linear and non-linear prediction models  

 

Article 2 examined the predictive power of two well-known nonlinear techniques 

(SVR and K-PLS) for the THMs modelling in the SJD DWTP. These two methods 

proved to be a useful approach in modelling the THMs formation (for a particular 

compound or for their total sum), because such methods resulted in lower prediction 

errors in comparison to the the lineal methods in the external validation.  The prediction 

errors obtained with K-PLS or SVR were lower by approximately 4–5% compared to 

the errors obtained with the linear MLR and PLS methods. The lower prediction errors 

suggested that a nonlinear interaction between DWTP variables and THMs existed and 

that such relationships were better modelled by applying the two nonlinear techniques. 
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The comparison of the prediction results between the two nonlinear techniques 

suggested that K-PLS model was slightly better than the SVR model. This result could 

be explained by the difficult optimization of the three SVR tuning parameters and the 

K-PLS reliance on adjustments of only two parameters. 

The largest improvement of the relative predictions in the external validation was 

found for the total sum of trihalomethanes concentrations (TTHM), which was found to 

have a relative prediction error equal to 14%, using either K-PLS or SVR methods. The 

prediction of bromoform concentrations were also significantly improved, because its 

relative prediction error decreased from 29% (i.e., with 23 variables used as predictors) 

to 21% (i.e., with 41 variables used). The prediction of chloroform also improved when 

using K-PLS, where prediction errors improved by approximately 10%for external 

validation samples compared to the errors obtained with linear regression methods. The 

final ranking of prediction errors improvement was not significantly different in 

comparison to the previous work and it was as follows: CHBr3 (worse) > CHCl3 > 

CHBrCl2 >  CHBr2Cl > TTHM (best). 

Taken together, the four regression techniques used in the two articles, namely 

MLR, PLS, K-PLS and SVR, proved to be useful in accurately modelling of THMs 

formation and prediction in the SJD DWTP. When various parameters, including 

incoming raw water quality and measures obtained at the last postchlorination step, 

were modelled, external validation predictions of total sum of THMs reached values 

around 10% of relative error. To the extent that this parameter (i.e., total sum) is the 

only parameter regulated by the EU legislation, it is critical to have a good prediction 

model. Concentrations of mixed bromo-chloro trihalomethanes and chloroform were 

relatively well predicted by most of the models employed in the studies. Bromoform 

concentration was the most difficult parameter to be predicted, perhaps partially due to 

lowest precision of its reference values.  The application of nonlinear regression 

techniques such as K-PLS and SVR methods resulted useful because nonlinear 

interactions among operational variables and THMs could be expected.   

  

 - Evaluation of more important variables in linear regression models  

  

Similar to Article 1, the contribution of 41 individual DWTP parameters to the linear 

regression models was evaluated. For this purpose, MLR regression coefficients and the 
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so-called VIP scores in PLS modelling were assessed for their importance and statistical 

significance.   

The most important DWTP parameters for the modelling and prediction of 

trihalomethanes formation during the different plant treatments using both linear models 

are presented in Table 3 (Article 2) As displayed, variables such as water temperature, 

turbidity after carbon filters,  amount of added wells water  and chlorine concentrations 

after the carbon filters were found to be important for predicting THM formation. 

Interestingly, some of the new included DWTP parameters, specifically from the 

incoming river water quality and from the prechlorination step, were found to play a 

significant role in the formation of multichlorinated THMs, namely river water 

temperature, water oxidability, river water turbidity, river water conductivity, and the 

chlorine consumption at the first prechlorination step. 

 According to the results of the linear models, the formation of multibrominated 

compounds occurred at the last stages of the disinfection process in the plant. Many 

DWTP variables were found to be significant for the bromoform formation in MLR and 

PLS models. This observation is suggestive that bromoform formation presented a 

complex behaviour with nonlinear relationships with operational parameters. The most 

important variable for bromoform formation appeared to be the incoming water 

conductivity parameter. This fact meant that bromoform formation strongly depended 

on the quality of organic and inorganic matter in the incoming river water. Additionally, 

it was found that chlorine consumption in the prechlorination step was important for 

bromoform formation.  

 Other DWTP influential variables observed for multibrominated THMs 

formation were confirmed to be relevant also in this second work. They were water 

temperature inside the plant, UV absorbance and turbidity at different sites of the 

DWTP, TOC, post added chlorine concentrations, as well as the pumped underground 

water quantities, and carbon filters age. 

- Evaluation of more important variables in non-linear regression models 

 Additional information about nonlinear relationships among operational DWTP 

parameters and THMs was obtained after the visualization of kernel matrix parameters 

in K-PLS modelling of TTHM (see more in the Methodology section). The correlation 

plot in Figure 2 (Article 2) displays the most important DWTP parameters.  The 

parameters which had high positive or high negative correlation values were considered 
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to be relevant for the kernel function and therefore important for TTHM formation, in 

contrast to parameters with low correlation values close to zero.  

In Figure 2 of Article 2, three parameters appeared to be very relevant for TTHM 

formation, river temperature and carbon filters age parameters. In contrast, emergency 

added Cl2 volumes were not relevant and therefore they were not considered important 

for the kernel function and therefore not important either for THMs formation.  

 New variables with higher positive or negative correlation values were found to 

be river water temperature, river water chloride concentration and break point 

chlorination. Parameters from the prechlorination stage such as total chlorine amounts 

and total chlorine doses were also detected to be relevant for the kernel transformation, 

although they were underestimated in the linear modelling. The correlation plot 

displayed in Figure 2 (Article 2) suggested that there is a complex nonlinear behaviour 

regarding the trihalomethane formation in the last treatment stages, because various 

variables on the plot were found to be relevant in the kernel transformation. Parameters 

such as TOC, turbidity at specific locations, added amounts of wells water and 

especially, carbon filters age resulted to be highly relevant and important for THMs 

formation in both type of models, linear and nonlinear. 

 The interpretation of SVR models presented in Figure 3 (Article 2) was 

performed using the vizualisation of p-vectors (see more in the Methodology section of 

Article 2). The significance of DWTP variables was inferred from the higher 

contributions of such variables to the SVR model. Based on this analysis, in respect to 

the chloroform formation (see Figure 3a, Article 2), parameters such as river water TOC 

and the breakpoint of chlorination were found to be important, along with total chlorine 

doses and other parameters already detected to be significant in the linear models. 

Similar patterns were observed in the SVR results obtained for the concentrations of 

mixed chloro-bromomethanes and CHBr3 (please refer to Figure 3b, c and d of Article 

2). The most relevant information was gathered from the chloride concentration in river 

water, which was found to contribute significantly in the SVR modelling of all 

brominated THMs. Although the bromide concentration parameter was not measured 

and reported in the data, its indirect effect could be inferred from chloride 

concentrations of input river water to the extent that bromide/chloride concentration 

ratio is rather constant in the river water system under study (Davis et al., 1998). The 

results also suggested that water oxidability and river flow volumes were important for 

THMs formation.  
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  Table 5. Summary of the most important operational parameters for the THMs 

formation 

 

MLR results 

Compound Variables1  statistically significant at 5 % 

Chloroform 

TEMPRiv; OXIDAB;  TURBRiv;  CLconsumL1-1; ClconsumL1-2;TEMP; TURBc1; 

TURBc2; Average;  

Dichlorobromomethane 

TEMPRiv; CLconsumL1-1; CLconsumL1-2;absUVs2; Chlors2; absUV; TEMP; 

FlowPOSCl1; Average;  

Dibromochloromethane TEMP; TURBc2; TEMPRiv; 

Bromoform 
TEMPRiv; CONDRiv; CLconsumL1-1; CLconsumL2-1;TURBs1; absUV; Chlorc1; 

Chlorc2; TOC; TEMP; TURBc1; TURBc2; Wellswat; POSCl1; FlowPOSCl1;  

Total Trihalomethanes TOC;TEMP; POSCl1; Average; TEMPRiv 

 

PLS results 

Compound Variables1 with VIP scores more than threshold value of one 

Chloroform 

TEMPRiv, OXIDAB; CLconsumL1-1;CLconsumTotL1;  ClconsumL2-1; 

CLconsumTotL2; DosetotPreClL2;  Chlors2; TOC; TEMP; Average; SUM 

Dichlorobromomethane 

ChlorideRiv; CONDRiv;  CLconsumL1-1; CLconsumTotL1; absUVs2; absUV; Chloride; 

TOC;  TEMP; TURBc1; TURBc2; Wellswat; POSCl1; FlowPOSCl1; Average; SUM 

Dibromochloromethane 

TEMPRiv; absUVRiv; absUVs1; absUVs2;TOCs1;  TOC;  TEMP; TURBc1; TURBc2;  

Average; SUM 

Bromoform 
CONDRiv;  CLconsumL2-1; absUVs2; TOCs1, TOCs2; TURBs1; absUV; Chlorc1; 

Chlorc2; TOC; TEMP; TURBc1; TURBc2; Wellswat; POSCl1; FlowPOSCl1;  

Total Trihalomethanes 
TEMPRiv ; absUVRiv ; absUVs2 ; Chlors2;  TOC;  TEMP; TURBc1; TURBc2; POSCl1; 

Average; SUM 

  

 K-PLS results 

Compound Variables  relevant in the kernel matrix visualization  

Chloroform Same parameters as for TTHMs 

Dichlorobromomethane Same parameters as for TTHMs 

Dibromochloromethane Same parameters as for TTHMs 

Bromoform Same parameters as for TTHMs 

Total Trihalomethanes 
TEMPRiv, TOC, TURBs1, Average, SUM, ChlorideRiv, BRKPTRiv, CLconsumTotL2, 

CLconsumL2-1, Wellswat, TEMP 
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 SVR results 

Compound Variables1 with higher contributions to the SVR model 

Chloroform 

TEMPRiv, BRKPTRiv,TOCRiv,CLconsumTotL1,DoseToTPreClL1CLconsumL2-

1,TOCs2, TURBs2,TURBc2 

Dichlorobromomethane 

ChlorideRiv,  BRKPTRiv,Oxidab,CLconsumTorL1,DoseTotPreClL1,Chlors1,TOCs2, 

TEMP,TURBc2, Wellswat, Average , SUM 

Dibromochloromethane Chloride, CONDRiv,CLconsumTotL1,DoseTotPreClL1,TOCs2 

Bromoform 
ChlorideRiv, CLconsumL1-1, CLconsumL1-2, absUVs1,Chlors2, TOCs1,Wellswat, 

Average, SUM 

Total Trihalomethanes ChlorideRiv, OXIDAB, CLconsumTotL1,DoseTotPreClL1,absUVs2, 

For variable identification, see  Table 1 , Article 2. 

The results suggested that the THMs formation in the Sant Joan Despí DWTP 

(Barcelona, Spain) presented a seasonal trend with the highest amounts in spring 

season. Due to natural characteristics of the Llobregat River water, the formation of 

brominated THMs compounds is favored. The formation of trihalomethanes is strongly 

dependent on several natural and operational DWTP parameters, which are monitored at 

the plant and can be modelled. These parameters capture the entire water treatment 

process from the incoming raw water quality to the last post-chlorination process, 

before drinking water to be realised into the WDS. It was deduced that the most 

important parameters found in these two studies are these related to the kinetic reaction 

of THMs formation. Parameters, such as the natural organic matter quality as a 

precursor, the chlorine doses to disinfect, the temperature and the bromide 

concentration, were shown to be very influential for the THMs formation. In addition, 

DWTP operational procedures, such as pumping underground water and carbon filters 

frequent regeneration, were suggested to reduce significantly THMs formation and 

occurrence. 

THMs formation reaction begins at locations where chlorine is added, i.e. after 

first pre-chlorination (especially, for CHCl3 and CHCl2Br) and after the post-

chlorination and occurs permanently (especially, for CHClBr2 and CHBr3). The 

granular activated carbon filtration can be considered critical for the reduction of 

THMs. Two processes favouring THMs formation may take place along with the aging 

of carbon filters. The first process is the desorption of THMs in the carbon filters. The 
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second process is the saturation of carbon filters with organic matter which explains the 

filters’ decreased efficiency in retaining THMs precursors.   

 

3.1.3 Article 3 – Platikanov, S.,  Tauler, R., Rodriguez, P., Antunes, M., Pereira, 

D. and J. Esteves da Silva. Factorial Analysis of the trihalomethane formation in the 

reaction of colloidal, hydrophobic and transphilic fractions of DOM with free chlorine. 

Environmental Science and Pollution Research 17 (2010) 1389-1400. 

 

Introduction 

In the previous two articles, several important DWTP parameters for the THMs 

formation have been detected. In both studies, linear and nonlinear regression 

techniques have been applied to model the relationships between THMs and operational 

parameters. The formation of THMs was demonstrated to be highly dependent on 

several natural and operational DWTP parameters.  Among the parameters,  total 

organic carbon concentrations (TOC) and the water absorbance at UV 254nm, both 

describing natural organic matter in water, were distinguished to be important 

precursors for the THMs formation.   

Scientific research has concluded that NOM (its quantity and quality) should be 

the most important precursor of THMs formation. An extensive scientific literature has 

been focused on the characteristics of NOM and its various forms (such as the organic 

matter dissolved in water, DOM), because different fractions of DOM were suggested 

to contribute to the formation and speciation of THMs.  Some studies have attempted to 

relate specific characteristics of organic matter, such as functionality and aromaticity, to 

THM formation (Gallard and von Gunten 2002). Other studies have largely focused on 

the influence of operational parameters, including chlorine dose, water temperature, pH, 

and reaction time, on the THM formation (Radiq and Rodriguez 2004). The 

contribution of our article is that it combines the two lines of research to gain better 

understanding about the influence of NOM precursor and the operational conditions of 

disinfection, jointly determining the THMs formation. More specifically, Article 3 

focused on the importance of different DOM fractions for the THMs formation and 

investigated the main determinants of THMs formation. In this article, results of 

laboratory experiments, where different DOM fractions (colloidal, hydrophobic, and 

transphilic fractions) were disinfected by chlorine under target conditions, are presented. 
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This study was conducted during my research stay at the University of Oporto 

(Portugal) by invitation of Professor Joaquim Esteves da Silva (Faculty of Science).  

DOM fractions were obtained and fractionated for further analysis from filtered lake 

water from Caldeirão dam in Guarda (Portugal).  About 200 L of water were initially 

concentrated using a portable reverse osmosis system that consisted of an electric pump, 

ionic exchange resins, and a reverse osmosis membrane. The fractionation system is 

presented in Figure 1 of Article 3. The DOM concentrated water sample was collected 

after the osmosis process and was subsequently acidified to pH 2. Following the 

fractionation method of Leenheer (2004), DOM was separate into four fractions: 

colloidal, hydrophobic (HPOF), transphilic, and hydrophilic.  For the purpose of this 

study, three fractions were chosen, namely colloidal, HPOF and transphilic. Solution 

samples with DOM fractions were then frozen, lyophilized and characterized with 

Fourier transform infrared spectroscopy (FT-IR) and elemental analysis. Information 

about the chemical structure of each DOM fraction was found to be relevant in 

explaining THMs formation. 

The investigation included a screening Placket-Burman factorial analysis design, 

which considered five factors: DOM fraction concentration, chlorine dose, temperature, 

pH, and bromide concentration.  A Box-Behnken design was applied to assess the effect 

of the most important factors (DOM fraction concentration, chlorine dose, and 

temperature) using a response surface strategy.  

 Results from the linear models and response surface plots for THMs formation 

revealed that the formation of THMs was complex and largely dependent on DOM 

fraction concentration, chlorine dose, and temperature. Formation reactions were found 

strongly determined by individual factors and their corresponding interactions.
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Abstract
Background, aim, and scope This study focuses on the
factors that affect trihalomethane (THMs) formation when
dissolved organic matter (DOM) fractions (colloidal,
hydrophobic, and transphilic fractions) in aqueous solutions
were disinfected with chlorine.
Materials and methods DOM fractions were isolated and
fractionated from filtered lake water and were characterized
by elemental analysis. The investigation involved a screen-
ing Placket-Burman factorial analysis design of five factors
(DOM concentration, chlorine dose, temperature, pH, and
bromide concentration) and a Box-Behnken design for a
detailed assessment of the three most important factor effects
(DOM concentration, chlorine dose, and temperature).

Results The results showed that colloidal fraction has a
relatively low contribution to THM formation; transphilic
fraction was responsible for about 50% of the chloroform
generation, and the hydrophobic fraction was the most
important to the brominated THM formation.
Discussion When colloidal and hydrophobic fraction sol-
utions were disinfected, the most significant factors were
the following: higher DOM fraction concentration led to
higher THM concentration, an increase of pH corresponded
to higher concentration levels of chloroform and reduced
bromoform, higher levels of chlorine dose and temperature
produced a rise in the total THM formation, especially of
the chlorinated THMs; higher bromide concentration gen-
erates higher concentrations of brominated THMs. More-
over, linear models were implemented and response surface
plots were obtained for the four THM concentrations and
their total sum in the disinfection solution as a function of
the DOM concentration, chlorine dose, and temperature.
Overall, results indicated that THM formation models were
very complex due to individual factor effects and signifi-
cant interactions among the factors.
Conclusions In order to reduce the concentration of THMs
in drinking water, DOM concentrations must be reduced in
the water prior to the disinfection. Fractionation of DOM,
together with an elemental analysis of the fractions, is
important issue in the revealing of the quality and quantity
characteristics of DOM. Systematic study composed from
DOM fraction investigation and factorial analysis of the
responsible parameters in the THM formation reaction can,
after an evaluation of the adjustment of the models with the
reality, serves well for the evaluation of the spatial and
temporal variability in the THM formation in dependence
of DOM. However, taking into consideration the natural
complexity of DOM, different operations and a strict
control of them (like coagulation/flocculation and filtration)
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has to be used to quantitatively remove DOM from the raw
water.
Recommendations and perspectives Assuming that this
study represents a local case study, similar experiments
can be easily applied and will supply with relevant
information every local water treatment plant meeting
problems with THM formation. The coagulation/floccula-
tion and the filtration stages are the main mechanisms to
remove DOM, particularly the colloidal DOM fraction.
With the objective to minimize THMs generation, different
unit operation designed to quantitatively remove DOM
from water must be optimized.

Keywords Factorial analysis . Response surface
methodology . Chlorine water disinfection . Colloidal .

Hydrophobic . Transphilic . Trihalomethanes formation .

Disinfection by products

1 Background, aim, and scope

Since the first study conducted by Rook in 1974, it has
been established that the use of chlorine for disinfecting
drinking water leads to the formation of various disinfec-
tion byproducts (DBPs) potentially harmful for human
health (Bellar et al. 1974; Nieuwenhuijsen et al. 2000;
Chang and Young 2000; Richardson and Thruston 2003;
Richardson et al. 2007). Regardless, chlorine remains the
most commonly used disinfectant because it is effective,
relatively inexpensive and has a disinfection residual
property, which is important to prevent possible sources
of contamination in the distribution system. Among the
DBP groups identified in chlorinated water (Hrudey 2009),
only the trihalomethane (THM) family is regulated by
European Community legislation, which includes chloro-
form, bromodichloromethane, chlorodibromomethane, and
bromoform (Council Directive 98/83/EC). THMs constitute
an important matter of public health concern, since they are
regarded as carcinogens and, more recently, epidemiolog-
ical studies indicate that they are also associated with
reproductive and developmental problems (McGeehin et al.
1993; Simpson and Hayes 1998; Lewis et al. 2006; Savitz
et al. 2006). However, many epidemiologists and other
scientists contest many of epidemiological studies involv-
ing DBPs in drinking water, particularly those involving
acute exposure, which suffer from the misclassification of
exposure (Reif et al. 1996). Actually, a review of
epidemiological studies about cancer risks found only a
somewhat consistent association among chlorinated surface
waters and bladder cancer. Also, weak to moderate bladder
cancer risks were found associated with long-term exposure
to chlorinated surface water and THM (Villanueva et al.
2007; Hamidin et al. 2008). The health risk concern from

exposure to THM forced the European Union to establish a
new drinking water quality regulation that changed the
maximum levels of total THM (TTHM, the sum of all
individual trihalomethanes) allowed in drinking water from
150 μg L−1 to 100 μg L−1 (Council Directive 1998).
However, to strictly follow this directive and apply the
practices in municipal treatment plants that supply safe and
potable water, understanding the process of THM formation
is crucial.

Natural organic matter dissolved in water (DOM) is
usually considered the precursor of DBP (von Gunten et
al. 2001; Rostad et al. 2000; Leehneer et al. 2001;
Panyapinyopol et al. 2005). DOM is a complex mixture
of various compounds with very different chemical
properties. Many efforts have been made to characterize
DOM in order to improve its removal and reduce DBP
formation during water disinfection (Croué et al. 1999;
Croué 2004). The most common practice for the isolation
and fractionation of DOM from water is using XAD resins
and ion-exchange resins (Leenheer et al. 2000; Leenheer
2004). Recently, Leenheer (2004) proposed an operational
scheme to separate DOM into four fractions: colloidal,
hydrophobic, transphilic, and hydrophilic. A number of
studies have attempted to correlate some specific character-
istics of organic matter, functionality, and aromaticity with
THM formation (Norwood et al. 1980; Gallard and von
Gunten 2002; Dickenson et al. 2008). Likewise, many
investigations have focused on operational parameters such
as chlorine dose, water temperature, pH, and reaction time,
which are regarded as influential for THM formation (Peters
et al. 1980; Radiq and Rodriguez 2004). In addition, the
bromide ion in raw water may also play an important role in
the THM formation reaction, leading to a predominance of
brominated THMs (Xue et al. 2008; Nikolaou 2004). As a
result of the intense research in this area, during the last
years, many mathematical models have been developed for
predicting DBP and THM formations (Sohn et al. 2004;
Platikanov et al. 2007). These models mainly focused on
the prediction of total THM or chloroform formation. In
spite of the large number of studies examining DBP
formation of the isolated DOM fractions from different
water sources by chlorination in different conditions, there
are still contradictory results, mainly in the disinfectant
dosage and pH effect (Nikolaou 2004; Lu et al. 2009).

The aim of this study was to utilize a method (Rodrigues
et al. 2007) that has been proposed to determine the factors
that affect the formation of the four THMs by chlorine
disinfection of different DOM fractions (hydrophobic,
colloidal, and transphilic) in a prototype laboratory simu-
lation. DOM fractions were extracted from water samples
of the Caldeirão dam (Guarda, Portugal) by a reverse
osmosis water pre-concentration procedure, followed by
dialysis and adsorption resins (Leenheer and Croué 2003).
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THM formation is a complex process that depends on
several factors and usually involves interactions of those
factors. This study uses a factorial analysis strategy in order
to identify the most THM formation-relevant factors and
the way they influence THM formation (Rodrigues et al.
2007; Esteves da Silva et al. 2001). Two experimental
designs, based on a Placket-Burman design of five factors
(DOM fraction, chlorine dose, temperature, pH, and
bromide ion concentration) and a Box-Behnken design for
the analysis of three factors (DOM fraction concentration,
chlorine dose, and temperature), were used to identify the
most important factors in the formation of the four THM
species and in the calculation of the corresponding response
surfaces. A Box-Behnken design was chosen because it
enabled a more precise study of the effect of several factors,
as well as to obtain response surfaces with a relatively few
number of experiments and with only three levels for each
of the factors under analysis.

2 Materials and methods

As before mentioned, DOM fractions were obtained from
Caldeirão dam in Guarda, Portugal. To be brief, a known
volume of water (about 200 L) was concentrated using a
reverse osmosis system. This system consisted of an
electric pump, ionic exchange resins, and a reverse osmosis
membrane. The concentrated water collected after the
osmosis process was filtered using 0.45 μm Whatman
cellulose acetate membranes and acidified to pH 2 with 6 M
hydrochloric acid.

DOM fraction isolation was carried out in several stages:
(1) deposition of the concentrated water solution, acidified to
pH 1, in a dialysis bag (Spectrum, Spectra/Per), with a
3.5 kDa cutoff, (2) immersion during 36 h (three times 4 L)
in a 0.1 M HCl solution (Merck); (3) immersion of the
dialysis bag in 0.2 M HF solution followed by immersion of
the dialysis bag in deionized water, The dialysis bag retained

the colloid fraction, which was frozen and lyophilized, and
(4) the dialyzed solution was sequentially eluted by XAD-
8 (Fluka) and XAD-4 (Sigma) column, which adsorbed the
hydrophobic (HPOF) and transphilic fractions, respectively.
The HPOF and transphilic fraction, adsorbed onto XAD-
8 and XAD-4 columns, respectively, were then eluted with a
mixture of acetonitrile (Merck) and water in a proportion of
75% and 25%, respectively (Fig. 1). The solutions with the
fractions were frozen and lyophilized (B. Braun, Christ
LDC-1). Fourier transform infrared (FT-IR) spectra of the
DOM fractions were done with a Bruker, vector 22 model,
FTIR spectrophotometer.

THM (CHCl3, chloroform; CHBrCl2, bromodichloro-
methane; CHBr2Cl, dibromochloromethane; and CHBr3,
bromoform) 200 g L−1 standard solution in methanol
(SUPELCO, Bellefonte, USA) was used for the preparation
of the aqueous standard solutions in the μg L−1 range (0.5–
30 μg L−1). All reagents were of analytical grade quality.
The sodium hypochlorite used was a commercial solution.

2.1 Laboratory simulation of a water disinfection process

The disinfection process of the water sample containing
DOM followed the following steps: we (a) placed a reaction
vessel of 250 ml volume, with an aqueous solution of DOM
(concentrations of 0.5, 2.7, and 5 mg L−1), in a water bath
at a constant temperature; (b) added to the DOM fraction
solution a volume of sodium chloride to achieve a final
concentration of 10 mg L−1 of chloride anion and a
predetermined volume of potassium bromide (final concen-
tration of 0.1, 0.55, and 1.0 mg L−1); (c) adjusted pH with
hydrochloric acid and/or sodium hydroxide to pre-
determined values (pH 6.0, 7.0, and 8.0); (d) added a pre-
determined amount of sodium hypochlorite to begin the
disinfection reactions; (e) kept the sample at a constant
temperature in a water bath; (f) 20.00 mL were removed at
times zero (after sodium hypochlorite addition), 5 and
30 min to perform the THM analysis (after sample

Fig. 1 Isolation protocol for
colloids, hydrophobic, and
transphilic fractions from water
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collection, 30 μL of a solution 2 M sodium thiosulphate
were added to eliminate free chlorine); (g) free chlorine was
analyzed in all samples using a portable photometer kit
(ELE International Limited, England).

THMs were analyzed by gas chromatograph-electron
capture detector (GC-ECD). Gas chromatographic analyses
were performed with a Chrompack CP9003 GC gas
chromatograph equipped with a 63Ni electron capture
detector and a split/splitless injector. The column used
was a Chrompack CP-Sil 13CB (25 m×32 mm, 1.2 μm)
fused-silica column. Headspace analysis and GC-ECD
parameters are shown in (Rodrigues et al. 2007). The limits
of detection for the four THM of the HS-GC-ECD were in
the range 0.3-1.4 μg L−1 and were calculated using the
following criteria: LOD ¼ aþ 3Sy=xð Þ, where a is the
intercept of the calibration curve and Sy/x is the random
error in the y direction (Miller and Miller 2000).

2.2 Organization of the study

THM formation study was organized using two different
experimental designs. First, a preliminary screening analy-
sis was performed following a Placket-Burman design,
focusing on the effect’s evaluation of the five main factors:
DOM fraction concentration, chlorine dose, pH, water
temperature, and bromide anion concentration. Second, this
preliminary study was followed using a Box-Behnken
experimental design to estimate the effects of the two
factors that have a natural variability (DOM concentration
and water temperature) and one operationally controlled
factor (chlorine dose) in the water treatment plant.

Table 1 shows concentrations and volumes of the factors
under investigation, which were used for the preparation of
simulated disinfection experiments. The DOM, chloride
and bromide concentrations, and temperature were chosen
to represent the natural variation of these parameters along
the year in waters of the Caldeirão Dam. The concen-
trations of sodium hypochlorite were chosen such that there
was always an excess of free chlorine. The minimum

concentration of free chlorine (0.4 mg L−1) led to free
residual chlorine of 0.01 mg L−1 at the end of the
experiment and the maximum concentration of free chlorine
(2.4 mg L−1) led to free residual chlorine of 0.1 mg L−1.
These values of the free residual chlorine did not decrease
markedly after 60 min of subsequent reaction (the exper-
imental time was about 90 min). This is in agreement with
the fact of most THM growth rate was higher during the
first 69–90 min (Korshin et al. 2002; Fabbricino and
Korshin 2005; Fabbricino and Korshin 2009).

All calculations and data analysis were done using peak
areas obtained from the recorded chromatogram using
Chrompack CP-Maitre I/II software (version 2.5). The
experimental design formulation and the corresponding
analysis of the effects (ANOVA) and response surface
calculations were done using The Unscramble v9.2
(CAMO PROCESS AS, Oslo, Norway).

3 Results

3.1 Characterization of the DOM fractions

To obtain information about the chemical structure of the
investigated fractions and to relate it to the THM formation
afterwards, an elemental analysis and FT-IR spectroscopy
was performed. Elemental analysis and the H/C and the
C/N atomic ratios of the three DOM fractions are presented
in Table 2. The analysis of this table shows that the main
differences among the three DOM fractions are the
following: (1) higher elemental percentages of nitrogen
and sulfur are detected in the colloidal fraction; (2) the H/C
ratios in the HPOF fraction are lower than that in the others;
(3) C/N ratio increases according to this order: colloidal
fraction (lowest), transphilic fraction (middle) and HPOF
(highest). Similar trends were observed for fractions
analyzed by Leenheer and others (2000). These results
show that the colloidal fraction is characterized with higher
amounts of protein residuals in their molecules and a lesser

Factors Levels

Placket-Burman design (8 + 3 center experiments)a

DOM fraction concentration in mg L−1 0.5 2.75 5

Bromide anion concentration (Br−) in mg L−1 0.1 0.55 1.00

pH 6.0 7.0 8.0

Water temperature (T) in °C 10 17.5 25

Chlorine (Cl2) in mg L−1 0.4 1.4 2.4

Box-Behnken design (12 + 3 center experiments)a,b

DOM fraction concentration in mg L−1 0.5 2.75 5

Water temperature (T) in °C 10 17.5 25

Chlorine (Cl) in mg L−1 0.4 1.4 2.4

Table 1 Experimental designs,
factors, and corresponding
levels

a A constant background concen-
tration of 10 mg L−1 chloride
anion was used in all experiments
b A constant background concen-
tration of 10 mg L−1 chloride
and 0.1 mg L−1 bromide anions
were used in all experiments
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amount of carbohydrate structures. However, the HPOF is
dominated more with condensed aromatic structures
(Leenheer et al. 2000; Leenheer 2004). The transphilic
fraction takes intermediate position, possessing lower
amounts of protein structures than the colloids and lower
amounts of condensed aromatics than the HPOF.

IR spectra of the three fractions are shown in Fig. 2. The
band at about 3,300 cm−1 is generally attributed to OH
groups and bands at 2,900–2,930 cm−1 are assigned to CH,
CH2, and CH3 stretching of the aliphatic groups. The bands
at 1,640–1,680 cm−1 and 1,560–1,551 cm−1 are attributed
to CO stretching vibration of carboxylic acids and ketones/
quinones, respectively. The bands at about 1,450 cm−1 and
1,410 cm−1 are attributed to CH deformation of aliphatic
and CH3 groups, respectively. Also, bands in the 1,280–
1,137 cm−1 regions are attributed to CO stretching of esters,
ethers and phenols, and the band at about 830 cm−1 can be
assigned to OH stretching vibration of carboxylic groups.
In the IR spectrum of the colloidal fraction, the band
located at 1,050 cm−1 due to CO groups is particularly
important because these groups are indicative of the
presence of N-acetylglucosamine (Croué 2004), formed
from the oxidation of carbohydrates with amino groups
from the bacterial cell wall structure (Hwang et al. 2001;
Leenheer 2004). In the case of hydrophobic and transphilic
fractions, there is a strong intensity band near 1,720 cm−1

which suggests a relatively greater abundance of carbonyl
groups.

3.2 Qualitative analysis of factor effects
using a Placket-Burman design

Table 1 shows the factors and levels used for the evaluation
of the main effects on THM formation. The five parameters
were studied using a Placket-Burman design (eight plus
three center experiments). In this screening analysis, only
the HPOF and colloid fractions were studied because the
available quantity of transphilic fraction was very low.
Table 3 shows the analysis of the effects of the five
parameters on the four individual THMs and their total sum
using Placket-Burman design experiments. The experimen-
tal error was estimated using replicated center samples.

Some results from the analysis in Table 3:

1. Higher the concentration of the colloidal and hydro-
phobic fraction greater the total THM production. This
fact was expected because DOM concentration is the
main precursor from which THM originates (Leenheer
2004; Lu et al. 2009). HPOF concentration was a very
significant parameter for the formation of multi-
chlorinated trihalomethanes, whereas colloidal fraction
was more influential in the formation of mixed
bromochloromethanes. Bromoform formation did not
show any significant dependence on the two fraction
concentrations.

2. pH positively affects the formation of CHCl3 and
CHBrCl2 and slightly affects the formation of CHBr2Cl
for both DOM fractions. In general, a pH increase
(above pH 7) resulted in a reduction in the concentra-
tion of the brominated species and an increase in the
concentration of CHCl3. This occurs, possibly, because
the formation of the hypochlorite ion (Cl2 þ OH� Ð
OCl� þ Cl� þ Hþ o r Cl2 þ H2OÐ HOClþ Cl� þ
Hþ and HOClÐ OClþ Hþ) is shifted to the right
with increasing pH (i.e., increasing OH−). Consequent-
ly, hypochlorite ion concentration increases, leading to

Table 2 Elemental composition (mass %) and atomic DOM fractions
ratios

DOM fraction N C H S H/C C/N

Colloidal 4.3 40.2 5.6 0.9 1.7 10.9

Transphilic 3.1 54.4 6.6 <0.3 1.5 20.5

Hydrophobic 1.3 56.2 5.9 0.7 1.3 50.4

Fig. 2 FT-IR spectra of colloid,
hydrophobic, and transphilic
fractions
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predominance of chlorinated species (Nikolaou 2004).
Also, the decreasing concentration of brominated
THMs at pH values above 7–8 may be due to the
following disproportionate reaction of the hypobromite
ion at basic pH values (Bard et al. 1985): OBr�þ
2HOBr ! BrO3

� þ 2Br� þ 2Hþ. From this equation,
the OBr− is disproportionate to bromate and bromide
ions, neither of which reacts to organic matter.
Chlorination is a typical electrophilic substitution which
occurs in many steps, for example, in phenol groups the
H+ is release from phenolic ring to the solution. Thus,
pH would affect the equilibrium of the reaction. The
effects of pH on chlorination process must be explained
simultaneously by the deprotonation of hypochlorite
and/or the organic compound which may change the
reaction kinetic (Westerhoff et al. 2004; Ge et al. 2006).

3. Similar behavior was observed for the chlorine dose
used in the disinfection. The higher dose of Cl2
generates higher concentrations of TTHM, especially
CHCl3 and CHBrCl2. This is also expected since higher
chlorine doses lead to an increase of hypochlorite ion
concentration, as found in previous results in the
literature (Rook 1974; Sohn et al. 2004).

4. Increasing the temperature produces an increase in the
concentration of CHCl3 and of mixed bromo-
chloromethanes when the colloidal fraction is oxidized.
The temperature parameter however does not have a
significant effect during the chlorination of HPOF.

5. Bromide concentration produces a similar effect in
THM formation of the two DOM fractions. High
concentrations of bromide produce high concentrations
of brominated THMs and relatively low concentrations
of CHCl3 and CHBrCl2. It is well-known that CHCl3 is
formed in the reaction of DOM with OCl− and CHBr3
with OBr−, and the amounts of CHCl3 and CHBr3
depend on the concentration of OCl− and OBr−,
respectively. Higher concentrations of OBr− are present

in the case of higher concentration of bromide anion,
resulting in the formation of a higher concentration of
CHBr3. As the concentration of OBr− increases, the
amount of CHCl3 will decrease in response.

3.3 Preliminary analysis of the effect of the DOM fraction
on the THM formation

Box-Behnken design analyses where performed to investi-
gate the effect of DOM concentration, chlorine dose and
temperature factors on THM formation. Table 1 shows the
levels of these three factors under analysis. In this analysis,
bromide concentration was kept constant at 0.1 mg L−1

since the natural water from the Caldeirão Dam has low
concentrations of it due to an absence of geological or
anthropological sources of bromide ions. Also, pH was kept
constant at 7.0 because this is a common operational
procedure implemented in water treatment plants. In spite
of temperature parameter in Placket-Burman design was not
a significant factor in the formation of THM in the HPOF
fraction, we consider this in the Box-Behnken design
because it may be important in the formation of THM in
the other fractions and because this parameter have a great
variability in water treatment plant along year seasons.

As shown in Table 4, the amount of generated THMs in
the experiment was characterized by a rather large range in

Factor CHCl3 CHBrCl2 CHBr2Cl CHBr3 TTHM

HPOF fraction

pH + + NS NS +

Chlorine ++ ++ + NS +++

Temperature NS NS NS NS NS

Bromide concentration − − NS + −
HPOF concentration +++ +++ + NS +++

Colloidal fraction

pH ++ +++ ++ NS +

Chlorine ++ +++ − NS +

Temperature ++ ++ ++ NS +

Bromide concentration − − +++ + NS

Colloids concentration ++ +++ +++ NS ++

Table 3 Qualitative analysis of
the effects of the five parameters
on the four THM and TTHM
for HPOF and Colloidal
fractions

NS not significant factor; +
means a positive effect, − means
negative effect. More than one
+ or – signs mean stronger
effects

Table 4 Concentration (μg L−1) ranges of the four THM and total
THM generated from the disinfection of aqueous solutions of the three
DOM fractions

THM Colloidal HPOH Transphilic

CHCl3 3.3–6.0 1.6–4.6 4.0–21.3

CHBrCl2 3.5–4.5 3.6–11.0 37–8.0

CHBr2Cl 4.0–5.4 4.3–15.0 4.4–13.1

CHBr3 3.2–7.1 5.1–12.4 3.2–15.7

TTHM 14.8–22.2 15.0–42.9 17.7–39.6
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concentration. This results show the relevance of this three
factors under investigation for THM generation. Figure 3a
shows the pie plots with the percentage contributions of the
three DOM fractions in the production of the four THM. A
preliminary analysis of Fig. 3a shows the following trends:
(1) the transphilic fraction is responsible for the production
of about half the amount of chloroform, followed by the
colloids and HPOF; (2) there is an increase in the
percentage of the most brominated THM in the HPOF
and transphilic DOM fractions and there is a decrease in
their percentages in the colloidal DOM fraction.

Figure 3b shows the pie plot with the percentage
contribution in the three DOM fractions for the total
production of THM. This plot suggests the following trend
in the order of total THM production: transphilic >
hydrophobic > colloidal. These results are in agreement
with the conclusions of Marhaba et al. (2006), where the

differences of DBPs yields between the fractions are
possibly due to their different characteristics of function-
al groups and structures. Indeed, the colloidal fraction
shows a lower amount of aromatic and polyphenolic
compounds than the transphilic and hydrophobic fraction,
which can explain a greater THM generation by the last two
fractions.

3.4 Response surface analysis in the formation
of the four individual THMs

ANOVA of factor effects in the formation of individual
THMs was done as well and linear models were obtained
(data not shown). Included in the models where the
coefficients of the factors that were statistically significant
at the 5% level, as well as coefficients with absolute values
higher than the corresponding standard deviations.

CHCl3 mgL�1
� � ¼ 4:8þ 0:2 colloidsþ 0:2T� Cl� 0:25 colloids� Tþ 0:2Cl2

CHBrCl2 mgL�1
� � ¼ 3:7þ 0:03 colloidsþ 0:01 Tþ 0:01Clþ 0:1 T� Clþ 0:1Cl2 � 0:06 colloids2

CHBr2Cl mgL�1
� � ¼ 4:6þ 0:005 Tþ 0:02Clþ 0:1 colloids� 0:04 T� Cl� 0:03 T� colloids

þ 0:3Cl� colloidsþ 0:06Cl2 � 0:1 colloids2

CHBr3 mgL�1
� � ¼ 3:5þ 0:05Clþ 0:3 colloids þ 0:6Cl� colloids

Colloidal fraction models

Fig. 3 Percentages of the four
THM (a) and TTHM (b)
generated from the three DOM
fractions
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The three factors under investigation play significant roles
in a quite complex THM generation. The results show that
the amount of chlorine positively affects the formation of
the four THMs.

Increasing the colloid concentration leads to a decrease
in the production of mixed chloro-bromomethanes, but
produces a slight increase in the production of chloroform
and a strong increase in the bromoform formation. This
observation is contrary to the Placket-Burman screening
analysis that the colloidal fraction is more influential in
the formation of mixed bromochloromethanes than bro-
moform. This erroneous result is a consequence of a lack
of degrees of freedom of the screening design which

results in an unreliable detailed factorial analysis as
consequence of the mixing effect of the factors. This
erroneous result must be solved in the future by doing
more experimental analysis in the same conditions and
under less variable factors.

The temperature factor plays a controversial role. It has a
strong independent effect and also interacts with chlorine in
the production of CHBrCl2. It has a positive influence as an
independent factor, but the interaction with the chlorine
produces the opposite effect on the formation of CHBr2Cl.
The role of the global temperature balance is therefore not
clear in the formation of chloroform and bromoform during
the colloid fraction chlorination.

CHCl3 mgL�1
� � ¼ 2:8þ 0:02 Tþ 0:01Clþ 0:5HPOFþ 0:1 T� HPOF� 0:1Cl2 þ 0:1HPOF2

CHBrCl2 mgL�1
� � ¼ 6:4þ 0:1 Tþ 0:1Clþ 1HPOFþ 0:3 T� HPOFþ 0:3Cl� HPOF� 0:5Cl2

CHBr2Cl mgL�1
� � ¼ 9þ 0:1 Tþ 0:1Clþ 1:4HPOFþ 0:6 T� HPOFþ 0:5Cl� HPOF � 1:2Cl2

CHBr3 mgL�1
� � ¼ 10:7þ 0:1 Tþ 0:1Clþ 1:1HPOF þ 0:4Cl� HPOF� 0:6 T2 � 1:2Cl2 � 0:7HPOF2

A consistency can be found in all four models: any
excess of the amount of added chlorine generally leads to
an increase in THM concentration. The increase of HPOF
concentration independently, or when HPOF concentra-
tion interacts with the other two factors, increases the
formation of CHCl3, CHBrCl2 and CHBr2Cl. An interest-
ing result is that high levels of HPOF fraction concentra-
tion, chlorine dose and temperature will reduce the formation
of CHBr3. These surprising results can be explained by the

smaller bromide ions concentration, available in solution,
and not by the HPOF concentration (Marhaba et al.
2006).

Also worth noting is that a positive interaction exists
between HPOF fraction concentration and chlorine for the
formation of brominated THMs. Moreover, in the disinfec-
tion of HPOF, it should be mentioned that temperature
positively affects the production of chloroform and mixed
chloro-bromomethanes.

CHCl3 mgL�1
� � ¼ 6:1� 0:4 Tþ 0:1Cl� 1:8 T� Clþ 1:7Cl2

CHBrCl2 mgL�1
� � ¼ 4:8þ 0:04 T þ 0:1Clþ 0:5 transphilicþ 0:4 T� transphilicþ 0:5Cl� transphilic

CHBr2Cl mgL�1
� � ¼ 8þ 0:1 Tþ 0:1Clþ 0:9 transphilicþ 0:6 T� transphilicþ 1Cl� transphilic � 0:7 T2

CHBr3 mgL�1
� � ¼ 8:7þ 0:3 Tþ 1 transphilicþ 1:6 T� Clþ 1:4 T� transphilic� 1:2Cl2 � 1 transphilic2

Analysis of the three models for the formation of CHCl3
shows different trends. The disinfection of colloidal and
HPOF fractions derived very complex models. Controver-
sially, the obtained model for the transphilic fraction
chlorination depends only on chlorine dose and temperature
and not on DOM concentration.

Another difference, compared to the other two experi-
ments, is the interaction of the transphilic concentration
with the other two factors (Cl and T) in the formation of
brominated trihalomethanes.

In general, the global analysis of the DOM fraction
disinfection reveals a high model complexity, i.e., many factor
interactions were involved. Some models show significant
lack of fit. Nevertheless, this result may be due to the relatively
high precision of the THM measurements comparatively to a
less precision in the control of operational factors, like kinetic
time reaction, in the experimental procedures (Rodrigues et al.
2007). Even if we accept the existence of model mis-
adjustment, factor effects on the THM formation are still
realistic. A common feature to all DOM fractions is that the

HPOF fraction models

Transphilic fraction models
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highest values of all factors are responsible for the higher
concentration of all THMs. Some exceptions to the above
mentioned fact can be noticed for CHCl3 formation, when
transphilic fraction solution is disinfected. Relatively high
values of the three factors cause the disinfection of HPOF and
transphilic fractions solutions to form higher concentrations
of CHBr3. In contrast, this fact was not valid when colloids
were oxidized. Also, relatively similar THM concentrations
are formed when HPOF is disinfected and the factor levels
are at a similar degree. Globally reducing the amount of
HPOF and transphilic concentrations, together with keeping

the temperature low, will yield a lower concentration of
brominated THMs.

3.5 Response surface analysis of TTHM formation

Since EU regulation considers the sum of all individual
THMs, the effects of DOM concentration, chlorine dose
and temperature on the total THM formation was analyzed.
ANOVA of factor effects for the formation of TTHM was
calculated and linear models were obtained as well as
response surfaces (Fig. 4).

Colloidal fractionmodel : TTHM mgL�1
� � ¼ 16:6þ 0:06 Tþ 0:1Clþ 0:65 colloidsþ 0:3 T� Clþ colloids� Clþ 0:6Cl2

HPOF fractionmodel : TTHM mgL�1
� � ¼ 28:9þ 0:3 Tþ 0:3Clþ 4HPOFþ 1:2 T� HPOF þ 1:2Cl� HPOF� 3Cl2

Transphilic fractionmodel : TTHM mgL�1
� � ¼ 27:5þ 0:3Clþ 2:2 transphilicþ 3:2 T� transphilic� 2:3Cl2

The analysis of these models and, especially, the large
contribution of interaction effects among the factors confirm
that TTHM formation is a complex process. This formation
depends globally not only on the type of DOM fraction and its

concentration, but as well as on the individual chlorine dose
and temperature and on the involved interactions among these
three factors. An easier visualization of the combined effects
of the three factors can be observed in Fig. 4. The most

Fig. 4 Response surface of TTHM formation as a function of the three factors and DOM fraction type: a DOM fraction vs. chlorine; b DOM
fraction vs. temperature; c chlorine vs. temperature
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important is DOM concentration. It positively affects the
formation of TTHM, solely or when interacted with chlorine
dose and temperature. Although less important, temperature
and chlorine also affect TTHM formation.

4 Discussion

Factorial analysis of the water disinfection process is a
useful approach for a more comprehensive understanding.
This work illustrates a particular study of a local disinfec-
tion process in Portugal that leads to the formation of
THMs, but it can be extended to other real water works
plant management systems. Moreover, it can incorporate
the investigation of various factors and their interaction.
Combined use of fast screening Placket-Burman and of
detailed assessed Box-Behnken experimental designs
allowed optimal inferences about more influential parame-
ters in the formation of trihalomethans and of their effects
and interactions. Whereas the fast screening did not allow
for the detection of the effects of the parameters on
bromoform formation probably because of the small
number of samples used, the use of the more detailed
Box-Behnken design showed clearly this dependence.
Therefore, the combined use of both approaches provided
a better assessment and reliability of the finally obtained
results.

Valuable information was obtained regarding the effect
of the DOM fraction type and concentration. The colloidal
fraction, richest in nitrogen atoms and poorest in carbon
atoms, is approximately responsible for 20–30% of the
formation of each individual THM. On average, it contrib-
utes a quarter of the formation of the total sum of THMs. A
possible explanation for this low contribution in THM
production is that this colloidal fraction is more responsible
for the production of the other DBPs such as haloacetoni-
triles and others including N-atoms in their molecules
(Ueno et al. 1996).

The fraction where the formation of brominated THMs is
more important is the hydrophobic fraction, which is the
most carbon enriched fraction. CHCl3 formation strongly
depends on the disinfection of the transphilic fraction. Both
fractions take similar percentages in the total sum of THM
formation—about 40%.

Special attention must be paid when bromide anions
are present in raw water. This study reveals that even
when only a small quantity of bromide anions exists in
the water, the formation of brominated trihalomethanes is
highly favored no matter what DOM fraction has been
oxidized. This is a consequence of the rapid oxidation of
bromide to bromine (hypobromous acid and hypobromite
ion). Once formed, bromine is capable of participating in
reactions analogous to those of chlorine. The presence of

both halogens leads to competition for substitution at
suitable carbon atoms in the DOM. Hypobromous acid is
a more powerful halogenating agent than hypochlorous
acid and this result in a greater incorporation of bromine
into DOM. This result is very relevant for risk assessment
management since brominated trihalomethanes are consid-
ered stronger carcinogen agents than chloroform (Muellner
et al. 2007).

5 Conclusions

In order to reduce the concentration of THMs in drinking
water, DOM concentrations should be reduced in the
water prior to the disinfection. However, taking into
consideration the natural complexity of DOM, different
operations have to be used to quantitatively remove DOM
from the raw water. In fact, the information resulting from
this work is in agreement with our previous knowledge
about water disinfection. DOM fraction concentration is
the most important factor among the investigated ones. No
matter which DOM fraction was used, a higher concen-
tration leads to the production of higher amounts of all
THMs. Furthermore, water disinfection efforts should
focus on the elimination of higher concentrations of each
DOM fraction prior to the chlorination. Since the trans-
philic and HPOF fractions generated 75% of TTHM
formed, should the effort to remove the DOM focus on
these two organic fractions. The coagulation/flocculation
and the filtration stages are the main mechanisms, in a
classic water plant treatment, to remove DOM in par-
ticular the colloidal and the hydrophobic fraction with a
removal of about 70%. The efficiency of the alum
treatment for the fractions more hydrophilic is only about
16% (Kim and Yub 2005; Bose and Reckhow 2007). The
minimization of the DOM in public water depends, mainly,
of a good control of the alum coagulant quantity and raw
water pH value.

Special attention must be also paid to the chlorine dose
used in disinfection processes. Formation of all THMs is
favored by high amounts of chlorine. However, its use is
undoubtedly important for the oxidation of raw water and
for the disinfection and future avoidance of pathogen re-
growth in the distribution system. Chlorine levels should be
reduced as low as possible without compromising the
microbiological quality of the supplied drinking water,
which is the primary concern in the delivery of safe
drinking water. In real water works plant management, an
investigation of chlorine-DOM fraction type interactions
should be undertaken. Temperature appeared also to be
significant in THM formation, especially when the DOM
concentration and chlorine dose were controlled and
constant. Actually, it increases the speed of THM forma-
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tion; but the response surface plots reveal that temperature
is less significant when chlorine dose and DOM fraction
concentrations are low. However, it has been established
that temperature decreases the water solubility of THMs
and in warm conditions water aeration after chlorination
reduces the total amount of THMs present in water.

6 Recommendations and perspectives

The methodology used in this paper is appropriate and can
be used in the analysis of other groups of DBPs, mainly the
emerging DBPs, like, for example the haloacetic acids,
haloacetonitriles, haloketones, or haloacids, which some of
them have a more toxic and harmful effect in human health.

The THM reduction in consumption water can be
achieved reducing the DOM concentration (mainly the
hydrophobic and transphilic fraction) and chlorine dose
without compromise the water microbiology quality. Bro-
mide ion concentration control is also very important to
minimize the brominated THM formation. These can be
previously minimized if the water source contains low
concentration of organic and inorganic matter. The use of
granular activated carbon and membrane filtration prior the
pre-oxidation/disinfection can reduce DOM and conse-
quently the DBPs formation. Moreover, none of the
currently available treatment approaches can completely
remove pathogens and the precursors to DBP formation. At
this moment the solution to minimize the problem is to get
a good control in all the process and operational parameters
of water treatment.
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Results and Discussion 

- Characterization of DOM fractions using Fourier transform infrared spectroscopy 

(FT-IR) and elemental analysis´  

 Elemental analysis of these DOM fractions provided information about their 

H/C and C/N atomic ratios (see Table 2, Article 3). The colloidal fraction had higher 

nitrogen and sulphur percentages and the lowest C/N ratio. HPOF fraction was 

characterized by the highest carbon percentages, lower H/C ratio and the highest C/N 

ratio. These results were consistent with previously published results, allowing the 

comparison of our results with others for different geographical locations. These results 

confirmed that the colloidal fraction contained the higher amounts of protein structures 

and that, in contrast, the HPOF fraction was characterized by highly condensed aromatic 

structures. The transphilic fraction had lower amounts of protein structures than the 

colloidal fraction and lower amounts of condensed aromatics than the HPOF fraction.  

 Our conclusions were similar from the FTIR characterisation of DOM fractions. 

The IR colloidal fraction was characterized by the observed absorption band located at 

1,050 cm−1, due to CO groups of N-acetylglucosamine (Croué, 2004), which are formed 

by the oxidation of carbohydrates with amino groups in bacterial cell wall structures 

(Leenheer, 2004). Hydrophobic and transphilic fractions had not exhibit a strong 

intensity IR band near 1,720 cm−1, which was suggestive of greater abundance of 

carbonyl groups. 

 

 - Screening Placket-Burman statistical design for the evaluation of DOM fraction 

concentration, chlorine dose, temperature, pH, and bromide ion concentration as 

factors 

 After the characterization of DOM fractions, a laboratory experiment was 

performed by simulating the water disinfection process. To identify the most important 

factors for THMs formation, an experimental design, based on factorial analysis, was 

used. More specifically, two popular designs were selected: 1) Placket-Burman 

screening factor design with selected five factors (DOM fraction, chlorine dose, 

temperature, pH, and bromide ion concentration), and 2) Box-Behnken design for a 

comprehensive analysis of the effects of three pre-selected factors (DOM fraction 

concentration, chlorine dose, and temperature).  

  Table 1 of Article 3 contains more details regarding the experimental conditions 

and values of factors used in the preparation of the laboratory disinfection experiments.  
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 The preliminary screening (i.e., Placket-Burman design analysis) was performed 

with eight mixtures plus three experiments (the center point of the design), which were 

performed using only HPOF and colloid fractions due to the limited amounts of 

transphilic DOM fraction.  Table 3 (Article 3) shows the analysis regarding the effects 

of five factors on four individual THMs and on their total sum.  

 The results suggested that high concentrations of colloidal and hydrophobic 

DOM fractions generated greater quantities of THMs. This finding was consistent with 

previous research where DOM fraction was considered as main precursor for THMs 

formation (Leenheer 2004).  

 The effect of pH on the colloidal DOM fraction disinfection was found to be 

stronger than such on the HPOF.  More specifically, CHCl3 and CHBrCl2 concentrations 

increased above pH 7, when both DOM fractions reacted with chlorine. In contrast, a 

systematic reduction of the formation of multi-brominated THMs species was observed, 

more likely due to the increase of hypochlorite ion concentration at increasing levels of 

OH- concentrations. This reaction mechanism, as also confirmed  by Nikolaou (2004), 

explained the formation of multi-chlorinated THMs. At pH values above 7, a 

disproportionate reaction of hypobromite  to bromate and bromide ions (neither of 

which reacts with organic matter)  reduced the formation of multi-brominated THMs. 

 Chlorine dose was found to be important for the formation of CHCl3 and 

CHBrCl2. It additionally increases the total THMs concentrations, because the higher 

concentration of Cl2 produces higher concentrations of hypochlorite ion.  

 Temperature was found to be a significant factor during the colloidal fraction 

disinfection. Increase of CHCl3 and mixed bromo-chloromethanes concentrations were 

observed at high temperature levels. However, the effect of temperature is not linear, 

because it has a positive effect on THMs formation up to 38-40 degrees of Celsius and 

above 40 degrees evaporation processes effectively take place. 

 The results from the Placket-Burman experimental design revealed the 

importance of bromide ion concentrations for the disinfection process. Higher bromide 

concentrations were found to generate higher concentrations of multi-brominated THMs 

and lower concentrations of multi-chlorinated THMs. Such results could be explained 

with the increase of OBr-, when higher concentrations of Br- were present in the water 

system. 
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- Detailed Box-Behnken factor design for evaluation of DOM fraction concentration, 

chlorine dose and temperature as factors affecting THMs formation 

 The Box-Behnken design analyses were highly useful in revealing the specific 

effects of DOM concentration, chlorine dose and temperature on the THMs formation. 

Table 1 (Article 3) shows the chosen levels of these three factors and Table 4 - the 

amounts of generated THMs during the experiment. 

The pie plots of Figure 3a display the contributions (in percentage) of the three 

DOM fractions for the production of four THMs.  The results suggested that the 

chlorination of colloidal fraction likely explain the formation of approximately a half of 

the total amount of chloroform. In contrast, most brominated THMs were formed during 

the chlorination of HPOF and transphilic DOM fractions. 

 Box-Behnken design was also useful for the calculation of (ANOVA) factor 

effects on the formation of particular THMs.  The linear models, along with the 

corresponding response surfaces, were visualized (see Figure SI-1, Article 3) to better 

represent the process of THMs formation. In general, the results confirmed that THMs 

formation mechanisms are complex. Not only the three investigated factors (e.g. organic 

matter fraction, chlorine dose and temperature) but also their interactions had a 

significant effect on the THMs formation. These results were summarized as follows: 

 - High amount of chlorine doses favored the formation of the four THMs, 

independent of the DOM precursor fraction.  

 - The role of the factor temperature was not conclusive. Although it had a strong 

independent positive effect in numerous cases, its interactions (particularly, with 

chlorine doses) had a negative effect on the formation for specific THMs. Therefore, it 

was not possible to generalize, because the effect depends on the specific settings 

regarding the formation of particular THMs. 

- Colloidal fraction disinfection favored an increase of chloroform and 

bromoform.  

 - High amounts of HPOF fraction increased the formation of CHCl3, CHBrCl2 

and CHBr2Cl. In interaction with the other two factors, HPOF played an important 

effect on the CHBr3 formation, when high concentrations of bromide ions were present 

in the water system. 

 -  High concentrations of transphilic fraction were found to play a moderate role 

on CHCl3 formation.  In contrast, the interaction of transphilic fraction with Cl2 and 

temperature had a strong impact on the formation of brominated trihalomethanes.  
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- TTHM formation was characterized as complex, where different factors (such 

as type of DOM fraction, temperature and chlorine doses) and their interactions jointly 

determine the process.   

  To summarize, the main conclusions in Article 3 were that transphilic fraction 

(characterized by multiple functional groups) participated in the formation of all THMs. 

In particular, colloidal and HPOF fractions played an important role. During 

chlorination, colloidal fraction predominantly generates chloroform and probably 

contributed for the formation of other disinfection by-products, including 

halonitromethanes and haloacetonitriles1. The HPOF fraction generates predominantly 

multibrominated THMs. In regards to the predominant formation of brominated THMs 

in the SJD DWTP, it would be beneficial to reduce their formation. For the optimal 

operational management, lower concentrations of brominated THMs can be achieved by 

reducing the amounts of HPOF and transphilic concentrations during the flocculation 

process in the DWTP while keeping temperature low.  

  

3.2 Chemometrics modeling of UV spectral and physico-chemical data 

in finished drinking and wastewater water    

 

This second block includes two articles with chemometrics models of spectral data and 

physico-chemical parameters of water with the objective to better monitor water quality 

in the distribution system of Barcelona and in the wastewater treatment plant nearby 

Girona (Catalonia).  

 Each raw water source is characterized by its particular natural organic matter 

composition (NOM). As a function of its content, NOM presents particular UVVIS 

spectral features or fingerprints, which are usually associated with its geographical 

origin. The studies in this block examined whether there is a possibility of monitoring 

the water quality using spectral data and chemometrics analysis.  

 The first paper develops models which should be able to predict different source 

apportionments in drinking water mixtures. These chemometrics models had the 

properties to predict up to five real drinking water types in mixtures by using their 

spectral profiles and physicochemical parameters.   

                                                 
1  These by-products are beyond the scope of this work.  
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 The second paper explores the relationships among the different wastewater 

treatment plant operational parameters, including spectral data, describing water 

quality. The tests were performed in laboratory conditions with synthetic water 

mixtures and in the wastewater treatment plant (WWTP) with real water samples.  

The two papers comply with the main objectives of the Thesis in the following 

aspects: 

 

 

 Development of chemometric regression models able to predict water source 

apportionments of water blends from up to five different water sources, using 

their UV spectral profiles and some other physicochemical parameters. 

 Evaluation of chemometrics methods to improve online monitoring and control 

of wastewater treatment plant management using different techniques and 

routines for continuous water quality monitoring. Selection of a reduced number 

of UV spectral channels (wavelengths) for to monitor online WWTP operational 

processes.  

 

 

 

3.2.1 Article 4 – Platikanov, S., Garcia, V., Landeros, E., Devesa, R., Matía, L.,  

Tauler, R., Determination of water supply sources in the Barcelona distribution system 

by UV spectrophotometry and PLS. Water Science and Technology- Water Supply 11 

(2011) 45-54. 

 

Introduction 

 Barcelona metropolitan area has a large supplied drinking water distribution 

system (WDS) with five different origins, namely different treatment plants for finished 

drinking water, using raw water from three main water sources (two rivers, Llobregat 

and Ter, and the Mediterranean sea). Specific knowledge about water source 

apportionments at different WDS locations at any point in time would be highly useful 

for the operators in order to improve the global system management. 

 Because the three main raw water sources for Barcelona metropolitan area are 

the Ter and the Llobregat rivers (characterized by very different hydrological and 

biogeochemical processes) and the Mediterranean Sea water, it is generally expected 
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that there are different NOM levels and features with different physicochemical 

composition. In Article 4, NOM UV spectral profiles were used as a diagnostic marker 

(fingerprints) for the raw and finished water sources. When the information in the UV 

spectral profile was not sufficient to distinguish various closely related finished drinking 

waters, additional information from the physicochemical parameters was used. The 

proposed methodology is based on the application of chemometric analysis using partial 

least squares regression (PLS) on data from UV spectroscopic analysis and physico-

chemical water quality analysis for the purpose to obtain the source apportionment of 

measured water mixture samples.  

This feasibility study implemented the analysis of water blends prepared in 

laboratory in two different case studies. The first case study identified the main sources 

and their apportionment in mixtures of tap waters (finished drinking water) collected 

from four districts in the Barcelona area. Three out of four districts were supplied with 

drinking water mostly using the Ter River water source and the same water treatment 

plant. The fourth district was mostly supplied with water originating primarily from the 

Llobregat River. The second case study implemented a more complex design, where 

water blends were prepared using water samples from five different water treatment 

plants in the metropolitan area of Barcelona.  

 The two case studies had the following common characteristics. A Box-Behnken 

experimental design strategy was applied to obtain representative mixture samples from 

different sources in the concentration range of 0-100%. In both cases, UV spectra were 

measured in the range of 190–230 nm using a laboratory diode array spectrophotometer 

(Agillent  Model 8453 ). A main difference between the studies was that water samples 

in the second study were measured in laboratory settings, which later were augmented 

with additional laboratory elemental analysis data. Hence, the feasibility of the 

apportionment of different water sources was tested combining UV spectra and 

physicochemical parameters, which were simultaneously processed (data fusion) by 

PLS regression method.  
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Determination of water supply sources in the Barcelona

distribution system by UV spectrophotometry and PLS

S. Platikanov, V. Garcia, E. Landeros, R. Devesa, L. Matı́a and R. Tauler

ABSTRACT

A new method for the water source apportionment of the Barcelona (Spain) water distribution

system is proposed. The method is based on the combined use of UV spectrophotometric

measurements in the wavelength from 190–230 nm, and multivariate data analysis using the

Partial Least Squares (PLS) chemometric method. From the differences in the organic matter

content of the different water sources and of their corresponding UV spectral features, PLS was

able to determine the relative amounts of the two main river water sources in samples of tap

water from the different locations of the Barcelona city water distribution system. The extension

of the method to determine the relative amounts in water blends, prepared from samples from

five water treatment plant sources of the same city’s distribution system, required the combined

use of some other parameters. In particular, the distinction and apportion of the water coming

from a desalinisation plant could be successfully achieved once concentrations of Boron were

included in the analysis.

Key words 9999 PLS, source apportionment, UV, water distribution system

INTRODUCTION

Quality control of drinking water is a major concern every-

where. Natural organic matter (NOM) is a characteristic

feature of every type of water source. The presence of

NOM in drinking water is of particular importance since it

affects aesthetic water qualities such as taste, colour and

odour (Spellman 2007). Every different type of NOM has

particular features associated with its geographical origin,

vegetation, soil, etc. (Schäfer 2001). For example, aquatic

algae deliver dissolved organic compounds with high

amounts of nitrogen and low contents of aromatic carbon

and phenolic groups. On the other hand, terrestrial derived

dissolved organic matter (DOC) has relatively low nitrogen

content but a large amount of aromatic and phenolic groups.

The contribution of each organic matter source is also

seasonally dependent (Sharp et al. 2006), and the hydrologi-

cal and biogeochemical processes involved can alter the

chemical composition and physical structures of the NOM.

However, NOM is a complex mixture of heterogeneous

chemical compounds and it is not possible at present to

fully describe its chemical structure in the natural environ-

ment (Croue 2004). NOM profiles can be used as a diagnostic

marker or as a typical fingerprint based on its structure and

features. The more frequently used analytical technique for

the direct investigation of NOM in water systems is UV/VIS

spectroscopy (Thomas & Burgess 2007).

The drinking water in the distribution network system

(WDS) of Barcelona is distributed by the AGBAR (Aigües de

Barcelona) group of companies. The water in the WDS

originates from more than one water source and is processed

in different treatment plants. The two main water sources are,

at present, Ter and Llobregat river systems (see Figure 1),

together with local groundwater sources. Additionally, a

large water desalinisation plant has recently been built

(Gueguen et al. 2008) to provide drinking water from the
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Mediterranean Sea. These different raw water sources show

great physicochemical differences in the water quality before

and after treatment processes. Another possible cause of

variation in the water quality is due to the different treatment

processes implemented in the five treatment plants present in

the area (see Figure 1). The plant disinfection processes

comprise conventional disinfection procedures, electrodialy-

sis reversal and seawater desalinisation procedures. Hereafter

the plants will be encoded as:

WTP1: Cardedeu water treatment plant using conven-

tional disinfection procedures to treat water

from Ter River;

WTP2: Sant Joan Despı́ water treatment plant using

conventional disinfection procedures to treat

water from Llobregat River;

WTP3: Abrera water treatment plant using conven-

tional disinfection procedures to treat water

from Llobregat River;

WTP4-EDR: Abrera water treatment plant using electrodia-

lysis reversal treatment of water from Llobregat

River;

SWRO: El Prat reverse osmosis seawater plant treats

water from the Mediterranean Sea, close to the

Barcelona area.

See Figure 1 for a map of the different locations of

these water plants. The finished water obtained at the exit

of each treatment plant can vary significantly due to its NOM

content (also because of its natural origin, Llobregat, Ter or

Mediterranean Sea) and to its mineral/elemental content

(also because of its different natural origin and/or because

of the plant treatment procedures implemented).

The identification of the source of drinking water in any

supply location of the water distribution system (WDS) is a

challenge for the operational maintenance, repair and man-

agement of the system. Knowledge about water source appor-

tionments (% of each water source in mixtures), at a specific

location of the WDS, is of interest for a better understanding

and detection of possible sources in leak accidents and in

establishing legal property rights. Also, it is very important

to know the sources of the waters and percentages of the

blends in order to understand the origin of the problem and

how to act when a quality problem appears in the distribution

system.

A proper inspection has a significant impact on the

operation and maintenance cost and on the effectiveness

of the systems. A method for water source determination

has been proposed based on the solid-phase microextraction

GC/MS spectroscopic assay of the chlorination by-products

(Dufresne et al., http://www.thermo.com/eThermo/CMA/

PDFs/Articles/articlesFile_12035.pdf.). It was associated with

a usage of specific software performing pattern recognition on

the MS profiles of different water sources. However, there is a

need to develop inexpensive reliable methods for the in situ

identification and determination of water sources and of their

apportionment at each point of the WDS.

UV spectrophotometry is one of the most appealing

approaches for broader analytical analyses. This spectrophoto-

metric method is frequently used for the investigation of

NOM content in drinking water. Usually organic matter

content is measured at UV254 nm (USEPA Method 415.3),

but also UV/VIS measurements can be expanded to the entire

spectral range from 190–1100 nm. UV spectra of complex

water blends will result in extensive spectral overlap due to

the high number of absorbing components in this wavelength

range in natural water samples. UV spectrophotometric

measures can be coupled with advanced data analysis che-

mometric techniques to improve their resolution power.

Chemometrics is at present a well established field in

Figure 1 9999 Water distribution system and water treatment plants (WTP) in Barcelona

geographical area. WTP1 is fed with water from Ter River, WTP2, WTP3 and

WTP4-EDRare fed with water from Llobregat River and SWRO is fed with water

from Mediterranean Sea near Barcelona.
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chemical data analysis (Brown 2000) and has also recently

been recognized in the analysis of water science data (Nollet

2007). There is a large number of chemometric techniques

suitable for the study of complex multivariate water data sets,

like principal component analysis (PCA) (Simeonova &

Simeonov 2006) or PCA based regression methods (Wentzell

& Lohnes 1999; Narasimhan & Shah 2008) which were

shown to achieve very good predictive abilities in spectral

regression problems, and partial least squares regression

(PLS) (Platikanov et al. 2007) and several other methods

not well known outside chemometrics that may play an

important role. In summary, the main goal of this study was

to establish PLS models for water source apportionment in

blends on the basis of their NOM spectral profiles and

physicochemical parameters.

METHODS

Methodology

Multivariate regression techniques reveal the relationship

between two different data blocks (matrices) of chemical

data. The main goal of this study is to build multivariate

linear models able to describe, explain and predict the

apportionment of the different water sources inside the

Barcelona water distribution system and in house tap water

blends (y block of variables) obtained from them as a function

of their UV spectra together with other possible physico-

chemical parameters like the concentrations of the

chemical elements present in the water samples (X block of

variables). This involves finding an adequate mathematical

model or function that relates the variables in these two

data blocks, i.e. y¼ f(X), where the y block gives the

apportionment of each source in each water blend and the

X block gives the UV spectra and some additional physico-

chemical parameter, like the elemental concentrations of the

blends. This modeling follows a two-step approach. The first

step is the model calibration. The calibration step is followed

by a second prediction step in which this model is used to

estimate unknown apportions of blend samples from

their UV spectra. Once experimental data were properly

arranged in data matrices, they were mean centered (con-

sidering only UV spectra as predictors) or autoscaled (column

mean centering and scaling of UV spectra and one additional

physicochemical parameter at a time). Group scaling could

have been considered as an alternative pre-processing

technique. This would be appropriate when the full wave-

length spectra and only one or two element concentrations

were used as predictors. In this study however, only wave-

lengths where the absorption was high (between 190–

230 nm) were selected for data analysis and noisy wave-

lengths were excluded. This assured reducing of the possible

noise amplification in the scaling operation. This preliminary

data treatment eliminated offsets, changes in measurement

units and focused the analysis on proper modeling of

observed variances in measured variables. This data pretreat-

ment is frequently used in multivariate data analysis (Massart

et al. 1998).

In particular, the Partial Least Squares (Geladi &

Kowalski 1986; Massart et al. 1998) multivariate linear regres-

sion (PLS) method has been used and evaluated for the

modeling of the water sources apportionment in their blends.

PLS attempts to maximize the covariance between X and y

data blocks. PLS searches for a common factor subspace

most congruent to both data blocks, and its predictions are

usually better than using other multilinear regression methods

such as the ordinary multilinear regression method (MLR),

especially if the X variables are highly correlated, like in the

spectroscopic measurements used in this work. PLS trans-

forms the high number of original variables (spectra) into a

smaller number of orthogonal variables called ‘‘components’’,

‘‘factors’’ or ‘‘latent variables’’, which are linear combinations

of the original variables. The first latent variables contain

useful information about the major covariance sources

between the two blocks of variables, whereas the last ones

basically represent the uncorrelated variance and noise,

which has to be discarded and is not considered in the

modeling. A new matrix of weights (reflecting the covariance

structure between the X predictors and y response variables)

is obtained from PLS analysis, which provides rich informa-

tion about the nature of the different covariance sources.

The selection of the optimal number of components (the

number of latent variables) in PLS is performed using internal

cross validation (leaving out one sample at a time) and

external validation for optimal prediction of y values in new

samples not used in the calibration step. In this work, for

method/model validation, an external set of samples (water
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blends with known source apportions), not participating in

the model calibration, was used.

For brevity, in this study the relative errors of water

source apportionment in percentage are reported for both

calibration and prediction steps.

Relative errors of concentrations in percentage, for both

calibration and prediction steps, are calculated as follows:

Rel: error in % ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðŷi � yiÞ2

Pn
i¼1
ðyiÞ2

vuuuuut � 100;

Preparation of water samples, instrumentation,

chemical analysis and software

This work consisted of two studies. The first one was intended

to identify the sources/apportionment of tap water collected

from four of Barcelona’s districts. UV spectra were used as a

data set of water blends. Three of these city districts, Fondo,

Gracia and Horta (D1–D3), were supplied with drinking

water treated in WTP1 (see Figure 1), representing the

original Ter River water source. The fourth district, Les

Corts (D4), is supplied with water, treated in WTP2 and

WTP3, originating from Llobregat River water. WTP4-EDR

and SWRO plants were not involved in this first study.

In a second study, water samples were provided directly

from the 5 water treatment plants. The feasibility of the

apportionment of the five water sources was studied from

blends of these water samples, also using their UV spectra,

elemental analysis and chemometrics.

In both cases, water blends were prepared according to a

three-level experimental design based on a Box-Behnken

design. In the first experiment, 24 samples were prepared

according to a Box-Behnken statistical experimental design

(Box & Behnken 1960) and after their random sampling two

new data subsets were selected, one for calibration and the

other for validation. The calibration data set comprised 18

samples, and the remaining 6 samples were selected for

external validation. In the second experiment, new water

blends were prepared using a similar experimental design to

the one just described but prepared using 22 water blends

with 16 of them used for the calibration step and the other

6 used for the external model validation.

Apportioning of water sources in the water blends were

done in the range of 0–100% with predominance in the

middle range values such as 11, 20 and 50% of each water

source in the blend. In this study apportionments were never

predicted below 0 or over 100%. If this was the case, an

alternative regression method like PLS logistic regression

(Bastien et al. 2005) could have been used.

UV spectra were recorded in the range of 190–1100 nm

in a 1 cm quartz cell, using an Agilent HP8453 diode array

spectrophotometer. Wavelengths range used was between

190–230 nm.

In the first experiment two replications were performed

during a month. Both times, water samples were collected

during the morning and after allowing the water to run out

from the tap for some minutes.

In the second experiment water samples were prepared

externally by the technician staff working in the Barcelona

WDS. They were delivered to the laboratory the same day of

production and they were appropriately mixed. A preliminary

study of water samples’ evolution over time did not show any

significant changes in its spectrophotometric properties

within a week. This was expected, since water remains in

the distribution systems for one week or less and, therefore,

the experimental conditions used in this work can be

considered appropriate for emulating what occurs in the

Barcelona distribution system.

Aluminium, Barium, Boron, Calcium, Copper, Chro-

mium, Strontium, Iron, Magnesium, Manganese, Nickel,

Potassium, Silicon, Sodium and Zinc concentrations were

determined by Inductively Coupled Plasma Optical Emission

Spectrometry, ICP-OES, (Perkin Elmer Optima 4300 DV).

Bicarbonate was analyzed by a robotic titrosampler with

conductivity module 855 and 856. Chloride, Nitrate and

Sulfate concentrations were estimated by Ionic Chromato-

graphy (Dionex ICS-2000). All these analytical determina-

tions (except bicarbonates, which are not included in

EC Drinking Water Directive 98/83/EC), were ISO17025

accredited.

The variables in X and yi data sets were initially arranged

using EXCEL (Microsoft, Redmont, WA, USA) and subse-

quently transferred to the MATLAB computer workspace

environment (MATLAB version 6.5, The Mathworks, Natick
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MA, USA). Chemometrics modeling was performed using

PLS Toolbox 4.2 (Eigenvector Research, Manson, WA, USA).

Statistical experimental design was carried out by using

the software Unscrambler 9.8 (CAMO PROCESS AS, Oslo,

Norway).

RESULTS AND DISCUSSION

UV spectrophotometric analysis of tap water samples

Before multivariate modeling of water blend spectra, the

analysis of the spectra of different Barcelona district water

samples led to the preliminary conclusion that D1–D3 district

waters had practically the same UV spectra profile and that

they had the same original source of water (from Ter River) as

a result of having a similar organic matter content. Figure 2

shows the spectral difference between the two main sources

of water for Barcelona, i.e. Ter River (D1 blue lines) and

Llobregat River (D4 red lines). The sample spectra were

obtained from two district water locations, each one repli-

cated after 12 hours (solid and dashed lines). The replicates

in the plot cannot be clearly distinguished, because they

were highly overlapped due to the lack of variation in

their chemical content for this period. The UV spectra of

the tap water from the D4 district were clearly different from

the UV spectra of the other tap water samples, leading to the

conclusion that the D4 water sample was the only one

coming from Llobregat River. This fact was confirmed by

the technical staff of the water distribution company.

This preliminary study led to the conclusion that the two

main water sources (Ter and Llobregat water river sources)

could be simply distinguished specrophotometrically by

means of their UV spectra. Consequently, the apportionments

of the different district water sources from D1 to D3 were

summed up and recalculated as a single Ter River source

against the amount of D4 (Llobregat River sample). PLS

modeling was then performed using a calibration subset of

18 blends. In the case of the modeling of the Llobregat River

water apportionment, two latent variables were selected

(after cross-validation) to explain almost 99% of the var-

iance/information in the data and leading to very low

prediction errors (6% prediction error in the calibration).

This calibration model was then used to predict the Llobregat

River source content of the external subset of the 6 blends

selected for validation, resulting in only 7% prediction

errors. Similarly, low prediction errors were also achieved

for Ter water source apportionment in the blends by PLS

modeling. These low errors obtained in the validation were

achieved because of the reproducible intrinsic patterns in the

organic matter of the different sampling locations in the

distribution system. The model that was based on the 2 latent

variables was reliable enough and offered good prediction

properties.

To summarize, the separation between the two main river

sources was possible in this first study due to their UV

absorption spectra and because of their distinct organic

matter patterns, which differ considerably between the two

river water sources. The next, more difficult, step was to try to

distinguish among the five water treatment plant sources (see

Figure 1) and the relative apportionment of their blends.

UV spectrophotometric analysis plus elemental and

mineral content analysis of AGBAR water blend

samples

Like in the first experiment, UV spectra of the five different

water source samples were first registered. Figure 3 shows the

normalized spectra of the five water sources provided by the

company. Very large similarities among some of the spectra

Figure 2 9999 UV normalized spectra of two tap water samples from two different districts of

Barcelona, representative of the two different water sources: Ter River (D1 blue

solid and dashed lines) and Llobregat River (D4 red solid and dashed lines).

Replicated sample spectra (dashed lines) were recorded after 12 hours.
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can be noticed, especially between the spectra of WTP2 and

WTP3 water sources.

The highest pairwise correlation coefficient was found to

be of 0.999 between WTP2 and WTP3 water sources. These

two water sources come from Llobregat River and the two

treatment plants are employing similar conventional water

treatment procedures. Therefore, samples from these two

water sources are expected to have very similar organic

matter content and give analogous UV absorption spectra.

On the contrary, the sample from WTP4-EDR water source

(a plant which implements reverse electrodialysis filtering as

water treatment) gave an absorption spectrum rather different

to the previous two absorption spectra mentioned, despite

their common origin from the Llobregat River. This means

that the reverse electrodialysis process had changed signifi-

cantly the organic matter content of the Llobregat water,

leading to water with a different UV spectrum. Moreover, the

WTP4-EDR water spectrum showed a similar spectrum with

a high pairwise correlation coefficient 0.98 to the WTP1 river

source spectrum. On the other hand, SWRO water (from the

desalinization plant) spectrum did not show any character-

istic spectral feature in the UV region. It only absorbed UV

light in a very narrow range from 190–205 nm, confirming

that this type of water had very low organic matter

content and that modeling this source on the sole basis of

UV absorption will probably not be possible. Although the

pairwise correlation coefficients of its spectrum with the

spectra of the other water sources was very low, ranging

from 0.6 to 0.88 (because it had nearly no absorption,

whereas the others did), it only had a dilution effect; more-

over, it was very difficult to distinguish it from the others and

the prediction of its apportionment on the sole basis of its UV

absorption was not possible.

Therefore, other physicochemical properties, such as

conductivity and mineral content, were considered to

describe the five water sources and their relative content.

The results obtained from this mineral content analysis,

together with the spectrophotometric data, were arranged in

the same table data matrix (independent variables X) to

be subjected to PLS modeling. Elemental and mineral analy-

sis comprised 21 parameters routinely monitored by the

water company quality control laboratory. Table 2 gives the

results of these analytical determinations and their basic

statistics.

Some of the parameters analyzed did not show any

significant feature for the characterization of the water

blend samples analyzed and were therefore not useful for

the purpose of this study. The parameters showing significant

changes in their values were incorporated one by one into the

X data table, together with the spectral measurements, and

were then submitted to new PLS modeling. It was obvious

that WTP2 water showed many of the maximum parameter

changes, which was in contrast to the SWRO water (from the

desalinization plant), which showed minimum changes in

most of its parameter values. Finally, only the boron concen-

tration was found to be at its maximum concentration in

SWRO water samples. This can be explained by its original

sea water source and the low effect the water treatment had

on this parameter.

Figure 3 9999 UV normalized spectra of five samples of water from the five different water

treatment plants, which are the main sources of the Barcelona water

distribution system.

Table 1 9999 Pairwise correlation coefficients among the 5 AGBAR water treatment plant

spectra

WTP1 WTP2 WTP3 WTP4-EDR SWRO

WTP1 1 0.97 0.97 0.98 0.77

WTP2 1 0.999 0.9 0.6

WTP3 1 0.91 0.61

WTP4-EDR 1 0.88

SWRO 1
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Figure 4 depicts the prediction errors finally obtained for

calibration and validation when spectral data and one of the

additional physicochemical parameters at a time were con-

sidered. PLS analysis of UV spectra, together with some of

the physicochemical parameters considered, gave satisfactory

predictions. In particular, the best parameters proved to be

Barium (Ba) and Boron (B). Prediction errors for the external

validation water samples were from 10–12%. Results

obtained in the modeling of the WTP4-EDR samples showed

that Boron was very important to correctly predicting the

apportionment of this source, giving just a 5% error in its

prediction for the validation samples. Very good results were

also found in the modeling and prediction of the desaliniza-

tion plant (SWRO) water source, showing again that the

concentration of Boron was the most important parameter

to consider (prediction errors below 10%). However, less

satisfactory results were achieved for the differentiation of

WTP2 and WTP3 sources, both in the calibration and in the

validation step.

Figure 5 shows the results obtained for the prediction of

WTP2 and WTP3 water sources when they were considered

individually, as separate sources, and jointly, as coming

from the same source, e.g. Llobregat River. When they were

considered separately, the predictions of their relative con-

tents were wrong; the results yielded high prediction errors

both in calibration and in validation, regardless of the physi-

cochemical parameter added to the spectral data. In contrast,

when WTP2 and WTP3 were considered jointly, i.e., when

they were considered from the same source, low prediction

errors were then achieved. Prediction errors for the external

validation samples were usually below 10%. Again, Boron

was the most important parameter included in the model.

Table 3 summarizes one example of the results obtained

in the complete modeling of the whole experimental data

set. Boron was confirmed as the most important parameter in

the data analysis, together with UV spectral data, for water

source apportionment. Also, a possible good combination of

parameters to be considered together with spectral data was

Boron and conductivity. The addition of conductivity

increased the reliability and robustness of the PLS models

and made them more versatile for the different conditions in

the Barcelona water distribution system.

Table 2 9999 Concentration values and parameters analyzed in water samples from the 5 water treatment plants operating in the barcelona water distribution system

Conductivity 201C Bicarbonate Chloride Sulfate Nitrate Sodium Potassium Calcium Magnesium

WTP1 382 145a 38a 50.6a 4.15a 15.4a 5a 49.5a 9.1a

WTP2 1194 233 214 137 11.5 111 19.8 102.3 25.3

WTP3 1100 217 189 132 10.7 96.9 18.7 99.4 23.1

WTP4-EDR 365 101 55 24.4 2.71 49.2 6.5 17.3 4.8

SWRO 311 8.1 97 o5c o0.5 54.5 o5 o5 1.1

Min 311 8.1 38 o5 o0.5 15.4 o5 o5 1.1

Max 1194 233 214 137 11.5 111 19.8 102.3 25.3

Average 670.4 140.82 118.6 69.8 5.912 65.4 11 54.7 12.68

Boron Strontium Iron Manganese Nickel Barium Silicon Aluminium

WTP1 27b 0.45b 111b 6b 11b 31b 1.7b 34b

WTP2 82 1.48 5 o1 6 55 2.19 o24

WTP3 45 1.37 7 o1 o5 53 2.15 o24

WTP4-EDR 34 0.24 o5 o1 6 10 1.92 o24

SWRO 742 0.05 o5 o1 o5 9 0.5 o24

Min 27 0.05 o5 o1 o5 9 0.5 o24

Max 742 1.48 111 6 11 55 2.19 34

Average 186 0.718 26.6 2 6.6 31.6 1.692 26

avalues recorded in mg/L
bvalues recorded in mg/L
cvalues below the limit of quantitation
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Special attention has been paid to the prediction of

SWRO apportionments. This was shown not to be possible

using only UV spectra. Including boron and conductivity

greatly improved the prediction of SWRO water content for

the water blends investigated. Indeed, boron was found at its

highest concentrations in SWRO water source samples. An

example of SWRO modeling when UV spectra, Boron and

conductivity were simultaneously considered as parameters is

given in detail in Figure 6. Five latent variables were found to

explain more than 99% of the y block variance, assuring as

low prediction errors as 5.3% for the calibration samples and

10.9% for the external validation samples. Graphically, these

predictions were compared to the actual concentrations in

Figure 6.

Future research should be focused on the development of

an experimental system for on-line monitoring of the water

distribution system based on the combined use of UV, some

rapid elemental analysis for boron, and chemometrics.

CONCLUSIONS

The following were the main conclusions derived from the

present work:

� UV spectrophotometric analysis coupled with chemo-

metrics has been shown to be a powerful tool for the

differentiation of different raw water sources having

Figure 5 9999 Summary of PLS prediction errors for calibration and external validation samples

using spectral data plus one additional physicochemical parameter at a time for

the prediction of WTP2, WTP3, and WTP2þWTP3 water sources.

Figure 4 9999 Summary of PLS prediction errors for calibration and external validation samples

using spectral data plus one additional physicochemical parameter at a time for

the prediction of WTP1, WTP4-EDR and SWRO water source apportionments. The

lowest errors and the corresponding parameters are highlighted with arrows.

52 S. Platikanov et al. 9999 Determination of water supply sources in Barcelona Water Science & Technology: Water Supply 9999 11.1 9999 2011

160



different natural organic matter contents. In the case of tap

water from the Barcelona distribution system, it was

possible to distinguish between water sources from two

different rivers (Ter and Llobregat) in their blends and to

estimate their relative apportionments with prediction

errors of around 7%.
� The compositions of water blends from 5 different Barce-

lona water treatment plants were not predicted well on the

basis of UV analysis only, due to overlapping spectra and a

lack of natural organic matter content in some of these

water sources. Especially difficult when predicting the

composition of water blends was the estimation of the

individual water apportionments from electrodialysis and

desalinization plants. In contrast, the clear differences

among the nature and amounts of organic matter in

Llobregat and Ter rivers allowed successful prediction of

their apportionments.
� The addition of information from elemental/mineral ana-

lysis of the different water sources, apart from their UV

spectra, allowed successful prediction of all the water

sources in the distribution system.
� Boron concentration was the most important parameter,

apart from UV spectra, for the correct prediction of water

sources from the desalinization plant. The prediction

errors were below 10% for the external validation samples.

Therefore, Boron can be considered as a very important

variable in cases where a desalination plant is part of the

distribution system.
� Two conventional water treatment plants, situated in the

same river system and located near each other, were

impossible to differentiate either on the basis of UV spectra

profile analysis or their mineral content. However, their

joint contribution could be estimated as a sum of appor-

tionments, i.e. as coming from the same source.
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Figure 6 9999 Prediction of SWRO water source apportionments: (a) PLS predicted versus actual calibration SWRO water source apportionment values; (b) PLS predicted versus actual external

validation SWRO source apportionment value.
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Results and Discussion 

- UV spectrophotometric analysis and chemometrics for source apportionment of tap 

water samples 

The spectral analysis of the four Barcelona district water samples confirmed that 

three of districts waters had practically the equivalent UV spectra profile.  These three 

districts were found to share water from the same original river source, the Ter River.  

UV spectra of tap water from the fourth district were found to be distinctive in their 

shapes (see Figure 2, Article 4) and the location of the district evidenced their different 

source, namely the Llobregat River.  

Therefore, two main water sources of river water (Ter and Llobregat rivers) were 

distinguished using their distinctive UV spectral features that reflect particular organic 

matter content. To properly perform the source apportionment study of these two river 

origins from their blends, water apportions from the three districts in the experimental 

design were considered together. Therefore, in the composition of these synthetic 

mixtures, Ter River water source was combined with Llobregat River water source. PLS 

modelling was performed using a calibration subset of 18 blends, which was followed 

by validation using 6 new (external) blends. To model Llobregat River water 

apportionment with PLS, two latent variables were found to explain approximately 99% 

of the variance (information), having only 7% of prediction error in the external 

samples.   Ter water source apportionment was also predicted in blends by using PLS. 

The main conclusion of this preliminary study was that the two main river sources were 

possible to be distinguished in blends using their UV spectral profile as a consequence 

of their distinct organic matter patterns and of the appropriate chemometrics data 

analysis.  

This preliminary study suggested that there is a possibility to distinguish and 

perform source apportionment studies of water sources from the different water 

treatment plants in the Barcelona area, which use different water treatment procedures 

for river water and sea water. 
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 - UV spectrophotometric and elemental analyses and chemometrics for source 

apportionment of mixtures of water samples from different origins 

UV spectra of the five different water sources were compared after 

normalization (see Figure 3, Article 4). WTP2 and WTP3 water sources gave similar 

UV spectra and had a correlation coefficient close to 1 (0.999). This result indicates that 

both sources had very similar organic matter content. The origin of the two water 

sources was the Llobregat River, which is treated with conventional procedures in two 

different plants. In contrast, the use of an electrodialysis reversal filtering system 

significantly changed the spectral profile of the corresponding water source samples 

(WTP4-EDR), despite of their common water origin (i.e., both from the Llobregat 

River). The reverse-osmotized water from the sea water desalinization plant (SWRO) 

had significantly lower organic matter content, explaining why its UV spectrum has no 

specific absorption band. This water source will produce a dilution effect and the 

prediction of its contribution should be difficult if no additional information is given. 

For this reason, information regarding the mineral content of the five water sources was 

incorporated in this study.  

The mineral content analysis, along with the spectrophotometric data, were 

organized in a table (data matrix) and later employed in the PLS modelling of water 

mixtures from the five water sources. Table 2 (Article 4) gives the results of the 

analytical determinations and the basic statistics regarding 21 parameters, which were 

routinely monitored by the water company quality control laboratory. Some of these 

parameters did not vary whatever water blend samples were, and therefore they were 

discarded for further analysis. The parameters with significant variation were 

incorporated into the data table on an individual basis (one-by-one), along with spectral 

measurements, and later submitted to an updated PLS modelling.  

 Descriptive statistics of such parameters was thoroughly examined. It suggested 

that conventionally treated water (WTP2) from the Llobregat river was the one that 

changed more (i.e., the maximum parameter changes), in contrast to desalinated sea 

water (from the desalinization plant), showing minimum changes in most parameter 

values. Boron ion concentration was found to be a characteristic feature of desalinated 

SWRO water sample.  
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PLS analysis of UV spectra data, along with some of the considered 

physicochemical parameters data, allowed us to obtain relatively accurate predictions of 

water source apportionments (see Figure 4, Article 4). More specifically, the best 

mineral parameters to complement spectral data were found to be Barium (Ba) and 

Boron (B) concentrations. Using them, prediction errors of 10-12% for the external 

validation water samples were obtained. Boron was found to be a very important 

element for the apportionments of reverse-osmotized sea water and electrodialysis 

reversal filtered river water (SWRO and WTP4-EDR), with lower than 10% errors in 

prediction for external validation samples.  

It was impossible to apportion individually the water sources from the two 

conventionally treated water samples from Llobregat River (WTP2 and WTP3 sources). 

The reason was that there was not enough spectral (organic matter) and mineral 

composition differences between them to be successfully modelled using PLS. 

Therefore, these two type of water samples were classified as belonging to the same 

source in their mixture blends and hence aggregated before PLS modelling.  

When WTP2 and WTP3 water samples were attributed to the same water source, 

low prediction errors (below 10%) were obtained for their prediction in external 

validation.  Similarly to other samples, boron concentration was found to be a relevant 

parameter for the PLS model when water samples from SWRO and WTP4-EDR were 

included. 

 Taken together, these results suggested that boron was a very important 

parameter to be included in the data analysis, along with UV spectral data, for water 

sources apportionment. Boron concentrations together with conductivity provided an 

excellent parameters combination for the optimal PLS modelling.  It was found that the 

addition of conductivity parameter increased the reliability and robustness of the PLS 

models (especially for the desalinated sea water, SWRO). Furthermore, it made them 

more versatile for the different conditions which can be encountered in the Barcelona 

water distribution system. The above findings are presented in Figure 4, Figure 5 and 

Table 5 of Article 4. 

 In summary, UV spectrophotometric analysis coupled with chemometrics is a 

powerful strategy for differentiating raw water sources with different natural organic 

matter content.   In the case study of the Barcelona distribution system, it was possible 

to distinguish and perform accurate source apportionments of up to five different water 

sources in blends.  Differentiation in blend compositions from different water sources 
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was made possible when additional information about certain elements was introduced 

to the UV spectral data.  Apart from UV spectra, boron concentration and conductivity 

were the most important parameters for the correct prediction of water sources. 

 

 

 

3.2.2 Article 5 – Platikanov, S., Rodriguez-Mozaz, S., Huerta, B., Barcelo, D., 

Cros, J., Batlle, M., Poch, G., Tauler, R.  Chemometrics quality assessment of 

wastewater treatment plant effluents using physicochemical parameters and UV 

absorption measurements. Journal of Environmental management 140 (2014) 33-44. 

 

Introduction 

Traditional laboratory methods exist for the characterization of wastewater 

quality parameters such as total carbon (TC), inorganic carbon (IC), total organic carbon 

(TOC), non-purgeable organic carbon (NPOC), pH, alkalinity, conductivity, chloride, 

sulfate, nitrate and fluoride, and some toxic pollutants. Although such methods are 

accurate and precise, they may be time-consuming and expensive when analysing large 

sample sets for surveying, routine monitoring and similar purposes.  

 UV-Visible spectrophotometry (UVVIS) is highly useful for on-line and in-line 

measurements in wastewater quality monitoring. UVVIS monitoring can significantly 

improve the correct operation of the water treatment systems. To the extent that many 

organic compounds and a few soluble minerals (such as nitrates) absorb in the UV 

region, this fast and simple method is able to follow wastewater quality based on 

organic matrix fingerprinting. 

  Multivariate calibration methods, such as principal component analysis (PCA) 

and partial least squares (PLS), give further advantage to UVVIS in successfully 

analyzing overlapped spectra of multiple compounds. A significant advantage of 

applying multivariate calibration methods is that they simplify the sample preparation 

by avoiding preliminary separation steps in complex sample matrices. 

 This article includes two case studies, namely: a) exploration of the relationship 

among different parameters in monitoring wastewater quality, and b) modelling 

(prediction) of specific target water quality parameters.  In both studies, chemometric 

approaches were applied on matrices containing concentration data for physicochemical 

parameters and UVVIS spectral data.  
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 In the first case study, we investigate the temporal/seasonal variability of 

physicochemical water quality parameters and spectral data in data sets generated at a 

real WWTP.  Different PCA models were calculated and compared using data sets 

obtained using conventional laboratory methods or instrumental systems for online 

water quality monitoring. These datasets have been collected in different time intervals 

during monitoring campaigns. Specific to this study is the comparison and evaluation of 

the results obtained following the application of a recently developed experimental 

sensor system, which enable the simultaneous recoding of physicochemical parameters 

and selected UV bands.  A comparison between PCA results obtained using this new 

proposed experimental system and the data generated by conventional laboratory 

standard methods was performed. 

 In the second case study, we investigate the possibility to derive a chemometric 

prediction of concentration of four target water quality parameters in experimentally 

designed synthetic mixtures.  Target parameters for prediction were phenol, nitrate, 

dodecylbezosylphonate and DOM. Different concentrations from the selected target 

parameters were mixed in laboratory according to a Box-Behnken experimental design. 

Next, a predictive PLS2 model was developed for the simultaneous prediction of such 

parameters, modelling the obtained UVVIS spectral data in the mixtures. More 

specifically, a methodology for the selection of the most important spectral wavelengths 

in PLS models is proposed. Using the variable-importance-in-projection (VIP) scores 

obtained from PLS modelling parameters, full UVVIS spectra were reduced to few 

spectral bands and, a new PLS model was recalculated.  VIP scores technique was also 

applied to actual WWTP data to predict nitrate concentrations and Total Organic 

Carbon (TOC) in real samples. Predicted values of these two parameters were also 

compared to the corresponding reference values that were obtained by standard 

laboratory methods with satisfactory results.  
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a b s t r a c t

Chemometric techniques like Principal Component Analysis (PCA) and Partial Least Squares Regression
(PLS) are used to explore, analyze and model relationships among different water quality parameters in
wastewater treatment plants (WWTP). Different data sets generated by laboratory analysis and by an
automatic multi-parametric monitoring system with a new designed optical device have been investi-
gated for temporal variations on water quality parameters measured in the water influent and effluent of
a WWTP over different time scales. The obtained results allowed the discovery of the more important
relationships among the monitored parameters and of their cyclic dependence on time (daily, monthly
and annual cycles) and on different plant management procedures.
This study intended also the modeling and prediction of concentrations of several water components

and parameters, especially relevant for water quality assessment, such as Dissolved Organic Matter
(DOM), Total Organic Carbon (TOC) nitrate, detergent, and phenol concentrations. PLS models were built
to correlate target concentrations of these constituents with UV spectra measured in samples collected at
(1) laboratory conditions (in synthetic water mixtures); and at (2) WWTP conditions (in real water
samples from the plant). Using synthetic water mixtures, specific wavelengths were selected with the
aim to establish simple and reliable prediction models, which gave good relative predictions with errors
of around 3e4% for nitrates, detergent and phenols concentrations and of around 15% for the DOM in
external validation. In the case of nitrate and TOC concentrations modeling in real water samples from
the effluent of the WWTP using the reduced spectral data set, results were also promising with low
prediction errors (less than 20%).

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Continuous monitoring of wastewater treatment plants
(WWTP) is carried out to guarantee that the operational process
acts in accordance with the legislative requirements on water
quality for safety, environmental protection and efficient use of
water resources. The number of quality and operational parame-
ters/variables continuously measured is high, and requires a

systematic approach to analyze the entire WWTP process and
extract valuable information (Rosen and Lennox, 2001).

There are many methods available for the determination of
water quality parameters in a WWTP such as total carbon, inor-
ganic carbon, total organic carbon (TOC), non-purgeable organic
carbon (NPOC), pH, alkalinity, conductivity, chloride, sulphate, ni-
trate and others (APHA, 1998). Although accurate and precise, these
procedures are time consuming and thus expensive when
analyzing a large number of samples during routine monitoring. In
addition, some of these procedures require long analysis time and
therefore the quality values then generated cannot help WWTPs
managers to address the potential problems occurring in the plant
in real time.
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In recent years, UVeVis spectrophotometry has emerged as a
possible and adequate technique for batch and continuous online
water quality monitoring. This technology takes advantage of the
fact that most organic compounds and a number of soluble mineral
compounds (such as nitrates) absorb in the UV-VIS region. UV
spectrophotometry can thus be useful in this field for the proper
operation of water treatment systems (Thomas and Burgess, 2007).
It is a fast, non-destructive, inexpensive and simple analytical
technology that has been already proposed for wastewater quality
monitoring and organic matter characterization (Clement and
Yang, 2001; Vaillant et al., 2002), despite of its major drawback,
the lack of selectivity.

On the other hand, multivariate analysis is a powerful tool for
extraction of valuable information from large multivariate data
collected in WWTP monitoring programs (Rosen and Lennox,
2001). Multivariate data analysis methods, such as Principal
Component Analysis (PCA, Jolliffe, 1986), are techniques which are
able to visualize and interpret relationships existing among ob-
servations/samples and operational WWTP parameters/variables
in large and complex databases (Oulali et al., 2009). Generally,
water quality monitoring data sets have a multi-dimensional
structure, with spatial and temporal variations of multiple vari-
ables and operational conditions (Singh et al., 2006). Multivariate
data analysis methods are required to explore and extract re-
lationships and information hidden in the data sets. Multivariate
regression methods such as Partial Least Squares (PLS, Wold et al.,
1983) have been successfully applied to the analysis of multicom-
ponent systems with overlapped and multicollinear spectra
(Jørgensen et al., 2004) such as UV-VIS spectra. The combination of
UV-VIS spectroscopy and multivariate data analysis is proposed an
adequate technique for routine monitoring of water quality inside
WWTPs.

Some experimental systems for on-line and in-line wastewater
quality spectrometric monitoring have already been proposed in
the literature or even in the market. It is worth to mention the
experimental system proposed by Thomas et al. (1997) comprising
direct UV-VIS exploitation of spectra using a sequential injection
analysis system, based on chemical reaction to estimate sequen-
tially a number of parameters (e.g. TOC, COD, BOD, TSS, global N).
Other major innovations have been the implementations of sub-
mersible UV-VIS spectrometers (like ScanLyser by s:can Mes-
stechnik GmbH, Austria). This instrument utilizes the whole UV/VIS
range between 200 and 750 nm (Langergraber et al., 2004) and
allows the monitoring of many parameters simultaneously, among
them nitrate, organic matter and suspended solids. The estimation
of these parameters is performed using a chemometrics calibration
modeling, which is integrated inside the instrument (Langergraber
et al., 2003). The spectrometer is installed directly in the water flow
with the advantages of allowing continuous measurement in real-
time. The main disadvantages are its high price and the need of
continuous recalibrations in order to achieve good accurate
predictions.

This paper presents two surveys where a chemometric
approach is applied to data obtained from different case studies:

In a first survey, changes of water quality parameters in a real
WWTP were explored by PCA over different time scales campaigns.
In addition, results obtained using conventional laboratory
methods were compared with those obtained with an automatic
multi-parametric monitoring system (AMS) and with this system
coupled with a multi-LED optical device recording spectra at
particular ultraviolet wavelengths (AMS-LED).

The second survey includes the chemometrics modeling of four
target water quality parameters such as phenol, nitrate, dode-
cylbezosylphonate and DOM concentrations in synthetic mixtures
prepared in laboratory. A predictive PLS model was developed

based on the UVeVIS spectral data for the simultaneous determi-
nation of all four parameters above mentioned. In particular, the
most important spectral wavelengths were selected based on
Variable Importance in Projection scores (VIP, Chong and Jun,
2005), obtained in a PLS model, and were able to predict the
target analyte concentrations with the lowest errors. VIP scores
were also applied in a real WWTP scenario to predict concentra-
tions of Nitrate (NO3) and Total Organic Carbon (TOC) in real
samples. Predicted values of these parameters were also compared
with the corresponding reference values obtained by standard
laboratory methods.

In summary, the global aims of these two surveys are the
following: i) evaluation of the existing possibilities (techniques and
routines) for continuous monitoring of water quality at a WWTP, ii)
gaining knowledge about type and variation sources on water
quality parameters in WWTP effluents and iii) possible use of a
reduced number of UV spectral channels (wavelengths) to monitor
WWTP operational processes.

2. Materials and methods

2.1. Description of the wastewater treatment plant

Monitoring campaigns for data collection of water quality pa-
rameters were conducted in the municipal conventional waste-
water treatment plant (TRAGISA) located nearby the town of
Girona, Northern Spain (45.000e55.000 m3/day flow plant ca-
pacity), which collects urban wastewater from this town of
approximately 10.000 inhabitants and its surroundings.

2.2. Data acquisition and organization

Table 1 presents the water data sets investigated in this work,
focusing on time scales of monitoring campaigns, sampling fre-
quencies and applied analytical techniques. Also, locations where
samples were taken from, and number of quality parameters
included in every analysis are given. Data sets A and B from Table 1
are first presented and discussed separately in the paper. Water
data sets C1eC3 and D1-D3 refer to data generated over 24 h and
over 7 days of monitoring using either a classical UV-VIS spectro-
photometer, the APHA standard laboratory methods for analysis, or
the analytical multi-parametric Monitoring System (AMS) with an
UVeVIS absorption spectral LED device. Table 2 shows all param-
eters measured and monitored in the WWTP either by the appli-
cation of APHA standard laboratory methods or by the AMS with
and without an UV multi-LED optical device.

2.2.1. Monitoring of conventional water quality parameters in the
WWTP

Routinely, different water quality parameters from influent and
effluent water are measured daily in the WWTP laboratory. All
analytical methods applied in WWTP are in accordance with
Standard Methods for Examination of Water and Wastewater
(APHA, 1998). The parameters routinely monitored in influent and
effluent water were: pH, conductivity, soluble solids, chemical ox-
ygen demand (COD), biological oxygen demand in 5 days (BOD5),
phosphates (PO4eP), total nitrogen (NTK), nitrates (NO3-). Addi-
tional parameters (see Table 3, Data sets A, C2 and D2) were
measured in some particular cases. In all cases, water samples were
collected and kept at 4 �C prior the laboratory analyses.

Data set A contains information about water quality parameters
obtained in the WWTP routine daily monitoring, both in influent
and effluent wastewater. The complete data set covered 138
samples-days taken throughout the entire 2010 year (including
days from all four seasons). These parameters and their
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corresponding descriptive statistics are summarized in Table 3,
Data set A.

Data sets C2 and D2 were obtained over shorter-scale moni-
toring campaigns just in the wastewater effluent. Daily samples
were taken along a week for data set C2 (descriptive statistics
shown in Table 3, Data set C2), whereas for data set D2, a sample
per hour was collected over a day (descriptive statistics shown in
Table 3, Data set D2).

In all cases, water samples were collected and kept at 4 �C prior
to laboratory analyses. The parameters routinely monitored in this
study were: pH, conductivity, soluble solids, chemical oxygen de-
mand (COD), biological oxygen demand in 5 days (BOD5), phos-
phates (PO4eP), total nitrogen (NTK), nitrates (NO3�).

2.2.2. Monitoring of water quality parameters using an automatic
multi-parameter system (AMS) and an UV-VIS absorption multi-LED
optical device (AMS-LED)

The automatic multi-parametric monitoring system (AMS;
ADASA S.A. company, Barcelona), was developed for online water
quality monitoring at the WWTP effluent. The analytical part of the
system is composed by 2 equipments with electric and hydraulic
elements (pump, sample intake system and auto cleaning ele-
ments) necessary to ensure that the system canwork properly with
no human operation during long periods of time.

AMS instrument (aquaTest-MO equipment, developed by
ADASA S.A. company) monitored water quality data continuously
for 9 parameters including temperature, pH, redox potential, con-
ductivity, dissolved oxygen, biological oxygen demand, turbidity,
absorption at 254 and 365 nm (254 nm is used to measure the
optical absorption of organic matter; 365 nm is used to compensate
the optical absorption due to turbidity). Measurements were taken
every 20 min during one month (data set B of Table 1). Table 3 B
reports the descriptive statistics of the above mentioned
parameters.

As an upgrade of the AMS, special interest was paid to the
development and performance of a recently developed UV-VIS
multi-LED optical device coupled to the AMS (data sets C3 and
D3). This new optical device was able to record spectral data at 240,
250, 254, 260, 275 and 365 nm wavelengths. Table 3 data sets C3
and D3 report the descriptive statistics about parameters moni-
tored by AMS-LED over the two shorter scale monitoring
campaigns.

2.2.3. Spectrophotometric analysis of synthetic mixtures of water
constituents

A set of synthetic water samples containing several constituents
were synthetically prepared in the laboratory using chemical-grade
pure compounds. Investigated relative concentrations of these
water mixtures were designed to represent a range of

concentration values close to those measured in real plant condi-
tions. Humic acid (Aldrich) concentrations were added to simulate
a possible source of dissolved organic matter (DOM). Nitrate stan-
dard solution was used to prepare samples with nitrates ions.
Phenol (99% pure, Fluka) and kaolin (Aldrich) were used to simulate
phenol concentrations and soluble solids in water. Sodium dode-
cylbenzene sulfonate (pure DBS, Aldrich) was used to give known
concentrations of surfactant/detergent in the mixtures. Samples
from pure target compounds and of their mixture combinations of
2, 3 and 4 components were prepared using two Box-Behnken
experimental designs, BBD (Box and Draper in 1987 did show
that BBD is highly effective in 3-levels, two-to several factor ex-
periments, giving relatively low number of samples).

A total number of 49 samples (40were used for calibration and 9
were used for external validation) of one-to-four components in
the concentration range 0e10 mg/L were prepared. Kaolin

Table 1
List of data sets used for multivariate analysis in this paper.

Data set Monitoring campaign Sampling Analytical techniquea Number of parameters Location Chemometric method

A One year, 138 samples Daily APHA methods 18 Influent -effluent PCA
B One month, 1738 samples Every 20 min AMS 9 Effluent PCA
C1 One week, 7 samples Daily UV-VIS spectroscopy 190-1100 nm Effluent PCA
C2 One week, 7 samples Daily APHA methods 11 Effluent PCA
C3 One week, 7 samples Daily AMS-LED 14 Effluent PCA and PLS
D1 Twenty-four hours, 24 samples Every hour UV-VIS spectroscopy 190-1100 nm Effluent PCA
D2 Twenty-four hours, 24 samples Every hour APHA methods 12 Effluent PCA
D3 Twenty-four hours, 24 samples Every hour AMS-LED 13 Effluent PCA and PLS
E Batch, 49 samples Exp. design UV-VIS spectroscopy 190-1100 nm Mixtures PLS

a APHA (Standard Methods for the Examination of Water and Wastewater, APHA, 1998) analytical techniques implemented in WWTP; AMS Analytical multi-parametric
Monitoring System of (ADASA S.A. Inc. Barcelona, Spain) UV-VIS spectral measurements by the Agilent HP8453 spectrophotometer; AMS-LED Analytical multi-parametric
Monitoring System with an ultraviolet optical multi-LED device measuring at six specific wavelengths (ADASA S.A. Inc, Barcelona, Spain).

Table 2
List of parameters measured and monitored in this studya.

Parameters APHA methodsb AMSb AMS-LEDb UV-VISb

Temperature x x
pH x x x
Redox potential x x
Conductivity x x x
Dissolved oxygen x x
SAC x x
Absorption at 240 nm x
Absorption at 250 nm x
Absorption at 254 nm x x
Absorption at 260 nm x
Absorption at 275 nm x
Absorption at 365 nm x x
Absorption 190e1100 nm x
BOD x x
Turbidity x
Suspended solids x
COD x
PO4eP x
NTK x
NO3 x
NH3 x
Water flow influent x
Water flow effluent x x
TOC x

a The number of parameters in Table 2 does not correspond to the number of
parameters reported in Table 1, since some of them were measured in the influent
and other in the effluent for a specific data set.
b APHA (Standard Methods for the Examination of Water and Wastewater, APHA,

1998) analytical techniques implemented in WWTP; AMS Analytical multi-
parametric Monitoring System of (ADASA S.A. Inc. Barcelona, Spain) UV-VIS spec-
tral measurements by the Agilent HP8453 spectrophotometer; AMS-LED Analytical
multi-parametric Monitoring System with an ultraviolet optical multi-LED device
measuring at six specific wavelengths (ADASA S.A. Inc, Barcelona, Spain).
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concentration varied in the range between 0 and 15 mg. Once
prepared, every sample was measured using a conventional UVVIS
diode array spectrophotometer (Agilent HP8453) and their spec-
trums were recorded and use to build data set E (see Table 1). UV
spectra were recorded in the wavelength range between 190 and
350 nm where strong absorption of the target compounds was
measured.

2.3. Chemometric methods and figures of merit

Experimental data sets were properly arranged in data matrices
and autoscaled (column mean centered and scaled) to eliminate
offsets and changes in measurement scales. PCA (Jolliffe, 1986) was
applied for exploratory analysis of water quality parameters of
WWTP. This chemometrics method extracts useful information
about the latent (hidden) structures of a particular data set. It
transforms a large number of correlated original measured vari-
ables (in our casewater quality parameters or UV spectral data) into
a smaller number of uncorrelated, orthogonal variables explaining

Table 3
Descriptive statistics of parameters monitored in Girona WWTPa. Tables C1 and D1
report only spectral data and are not presented here.

Data set A.
Physicochemical
parameters APHA1,
one year

Abbreviation Mean Min Max Std

pH in the outlet pHout 7.3 7.0 8.5 0.2
Conductivity in the

outlet mS/cm
CONDout 945.3 613.0 1184.0 110.9

Biological oxygen
demand 5 days
in the outlet mg/L

BOD5out 4.1 2.0 17.4 1.8

Chemical oxygen
demand in the
outlet mg/L

CODout 29.5 8.2 88.0 9.2

Suspended solids in
the outlet mg/L

SSout 4.9 1.6 28.0 3.1

Total nitrogen
(Khejdal method)
in the outlet mg/L

NTKout 6.7 1.5 21.5 3.1

Nitrates in the outlet
mg/L

NO3out 3.9 0.8 8.5 1.5

Total phosphates in
the outlet mg/L

Ptotout 0.2 0.1 1.5 0.2

Water flow in the
outlet m3/h

Flowout 37.900 32.600 57.400 4.000

pH in the inlet pHin 7.6 7.3 7.9 0.1
Conductivity in the

inlet mS/cm
CONDin 1162.3 118.0 2180.0 195.6

Biological oxygen
demand 5 days in
the inlet mg/L

BOD5in 206.1 18.0 369.0 57.4

Chemical oxygen
demand in the
inlet mg/L

CODin 513.1 6.4 1049.0 153.1

Suspended solids in
the inlet mg/L

SSin 264.0 74.0 660.0 109.1

Total nitrogen
(Khejdal method)
in the inlet mg/L

NTKin 49.6 23.1 94.9 12.5

Ammonia in the inlet
mg/L

NH4in 33.3 9.0 71.0 8.9

Nitrates in the inlet
mg/L

NO3in 1.2 0.1 3.3 0.7

Total phosphates in
the inlet mg/L

Ptotin 7.3 3.3 13.8 2.1

Data set B. Parameters
AMS, one month

Abbreviation Mean Min Max Std

pH pH 6.9 6.7 7.0 0.0
Conductivity mS/cm COND 930.6 647.8 1014.7 78.1
Dissolved oxygen mg/L O2 3.9 2.0 5.3 0.6
Redoxy potencial mV RedOx 210.9 150.5 272.1 28.6
Temperature in C� TEMP 19.5 18.0 22.4 0.8
Turbidity NFU TURB 2.9 0.0 12.0 3.1
Specific absorption

coefficient
SAC 20.5 0.1 30.8 8.6

Absorption at 254 nm Abs 254 20.8 1.5 29.3 7.7
Absorption at 365 nm Comp 365 4.2 1.9 5.7 0.9

Data set C2. Parameters
APHA, week

Abbreviation Mean Min Max Std

pH pH 7.2 7.0 7.6 0.2
Conductivity mS/cm COND 1055.4 952.0 1125.0 58.4
Chemical oxygen demand mg/L COD 24.1 11.0 29.0 6.3
Biological oxygen demand

5 days in the inlet mg/L
BOD5 6.1 5.0 12.0 2.6

Volatiles suspended solids mg/L SSV 3.0 2.0 5.0 1.2
Suspended solids in the outlet

mg/L
SS 3.6 2.0 6.0 1.5

Total nitrogen mg/L NT 6.9 4.0 9.1 1.9
Nitrates mg/L NO3 5.4 2.8 7.2 1.6
Phosphates mg/L PO4 2.5 0.9 5.4 1.8
Total organic carbon mg/L TOC 14.5 10.6 24.6 5.6
Water flow in the inlet m3/h Flowin 2002.9 1912.0 2099.0 59.4

Data set C3. Parameters
AMS-LED, week

Abbreviation Mean Min Max Std

pH pH 6.9 6.9 7.0 0.1
Conductivity mS/cm COND 906.0 820.0 941.0 41.0
Temperature in C� TEMP 24.4 23.7 24.7 0.4
Redoxy potential mV RedOx 241.0 234.0 245.0 4.0
Dissolved oxygen mg/L O2 3.7 3.2 4.1 0.3
Biological oxygen demand mg/L BOD 11.1 6.3 15.9 2.8
Biological oxygen demand mg/L BOD_2 11.1 7.4 15.2 2.6
Specific absorption coefficient SAC 27.2 25.6 28.6 1.1
Absorption at 240 nm A240 25.1 23.7 26.1 1.0
Absorption at 250 nm A250 17.8 16.3 18.7 1.1
Absorption at 260 nm A260 31.9 30.8 32.5 0.7
Absorption at 275 nm A275 29.3 28.3 29.9 0.7
Absorption at 254 nm A254 24.8 23.7 25.8 0.8
Absorption at 365 nm A365 2.8 2.5 3.0 0.2
Water flow in the outlet m3/h Flow 1.4 1.4 1.5 0.0

Data set D2. Parameters
APHA, 24 h

Abbreviation Mean Min Max Std

pH pH 7.3 7.2 7.7 0.1
Conductivity mS/cm COND 996.4 982.0 1017.0 9.8
Chemical oxygen demand mg/L COD 27.0 22.0 52.0 6.0
Biological oxygen demand

5 days in the inlet mg/L
BOD5 6.4 5.0 16.0 2.2

Suspended solids in the outlet
mg/L

SS 3.9 3.0 9.0 1.4

Volatiles suspended solids mg/L SSV 3.1 0.0 8.0 1.6
Total nitrogen mg/L NT 9.1 8.4 9.9 0.6
Nitrates mg/L NO3 7.3 6.5 8.0 0.5
Phosphates mg/L PO4 1.0 0.5 5.6 1.0
Total organic carbon mg/L TOC 11.7 10.0 17.7 1.4
Water flow in the inlet m3/h Flowin 1655.8 831.0 2249.0 406.8
Water flow in the outlet m3/h Flowout 1619.8 795.0 2213.0 406.8

Data set D3. Parameters
AMS-LED, 24 h

Abbreviation Mean Min Max Std

pH pH 6.9 6.9 7.0 0.0
Conductivity mS/cm COND 943.0 924.0 955.0 8.0
Temperature in C� TEMP 24.4 23.7 26.9 0.8
Redoxy potential mV RedOx 233.0 217.0 279.0 12.0
Dissolved oxygen mg/L O2 3.6 3.2 4.3 0.3
Biological oxygen demand mg/L BOD 13.2 9.9 16.1 2.1
Specific absorption coefficient SAC 25.8 24.8 26.7 0.5
Absorption at 240 nm A240 24.3 23.5 25.1 0.5
Absorption at 250 nm A250 16.8 15.9 17.9 0.6
Absorption at 260 nm A260 31.0 30.3 32.2 0.5
Absorption at 275 nm A275 28.6 27.8 29.3 0.4
Absorption at 254 nm A254 23.7 22.7 24.5 0.5
Absorption at 365 nm A365 2.8 2.4 3.0 0.2

a Tables C1 and D1 report spectral data.

Table 3 (continued)
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maximum variance, called principal components (PCs). Two types
of plots are obtained from the application of PCA. Loadings plots
which describe and map the relationships between water quality
parameters and the extracted principal components, and scores
plots, which describe and map the samples (different time obser-
vations, minutes/hours/days of monitoring properties) in the new
axes defined by the principal components, allowing the easier
investigation of their relationship.

In order to predict the concentrations of the selected target
compounds/parameters in wastewater, two PLS regression algo-
rithms have been applied in this work (Wold et al., 1983). First, PLS2
was used for the case of building a single model between the
concentrations of a set of wastewater constituents (like organic
matter, phenols, NO3, DBS) with the collected UV spectra in the
laboratory. Second, multiple PLS1 models were used to predict NO3
and TOC concentrations in a real WWTP scenario, using the AMS-
LED spectral data.

PLS2was preferred in the first case over PLS1, because it allowed
simultaneous calibration of all target analyte concentrations with
the lowest possible prediction errors. The use of Variable Impor-
tance in Projection (VIP) scores is proposed as useful tool for
interpreting the more relevant variables in PLS models (Chong and
Jun, 2005). Individual VIP scores from this PLS2 model can be
compared visually in order to select a few more important wave-
lengths, useful for the simultaneous prediction of all target
parameter concentrations.

In all cases, the same strategy was used, starting with model
calibration, followed by its internal cross-validation (leaving-one
out) and ended by its external validation (with samples not
included in the calibration). Selection of optimal number of com-
ponents in PCA or of latent variables in PLS1 and PLS2, has been
using the lowest prediction error in cross validation (leaving-out-
one sample at a time) and in external validation. The model giving
the lowest relative prediction errors in external validation prevails
and it is finally chosen.

Quality assessment of the obtained results is discussed by
comparison of predicted values versus measured values, both for
calibration and for validation data sets. To evaluate numerically the
quality of the obtained results, the coefficient of determination of
model fitting or R2 and the Root Mean Squared Error of Calibration
or of external Prediction (RMSEC and RMSEP) were used. RMSEC is
calculated as follows:

RMSEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðbyi � yiÞ2
n

s
;

Where the byi are the values of the model predicted concentrations
and yi are the actual values for calibration samples and n is the
number of samples. RMSEC is a measure of howwell the model fits
experimental concentrations. RMSEP is calculated exactly as
RMSEC except that the estimates are now the values from external
validation samples. RMSEP is a measure of howwell the model will
make predictions. Moreover, in this work the calculation of relative
prediction errors of concentrations in percentage is also given, for
both calibration and prediction steps and they are calculated as
follows:

Rel: error in% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðbyi � yiÞ2Pn
i¼1 ðyiÞ2

� 100

vuut ;

Initial data preparation and data arrangement of the different
data sets were performed using EXCEL (Microsoft, Redmon, WA,
USA). All calculations for chemometric analysis were performed
using MATLAB computer and visualization environment and

using Statistical Toolbox of MATLAB 6.5 (The Mathworks, Natick
MA, USA) and PLS Toolbox 5.8 (Eigenvector Research, Manson,
WA, USA). Statistical experimental design was carried out by
using the software Unscrambler 9.8 (CAMO PROCESS AS, Oslo,
Norway).

3. Results and discussion

3.1. PCA results of the one year WWTP data set (dataset A in
Table 3)

PCA on data set A after data autoscaling identified 6 components
(PC1 25.6%; PC2 13.2%; PC3 9.2%; PC4 7.6%; PC5 6.5%; PC6 6.2%),
which explained 68% of the total data variance. This model is rather
complex with a high number of PCs, probably due to the fact that
measured variables at the influent and effluent were rather inde-
pendent before and after the treatment process.

Fig. 1a shows PCA scores plot for PC1 and Fig. 1b shows PC1 vs
PC2 loadings plot. PC1 scores and loadings figured out the seasonal
(the smooth sigmoid trend over the entire time under investiga-
tion, e.g. one year) and weekly (short-termed cyclic fluctuations)
water quality trends due to theWWTP activity (see Fig. 1a). Positive
scores on 1st PC are observed for samples from spring, autumn and
winter seasons, while in summer negative scores on 1st PC are
observed. Almost all physicalechemical parameters under inves-
tigation at WWTP show positive loadings on PC1 (see Fig. 1b),
which means that their concentrations were found above the
average values during spring, autumn and winter seasons and
below the average values for the summer period. All these suggest
thatWWTP is characterized with the higher plant activity in spring,
autumn and winter, following a considerable reduction of the plant
activity in summer, probably due to the reduced urban activity and
to the lower water flow. This fact has been confirmed by the
experienced technical staff of WWTP. In addition, when scores
were examined in more detail, changes in water quality among
different days were also detected, e.g. many of weekend samples
were discriminated fromworking days samples (not shown in Fig.1
for brevity),

On PC1vsPC2 loadings plot (see Fig. 1b), the effect of influent-
effluent variation in water quality is shown, from which the role
of WWTP performance in the wastewater treatment can be inves-
tigated. Many of the parameters monitored in the influent are
distributed at the bottom-right corner of the plot (negative load-
ings on 2nd PC) and are distinguished from parameters monitored
in the effluent (positive loadings on 2nd PC) at the upper-right
corner. This means that it is observed an inverse correlation be-
tweenwater quality parameters measured in the plant influent and
in the plant effluent. The effluent concentrations have positive
scores, meaning that above average concentrations in the effluent
result in higher values for the 2nd PC while below average influent
concentrations result in negative scores. The direction from nega-
tive loadings to positive loadings on PC2 figures out the efficiency of
plant procedures.

Water quality parameters with high loadings on PC2 will as-
sume low reduction in their concentration, respectively a low plant
performance. On the contrary water quality parameters with low
loadings for PC2 will assume higher reduction in their concentra-
tions, respectively, a high plant performance.

Some exceptions can be detected for nitrate concentrations -
smaller PC2 loadings for the nitrate concentrations in the effluent
than in the influent. This, however, confirms the fact that nitrate
concentrations increased in the effluent due to WWTP activity
(Thomas and Burgess, 2007). Concentrations of all other water
quality parameters, like SS, COD, BOD5, total nitrogen and others,
were reduced due to WWTP activity.
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3.2. PCA results of the one month WWTP data set (dataset B in
Table 3)

A thorough exploratory analysis on the variation of quality in
wastewater effluent was performed with data collected every
20 min by the AMS during one month of continuous monitoring.
PCA was also carried out after data (see Tables 1 and 2). PCA model
with 3 principal components explained around 88% of the total
variance in the data (PC1 45.9%; PC2 27.4% and PC3 11.5%, all
components with eigenvalues larger than one), This PCA model
gave better features (only three principal components explaining
88% of data variance) than this obtained in previous analysis (six
principal components explaining 68% of variance) of conventional
plant parameters (dataset A in Table 3). This fact is probably due to
the higher correlation that exist among measured variables,
resulting in a PCA model that explains better the changes in the
water quality when data collection was subjected to every 20 min
(AMS system) in contras to data generated once a day (data
collected by APHA methods).

Fig. 2 shows PCA scores and loadings for the model with 3 PCs.
Interpretation of scores and loadings on 1st PC are given in Fig.s. 2a
and b. They revealed notorious diurnal, short-termed cyclic fluc-
tuations of water quality. Moreover, a larger fluctuation of the trend
line (Fig. 2a at the right corner) at the end of the month is observed
(strong negative scores on PC1). This change of the trend line in
water quality was presumably due to the joint effect of Easter
holiday vacation (decrease of the urban activity) and several epi-
sodes of rainfalls occurred during these days in Girona area. The
corresponding loadings plot (Fig. 2b) confirms a notable increase of
dissolved oxygen concentration and of redox potential values (i.e.
strong negative loadings on PC1 on contrary to the other parame-
ters loadings) in the water effluent due to the reduced urban ac-
tivity for the holidays plus the accumulation of fresh rain water,
richer in dissolved oxygen.

On the scores plot of PC2 in Fig. 2c (27.5% of the explained
variance), variations of water quality due to morning-midnight
fluctuations are displayed. Positive scores are monitored at morn-
ings and, on the contrary negative scores are at midnight hours
throughout this investigation. In Fig. 2d, water temperature, pH,
red-oxy potential and dissolved oxygen have the highest positive
loading values on PC2. The last two parameters have higher con-
centration values during themorning than at midnight hours. Third
PC (11.5% of the explained variance) also illustrates the operational
pattern of the WWTP process with the cyclic morning-afternoon
recurrence (see Fig. 2e). Morning samples are monitored with

positive scores in contrary to afternoon samples with negative
scores. The explanation for this trend can be found on the loadings
plot of Fig. 2f. It shows that the turbidity parameter had the major
positive contribution on this PC3. Water with higher turbidity
values was released in the mornings (also with positive sample
scores on Fig 2e). All this reflects WWTP operational procedures
where large volumes of treated water are released from theWWTP
in mornings, i.e. when new wastewater also entered the plant. On
the contrary, water turbulence decreased during the day, when the
water incoming-outgoing process turned steady in the afternoons
(negative sample scores on Fig. 2e).

3.3. PCA results of the seven days WWTP data sets (datasets C1, C2
and C3 in Table 3)

Fig. 3 shows the achieved PCA results in the analysis of the three
data sets collected simultaneously by the UVVIS laboratory in-
strument (data set C1), from the standard laboratorymethods (data
set C2) and by the AMS-LED (data set C3), over the same week of
monitoring. Samples were collected once a day at 11 h A.M. The
sampling time was adjusted considering residential time of water
in the WWTP in order to get representative samples and to make
possible their comparison.

PCA model of spectral data (data set C1) collected by a laboratory
UVVIS instrument explained more than 98% of the variance with
2 PCs. The other two PCA models (one for physicochemical data set
C2 generated in the laboratory and another for data set C3 collected
by AMS-LED instrument) explained around than 60e70% of variance
using first two PCs. Fig. 3a, c and e show score plots for the first two
PCs and Figs. 3b, and f show the corresponding loading plots.

The five weekdays were well discriminated from weekend days
on the three score plots. The scores for the weekend show negative
scores on PC1 in Fig. 3a and c. In Fig. 3e the combination of PC1 vs
PC2 distinguish similarly weekends from the weekdays. The anal-
ysis of the loadings plot of spectral data (data set C1) revealed a
shoulder at 220 nm and a band maximum at 226 nm (see Fig. 3b).
The absorption at 220 nm is assigned to organic matter and nitrates
(APHA, 1998) and the peak at 226 nm is assigned to detergents,
since many of them do absorb at this wavelength (Thomas and
Burgess, 2007). Therefore, the relationship between concentra-
tions of organic matter and detergents is of major importance for
the description of changes during weekdays.

Analysis of loadings plot of laboratory data (data set C2, see
Fig. 3d) reveals the importance of pH (strong negative loadings on
PC1) and nitrates (strong positive loadings on PC1) parameters,

Fig. 1. PCA results of data set A generated in the Girona WWTP during one year: a) PC1 sample scores plot (days of observation); b) PC1 vs PV2 loadings plot of the eighteen
physicochemical parameters measured by APHA methods.
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which correlate inversely. Therefore, the five weekdays (positive
scores on PC1) were characterized with high concentrations of ni-
trates in contrast to the weekend (negative scores on PC1), when
pH increased probably due to higher concentrations of detergents
in the wastewater from the intensive household activity in Girona
town.

Fig. 3e shows that PCA model of data set C3 from the AMS-LED
instrument, differentiates Tuesday to Friday (all positive scores on
PC1) plant treatment from the rest of days (all negative scores on
PC1). This fact can be deduced from the analysis of the corre-
sponding loadings plot (Fig. 3f). The importance of the absorption
selected variables between 240 and 275 nm, as well as BOD, is

Fig. 2. PCA results of data set B collected by the Analytical Multi-parametric Monitoring System (AMS) in the WWTP Girona during one month: a) PC1 scores plot for samples taken
every 20 min; b) PC1 loadings plot for the nine physicochemical parameters recorded by AMS. c) PC2 scores plot for samples taken every 20 min; d) PC2 loadings plot for the nine
physicochemical parameters recorded by AMS. e) PC3 scores plot for samples taken every 20 min); f) PC3 loadings plot for the nine physicochemical parameters recorded by AMS.
The blues squares and the red triangles at Fig. 2c and e were associated with extreme samples from morning, afternoon and midnight time zones. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. PCA results of data sets C1, C2 and C3 (seven days of monitoring using three different analytical techniques): a) PC1 scores plot for samples analyzed by UV-VIS spectro-
photometer during seven days (spectral data set C1); b) PC1 loadings plot for spectral region between 190 and 490 nm (spectral data set C1); c) PC1 scores plot for samples analyzed
by APHA methods during seven days (data set C2); d) PC1 loadings plot for eleven physicochemical parameters obtained by APHA methods (data set C2). The red cutoff lines are
hand written to distinguish better. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. PCA results of data sets D1, D2 and D3 (twenty-four hours monitoring by three different analytical techniques): a) PC1 scores plot of samples analyzed by UV-VIS
spectrophotometer during seven days (spectral data set D1); b) PC1 loadings plot for spectral region between 190 and 490 nm (spectral data set D1); c) PC1 scores plot for
samples analyzed by APHA methods during twenty-four hours (data set D2); d) PC1 loadings plot for twelve physicochemical parameters obtained by APHA methods (data set
D2); e) PC1 scores plot for samples (hours) analyzed by AMS-LED during 24 h (data set D3); f) PC1 loadings plot for thirteen physicochemical parameters collected by AMS-LED
(data set D3).
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displayed on the positive side of PC1 (right half of the plot), which
should be related to the absorption of higher organic matter con-
centrations. Tuesday to Friday are characterized by higher absor-
bance values and higher concentrations of organic matter.
Generally, higher content of organic matter is considered to be an
indication of lower water quality and therefore, the results ach-
ieved directly from PCA modeling of optical data can provide
valuable information about water quality. In contrast, weekends are
characterized with higher values of parameters like pH, dissolved
oxygen and redox potential (down left corner of the plot). These
parameters, with high influence on thewater quality, show that the
quality of the effluent water during the weekend is better than in
week days (with higher concentrations of dissolved oxygen and
lower amounts of organic matter) even trough the quality of the
effluent during the weekend had being dominated by the house-
hold activity with higher detergent concentration.

However all discovered trends (in one week and one day
monitoring of WWTP activity by analysing data from APHA
methods, UVVIS and AMS-LED) were rather similar -proving the
efficiency of the AMS-LED system. These have been only pre-
liminary results and they should be performed on a longer time-
scale studies to prove validity of the derived results.

3.4. PCA results of the twenty-four hours WWTP data sets (data sets
D1, D2 and D3 in Table 3)

In Fig. 4, PCA scores and loadings for the twenty-four hours
(twenty-four samples) monitoring UV-VIS full spectral data set D1
are given (see Fig. 4a and b). PCA results for data set D2 generated
by the standard laboratory methods in WWTP are given in Figs. 4c
and d and PCA results for data set D3 collected by the AMS-LED
system are given in Figs. 4e and f. PCA models displayed in the
three cases a continuous daily-night sigmoid trend in the water
quality of the effluent. Fig. 4a shows a smooth trend line with time
hours. Nighttime hours have positive scores on the plot in contrast
to the morning-afternoon diurnal hours, with negative scores.
There is an inflection point with a sharp change of water quality at
17.00 h in the afternoon. The maximum value of this trend line can
be found around 00.00 h at midnight. Fig. 4b gives the corre-
sponding loadings and it shows the spectral bands with highest
positive contributions to the first PC of the model. The maximum
absorption value was found around 220 nm. Nitrates and dissolved
organic matter are most probably the responsible for this strong
absorption at this wavelength (APHA, 1998). It can be concluded
that the sharp change of the trend line is due to the rapid increase
of concentrations of nitrate and organic matter at this time.

Fig. 4c gives the PCA scores plot for physicochemical data (data set
D2) generated in WWTP laboratory. The scores trend line is also
dominated by a sharp peak detected at 00.00 h midnight. The rest of
scores followed the previously mentioned daily-night trend line for
theabsorptiondata (data setD1),withpositive scores for theevening-
night hours and negative scores for the daylight time. Investigation of
Fig. 4d made possible the determination of parameters with highest
loadings on PC1. They were COD, BOD5, TOC and PO4. All these pa-
rameters identified the presence of a pollution event, with very high
amounts of organic matter occurring at midnight.

Fig. 4e shows PCA results of the physicochemical-spectral data
set D3 (collected by the AMS-LED). Like previously for data set D2,
the same trend line for water quality variation is monitored in the
PC1 scores plot. Positive scores at night hours and negative scores at
morning-afternoon hours of monitoring are observed. The pollu-
tion incident appeared again as a peak in the water quality trend
line at midnight. Exploration of the corresponding loadings in
Fig. 4f revealed that the most influential variables were the specific
absorbance coefficient (SAC), with all six measured wavelengths,

together with the BOD parameter. Thus, absorption readings of
these 6 wavelengths were important to detect the pollution event.

3.5. PLS prediction of four target water quality parameters in
synthetics mixtures using UV absorption at selected wavelengths

PLS2 model of the mean-centered spectral data (Esbensen,
2002) with five LVs was able to explain more than 90% of the to-
tal Y variance. Fig. 5 shows VIP scores obtained by PLS2 modeling of
the four target compounds (nitrates, organic matter, detergent and
phenols) in the presence of kaolin and in the spectral region 190e
350 nm. Three different spectral regions can be distinguished for
optimal PLS model performance: 190e210, 220e260 and 270e
276 nm since all wavelengths in these regions show absorption
values with significant VIPs above the threshold value of 1 (Chong
and Jun, 2005). Using this wavelength range selection, amount of
data were reduced considerably. A visual preselecting criterion was
then performed searching for the most characteristic peaks and for
some inflection points to further restrict the spectral wavelengths
to a lower number. Spectral region between 190 and 200 nm was
not finally considered because the experiment needed to be done in
a vacuum chamber (Anderson et al., 2004). Our final selection
included wavelengths 201, 205 (nitrate absorption), 226 (de-
tergents), 237, 254 and 285 nm (dissolved organic matter), 270 and
276 nm (phenols). PLS2 model was then recalibrated using only
these eight preselected wavelengths.

The new PLS2model with five LVs was able to explain above 90%
of the total variance of all target analyte concentrations. Fig. 6
shows predicted versus actual concentrations for validation sam-
ples finally achieved with this PLS2 model. Results demonstrated
the presence of a very strong correlation between the actual and
predicted values of the target compounds and with good quality
parameters (see in Fig. 6. R2, RMSEC, RMSECV and bias values). In
external validation, largest relative prediction errors were found for
DOM concentrations (26%). For the rest of target compounds pre-
dicted errors varied between 3 and 4%. These figures of merit
confirmed the good predictive abilities of the achieved PLS2 model
and confirmed therefore the reliability of the preselection method
based on VIP scores and additional visual inspection. Possible use of

Fig. 5. PLS2-VIP (variable importance in projection) scores in the simultaneous anal-
ysis of four target compounds (DBS detergent, dissolved organic matter DOM, nitrates
NIT and phenols PHE) in different mixtures (data set E). Wavelengths with VIP scores
above the threshold value of one (dotted line) were considered to be the most sig-
nificant in PLS2 overall modeling. Selected wavelengths in this work are highlighted
with arrows and with their nominal values.
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more wavelengths or PLS1 modeling could help to improve DOM
prediction results.

3.6. PLS prediction of NO3 and TOC water quality parameters in real
samples using AMS-LED spectral data

Additional individual multivariate PLS1 models were built
using only the spectral part of data sets C3 and D3 collected by
AMS-LED to quantify individually NO3 and TOC during the 24 h
and 7 days real samples monitoring campaigns. Models devel-
oped for the 24 h data were externally validated using randomly
selected 18 samples for calibration and 6 samples for external
validation. PLS1 models developed for the seven day monitoring
was only internally cross validated, due to the lack of enough
number of samples. The best model was found for the prediction
of NO3 in the 24 h monitoring, explaining 70% of NO3 concen-
tration values using 94% of the spectral variance (1st LV) captured
by the six wavelengths (X data). When the model was applied to
external validation data subset (6 h), a relative prediction error of
3.5% was obtained. Model developed for the 7 days data set
(spectral part of data set C3) reported a low RMSECV value, which
confirmed the possibility of modeling NO3 over a larger time.
Considering the laboratory study with synthetic samples and
previous literature results (Thomas et al., 1990), NO3 shows
maximum absorbance at 205 nm. Modeling of NO3

concentrations using the selected 6 wavelengths (240, 250, 254,
260, 275 and 365 nm) should be based mostly only on spurious
correlation with other compounds. This fact has been already
reported by other authors (Dahlén et al., 2000) for other com-
pounds modeled in the wastewater.

When the spectral data set C3 from 7 days monitoring were
concatenated to the spectral data set D3 of 24 h monitoring (the
new data set has 31 samples), the range of variation in nitrate
concentration increased from 3 to 8 mg/L and therefore this new
model was more robust. Relative prediction errors in the external
validationwere found to be 12.5%. It should be noted however, that
in order to have more accurate predictions, more observations are
needed and a broader concentration range should be considered.

Prediction results worsened when the model was built on data
considering only first twelve hours in the calibration set and the
model was then applied over the next 12 h data. This happened
because of the existing continuous systematic changes in water
quality as demonstrated from its constant fluctuations. In this
study, the situation was avoided by a random selection of samples.
However, PLS global models have to be calibrated on data covering
up a minimum period of one full-range cyclic fluctuation in the
WWTP or in case of larger monitoring campaigns (with multiple
cyclic reoccurrences) using a larger time period covering multiple
fluctuation cycles and after applying a proper block cross-validation
procedures. Local models can be constructed for defined short-time

Fig. 6. PLS2 prediction results using eight wavelengths selected from highest VIP score vales (Fig. 5) in the analysis of samples from data set E for the four target compound (DBS
detergent, dissolved organic matter DOM, nitrates NO3 and phenols).
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monitoring data only after investigation of systematic changes in
water quality. Other multivariate techniques like recursive PCA or
other specific PLS algorithms for adaptive datamodeling (Dayal and
MacGregor, 1997; Rosen and Lennox, 2001) have been proposed to
overcome problems in large time scales studies.

Worse results were obtained in the estimation of TOC concen-
trations when PLS models were externally validated using the 24-
h spectral values of data set D3, or even when these data sets
were analyzed simultaneously with the data from the 7-days
monitoring (spectral part of data set C3). Relative prediction er-
rors were in this case between 10% and 22% in external validation
and PLS models never explained more than 30% of the TOC con-
centrations variance. This can be also attributed to the relatively
small variability of TOC concentrations in the calibration data set
(TOC concentrations varied only between 10 and 12 mg/L during
the investigated 24-h of monitoring) compared to the other data
sets. This small variance was not sufficient to represent the
complexity and nature of organic matter and its relationship with
spectral feature changes (Thomas and Burgess, 2007). Strong ma-
trix effects due towater turbidity changes and the presence of cross
sensitivities due to absorption at the selected wavelengths of many
other background compounds (Langergraber et al., 2003), could be
among the possible explanations for the model limitations
encountered in this work.

4. Conclusions

Chemometric data analysis tools like Principal Component
Analysis (PCA) and Partial Least Squares Regression (PLS) are sug-
gested to be efficient tools to explore, analyze and model relation-
ships among different water quality parameters in wastewater
treatment plants (WWTP). In this work PCA and PLS methods have
been applied to the analysis of different type of physicochemical
parameters from standard laboratory methods and from automatic
multi-parameter monitoring systems including UV absorption
spectral data. These multivariate data analysis tools could be useful
to monitor the performance of large- or short-scale continuous
processes in WWTP. Temporal (seasonal, weekdays-weekend,
diurnal urban activity) and spatial changes (influent-effluent
changes) on water quality can be easily detected by multivariate
analysis of WWTP monitoring data as well as possible disturbances
like rainfall episodes and accidental water pollution events.

UV spectrophotometry is shown to be an efficient and useful
complementary technique for water quality monitoring which
provides rich multivariate (muliwavelength) information about
WWTP processes. In this work, a new ultraviolet multi-LED optical
device (based on spectral recording of six wavelengths) is evaluated
as an useful diagnostic tool to detect unusual water quality distur-
bances in cooperation with other conventional standard laboratory
methods. The results of this work have emphasized the usefulness
of absorbance values at 240, 250, 254, 260, 275 and 365 nm for a
correct of water quality assessment in WWTP effluents.

UVeVIS spectrophotometry of synthetic water mixtures in
laboratory conditions at the concentrations encountered in real
samples has shown that it is possible to perform the simultaneous
estimation of concentrations of some common water quality pa-
rameters, such as concentrations of dissolved organic matter, ni-
trates, detergents and phenols using full range UVVIS spectra. VIP
scores technique together with PLS2 allowed optimal selection of a
reduced set of wavelengths without a significative lost of predictive
power. Eight wavelengths were finally selected with relative con-
centration prediction errors in external validation samples of
around 2e3% for nitrates, detergent and phenols, and of around 15%
for dissolved organic matter in laboratory experiments. When the
method was applied to WWTP effluents, NO3 concentration values

were highly correlated with laboratory reference values, with
prediction errors of around 12.5%. TOC concentrations could also be
predicted in WWTP effluent with relative errors between 10 and
22% depending on the investigated period. However, some un-
certainties andmodel limitations should still be considered, such as
reference concentration ranges, water matrix effects, cross sensi-
tivity and the need for longer-term monitoring campaigns. More
research is still needed to clarify these questions and to evaluate the
full potential of UVeVIS optical devices for water quality assess-
ment of WWTP processes.
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Results and Discussion 

 - PCA results of one WWTP physicochemical data (dataset B in Table 3) 

The analysed dataset contained information about 18 water quality parameters, 

routinely measured over 138 days during one year in TRARGISA  WWTP using 

standard laboratory methods.  These 18 parameters characterized the water quality in 

the influent and in the effluent of the TRARGISA WWTP. 

 PCA model of this dataset was built with 6 components, explaining about 68% 

of the total data variance. Such a high number of PCs suggested complex behavior of 

these parameters in relation to the dynamics of the influent-effluent water quality 

relationships and of the treatment processes. 

The analysis of 1) the scores plot for PC1 (Fig 1a, Article 5) and 2) the PC1 vs 

PC2 loadings plot (Fig. 1b, Article 5) revealed the seasonal variation of the water 

quality. The water quality trend followed a smooth sigmoid shape over the entire period 

under investigation (i.e., one year). Positive scores on PC1 were associated with 

samples from spring, autumn and winter seasons and negative scores - for samples from 

summer.  Additionally, positive loadings on PC1 were observed for almost all physical-

chemical parameters (see Figure 1b), which suggested that their concentrations were 

above the average during spring, autumn and winter seasons. In contrast, concentration 

values of these parameters below the average were found for the summer period. These 

findings could be explained due to the higher plant activity in spring, autumn and winter 

and due to the reduced plant activity during summer. Reduced urban activity in summer 

compared to the other seasons resulted in reduced wastewater inflow during summer 

season. A more detailed examination of the score plots revealed that the water quality 

variation over weekends and week days also exhibited short-term fluctuations in the 

water quality trend line (see Figure 1).  

 The comprehensive analysis of PC1 and PC2 loadings plot (see Figure 1b) 

further revealed the effect of influent-effluent variation in water quality due to the role 

of WWTP. The parameters monitored in the influent were distinguished from the 

parameters monitored in the effluent. An inverse correlation was detected between 

water quality parameters measured at the plant influent and such measured at the plant 

effluent. Therefore, the plant treatment effect could be detected from this plot.  

PCA loadings plot was consistent with previous literature findings regarding the 

increase of nitrate concentrations in the effluent due to WWTP activity (Thomas and 

Burgess, 2007).  
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 - PCA results of the one month WWTP data set (dataset B in Table 3) 

 Another dataset had water quality physico-chemical parameters collected by an 

automatic monitoring station (AMS) which was installed at the water treatment plant 

exit.  PCA of the water quality data in the effluent collected during one month period, 

every 20 minutes, was performed (see Tables 1 and 2, Article 5). Using three principal 

components, 88% of the total variance was explained, where PC1 accounted for 45.9% 

of the total variance. Based on the model performance, PCA explained a higher data 

variance (i.e., 88% using 3PCs) in comparison to the previous model (i.e., 68% using 

6PCs with data generated by standard laboratory methods).  

 The visualization of scores and loadings for the three PCs is displayed on Figure 

2 (Article 5). PC1 was dominated by the notorious diurnal, short-termed cyclic 

fluctuations of water quality. The effect of Easter holiday vacations (with a decrease of 

the urban activity) and several episodes of rainfalls in Girona area were detected in the 

water quality trend over the sampled period. This result can be explained by the 

observed increase of dissolved oxygen concentration and redox potential values in the 

water effluent (due to rainfalls in that area), as well as by the significant decrease in 

concentrations of the main pollution parameters such as COD and TOC (attributable to 

the reduced urban activity during holidays). 

PC2 captured morning-midnight fluctuations trend. It was detected that such 

fluctuations were largely explained by the variations in the three water quality 

parameters, namely water temperature, pH, red-oxy potential and dissolved oxygen. The 

last two parameters showed higher concentration values in the morning as compared to 

the midnight hours. 

PC3 accounted for the operational pattern with cyclic morning-afternoon 

recurrence and was correlated with WWTP processing activities. The turbidity 

parameter was found to be the most influential for this component. Furthermore, the 

results indicated that turbidity values were higher in the morning as compared to the rest 

of the day. WWTP operational procedures, which include the release of large volumes 

of treated water, were usually implemented in the morning and hence new wastewater 

entered the plant at this point in time, increasing water turbidity. In contrast, the water 

turbulence decreased during the day, when the water incoming-outgoing process was 

more stable. 

 



  Chapter 3. Results and Discussion 

182 

 

 - PCA results of seven days WWTP data sets. Comparison of the obtained results 

from data sets generated by a new automatic multiparameteric station with optical 

probe and two standard laboratory techniques. 

 

The analysis included a comparison between PCA results obtained using three 

datasets simultaneously collected over the same week, namely 1) by the UVVIS 

laboratory instrument (Dataset C1, Table 1), 2) using standard laboratory methods 

(Dataset C2), and 3) by the AMS-LED (Dataset C3).  

 The obtained three PCA models using these data sets were found to be 

informative, explaining above 60-98% of the variance of the corresponding dataset. 

PCA modelling of laboratory UVVIS instrumental data explained more than 98% of the 

variance with two PCs. The PCA model using physicochemical data generated in 

laboratory after the application of APHA methods was able to explain 63% of the total 

variance, and the PCA model using the dataset obtained with AMS-LED system - 67% 

of the variance using first two PCs. The results of scores and loadings in these three 

cases using two PCs are visualized in Figure 3. The comparative analysis of the three 

obtained plots suggested that the five working weekdays could be clearly distinguished 

from the weekend.  

The examination of the loadings plot of spectral data (Dataset C1) revealed a 

shoulder at 220nm and a band maximum at 226nm (see Figure 3b) as the most 

important spectral regions. The absorption at 220nm was attributed to organic matter 

and nitrates (APHA, 1998) and the peak at 226nm - to detergents according to the 

existing literature (Thomas and Burgess, 2007). Therefore, the relationship between 

concentrations of organic matter and detergents is highly relevant in order to describe 

the changes of water quality during weekdays.  

 The analysis of loadings plot of laboratory data (Dataset C2, see Figure 3d) 

suggested that pH and nitrate parameters, which presented an inverse correlation in the 

data, were the most influential parameters. Weekdays were characterized by high 

concentrations of nitrates and were different from weekends, when the intensive 

household activity resulted in an increase of pH.  

 Similar conclusions have been derived from the analysis of PCA results obtained 

using the AMS-LED instrument. Weekends were distinguished from weekdays largely 

because of the inverse correlation between the two groups of parameters. Whereas water 

quality during the weekend was characterized by higher concentrations of dissolved 
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oxygen and redox potential and higher pH values, weekdays were characterized by 

higher UV absorption values at 240-275 nm and BOD parameters, suggesting a higher 

organic contribution.  

 By comparing the three techniques, we concluded that high discharges of 

organic matter (probably with an industrial origin) were common for weekdays; in 

contrast, water quality was dominated by compounds with urban or household origin 

during weekends. In general, the quality of effluent water was better during weekends 

as compared to weekdays. 

  

 - PCA results of the twenty-four hours WWTP data sets. Comparison of the 

obtained results from data sets generated by a new automatic multiparameteric station 

with optical probe and two standard laboratory techniques.  

 

In this work, we compared PCA results from three datasets simultaneously 

collected over a period of twenty-four hours using: 1) UVVIS laboratory instrument 

(data set D1 of Table 1 and  2) standard laboratory methods (data set D2), and 3) AMS-

LED (data set D3).  

PCA scores using a UVVIS laboratory instrument (Figure 4a, Article 5) were 

similar to PCA scores using data generated using standard laboratory methods (Figure 

4c) and data collected using the new AMS-LED system (Figure 4e). In the three cases, 

PCA models captured a continuous daily-night sigmoid water quality trend in the 

effluent.  In the three score plots, the night time hours had positive scores and, in 

contrast, the morning-afternoon hours - negative scores. An inflection point was 

detected where there was a significant change of the water quality (at 17.00h in the 

afternoon monitored with the UVVIS instrument). Such an inflection point was also 

found when using the other two score plots (i.e., APHA, or standard laboratory 

methods, and AMS-LED data sets). Additionally, the analysis revealed a peak with a 

maximum value of the trend lines around 00.00h (midnight), which is present on the 

three score plots. The analysis of the UV-VIS spectral data set found that the maximum 

absorption value was at 220nm. Such a strong absorption at wavelength can be most 

likely attributed to nitrates and dissolved organic matter (APHA, 1998). In general, the 

sharp change of the trend line could be associated with the rapid increase of 

concentrations of nitrate and organic matter at this midnight time. 
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 As displayed on Figure 4d, the corresponding loadings plot for APHA data set 

suggested that COD, BOD5, TOC and PO4 are the most influential parameters captured 

in PC1. This result indicates the presence of a pollution event occurring at midnight, 

when organic matter was significantly higher.  

 The analysis of the scores plot of Figure 4e for the data set collected by the 

AMS-LED system additionally detected such pollution event at midnight, as suggested 

by the specific absorbance coefficient (SAC). All six measured wavelengths and the 

BOD parameter confirmed an increased level of organic matter discharge at midnight. 

Therefore, the interpretation of LED absorptions of the six wavelengths was found to be 

particularly useful in immediately detecting such pollution events.  

In general, we concluded that, independently of the methods applied (i.e., APHA 

methods, UVVIS or AMS-LED new system), the one-day and weekly trends in water 

quality monitoring of WWTP activity were similar. This result confirmed that the newly 

proposed AMS-LED system was efficient and reliable. A longer time-scale 

investigation however would be required to generalize our results and verify the 

potential use of the AMS-LED system in quality control.  

 

 - PLS prediction of four target water quality parameters in synthetics mixtures 

by UV absorption at selected wavelengths 

In Article 5, PLS2 models were additionally developed using meancentered UV 

spectral data with five latent variables (LVs), explaining more than 90% of the total 

variance.  Following the performance of a PLS2 model for the four selected target 

compounds (namely, nitrates, organic matter, detergent, and phenols) and in the 

presence of kaolin (interference), VIP scores were used to select the most important 

wavelengths.  

Figure 5 (Article 5) displays the VIP scores in the prediction of the parameters.  

VIPs were considered significant when they were above the threshold value of 1. 

Significant VIPs were found in the three spectral ranges: a) 190-210, b) 220-260, and c) 

270-276 nm. The analysis included a visual preselection, when the most characteristic 

peaks and spectral inflection points were detected. Spectral region between 190-200nm 

was disregarded, because VIP scores are considered to be unreliable for such low UV 

wavelengths. The final selection included the following ranges: 201, 205 (nitrate 

absorption), 226 (detergent absorption), 237, 254 and 285nm (dissolved organic matter 

absorption), 270 and 276 nm (phenol absorption wavelengths.  
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Following this preselection, a new PLS2 model was recalibrated using eight 

wavelengths. The new recalculated PLS2 models were able to explain more than 90% of 

the total variance of all target concentrations.  

The comparison between predicted and actual concentrations in external 

validation suggested that they were highly correlated. Newly recalculated PLS2 models 

had good predictive properties (see in Figure 6 the following model parameters: R2, 

RMSEC, RMSECV and bias values). By doing so, the number of wavelengths used to 

estimate the models was significantly reduced without losing prediction power. More 

specifically, DOM concentrations were predicted with 26% relative error in external 

validation; nitrates, detergent and phenol concentrations - with 3 and 4% of relative 

prediction error in external validations. These figures of merit confirmed that PLS2 

model had good predictive properties and that the preselection method using visual 

inspection of VIP scores additional was a reliable approach. 

 

 - PLS prediction of NO3 and TOC water quality parameters in real samples 

using AMS-LED spectral data  

 In Article 5, multivariate PLS1 models were built to quantify individually NO3 

and TOC using the spectral part of data sets collected by AMS-LED (see datasets C3 

and D3 of Table 1).  

The prediction models of NO3 performed better than the models of TOC. The 

best prediction model was obtained for NO3 using 24-hours monitoring data. The model 

could predict up to 70% of NO3 concentration changes, when using the first latent 

variable and six wavelengths. Relative prediction error in external validation was found 

to be 3.5%. Alternative data sets rearrangements were tested prior to modelling and, in 

such recalculated models, the maximum prediction error in external validation could not 

exceed 12.5%, suggesting that NO3 prediction was feasible using the AMS-LED 

system. Furthermore, it was confirmed that optimal modelling of NO3 concentrations 

could be achieved using only six AMS-LED wavelengths (240, 250, 254, 260, 275 and 

365nm). 

 Predicting TOC concentrations in external validation samples was not as good as 

for NO3. Relative prediction errors were in the range between 10% and 22% in the 

external validations. Additionally, PLS models had never explained more than 30% of 

TOC concentrations variance. This result can be attributed to the relatively small 

variability of the reference TOC concentrations in the calibration data set (i.e., TOC 
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concentrations varied only between 10-12 mg/L in 24 hours). Additionally, there were 

strong matrix effects related to water turbidity changes and cross sensitivities associated 

with the absorption of many other background compounds at the selected wavelengths, 

probably explaining these model limitations. 

In situ predictions of TOC and NO3 were not as accurate as expected. Results 

could have significant implications for future work. Perhaps the most important one is 

that more observations should be required and a broader concentration range of the 

target compounds should be considered for optimal PLS modelling. Furthermore, data 

sets should be carefully split for calibration and external validation in order to avoid 

overfitting problems. Continuous systematic changes in water quality further make the 

selection of variables for analysis and updating difficult.  In our case, the investigated 

data sets were relatively small and hence such difficulties were overcome by a random 

selection of samples. In general, PLS models have to be calibrated using data that 

covers at least a full-range of cyclic fluctuations in the WWTP. In case of larger 

monitoring campaigns (with multiple cyclic reoccurrences), a larger time period 

covering multiple fluctuation cycles should be used.  
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3.3 Chemometrics methods applied to water taste related data in 

sensory science 

 

This block includes an article that deals with the application of multivariate data 

analysis on sensory data.  

The paper complies with the main objective of the Thesis in the following aspects: 

a) Discovery of the most influential physicochemical water parameters associated 

with the panellists’ taste liking of mineral bottled and tap waters by means of 

chemometrics methods. 

 

 

 

3.3.1 Article 6 – Platikanov, S., Garcia, V., Fonseca, I., Rullan, E., Devesa, R., 

Tauler, R., Influence of minerals on the taste of bottled and tap water: A chemometric 

approach. Water Research 47 (2013) 693-704. 

 

Introduction 

 The Barcelona Metropolitan Area (BMA) is supplied with drinking water 

primarily from two surface water resources – the Llobregat River and the Ter River. As 

a consequence of the Mediterranean climate, such water resources are cyclically 

exposed to serious droughts, particularly when the raw water cannot meet the demand in 

the area. In terms of operational management, the conditions are even worst when there 

is the pollution effect of mining and industrial discharges alongside the two river basins, 

seriously affecting the incoming quality of the fresh water.  

 Membrane technologies and desalination of sea water for drinking water have 

been suggested to provide new alternative resources which may guarantee the demand 

for cleaner water.  Although these technologies are very efficient in removing 

undesirable chemical species, organic matter and pathogens, a permanent 

remineralization is required to improve the organoleptic properties of the supplied 

drinking water, thus sustaining and minimizing the corrosive effect of many minerals. 

The quality of drinking water is perceived by the general public. For instance, it 

is well known that the taste of water depends on the chemical composition of the salt 

content, where cations and anion contribute to a different extent and interact by 
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synergism and antagonism. Water taste preferences in the BMA distribution network 

were investigated for various years. However, our knowledge regarding the effect of 

particular chemical species on the overall public satisfaction is largely limited. 

Therefore, panels testing procedures are able to provide valuable information regarding 

water taste.  

This article is based on two independent case studies, which propose PCA and 

PLS methods to discover the most influential physicochemical parameters associated 

with the overall satisfaction of water taste. Two data sets were used in the analysis. The 

first data set included 20 water samples, namely 11 commercial bottled-mineral water 

samples and 9 artificially generated blends on the basis of bottled-mineral water 

samples with the objective to obtain water samples with a desired chemical profile. The 

second data set included 25 samples: 13 samples of drinking tap waters and 12 samples 

of bottled waters. In both tests, water samples were independently and blindly tasted by 

a set of trained panelists in several sessions. The panelists were asked to express their 

overall liking per water sample using score values in the range of 0 (worst flavor) and 

10 (best flavor).  

 Both sets of water samples were analyzed in laboratory for thirteen different 

physicochemical parameters and the residual chlorine (in the case of tap waters). 

Among the investigated parameters were: sodium, potassium, calcium, magnesium, 

silica, conductivity at 20 ºC, pH, bicarbonate, chlorides, nitrates, sulphates, and free 

residual chlorine. 

In both studies, the analysis suggested that, on average, panelists’ overall liking 

was correlated with the physicochemical properties of water samples. The 

chemometrics methods included in Article 6 were the traditional analysis of variance 

(ANOVA), Principal Component Analysis (PCA), and Partial Least Squares regression 

(PLS). More specifically, the analysis served the following purposes. Two-way 

ANOVA was employed to evaluate the main effects on panelists’ preferences of the two 

considered factors, namely the water type and the panelists, as well as their possible 

interaction. PCA was applied to the data containing the physicochemical parameters and 

the panelists’ mean liking, providing simplified models that were able to explain a main 

part of the total data variance. To examine the main features underlying the panelists’ 

ratings, PLS was applied to the panelists’ mean liking (y variable) and the 

physicochemical data (X variables). 
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A rating test was used to assess the overall liking of water samples. Panelists 

were asked to rate the flavor of samples on a 0-10 scale, where 0 stands for an 

extremely bad flavor and 10 – for an excellent flavor.  

 Because the two sensory tests were actually rating tests, it was required to decide 

which statistical parameter could represent the panelists overall liking. Two statistical 

parameters were evaluated, namely the adjusted mean and the median.  All calculations 

and figures visualization regarding PCA and PLS analyses were compared. A 

significant difference between results obtained using any of the two parameters was not 

found. The adjusted mean was therefore selected and used in further analysis as a 

statistical parameter representing panelists’ mean liking. 
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a b s t r a c t

Chemometric analysis was performed on two sets of sensory data obtained from two

separate studies. Twenty commercially-available bottled mineral water samples (from the

first study) and twenty-five drinking tap and bottled water samples (from the second study)

were blind tasted by trained panelists. The panelists expressed their overall liking of the

water samples by rating from 0 (worst flavor) to 10 (best flavor). The mean overall score was

compared to the physicochemical properties of the samples. Thirteen different physico-

chemical parameters were considered in both studies and, additionally, residual chlorine

levels were assessed in the second study. Principal component analysis performed on the

physicochemical parameters and the panelists’ mean scores generated models that

explain most of the total data variance. Moreover, partial least squares regression of the

panelists’ sensory evaluations of the physicochemical data helped elucidate the main

features underlying the panelists’ ratings. The preferred bottled and tap water samples

were associated with moderate (relatively to the parameters mean values) contents of total

dissolved solids and with relatively high concentrations of HCO�3 , SO
2�
4 , Ca2þ and Mg2þ as

well as with relatively high pH values. High concentrations of Naþ, Kþ and Cl� were scored

low by many of the panelists, while residual chlorine did not affect the ratings, but did

enable the panel to distinguish between bottled mineral water and tap water samples.

ª 2012 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the taste of water depends on the

chemical composition of the salt content, with both cations

and anions contributing in different ways and interacting

through synergism and antagonism (Burlingame et al., 2007).

In addition to the dissolved inorganic salts (total dissolved

solids, TDS), some volatile organic compounds can be detec-

ted through retro-nasal mechanisms when drinking water

(Dietrich, 2009). Therefore, the global perception of water is

considered more of a flavor than a taste (Dietrich, 2006).

The mineral and chemical contents of bottled natural

mineral water are determined by the composition of the rocks

from which it is extracted and by geochemical processes (van

der Aa, 2003). Moreover, potable tap water is also character-

ized by its specific chemical (mineral and organic) content

(Meng and Suffet, 1997) in relation to the incoming raw water

and the disinfection procedures implemented. The latter may

* Corresponding author.
E-mail addresses: splqam@iiqab.csic.es (S. Platikanov), Roma.Tauler@idaea.csic.es (R. Tauler).

1 Tel.: þ34 645257566.
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add other chemical compounds at significant concentrations

(such as residual chlorine), which also contribute to the final

flavor of drinking water.

Traditionally, water distribution companies have tried to

improve the flavor of water through conventional water

treatment procedures. Their efforts have focused on

producing water with low organic matter content and

minimum levels of residual disinfectants that are just enough

to sanitize water. With the introduction of membrane tech-

nologies, it is now possible to significantly reduce organic

matter levels and water mineralization (Bruchet and Lainé,

2005), thus improving flavor. The remineralization stage,

which is commonly applied to treated water, also plays an

important role in final taste (Devesa et al., 2010).

The assessment of improvements in the flavor of drinking

(tap) and bottled water needs sensory experiments in which

water samples are systematically presented to trained

panelists or random consumers, who test them in various

ways (Naes and Risvik, 1996). Recent studies by Teillet et al.

(2010a,b) confirmed that water flavor assessments are

complex and should be performed very carefully. Using a free

sorting task technique, these authors concluded that

consumer acceptance of water was mostly driven by the

mineral content and that medium-mineralized water was

preferred by regular consumers; however, no conclusions

were reached about what specific components were respon-

sible for their preferences. The use of a trained panel of

assessors is appropriate for a reliable sensory description and

assessment of unknown water sample preferences.

Carefully-designed experiments and analysis of variance

(ANOVA) are the starting steps in sensory studies (Hibbert,

2009). Data sets are usually multivariate and multiway,

having as dimensions the number of samples multiplied by

the number of sensory attributes, multiplied by the number of

panelists. Usually, sensory data are noisy (between people and

along time for the same person) (Hibbert, 2009). The applica-

tion of ANOVA is extremely useful in studying the sources of

data variance. It helps to test the panelist’s performance and

statistically evaluate all factors that influence responses to the

sensory attributes, i.e., the physicochemical parameters in our

case studies (Naes and Risvik, 1996). Since these responses can

be influenced by two or more factors as well as their interac-

tions, the proper methodology in this case is a two-way

ANOVA or, when more than two factors are simultaneously

tested, an N-way ANOVA (Peña Sánchez, 1994).

Principal component analysis (PCA) has already been

shown to be useful for correlating chemical and sensory data

in drinking water samples from a distribution system (Meng

and Suffet, 1997). PCA (Jolliffe, 2002) has been applied to

reveal the most important patterns in the physicochemical

parameters that correlate with the panelists’ ratings.

Mallevialle and Suffet (1987) introduced background infor-

mation on chemical/sensory correlationmethods and showed

general results from correlation studies. Suffet et al. (1989)

used a similar statistical method, factorial correspondence

analysis, to link chemical and sensory data. Generally, the

choice of method depends on the type of sensory data, e.g.,

whether the data are of a ranking or rating (giving evaluation

scores) type, a categorical or continuous character, or even

concatenated in multiblocks (Stanimirova et al., 2011).

Partial least squares regression (PLS) is a well-known and

useful tool in consumer preference analysis (Lengard and

Kermit, 2006). The complex relationship between the

sensory panel rates and the physicochemical parameters of

themineral and tap water will be discovered using PLS (Geladi

and Kowalski, 1986). Recently, the variable importance in

projection (VIP) scores has been proposed as useful tool for

interpreting PLS models (built from several latent variables)

(Chong and Jun, 2005). The interpretation of VIP scores can be

employed to evaluate the importance of each water physico-

chemical parameter in the final PLS projection.

This paper aims to discover the most influential physico-

chemical parameters associated with the overall score of

water flavor in two separate sensory studies performed using

selected bottled mineral and tap water samples with different

mineral contents and origins.

2. Material and methods

2.1. Water samples

In the first study (A), 11 bottled mineral water samples,

commercially available in Spain, were collected. In addition, 9

new samples were obtained by blending twowater samples or

by diluting with purified water. Therefore, this study was

performed with 20 water samples. The high number of

samples considered, and the process of blending and diluting

were decided in order to cover a broad range of TDS and

mineral composition, as well as the percentages of the

different cations and anions. Therefore, the study included

water samples with very different mineralization levels and

percentages of sodium, calcium, magnesium, chloride, bicar-

bonate and sulfate, i.e., the most relevant species driving the

taste of water.

In the second study (B), 25 water samples were considered:

12 bottled waters selected from the first study and another 13

tap water samples from different resources and networks in

Catalonia, northwest Spain. The tap water samples were

selected with the same intent as in the first study: covering

a wide range of mineralization and chemical composition

types.

The results of the physicochemical compositions of the

water samples used in the studies A and B are presented in

Tables 1 and 2, respectively. Analytical analyses of the

samples were made in the accredited laboratory of the Aigües

de Barcelona Company. Water blends and dilutions were

allowed for 48 h of equilibration before analysis. Sodium,

potassium, calcium, magnesium and silica levels were

analyzed by inductively coupled plasma optical emission

spectrometry (ICP-OES) (Perkin Elmer Optima 4300 DV).

Conductivity at 20 �C, pH and bicarbonate levels were deter-

mined by a robotic titrosampler (Metröhm modules 855 and

856). Chloride, nitrate and sulfate concentrations were

analyzed by ionic chromatography (Dionex ICS-2000). TDS

(dry residue at 180 �C) levels were measured by gravimetry.

Free residual chlorine was analyzed by the classical DPD

colorimetric method. All these analytical determinations,

except for the bicarbonates and TDS that are not included in
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the EC Drinking Water Directive (98/83/EC), are ISO17025-

accredited by ENAC, the accreditation body in Spain.

The same batch was used for each of the mineral water

samples tested. Bottles were stored at room temperature and

in a dark place free of odors. Tap water samples were taken in

established sampling points of the routine monitoring supply

systems. Samples were taken in glass amber bottles, previ-

ously cleaned with a procedure appropriate for sensory anal-

ysis. Bottles were refrigerated until a few hours before the

tasting sessions. The water samples were not dechlorinated

and no other treatment was applied.

Tables 1 and 2 show the collected mineral and tap water

samples and their mineral composition described as physi-

cochemical parameters.

2.2. Sensory analysis

Both studieswere carried out by trained tasters from the AGBAR

panel (Devesaetal., 2004),which istrainedaccording to theflavor

profile analysis (FPA) method (Devesa et al., 2007). The sensory

test used in this study, the rating test, is not of a descriptive

nature (the taste-and-odor wheel is not used) and therefore, it

doesnot requireahighdegreeof training.Nonetheless, theuseof

a trained panel gives additional value to the study.

Samples were always presented to the panelists as coded

and without any information that could influence their

appreciation. The tasting took place in a room specifically

intended for this purpose, comfortable and free from inter-

fering odors. Water samples were served at 25 �C in 200 mL

transparent glasses, which were filled up to one-third of their

volume. Panelists were allowed to spit out remaining water

after its testing. Members worked individually and no

discussion took place after the session. The water was pre-

sented in a randomized series of five samples. Testing

samples were designed to be TDS balanced, that is, they were

designed to contain waters with different degrees of miner-

alization. The order of presentation of the samples in each set

was randomized for each participant. Two series were pre-

sented in each session. Such a small number of samples was

chosen for each session to avoid any risk of fatigue. In addi-

tion, for the same reason, a rest period was allowed between

the two series. A blank sample consisting of mineral water

defined previously as “neutral” by the panel was used

compulsorily between consecutive tastings.

In the first study, 17 trained panelists composed by 6males

and 11 females, aged 20e57 years were used. In the second

study, 13 trained panelists composed by 5 males and, 8

females, aged 21e57 years, were used. In both studies, each

panelist had to taste each water sample in two different

sessions. In each session, the same water sample was pre-

sented twice (duplicates) to each panelist, which meant that

each experiment gave four results per panelist. This design

meant that 8 tasting sessions were required by the first

experiment and 10 by the second experiment.

Table 1 e Identification and mineral contents of the bottled water samples used in the present study.

Samples Labelsa Conductivity
(mS/cm)

TDS
(mg/L)

Cl�

(mg/L)
SO2�

4

(mg/L)
NO�3
(mg/L)

HCO�3
(mg/L)

Ca2þ

(mg/L)
Mg2þ

(mg/L)
Naþ

(mg/L)
Kþ

(mg/L)
pH Si

(mg/L)
Mean
liking

1 LM$min1
b 30 25 3 3 3 6.3 1.7 0.5 3.1 0.4 6 6.9 5

2 LM$min2 38 26 0.67 1.26 3.5 18 5 1 1.3 0.3 6.7 8.9 5.5

3 NaHCO3$min1 278 193 17 11.6 0.36 145.42 12.4 0.8 51.5 1.5 7.3 16 5.9

4 NaHCO3$min2 539.2 347 27.4 21.3 0.7 285.1 22.8 1.6 87.7 4 7.9 32.2 5.4

5 Ca(HCO3)2$min1 201.4 121 4.2 12.2 0.85 124.2 21.3 12.6 2.7 0.5 8.1 5 6.2

6 Ca(HCO3)2$min2 294 213 16.2 16.4 3.1 149 38.5 9.7 13.2 1.1 7.8 4.2 6.6

7 Ca(HCO3)2$min3 375 262 7.8 21.9 1.9 285 56.9 25.5 5.3 1.1 8 7.5 5.7

8 Ca(HCO3)2$min4 446 278 2.8 20.1 2.9 307 75.6 19.4 1.6 0.4 7.6 0.7 6.5

9 Ca(HCO3)2$min5 602 355 4.14 12.7 1.9 415 77.7 40.3 1.6 0.4 7.5 3.2 4.9

10 Ca(HCO3)2/

CaSO4$min1

220 205 2.96 57.9 0.46 74 36.3 7.8 0.6 0.4 7.5 1.7 6.6

11 Ca(HCO3)2/

CaSO4$min2

388.4 287 5.5 109 1.1 115.9 70.4 16.1 1.1 0.8 7.9 4.8 6.5

12 Ca(HCO3)2/

CaSO4$min3

993 844 7.9 328.9 4.3 399 203.8 43.1 5 1.9 7.5 9.67 5.7

13 CaSO4$min1 220 189 2.7 86.8 0.16 32.5 35.1 6 0.5 0.3 7.6 0.53 6.5

14 CaSO4$min2 395.5 314 2.9 166.7 0.32 63.98 68.9 11.9 1.1 0.6 7.8 1.8 6.8

15 CaSO4$min3 786 662 3.7 385.8 1.1 122.9 162.9 27.6 2.3 1.1 7.3 3 6.3

16 CaSO4$min4 1157 1083 5.7 596 1.5 188 241.6 41 3.8 1.5 7.61 5.2 5.4

17 NaCl$min1 274 165 74.3 1.2 3.5 25.9 6.3 1 121.6 0.4 6.9 10.9 4.9

18 NaCl$min2 635.3 389 193.86 1.45 3.94 20.84 6.2 0.9 31.3 0.4 7.01 9.6 4.3

19 NaCl/NaHCO3$

min1

289 195 49.6 6.49 1.8 85.6 9.6 1 52.8 0.9 7.2 13 5.6

20 NaCl/NaHCO3$

min2

591 373 112.2 12.1 2.49 164.4 12.2 1.3 116 1.7 7.2 20.8 4.6

21 Mean 437.6 326.3 27.23 93.64 1.94 151.4 58.3 13.5 25.2 0.99 7.4 8.3 5.7

22 Maximum 1157 1083 193.86 596 4.3 415 241.6 43.1 121.6 4 8.1 32.2 6.8

23 Minimum 30 25 0.67 1.2 0.16 6.3 1.7 0.5 0.5 0.3 6 0.53 4.3

a The water type was identified by the most characteristic mineral contents.

b Labels LM1 and LM2 identify two water samples with very low TDS concentrations.
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Table 2 e Identification and mineral contents of the bottled and tap water samples used in the present study.

Samples Labelsa Conductivity
(mS/cm)

TDS
(mg/L)

Cl�

(mg/L)
SO2�

4

(mg/L)
NO�3
(mg/L)

HCO�3
(mg/L)

Ca2þ (mg/L) Mg2þ

(mg/L)
Naþ

(mg/L)
Kþ

(mg/L)
pH Si

(mg/L)
Cl2

(mg/L)
Mean
liking

1 LM$min1 (low mineralization)b 38 26 0.7 1.3 3.5 18 5 1 1.3 0.3 6.7 8.9 0d 6.1

2 NaHCO3$min1 278 193 17 11.6 0.4 145.4 12.4 0.8 51.5 1.5 7.3 16 0 6.4

3 NaHCO3$min2 539 347 27.4 21.3 0.7 285.1 22.8 1.6 87.7 4 7.9 32.2 0 5.5

4 Ca(HCO3)2$min1 201 121 4.2 12.2 0.9 124.2 21.3 12.6 2.7 0.5 8.1 5 0 6.9

5 Ca(HCO3)2$min2 375 262 7.8 21.9 1.9 285 56.9 25.5 5.3 1.1 8 7.5 0 6.8

6 Ca(HCO3)2/CaSO4$min1 388 287 5.5 109 1.1 115.9 70.4 16.1 1.1 0.8 7.9 4.8 0 6.5

7 Ca(HCO3)2/CaSO4$min2 993 844 7.9 328.9 4.3 399 203.8 43.1 5 1.9 7.5 9.7 0 6.4

8 CaSO4$min1 220 189 2.7 86.8 0.2 32.5 35.1 6 0.5 0.3 7.6 0.5 0 6.7

9 CaSO4$min2 786 662 3.7 385.8 1.1 122.9 162.9 27.6 2.3 1.1 7.3 3 0 5.5

10 NaCl$min1 274 165 74.3 1.2 3.5 25.9 6.3 1 121.6 0.4 6.9 10.9 0 6.1

11 NaCl$min2 635 389 193.9 1.5 3.9 20.8 6.2 0.9 31.3 0.4 7 9.6 0 4.9

12 NaCl/NaHCO3$min1 289 195 49.6 6.5 1.8 85.6 9.6 1 52.8 0.9 7.2 13 0 6.1

13 NaCl/NaHCO3$min2 591 373 112.2 12.1 2.5 164.4 12.2 1.3 116 1.7 7.2 20.8 0 5.5

14 LM$tap1 50 45 6.2 4.9 0.8 22.9 5.6 0.8 4.7 0.7 7.2 7.3 0.54 5.3

15 Ca(HCO3)2$tap1 208 128 0.1 3.8 1.7 142.1 42.7 0.2 6.2 1.4 7.5 0.2 0.59 6.1

16 Ca(HCO3)2$tap2 500 346 20.3 17.9 8.4 307 116.7 6.3 8.6 1 7.6 12.2 0.79 5.3

17 Ca(HCO3)2/CaSO4$tap1 988 801 25 311 21 337.5 189.4 52.1 10.9 2.1 7.5 10.4 0.56 5.2

18 Ca(HCO3)2/CaSO4$tap2 1075 893 32.8 405 14.3 283.9 200 44.8 20.6 2.4 7.8 8.3 0.45 4.5

19 NaHCO3/NaCl/Ca(HCO3)2$tap1 660 429 107.9 74.8 6.3 158.4 64.7 13 58.7 11.3 7.3 3 0.64 4.8

20 NaHCO3/Ca(HCO3)2$tap1 282 183 17.4 47 4.6 116 38.3 7.8 9.7 2.5 7.6 3.4 0.66 5.9

21 NaHCO3/Ca(HCO3)2$tap2 418 281 30.2 54.3 8.2 164.7 59.7 12.3 18.2 3.1 7.8 4.4 0.62 5.5

22 HM$tap1 (high mineralization)c 1392 895 288 149 12 241.6 102.4 29 138.9 32.2 7.9 4.6 0.28 3.6

23 HM$tap2 1459 1009 302.5 183.6 10.8 171.3 110.9 33.3 165.1 31.5 7.7 4.7 0.52 3.6

24 HM$tap3 1700 1346 139.8 401 27.1 362.8 272.9 80.7 140 10.5 7.4 10.4 0.33 3.7

25 HM$tap4 2617 1983 506.5 608.4 31.4 334.2 290.1 85.6 286.8 10.1 7.2 12.4 0.63 2.6

26 Mean 678.2 495.7 79.3 130.4 6.9 178.7 84.7 20.2 53.9 4.9 7.5 8.9 0.26 5.4

27 Maximum 2617 1983 506.5 608.4 31.4 399 290.1 85.6 286.8 32.2 8.1 32.2 0.79 6.9

28 Minimum 38 26 0.1 1.2 0.2 18 5 0.2 0.5 0.3 6.7 0.2 0 2.6

a The water type was identified by the most characteristic mineral contents.

b Labels LM$min1 and LM$tap1 identify bottled mineral and tap water samples with very low TDS concentrations.

c The HM$tap label identifies tap water samples with very high TDS concentrations.

d Chlorine concentrations below the detection limit (<0.15 mg/L).
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The rating test was used to assess the overall liking of the

water samples. Panelists were asked to rate the flavor of

samples on a 0e10 scale (0 corresponding to an extremely bad

flavor and 10 to an excellent one).

In both studies, two parameters were used and evaluated

for chemometric analysis: the adjusted mean (Kermadec

et al., 1997) and the median of the global panel’s or the indi-

vidual panelist’s score. It was found that there were no

significant changes in the results when using either of the two

parameters. In this paper, the adjusted mean was used as

a statistical parameter for representing the mean scores.

2.3. Data organization and software

In both experiments, all samples were analyzed in our labo-

ratory according to the standard methods of analysis of

physicochemical parameters, which usually represent the

main mineral content of any kind of water, either mineral or

tap. Different data tables were generated in both experiments

according to the subsequent chemometric analysis.

In the first study, several data sets were considered. The first

one was a data matrix, X1½20;12�, which had 20 water samples

(as rows) against 12 physicochemical parameters (as columns).

The global panel’smean score rateswere given as a data vector,

y1ð20; 1Þ, after 4 testing sessions. Moreover, the 17 individual

panelist’s mean score rates gave the corresponding vectors

(after 4 sessions) for each water sample, which were arranged

ina datamatrix of dimensionsY1½20;17�. Chemometric analysis

was performed by PCA on the two row-wise augmented data

matrices, [X1, y1] and [X1, Y1], and PLS regression on y1 ¼ fðX1Þ.
Analogously, in the second study, data were organized in

a similar way. The 13 physicochemical parameters (the

residual chlorine in tap water samples was now included) for

25 water samples were arranged in the data matrix of

dimensions X2½25;13�. The global panel mean score vector was

now y2ð25;1Þ and the 13 individual panelist’s mean score

vectors (after all 4 sessions) were collected in the data matrix

of dimensions Y2½25; 13�. The chemometric part of the exper-

iment consisted of PCA on the row-wise augmented data

matrices [X2, y2] and [X2, Y2], and PLS regression on y2 ¼ fðX2Þ.
Two-way ANOVA was used to investigate the main effects

on preferences of the two considered factors, the water type

and the panelists, and their possible interaction. The

hypotheses being tested were whether:

- preferences for the selected water samples differed enough

(they were a significant factor) based on their physico-

chemical properties defined by their water type.

- there were statistically significant differences among the

panelists in their evaluation of water samples.

- there was a synergistic effect of the two factors (i.e., physi-

cochemical features and the panelists’ subjective ratings).

The 4 replicates obtained during the sessions for the same

water sample and panelist were considered for calculating the

experimental error in the analysis.

All calculations for two-way ANOVA, PCA and PLS were

performed using PLS Toolbox 5.8 (Eigenvector Research,

Manson, WA, USA) and MATLAB 6.5 with Statistical Toolbox

(MathWorks Inc., Natick, MA, USA).

3. Results

3.1. Descriptive statistics of the physicochemical
parameters of the two sets of water samples

Pairwise correlation coefficients between the 12 physico-

chemical parameters in the first study and between the 13 in

the second one were calculated and are shown as correlation

maps in Fig. 1. In both experiments, either relatively high

positive (intense red colors) or relatively high negative

(intense blue colors) correlations were observed (see Fig. 1) for

most of the physicochemical parameters. In the first experi-

ment (Fig. 1a), a cluster of parameters with high correlations

were distinguished. Mg2þ, Ca2þ and SO2�
4 had very strong

positive correlations among them and formed one of these

clusters. Negative correlations were found between the

Fig. 1 e Pairwise correlation coefficient map between all

considered physicochemical parameters: (a) when 20

bottled water samples were tested; (b) when 13 bottled and

12 tap water samples were tested. The more intense the

red colors are, the higher positive correlations are; the

more intense blue colors are, the higher negative (inverse)

correlations are. (For interpretation of the references to

color in this figure legend, the reader is referred to the web

version of this article.)
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parameters in this first group and NO�3 , Si, Naþ and Cl�, which

formed another cluster. Parameters like TDS, conductivity,

bicarbonates and pH showed positive or negative correlations

with some of the parameters belonging to one of these

clusters.

In the second experiment (Fig. 1b), strong positive pairwise

correlations between most of the parameters were detected.

Overall, the incorporation of the new tap water samples

changed the correlation structure observedwith the data from

the first study. Only pH and silica parameters did not show

a clear trend in relation to the rest of the parameters. The

highly correlated structure of the analyzed data sets suggests

that the application of multivariate data analysis methods,

like PCA or PLS, can be used to discern major patterns in the

panelists’ preferences.

3.2. Analysis of variance results

Table 3 presents the results of the two-way ANOVA tests for

the two data sets. The four-session replications of experi-

mental settings were considered when determining experi-

mental reliability and error estimations. The results

confirmed (see Section 2.3 Data organization and software) that

the water type and the panelist as factors, as well as their joint

effect (interaction), statistically affected the evaluations at the

1% significance level. Therefore, water samples, in function of

their physicochemical content, did significantly affect

a panelist’s rating. Furthermore, it can be concluded that the

panel itself contained groups of individuals with different

preferences of specific water types. Since both factors were

significant, the recorded ratings also reflected the different

panelists’ personal preferences in relation to the specific

mineral content of the water sample. The interaction variable

was also significant, additionally supporting the presence of

synergistic effects between these two factors and reflecting

the high complexity of the sensory data in both studies. At this

Table 3 e Two-way ANOVA to evaluate the effects of the
two factors considered (water type and panelists) and
their interaction on the trained panelists’ evaluation of
water samples.

Source of variance SSa df MS F Prob > F

Data for 20 bottled water samples

Water type 712.25 19 37.487 27.07 0

Panelist 541.7 16 33.856 24.45 0

Interaction 1209.39 304 3.978 2.87 0

Error (replicates) 1412.63 1020 1.385

Total 3875.96 1359

Data for 25 bottled and tap water samples

Water type 1545.65 24 64.402 49.93 0

Panelist 165.92 12 13.826 10.72 0

Interaction 706.09 188 2.451 1.9 0

Error (replicates) 1257.5 975 1.289

Total 3675.17 1299

a SS, sum of squares; df, degree of freedom; MS, mean square; F, F-

statistic; Prob > F, p-value associated with the F-statistic.

Fig. 2 e PCA results of the autoscaled [X1, y1] augmented data matrix: PC1 vs PC2 biplot showing only the PCA scores of

bottled samples, as well as the PCA loadings of the physicochemical parameters and the panelists’ global mean score.

Water sample (with different symbols) score labels are given in Table 1. Water samples with similar physicochemical

profiles are presented using same color markers according to Table 1 labels. Physicochemical and parameter loadings (black

dots) are identified by their chemical names, except for the panelists’ mean score (mean liking loadings at the bottom right

quadrant of the plot). Axis scales dimensions are between L1 and 1, due to data autoscaling.

wat e r r e s e a r c h 4 7 ( 2 0 1 3 ) 6 9 3e7 0 4698

195



stage, it was not possible to distinguish the specific physico-

chemical features that explained the preference for a partic-

ular water sample.

3.3. Multivariate analysis

3.3.1. Exploratory PCA of the physicochemical parameters
and the panelist’s mean score on 20 bottled water samples: PCA
of the [X1, y1] augmented data matrix
PCA on the autoscaled [X1, y1] augmented data matrix with

a model of 2 principal components (PCs) explained more than

65% of the variance (information) as the two first principal

components already captured 40% and 25% of the variance,

respectively.

Fig. 2 shows the PC1 vs PC2 biplot for the 20 bottled water

samples using the descriptive physicochemical parameters

(X1) and the global panel’s mean score vector (y1). Analysis of

this biplot revealed that on PC1, water samples were distrib-

uted from the left to the right following the trend of the lowest

to the highest TDS values. TDS loadings were also large and

with positive signs on this PC1. Medium-mineralized samples

were located between these two extremes. The panelists

mean score vector loading was also located in the interme-

diate region, where water samples with intermediate TDS

values (around 200e400 mg/L) occurred. This indicates that

the panelists disliked waters with low (30e40 mg/L or lower)

and high (above 800 mg/L) TDS levels. The distribution of

loadings of the parameters on PC2 showed the panel’s

preference for water samples with moderate concentrations

of calcium and relatively higher pH values of around 7.5e8.1.

Positive correlations between the panelists’ mean score and

higher pH values as well as higher Mg2þ, Ca2þ, HCO�3 and SO2�
4

concentrations are shown in this biplot (high concentrations/

values for the parameter under investigation). The most liked

water samples contained CaSO4 and Ca(HCO3)2/CaSO4.

Conversely, the panelists’ mean score vector showed inverse

correlations with high Kþ, Si, Naþ and Cl� concentrations,

showing that the corresponding water samples were rated

very low.

3.3.2. Exploratory PCA of the physicochemical parameters
and the panelists’ mean score on 13 bottled and 12 tap water
samples: PCA of the [X2, y2] augmented data matrix
PCA analysis on the autoscaled [X2, y2] augmented datamatrix

with 3 principal components explained above 80% of the

variance (information), with the first PC already capturing

more than 57% of the variance and the second and third

explaining 13% and 10% of the variance, respectively. A closer

view of the first two components is presented in Fig. 3.

The Fig. 3 biplot reveals again that the tap water samples

with the highest level of mineralization (expressed as the

highest concentrations of TDS) gave large positive PC1 scores

on the very right side of the biplot. On the contrary, water

samples with low to moderate concentrations of TDS were

located on the left side of this biplot. The whole set of moni-

tored physicochemical parameters gave positive PC1 loadings

Fig. 3 e PCA of the autoscaled [X2, y2] augmented datamatrix: PC1 vs PC2 biplot of the PCA scores of the 12 bottled and 12 tap

water samples, as well as the PCA loadings of the physicochemical parameters and the panelists’ mean score. Water

samples with similar physicochemical profiles are presented using same color markers according to Table 2 labels.

Physicochemical and parameter loadings (black dots) are identified by their chemical names, except for the panelists’ mean

score (mean liking loadings at the upper left quadrant of the plot). Axis scales dimensions are betweenL1 and 1, due to data

autoscaling.
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(right side of the plot) in contrast to the panelists’ mean liking

vector, which gave negative PC1 loadings (left side of the plot).

This means that the panelists’ mean score loadings were now

on the side of low-to-moderate TDS concentrations (up to

400 mg/L), therefore indicating that the panelists did not like

water samples with extremely high concentrations ofminerals

(now including tap water). Parameter loadings on PC2 showed

very similar patterns in the panelists’ scores to those found in

the first experiment. Water samples with relatively higher

Mg2þ, Ca2þ, HCO�3 and SO2�
4 concentrations (relatively high

compared to the parameter’s mean values) were preferred

more than those with higher concentrations of Kþ, Si, Naþ and

Cl�, without taking into account their origin (bottled or tap).

Interesting information is revealed when PC3 scores and

loadings are also displayed. Fig. 4 gives the PC1 vs PC3 biplot for

the 13 bottled (red triangles) and 12 tap (blue squares) water

sample scores together with the physicochemical parameters

and the global mean score loadings. In this case, all bottled

mineral water sampleswere encoded as one single class and all

tap water samples as another. The outlined class borders are

drawn as red (bottled mineral) and blue (tap) lines. The two

sample groups could be separated in this PC1ePC3 plot. Bottled

water samples (in red) were located more on the more positive

side of PC3 and the more negative side of PC1, while tap water

samples were locatedmore on the negative side of PC3 and the

more positive side of PC1. The panelists’ mean liking gave

positive PC3 loadings, consistent with the panel’s preference

for bottledmineral over tapwater samples. This result was also

probably due to the presence of residual chlorine (chlorine also

produced negative loadings on PC3) in the tap water samples.

This clearly highlights the abilities of the highly trained panel

since a recent study (Teillet et al., 2010a) showed that untrained

consumers (two-thirds of them) could not discriminate

between tap and bottled water samples when chlorine was

allowed to disappear by natural aeration.

3.3.3. PCA exploratory analysis of physicochemical
parameters and individual panelist’s mean score vectors for
both studies: PCA of [X1, Y1] and [X2, Y2] augmented data
matrices
A new PCA was performed on [X1, Y1] and [X2, Y2] augmented

data matrices. In the analysis of [X1, Y1] by PCA, the first two

components captured 35 and 26% of the variance, respectively,

whereas in the analysis of [X2, Y2] by PCA, the first two major

components captured 59 and 13% of the variance, respectively.

Fig. 5a gives PC1 vs PC2 loadings obtained in the analysis of

the [X1, Y1] augmented data matrix (only bottled water

samples), considering all the panelists’ responses individu-

ally. PC1 shows that groups of panelists exhibited preferences

for and discrimination against specific water samples, with

those containing relatively higher concentrations of Mg2þ,
Ca2þ, HCO�3 and SO2�

4 on one side and others comprising

relatively higher contents of Kþ, Si, Naþ and Cl� on the other.

Outstandingly, therewas a group of panelists (7, 8, 10 and 14 in

Fig. 5a on the negative side of PC1) who liked water with

higher amounts of sodium and chloride anions and lower pH

values (below 7). The rest of the panelists were distributed on

the positive side on PC1. Another group of panelists (3, 5, 6, 11

and 13 in Fig. 5a) rated very positively water samples rich in

Mg2þ, Ca2þ and SO2�
4 . Finally, a third group of panelists (4, 9, 15,

16 and 17 in Fig. 5a) liked water samples with intermediate

concentrations of Mg2þ, Ca2þ, HCO�3 and SO2�
4 . Panelists from

Fig. 4 e PCA of the autoscaled [X2, y2] augmented data matrix: PC1 vs PC3 biplot of the same parameters (variables) and

samples. Outline borderlines are drawn for the two types of water samples (see Fig. 4 legend and Table 2). Axis scales

dimensions are between L1 and 1, due to data autoscaling.
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the second and third groups also rated positively water

samples with higher pH (above 7.5).

Fig. 5b gives PC1 vs PC2 loadings obtained in the simulta-

neous analysis of both the bottled and tap water samples,

using the [X2, Y2] augmented data matrix and considering all

the panelists’ responses individually. Whereas loadings for

individual panelists were on the right side (positive PC1

loadings) of the plot, all physicochemical parameters were

now on the negative side on PC1. This again indicates the

individual panelist’s dislike of water with higher contents of

all salts and TDS. Similar to previous results, PC2 suggests that

some differences occurred among the panelists in terms of

their preferences for samples with varying mineral contents.

PCs separate panelists preferring water samples with rela-

tively higher contents of Kþ, Si, Naþ and Cl� from those

preferring higher concentrations of calcium and magnesium

(Mg2þ, Ca2þ, HCO�3 and SO2�
4 ). It should be noted that the same

panelists were used in both studies for mineral and tap water

samples. It is also possible to define a third group of panelists

that liked water samples with intermediate levels of minerals,

as can be seen around the ‘zero’ region on PC2.

3.3.4. PLS regression of the panel’s mean score vector on the
physicochemical parameters
PLS modeling y1 ¼ fðX1Þ resulted in a two-latent variable

model, which also captured a large part of the information

(around 72% of the y1 variance).

Fig. 6a displays the plot of PLS LV1 (the first latent variable or

component) weight loadings of physicochemical parameters

(X data matrix) on prediction of panelists’ mean liking ( y data

vector). Fig. 6b shows the same for LV2. LV1 explained 25% of

the X data variance and more than 64% of the y data variance

and has positive weight loadings for pH, Mg2þ, Ca2þ and SO2�
4

and negative loadings for NO�3 , Si, Naþ and Cl�. LV2 (which

explained 34% of X variance and only 7.5% of the y variance)

showed low positive weight loadings for Naþ, Kþ and high

positive weight loadings for pH. All the rest of the parameters

had negative weights on LV2 thus confirming the results

already obtained by PCA in the previous section. A larger group

of panelists liked water samples with higher levels of pH, Mg2þ,
Ca2þ and SO2�

4 , while only a small group preferred water

samples with higher concentrations of Naþ and Kþ.
Fig. 6c gives the VIP scores plot of the physicochemical

parameters in the PLS model with two latent variables.

Parameters with VIP scores above the threshold of one (red

line) were considered to be themost significant in forming the

panelists’ decision. This plot demonstrates that Cl�, NO�3 , Naþ,
pH and Si were in fact the parameters with the highest global

importance in the construction of the final model. This could

be because of the negative responses of most of the panelists

toward water with higher contents of these parameters.

PLS modeling y2 ¼ fðX2Þ also resulted in a two-latent vari-

ablemodel that captured a large part of the y variance (around

89% of the y2 variance).

LV1 loading weights (explaining 56% of the X variance and

77% of the y variance) were positive only for the pH parameter,

all other parameters showing negative weights (Fig. 6d). LV2

(explaining 13% of the X variance and only 12% of the y vari-

ance) showed only low positive weights for Naþ and Kþ and

a high positive one for pH (Fig. 6e). All these highlight the fact

that panelists liked water samples with higher pH values and

disliked the increase in global mineralization, e.g., an increase

inTDS values that is too high. Similar to previous PLS results for

the analysis of only bottled mineral water, LV2 indicated that

some panelists preferred water samples richer in Naþ and Kþ.
The analysis of VIP scores (Fig. 6f) also showed quite similar

features in the preferences ofmost of the panelists. Again, their

responses were related to features that elicited disliking of the

water sample more than those eliciting a preference.

4. Discussion

Some references can be found in the literature about the

influence of TDS on water liking. There is not a clear

Fig. 5 e PC1 vs PC2 loadings plot of the autoscaled [X1, Y1]

and [X2, Y2] augmented data matrices containing the

measurement of physicochemical parameters and

individual mean score vectors after 4 sessions in: (a)

analysis of bottled water samples and (b) simultaneous

analysis of bottled and tap water samples. Axis scales

dimensions are between L1 and 1, due to data

autoscaling.
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agreement between classifications based on mineralization

levels. Terms like “high”, “intermediate”, “moderate” or

“medium” referred to TDS concentration depend on regional

considerations, or on what were the water types used in

a given study (van der Aa, 2003; Burlingame et al., 2007;

Whelton et al., 2007).

Most of the national and international regulations,

including theWorld Health Organization, the European Union

and the USEPA refer to TDS as an esthetic quality parameter

and give maximum guide values of 1000 mg/L (WHO, 2011), of

1600 mg/L e corresponding to 2500 mS at 25 �C (EU Directive,

1998), and of 500 mg/L (USEPA). A general agreement exists

on that waters with high mineralization are not liked, and it

seems that medium mineralized waters are best valued, but

there is no conclusive data in relation to this. Bruvold and

Daniels (1990) pointed out that the most appreciated waters

were with TDS values up to 450 mg/L. McGuire et al. (2007)

indicate that a consumer panel preferred TDS values of

Fig. 6 e PLS results for the analysis of bottled water samples only (a, b and c) and the simultaneous analysis of bottled and

tap water samples (d, e and f). Weight loading plots (a, b, d and e) and VIP (variable importance in projection) scores (c and f)

are also shown. Parameters with VIP scores above the threshold value of one (red line) were considered to be the most

significant in the overall panelists’ score. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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450 mg/L instead of 650 mg/L although the liking scores were

globally small. Two works by Devesa et al. (2007), and Garcı́a

and Devesa (2009) about blending of a high mineralization

resource of about 1000e1100 mg/L with membrane treated

waters showed a gradual improvement when TDS decreased,

and the best results were reached at 270e350mg/L. In a recent

study, Teillet et al. (2010a) pointed out a TDS of 300e350 mg/L

as preferred values.

The present study confirmed that high mineralized waters

over 800 mg/L show low acceptance. The study with bottled

waters showed that the preferred waters were with TDS

around 200e400 mg/L, and panelists disliked also very low

mineralized waters of about 30 mg/L. This difference between

medium and low TDSwas not deduced from the second study

with bottled plus tap waters, which just showed that high

mineralized waters (above 800 mg/L) received the lowest

rates.

Papers about the role of the different cations and anions on

taste are rare (Suffet et al., 1995; Burlingame et al., 2007;

Whelton et al., 2007). A lot of information is given about

detection thresholds and about the behavior of individual

salts (anionecation), but in natural waters synergistic and

antagonistic effects take place between the different ions and

they define the taste of given water sample. Therefore, there

are discrepancies about the positive or negative effect of some

species. The present work shows what is the contribution of

some species at significant concentrations: positive for Ca2þ,
SO2�

4 , HCO�3 (and, consequently, high pH), and negative for

Naþ and Cl�. Other chemical species found to have significant

correlations with overall liking, Kþ and NO�3 , have been found

to be at concentrations too low to be relevant to influence the

water taste. The correlation between Kþ and NO�3 concentra-

tions can be considered to be spurious since in fact, what

happens is that both are correlated to the Naþ concentration,

which appeared as the major parameter for the negative

panelist responses. The levels of Kþ and NO�3 in the selected

water samples are so small that they cannot be responsible for

the water taste. However when data were autoscaled prior to

PCA or PLS analyses, concentrations of minor constituents are

then in a similar metrics to major constituents. Since Kþ and

NO�3 , both have positive correlationswithNaþ, they both show

then apparent negative taste qualities too.

The role of Mg2þ, which strongly depends on the anion of

its salt, is still unclear. In the present work, Mg(HCO3)2 and

MgSO42 (probably with a positive or neutral effect on taste)

predominated over MgCl2 (negative effect). On the other hand,

the presence of Mg2þ salts is highly correlated with the pres-

ence of Ca2þ salts.

The influence of silica on the water taste is not clear in the

literature. This study showed its positive correlationwithNaþ,
therefore explaining its apparent negative effect on taste

ratings.

In the analysis of the second experiment with tap and

bottled water samples (see Fig. 3) no difference was found

between them (unchlorinated and chlorinated water

samples). This fact is in agreement with previous results re-

ported by Weisenthal et al. (2007), based on the

WebereFechner curves/FPAmethod and on the use of sodium

chloride to simulate TDS. Results showed that chlorine had no

significant effect (antagonistic or synergistic) on the

perception/assessment of the taste of drinking waters. Also,

Teillet et al. (2010a) pointed out that two-thirds of the

untrained panel were unable to discriminate between tap and

bottled water samples once chlorine was allowed to volatilize

by natural aeration. However, when PC3 (10% of the explained

variance) is taken into account (see Fig. 4), a rather well

separated group is formed for tap waters, probably due to the

still presence of some residual chlorine in these water

samples This fact would confirm the sensitivity of the trained

panel and of PCA to detect this minor but still significant

contribution, not detected in PC1 vs PC2 plot.

5. Conclusions

Some conclusions about the overall panelists’ preferences for

bottled mineral and tap water are:

1. The most important factor that influenced panelists’ pref-

erences was the overall level of mineralization (TDS). In

both studies (one restricted to bottled waters and another

one to bottled and tap waters), none of the panelists liked

water samples with high levels of TDS, i.e., with more than

800 mg/L. The study with bottled waters showed that

panelists preferred waters with TDS values around

200e400 mg/L, and that panelists disliked very low miner-

alized waters, with TDS values around 30 mg/L. This

difference betweenmedium and low TDS was not obtained

in the second study, which only confirmed that high

mineralized waters (above 800 mg/L) received the lowest

rates.

2. For moderate levels of TDS, the physicochemical content

appeared to be an influential factor. The contribution of

several chemical species to the taste of water was deter-

mined. The preferred water samples had relatively high pH

values (pH around 7.5e8.1), and relatively high concentra-

tions of Ca2þ, Mg2þ, SO2�
4 and HCO�3 ions. In general,

panelists disliked water samples with high concentrations

of Kþ, Naþ, Cl�, NO�3 and Si, or with low pH (below 7) values.

The present work shows the positive contribution to the

water taste of Ca2þ, SO2�
4 and HCO�3 (and consequently high

pH), and the negative one of Naþ and Cl� at significant

concentrations considering the literature information

(Burlingame et al., 2007).

3. It was not clear whether low levels of Mg2þ influenced the

taste ratings. In the present work, Mg(HCO3)2 and MgSO4

(probably with a positive or neutral effect on taste) pre-

dominated over MgCl2 (negative effect). On the other hand,

this cation shows a strong positive correlation with Ca2þ,
known to be mainly responsible for water hardness.

Meanwhile, low levels of Kþ and NO�3 are unlikely to influ-

ence taste ratings, apart from its high positive correlation

with Naþ. The role of Si in water taste is not clear in the

literature. This study showed their positive correlationwith

Naþ, therefore explaining their possible negative influence

on taste ratings. More research is still needed on this.

4. The presence of residual chlorine did not significantly

influence the panelists’ ratings. However, this parameter

allowed them to discriminate between bottled and tap

water samples. This fact would confirm the sensitivity of
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a trained panel and the usefulness of Principal component

analyses to detect the minor but still significant contribu-

tion of residual chlorine.

5. The application of chemometric techniques allowed

discrimination among groups of panelists according to

their water type preferences. The application of PCA and

PLS to physicochemical and sensory data in well-designed

experiments is a useful approach for determining taste

features of bottled and tap water samples.
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Results and Discussion 

 - Descriptive statistics of the physicochemical parameters of the two sets of water 

samples 

 Pairwise correlation coefficients between the 12 physicochemical parameters in 

the first data set, as well as the correlation between the 13 of parameters the second data 

set, were calculated.  These correlation coefficients were visualized in the form of a 

correlation map, where intense red color represents high positive correlations and 

intense blue color - high negative correlation (see Figure 1, Article 6). The 

physicochemical parameters from the data set containing 20 bottled waters were found 

to present high positive or negative correlations and generally these parameters formed 

two clusters. For example, it was detected a cluster of parameters with high positive 

correlations between Mg2+, Ca2+ and SO4
2- (see Figure 1a, Article 6). Another cluster of 

physicochemical parameters included positively correlated, NO3-, Si, Na+ and Cl-. The 

parameters from the two clusters were negatively correlated between them. 

 In the second data set, strong positive pairwise correlations between most of the 

parameters were observed (see Figure 1b). This result is attributed to the nature of the 

tap water samples included in this study. pH and silica were the only parameters, which 

had a distinct behavior.  

 

- Two-way Analysis of variance results 

Two-way ANOVA tests for the two data sets indicated that water type and 

panelist as factors, as well as their joint effect (interaction), were statistically significant 

at the 1% significance level. This result suggested that water samples with their 

mineralization had a strong effect on the panelists’ overall rating. The panel structure 

also seemed to be a significant factor, because it contained groups of panelists with 

different preferences for specific water types. Interaction between factors was also 

significant, suggesting that synergistic effects between these two factors could present.  

 

- Results from PCA of the physicochemical parameters and the panelists’ mean score 

for 20 bottled water samples. 

 PCA of the autoscaled data matrix resulted in a model with 2 principal 

components (PCs). This amount of explained variance was found to be moderate, i.e., 

more than 65%. PC1 explained the larger portion of the total variance (i.e., 40%), 

whereas PC2 - 25%. Analysis of the PC1-PC2 biplot (water type scores and parameters 
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loadings plotted together) revealed that the largest effect on PC1 had the overall 

mineralization (see Figure 2, Article 6). The scores for water samples are distributed as 

a function of TDS values (i.e., from the left to the right, we have lowest to highest TDS 

values). TDS loading on PC1 corroborated this result. It was further detected that the 

panelists’ mean score vector loading was largely concentrated in the intermediate area, 

suggesting that panelists’ preferences for water samples were toward intermediate TDS 

values (around 200-400 mg/L).  Therefore, we conclude that panelists disliked waters 

with relatively low and high TDS levels (i.e., 30-40 mg/L or lower and above 800 mg/L, 

respectively).  

 Further analysis of the distribution of parameter loadings on PC2 suggested that 

panelists exhibit a preference towards water samples with concentrations above their 

average for Ca2+ , Mg2+ Ca2+, HCO3
- and SO4

2- concentrations (see more the biplot). The 

most liked water samples had CaSO4 and Ca(HCO3)2/CaSO4 profiles. In contrast, water 

samples with concentrations above their average for K+, Si, Na+ and Cl- concentrations 

had been ranked low. 

 

- Results from PCA of the physicochemical parameters and the panelists’ mean 

score of 13 bottled and 12 tap water samples. 

 PCA of the autoscaled data matrix established a model with 3 principal 

components, explaining more than 80% of the total variance. The first PC accounted for 

more than 57% of the variance, whereas the second and third PC - 13% and 10%, 

respectively.  The first PC captured the effect of overall mineralization in the data. The 

biplot (see Figure 3, Article 6) represents the distribution of the water samples scores 

from lowly mineralized (left) to highly mineralized waters (right). The physicochemical 

parameters loadings were found on right side of the plot, whereas the panelists’ mean 

liking vector was on the left side. Therefore, we conclude that panelists’ preferences 

were for low-to-moderate TDS concentrations and hence suggest a possibility to narrow 

the upper limit of overall mineralization, or TDS values below 400 mg/L. In the 

analysis of tap-bottled water, PC2 corroborated previously reported results that panelists 

positively rated water samples with relatively high Mg2+, Ca2+, HCO3
- and SO4

2- 

concentrations, as compared to the average value. In contrast, water samples (bottled or 

tap) with higher concentrations of K+, Si, Na+ and Cl- were rated low. 
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 The interpretation of PC3 provided interesting implications. More specifically, 

this principal component captured the effect of residual chlorine on the panelists’ 

preferences. The relation bottled-tap waters was represented in the distribution on the 

biplot for the pair of species Si- residual chlorine (see Figure 4, Article 6). This pair 

characterized the main difference between the two groups. The panelists exhibited a 

weak preference towards bottled mineral water samples. The lower concentrations of Si 

in water samples and the lack of literature regarding its effect on taste were suggestive 

that this result could be most likely explained by the presence of residual chlorine in the 

tap water samples.  

 

- Results from PCA of physicochemical parameters and individual panelist’s mean 

score vectors for both studies 

 In Article 6, two new PCA models were performed using augmented data 

matrices with physicochemical parameters in addition to individual panelists mean 

scores. In the analysis of bottled water samples, PCA with the first two components 

captured 35% (PC1) and 26% of the variance (PC2), respectively. In the analysis of 

bottled-tap water samples, PCA with the first two components captured 59% and 13% 

of the variance, respectively. 

 Both biplots PC1-PC2 confirmed again that panelists disliked water with higher 

contents of all salts and TDS (see Figure 5, Article 6). Similarly to previously reported 

results, PC2 suggested that panelists exhibited divergent preferences for water samples 

with different levels of mineral contents. The results confirmed that there were three 

groups of panelists formed on the basis of their preferences for mineral content. The 

largest group of panelists preferred water samples with relatively higher contents of 

Mg2+, Ca2+, HCO3
- and SO4

2-. The second group liked water samples with moderate 

levels of all minerals. The third, smaller group of panelists expressed a preference 

towards water samples with relatively higher contents of K+, Si, Na+ and Cl-.  The 

analysis also showed that many panelists were very consistent in their evaluations, 

collected in taste rating sessions with more than two-year time difference.  

 

- Results from PLS regression of the panel’s mean score vector on the physicochemical 

parameters for both data sets (only bottled waters and bottled-tap waters) 

 In both regressions examples, PLS modelling was used to obtain two-latent 

variables (LVs) models, which were able to explain approximately 72% and 89% of the 
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variance in panelists’ liking. Figure 6 (Article) 6 contains the contribution (i.e., weights) 

of the physicochemical parameters for the first two LVs for both PLS models. The 

model using bottled water samples data set revealed that pH, Mg2+ Ca2+- and SO4
2 had 

the strongest positive contribution (highest weights loadings values) on the first LV. In 

contrast, LV2 was determined by positive weight loadings for Na+ and K+. Therefore, 

we corroborate previously reported results from PCA that there were different groups 

inside the panel, formed on the basis of panelists’ preferences towards hard- or soft-

salty waters. In comparison, the model using bottled-tap water samples data set revealed 

that first LV was largely dominated by the strong negative contribution of almost all 

physicochemical parameters and that the relationship hard- (positive contribution for 

pH, Mg2+ Ca2+- and SO4
2-)  versus soft-salty (negative contribution for Cl-,Na+ and K+) 

water samples was explained by the second LV. This result confirmed that the increase 

of the mineralization by incorporation of tap water samples with very high TDS 

concentrations affected panelists’ perception regarding the overall mineralization.  

 Finally, the analysis of VIP scores in both models displayed similar patterns in 

the preferences of most panelists.  Panelist could better identify which properties of 

water samples they particularly disliked, since the most relevant parameters according 

to the PLS VIP scores were TDS (high mineralization), Na and K (salty taste). 
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Conclusions related to the of water quality analysis and monitoring  

 It was confirmed that the formation of trihalomethanes depended strongly on 

ambient and operational water treatment plant parameters, involved in the 

disinfection process. The most significant ambient parameters were temperature, 

water ultraviolet absorbance at 254nm, total organic carbon concentrations, water 

conductivity, oxidability and turbidity, monitored in the raw river water and along 

disinfection process stages. The most important operational parameters during 

disinfection for the THMs formation resulted: the chlorine doses and the age of 

carbon filters.  

 

 It was confirmed that the trihalomethanes formation took place during the pre-

chlorination and the post-chlorination stages at the  San Joan Despi DWTP. The 

process of active carbon filtration and the addition with underground water 

quantities significantly reduced the trihalomethanes formation. 

 It was discovered also, that the formation of trihalomethanes has a seasonal 

dependence in the Sant Joan Despí DWTP (Barcelona, Spain).  The spring appeared 

the season with largest amounts of THMs formed with predominance of brominated 

species over chloroform.  

 

 Dissolved organic matter was confirmed as very important for the speciation of 

THMs during formation. The colloidal fraction of DOM was responsible for about 

20-30 % of the formation of each individual THM and about a quarter of the total 

THMs formation. The hydrophobic fraction was found as the most relevant for the 

formation of brominated THMs. The transphilic fraction had importance for the 

formation of chloroform formation. Both, hydrophobic and transphilic fractions 

were found important in the formation of about 80% of the total THMs.  

 

 This Thesis confirmed the importance of the bromide anions concentration for the 

formation of brominated trihalomethanes during disinfection. Despite the type of 

DOM fraction, just a small quantity of bromide anions in the water would alter the 

formation of brominated trihalomethanes. 
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 This Thesis proved that UV spectrophotometry coupled with chemometrics resulted 

as a powerful analytical tool for mixture analysis of water blends. This hyphenated 

approach allowed for differentiation of various water sources with specific natural 

organic matter content in blends. Also, it permitted to estimate very accurately the 

concentrations of several water quality parameters, such as dissolved organic 

matter, nitrates, detergents and phenols.   

 

 In this Thesis, UV spectrophotometry was used individually or as a complementary 

source of information to physicochemical parameters for better modeling and data 

monitoring of water quality. 

 

 Temporal and spatial dynamics (seasonal, diurnal urban activity and influent-

effluent changes) was monitored in the wastewater quality, modeling spectral and 

physicochemical data. Unusual disturbances like rainfall episodes and accidental 

water pollution events were being possible to detect also. 

 

 It was proved that the overall mineralization of bottled and tap waters was the 

strongest factor that influenced on the panelists’ liking. Overall water 

mineralization around 200- 400 mg/L, expressed as total dissolved solids, was liked 

more than waters with mineralization above 800 mg/L and below 50 mg/L. The 

largest number of panelists liked bottled and tap waters with relatively high 

concentrations of Ca2+, Mg2+, SO42- and HCO3-  ions. It was discovered that a 

smaller number of panelists with preferences for high concentrations of K+, Na+, 

Cl-, NO3- and Si existed also.  

 

 

 It was discovered that the residual chlorine in tap waters did not significantly 

influence the panelists’ liking, however it was tasted to discriminate between 

bottled and tap water samples. 
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Conclusions related to the application of chemometric methods for 

water quality data analysis and monitoring  

 

 Different chemometrics methods were found very appropriate for 

application in the analysis of problems related to the water quality. In this 

Thesis, we have demonstrated the effectiveness of methods from the 

multivariate exploratory analysis such as Principal Component Analysis 

(PCA)  and from the  multivariate calibration such as Multilinear Regression 

(MLR), Partial Least Square Regression (PLS), Support Vector Machine 

Regression (SVM), kernel Radial Basis Function Partial Least Square 

Regression (K-PLS) and others. Experimental design with response surface 

strategy were found also very useful as  an economical approach to discover 

information about the important factors affecting THMs formation in a 

laboratory study, included in this Thesis. 

 

 The Thesis confirmed the efficiency of different visualization techniques 

and tools from PCA and PLS such as visualization of scores, loadings and 

weights loading plots.  Such visualization made possible to discover the 

major sources (factors) of variance in the investigated cases. The score plots 

reveled various temporal (seasonal, diurnal) dynamics in the THMs 

formation; urban activity for the quality of the waste water and for example 

- diverse grouping of panelists according to their water taste preference. 

Spatial information about influent-effluent dynamic changes in wastewater 

quality was also discovered, analyzing score plots. Unusual disturbances, 

like rainfall episodes and accidental water pollution events, were diagnosed 

also, proving the usefulness of selected methodology for future quality 

control analysis. Vizualization of the loadings and weights loadings plots of 

PCA and PLS made possible to underline the importance of various ambient 

and operational parameters for the THMs formation in the drinking water 

treatment plant process. These type of plots were very useful to discover 

variables with strongest influence for the water quality dynamics in the 

waste water and also to feature the most important mineral components 

affecting the taste liking of bottled and tap water. 
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 In this Thesis, it was tested and confirmed its usefulness of new 

visualisation techniques from K-PLS and SVM regression analyses in order 

to reveal complex nonlinear relationships among several ambient and 

operational parameters monitored at the DWTP and having a strong impact 

on the THMs formation.   

 

 Variable Importance in Projection of the scores technique was proved as 

very useful for optimal selection of a reduced set of different parameters 

/variables (physicochemical parameters, spectral wavelengths, mineral ions) 

in the global analysis of the parameters’ importance or in case of prediction 

- without a significate loss of predictive power. 

 

 The most accurate prediction errors were achieved using MLR, PLS and K-

PLS regression techniques and they are recommended for routine use in the 

modeling of target compounds in problems related to the water quality. 

 

 Factorial analysis strategy, applied to understand the main factors for the 

THMs formation in the water disinfection, appeared as a very useful 

approach.  The strategy implemented a fast screening (Placket-Burman) and 

a detailed experimental design (Box-Behnken) and allowed to describe the 

most influential parameters in the formation of trihalomethanes as evaluated 

their effects and interactions. 
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5.1 Resumen 

En esta Tesis, se propone la utilización de diferentes métodos quimiométricos 

para la exploración, el análisis y la interpretación de la información presente en datos 

experimentales obtenidos en la determinación de la calidad de aguas potables y de aguas 

residuales. Los conjuntos de datos analizados fueron obtenidos en  (a) procesos de 

desinfección de agua potable, (b) procesos de tratamiento de agua residual, (c)  análisis 

sensoriales del gusto del agua mediante panelistas, y (d) experimentos en laboratorio 

que  simulan procesos de desinfección. 

1) Un primer objetivo de  esta Tesis es el de mejorar el conocimiento con 

respecto a la formación de trihalometanos (subproductos de la desinfección en la 

estación de tratamiento de agua potable  de   Sant Joan Despí,  ETAP-SJD) y los 

principales factores que afectan  a su formación. 

2) Otro objetivo de la Tesis consiste en el desarrollo de un método 

quimiométrico que permita la diferenciación y cuantificación de  las fuentes (orígenes) 

diferentes de agua potable en la red de distribución (WDS) de Barcelona utilizando la 

espectroscopia de absorción en el ultravioleta y la medición de parámetros físico-

químicos.  

3) Por otra parte, en la Tesis se propone una tecnología basada en la aplicación 

de métodos quimiométricos que  facilite el control de la calidad del agua en la estación 

depuradora de aguas residuales  (EDAR) cerca de la ciudad de Girona.4) Finalmente, se 

estudia también el problema de la evaluación del gusto del agua embotellada o del grifo 

en función de su contenido de minerales con modelos quimiométricos utilizando 

panelistas entrenados. 

 

En  los cuatro casos, los métodos quimiométricos se han aplicado a matrices de 

datos  multi-paramétricos generadas por distintas técnicas instrumentales como, por 

ejemplo,  la espectroscopia en el UV-VIS, la cromatografía de gases con detector de 

captura de electrones (GC-ECD) y el espectrofotómetro de emisión acoplado 

inductivamente a plasma (ICP-OES). Además, se obtuvieron otros conjuntos de datos 

mediante la aplicación de métodos estándar de laboratorio para la estimación de los 

diferentes parámetros físico-químicos, o de datos multi-paramétricos a partir  del 

Sistema de Gestión de Información de Laboratorio (LIMS) de AGBAR. Finalmente, 

fueron adquiridos también otros conjuntos de datos mediante una estación semi-
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automática  multi-paramétrica, de monitorización en línea y mediante un diseño 

experimental de experimentos sensoriales. 

Los  métodos quimiométricos empleados en esta Tesis incluyen el Análisis de 

Componentes Principales (PCA), la Regresión Lineal Múltiple (MLR), la Regresión de 

Componentes Principales (PCR) y el método de regresión de Mínimos Cuadrados 

Parciales (PLS). Se han comparado estos diferentes métodos de regresión lineal con los 

métodos de regresión no lineal, tales como el procedimiento ‘kernel’ de  Mínimos 

Cuadrados Parciales (K-PLS) o el método de regresión basado en Máquinas de Soporte 

Vectores de Soporte (Support Vector Machine Regression, SVR). 

 

Los resultados más significativos de esta Tesis han sido:  

 a) la identificación de un conjunto de parámetros fisicoquímicos ambientales y 

del proceso de desinfección del agua que tienen  relevancia en  la formación de 

trihalometanos;    

b) el desarrollo de modelos quimiométricos para la estimación de la estimación 

de los cambios de concentración de las cuatro especies de THM y de su suma en total en 

la planta de tratamiento de aguas  ETAP-SJD con errores de predicción bajos;  

c) la identificación de que las especies HCO3
-, SO4

2-, Ca2+, Mg2+ (a una 

concentración de mineralización total moderada) son los parámetros físico-químicos 

más relevantes para el gusto del agua ;  

d) la detección de las variaciones  temporales más importantes en la calidad del 

agua residual tratada en la planta de tratamiento de aguas EDAR de Trargisa en Girona, 

con una frecuencia diaria, mensual y estacional;  

e) el desarrollo de modelos de detección y de predicción de  las fuentes u 

origines del agua potable dentro de la red de distribución de aguas, WDS, de la ciudad 

de Barcelona. 

 

Además, se han probado y evaluado diferentes técnicas quimiométricas para la 

visualización e interpretación de los datos  de análisis de la calidad del agua. La 

capacidad de predicción de los métodos de regresión lineal y no lineal ha sido 

comparada en relación el desarrollo de modelos empíricos de predicción de los 

parámetros de calidad del agua. A partir de la utilización de los procedimientos 

quimiométricos propuestos, los errores de predicción de Las concentraciones de THM 

en agua potable, nitratos, fenoles, materia orgánica en agua residual, los origines de 
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agua potable en el sistema de distribución de agua y  las puntuaciones de los panelistas 

al gusto  de agua han sido bajas. 

En conclusión, esta Tesis muestra las ventajas del uso de métodos 

quimiométricos de análisis multivariante de datos en la evaluación de la calidad del 

agua en diferentes contextos (plantas de tratamiento, potabilización, redes de 

distribución, aguas de bebida,…). Se demuestra por lo tanto, que la utilización de 

métodos de quimiométricos representa un avance significativo comparado con los 

métodos de control basados en estadística univariante, los cuales requieren muestreos 

más caros y una cantidad elevada de tiempo. 

Los resultados de la investigación realizada  en esta  Tesis se muestran en un 

conjunto de seis artículos publicados en revistas de elevado impacto internacional en el 

ámbito de calidad de agua. 
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5.2 Objetivos de la Tesis 

 

El principal objetivo de esta Tesis incluye la aplicación y la promoción de los 

métodos quimiométricos para el análisis de la calidad del agua potable y del control de 

la calidad del agua residual. Esta Tesis está basada en seis diferentes estudios: cinco 

estudios relacionados a la gestión del agua potable y un estudio relacionado a la 

monitorización del agua residual. Se han generado y analizado mediante métodos 

quimiométricos diferentes conjuntos de datos en varios estudios, relacionados con la 

calidad del agua en las plantas de tratamientos de aguas potables y residuales en 

Cataluña.  

 

Según el ámbito de investigación,  este objetivo principal se subdivide de los 

siguientes apartados: 

 

Objetivos relacionados con el análisis y monitorización de la calidad del agua 

 

 Desarrollo de modelos de regresión que permitan predecir la formación de 

trihalometanos (THMs) en  la salida de la planta potabilizadora de agua de Sant 

Joan Despí (ETAP), basados en modelos lineales y no lineales a partir de  

parámetros de  calidad del agua  que caracterizan el proceso de desinfección  

  Evaluación e interpretación de los parámetros más importantes para la 

formación de THMs basándose a técnicas quimiométricas, que faciliten el 

seguimiento y control de la calidad del agua; 

 Valoración  de la importancia de la materia orgánica (NOM) en la formación de 

THMs durante desinfección simulada en laboratorio  a partir de experimentos  

diseñados estadísticamente; 

 Desarrollo  modelos quimiométricos para la diferenciación y cuantificación de 

los cinco orígenes diferentes de agua potable  que alimentan la red de 

distribución de Barcelona utilizando espectroscopia de absorción en ultravioleta 

y parámetros físico-químicos. 

 Identificación de los parámetros físico-químicos del agua  más influyentes en el 

gusto de agua embotellada  o de la red de distribución  a partir de modelos 



  Chapter 5. Summary in Spanish 

219 

 

quimiométricos de predicción utilizando las evaluaciones de panelistas 

entrenados; 

 Evaluación de los métodos quimiométricos para mejorar la monitorización y el 

control de la estación depuradora de aguas residuales (EDAR)  de Girona 

(TRARGISA), basándose en diferentes técnicas y rutinas empleadas  para 

controlar en línea periódicamente la calidad del agua; 

  Selección de un número reducido de canales espectrales  en ultravioleta 

(longitudes de onda) para mejorar la monitorización en línea de los procesos 

operativos en EDAR, a partir de medidas de espectrometría de absorción. 

 

Objetivos relacionados con  la aplicación de los métodos quimiométricos 

 

  Desarrollo, aplicación y validación de los métodos  quimiométricos  de 

regresión lineal y no lineal en el análisis de los datos de calidad del agua en  

diferentes procesos de tratamiento de agua, basándose en parámetros medidos in 

situ o en el laboratorio; 

 Comparación de las capacidades predictivas de los métodos de regresión lineal y 

no lineal en la formación de THM; 

 Identificación y evaluación de las técnicas quimiométricas y de  sus 

herramientas de visualización más eficaces para seleccionar las variables más 

importantes (parámetros) en los modelos lineales; 

  Aplicación y evaluación de las  técnicas de visualización de variables más 

importantes  en modelos no lineales (K-PLS y SVR) y su comparación posterior 

con las obtenidas con los modelos lineales; 

 Aplicación de las técnicas de diseño experimental (DOE) con el objetivo de 

obtener conjuntos de datos de calibración y realizar la evaluación de los factores 

más importantes; 

 Evaluación del método de preselección  de los  “variable más importantes en 

proyección”   (Variable Importance in Projection VIP) a partir de los modelos  

PLS y de los datos de calidad del agua que permitan la selección de un número 

reducido de variables que preserven el  poder predictivo de los modelos.  
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Estructura de la tesis 

Esta tesis se divide en dos partes principales. La primera parte incluye  la 

introducción general sobre los problemas asociados a la evaluación de la calidad del 

agua en los sistemas estudiados en esta Tesis. Entre los problemas estudiados están  la 

formación de trihalometanos, los factores que influyen en el gusto  del agua,  y los 

métodos de monitorización de la calidad de las aguas potables y de las aguas residuales. 

También se realiza una introducción breve de los métodos aplicados quimiometría 

utilizados en esta Tesis. La segunda parte de la Tesis contiene los artículos científicos 

publicados, junto con una introducción y discusión breves de los resultados obtenidos. 

Esta segunda parte acaba con un resumen  breve de la tesis y con las referencias 

bibliográficas. 

La tesis consta de los siguientes seis capítulos: 

 En el Capítulo 1, se presentan los objetivos de la Tesis, se detalla la 

estructura de la tesis y se incluye la lista de publicaciones en relación de 

esta Tesis. 

 En el Capítulo 2, se detallan brevemente los problemas principales 

relacionados con la evaluación de  la calidad del agua y se describen los 

métodos quimiométricos aplicados en esta Tesis. Se presenta 

información sobre la formación de trihalometanos y la legislación 

europea  sobre sus niveles regulados;   se estudia la importancia de la 

materia orgánica en la formación de trihalometanos; se describen los 

estudios epidemiológicos con respecto al riesgo sanitario de THM; se 

analizan las fuentes (origines) de agua potable de la red de distribución 

de Barcelona. Se presenta información y  ejemplos de una planta ETAP 

clásica y de una planta EDAR. Se describen los principales parámetros 

de calidad del agua, controlados regularmente en este tipo de 

instalaciones. Se incluye una breve discusión sobre sistemas automáticos 

para monitorización de la calidad del agua en línea basados en sensores 

de ultravioleta. Se discuten los aspectos organolépticos y del gusto del 

agua. Este capítulo concluye con una revisión de los métodos 

quimiométricos aplicados en esta Tesis. 

 En el Capítulo 3, se discuten los resultados obtenidos de los estudios 

incluidos en esta tesis. Este capítulo se divide en tres bloques de la 

siguiente manera: 
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a) En el primer bloque, se presentan una breve introducción y  discusión 

posterior de los tres artículos  que investigan la formación de THM en  

experimentos diseñados en  laboratorio y en el control de la calidad del 

agua de  ETAP-SJD, basándose de métodos quimiométricos.  

b) En el segundo bloque, se presentan dos artículos con estudios 

relacionados con  la modelización y el control de la calidad del agua 

potable o residual. En el primer artículo, se realiza un estudio relacionado 

con la diferenciación y cuantificación de los cinco orígenes o fuentes 

diferentes de agua potable  que alimentan la red de distribución de 

Barcelona a partir de  espectroscopia de absorción en ultravioleta y 

medición de parámetros físico-químicos. El segundo artículo describe el 

desarrollo de metodología quimiométrica,  para mejorar el control de la 

calidad del agua en una planta de tratamiento de aguas residuales  

(EDAR), a partir de los  parámetros de calidad de aguas residuales 

obtenidos con varias técnicas de monitorización.  

c) En el tercer bloque, se presentan los resultados de un estudio sensorial 

con diferentes muestras de agua embotellada  y de la red pública de 

distribución. El principal objetivo de este estudio consistía en 

correlacionar los parámetros físico-químicos medidos en las aguas con 

las evaluaciones de panelistas entrenados del gusto de estas aguas. 

 

 En el capítulo 4, se presentan las conclusiones generales más importantes 

de esta Tesis. 

 En el capítulo 5, se incorpora un resumen en castellano  de los trabajos 

realizados en esta Tesis. 

 En el último capítulo 6, se presentan las referencias empleadas en esta 

Tesis. 
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5.3 Introducción  

El Área Metropolitana de Barcelona (BMA) se caracteriza por tener un ciclo 

urbano complejo del agua (Marín et al., 2012). Los recursos de  agua cruda para la 

potabilización incluyen agua superficial (del río Ter), agua salobre (del río Llobregat), 

agua subterránea (de los acuíferos del Llobregat y el Besòs), y agua de mar (del Mar 

Mediterráneo). Estés fuentes diferentes de agua cruda se caracterizan  por una gran 

variabilidad en la calidad, y  por  tener diferentes factores y niveles de estrés. 

Aigües de Barcelona (AGBAR) es responsable del suministro de agua potable 

(Paraira and West, 2015) a más de 3 millones de habitantes del Área Metropolitana de 

Barcelona (BMA). El suministro de agua potable a una población tan grande y a todos 

los hogares bajo el cumplimiento de las estrictas normas regulatorias es un gran desafío 

desde el punto de vista de una gestión operativa eficaz. 

La lista de los principales problemas de la calidad del agua encontrados en la 

BMA incluye: 

• La contaminación del agua de los ríos por  fuentes industriales y agrícolas; 

La escasez de agua cruda principalmente debido a la sobreexplotación de las fuentes 

principales de agua, es decir, de los dos ríos cercanos de Barcelona (Llobregat y Ter); 

• Formación de subproductos de la desinfección no deseados (DBPs) en el agua potable; 

• Formación, distribución y el comportamiento de estos subproductos de desinfección a 

lo largo de la red de distribución de agua; 

• Mejora del gusto del agua;  

 

El agua cruda debe ser tratada para intentar eliminar los contaminantes y los 

patógenos, antes de su distribución y uso como agua potable. El diseño de un proceso 

adecuado de tratamiento del agua potable está impulsado por la adecuación de la calidad 

del agua de los diferentes origines del agua cruda. Hoy en día, las instalaciones de 

tratamiento de agua en el BMA emplean diversas tecnologías de tratamiento tales como: 

(a) desinfección con cloro o dióxido de cloro, ozonización, filtración con cartuchos de 

carbón activado granular (GAC); (b) ultra-filtración; (c) ósmosis inversa para el agua 

salobre y para el agua de mar (RO); (d) tratamiento del agua mediante operaciones de 

electrodiálisis reversible (EDR), y (e) la re-mineralización del agua.  
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Los trihalometanos (THM) son un conjunto de compuestos formados como 

subproductos de la desinfección, por la interacción química entre los compuestos 

orgánicos presentes en las aguas superficiales con los oxidantes como el cloro y dióxido 

de cloro (Rook, 1974; Richardson, 2002) utilizados para su desinfección. En particular, 

los compuestos investigados en esta tesis son el cloroformo (CHCl3), el 

bromodiclorometano (CHCl2Br), el clorodibromometano (CHBr2Cl) y el bromoformo 

(CHBr3). La presencia de estos compuestos en las aguas domésticas se considera nocivo  

debido a sus efectos negativos sobre la salud humana (McGeehin et al, 1993; Simpson y 

Hayes, 1998). Debido a que la  desinfección es generalmente necesaria para garantizar 

la calidad del agua potable, es importante tener procedimientos de control y 

monitorización de la calidad del agua para poder predecir y evitar la formación de 

concentraciones altas de trihalometanos y mantenerlos a niveles por debajo de los 

límites recomendados para usos sanitarios. 

Después del tratamiento de desinfección, el agua se distribuye a los clientes a 

través de un sistema de tuberías a presión, bombas, válvulas y tanques de 

almacenamiento, que forman parte del sistema de distribución de agua (WDS) de BMA. 

Los dos ríos (el río Llobregat y el Ter), el agua subterránea y el agua de mar se 

caracterizan por tener  diferentes niveles de calidad del agua, los cuales, junto con los 

diferentes procedimientos de tratamiento empleados en las cinco plantas potabilizadoras 

explica por qué el agua potable suministrada es tan diferente en calidad y características 

organolépticas dentro de la misma BMA. En la red de distribución,  se producen varios 

procesos de mezcla, que han sido implementados para homogeneizar la calidad del agua 

antes de su consumo y estandarizar las características estéticas de agua y asegurar el 

suministro constante de agua potable en la BMA (Valero y Arbós, 2010). Como 

elemento importante de la gestión eficiente de esta distribución del agua,  se considera 

la posibilidad de identificar los origines de agua en mezcla en el interior del WDS. Este 

análisis es crítico para el funcionamiento adecuado de la WDS, así para   eliminar la 

posible corrosión de las tuberías (Lahav et al., 2009). Por lo tanto, se necesita un 

método que permita distinguir los diferentes orígenes de agua y que facilite la 

identificación de posible contaminación accidentaria, así como la reducción de las  

quejas de los consumidores relacionadas con los problemas organolépticos.  

Los procedimientos físico-químicos tradicionales empleados en el tratamiento 

del agua en una ETAP sirven para desinfectar el agua y eliminar los patógenos. Las 

nuevas tecnologías se implementan permanente con el objetivo de mejorar aún más la 
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calidad del agua cruda., Los procedimientos de filtración con membranas (EDR y RO) 

son métodos que permiten eliminar casi todos los contaminantes y la materia orgánica. 

Como inconveniente de estos procedimientos, se produce sin embargo también un  

efecto negativo sobre las propiedades organolépticas del agua (alteración  del gusto del 

agua). El agua potable no sólo debe cumplir con las normas sanitarias, sino que también 

debe tener en cuenta las preferencias de los consumidores, incluyendo el gusto, el olor y 

el color del agua suministrada. Normalmente, se requieren procedimientos de re-

mineralización (Vingerhoeds et al., 2016). El agua re-mineralizada ofrece a los 

consumidores la concentración adecuada de sales principales y también reduce la 

probabilidad de corrosión de las tuberías.  

El sabor del agua depende considerable de la composición química de los minerales 

disueltos. Tanto los cationes como los aniones disueltos en el agua contribuyen a la 

formación del gusto del agua. También pueden interactuar entre ellos a través de efecto 

de sinergismo y antagonismo (Burlingame et al., 2007). Además de las sales inorgánicas 

disueltas (es decir, los sólidos disueltos totales, TDS), los compuestos orgánicos 

volátiles también afectan el sabor del agua. El gusto del agua se puede correlacionar con 

el contenido mineral del agua a partir de experimentos sensoriales con la participación 

de panelistas. El panel incluye un grupo de personas, entrenadas y familiarizadas con el 

análisis organoléptico de aguas naturales y de consumo. Para este propósito se ha 

trabajado con el método de análisis del perfil olfato-gustativo (FPA, Flavour Profile 

Analysis) modificado en AGBAR (Devesa et al., 2004), que consiste en una descripción 

individual de las características de olor y gusto de una muestra de agua mediante una 

serie de descriptores e indicando sus intensidades. Después de los experimentos 

sensoriales, el estudio continúa con un análisis estadístico de los datos recogidos (Naes 

and Risvik, 1996) 

Después del su consumo, el agua usada se transporta al sistema de alcantarillas de 

recogida de aguas residuales. La calidad del agua se ha deteriorado gravemente y se 

requiere un tratamiento de las aguas residuales antes que el agua pse vierta de nuevo a 

los hábitats naturales, como a los ríos o al mar Mediterráneo. En este caso, las plantas 

de tratamiento de aguas residuales juegan un papel importante en el ciclo urbano del 

agua mediante la aplicación de diversos procesos biológicos, físicos y químicos que 

permiten eliminar los desechos del influente y restaurar la calidad del agua. El uso de 

aguas residuales que tienen una buena calidad en agricultura  puede ayudar  a la 

conservación del agua cruda (de mayor calidad). Los procesos de tratamiento de aguas 
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residuales presentan un gran desafío en términos de implementación y control. Se 

reconoce que los procesos de tratamiento de aguas residuales son dinámicos y 

complejos, debido a las variaciones de la calidad de aguas residuales municipales en el 

influente. Las aguas residuales en el influente se caracterizan por tener un flujo 

dinámico y una composición química muy diversa, relacionada con las actividades 

industriales o urbanas, episodios de lluvia y otros. La monitorización y el control 

permanente  de la calidad de las aguas residuales forman  parte importante de la gestión 

eficiente del ciclo urbano del agua, y favorecen la protección del medio ambiente, y así 

permitir un crecimiento sostenible. Para cumplir con las normas sanitarias y legislativas, 

se requiere la monitorización y el control permanente de la calidad del agua cruda, 

durante los procesos de tratamiento en ETAP, de  la calidad del agua en el transporte en 

WDS, y en los procesos de tratamiento en EDAR. Esta monitorización y control de la 

calidad del agua se realizan a partir del seguimiento permanente de un gran número de 

contaminantes ambientales, de los compuestos DBPs, y de varios parámetros físico-

químicos de calidad del agua. Las técnicas más comunes para la monitorización y 

control de la calidad de las aguas incluyen: (a) los métodos estándar de análisis en 

laboratorio, (b) la monitorización con sensores y (c) diversas técnicas de análisis  

instrumental. Los parámetros físico-químicos de calidad del agua, tales como la 

temperatura del agua, la turbidez, la salinidad, el TOC, la conductividad o el pH, se 

pueden medir empleando sensores de detección o mediante la aplicación de las 

metodologías estándar de análisis (APHA, 1995). Estos tipos de monitorización  por lo 

general no son caros y no exigen personal cualificado. Por el contrario, el análisis de 

compuestos tóxicos de contaminación, tales como pesticidas, fármacos, disruptores 

endocrinos, DBPs y otros, requieren el empleo de técnicas instrumentales  como por 

ejemplo LC-MS / MS cromatografía líquida con detección por espectrometría de masas 

en tándem (Kuster et al., 2008) o LC-TOF-MS (cromatografía líquida con detección por 

espectrometría de masas de tiempo de vuelo, Martinez Bueno et al., 2007), que pueden 

detectar concentraciones muy bajas (en pg/L). Sin embargo, estos tipos de análisis son 

caros y requieren  personal cualificado para llevar a cabo dichos los experimentos.  

Debido a que la mayoría de los compuestos orgánicos en el agua cruda, potable 

y residual, absorben la radiación ultravioleta (UV), la espectroscopia de UV se ha 

convertido en una alternativa de bajo precio para la monitorización de la calidad de las 

aguas (Langergraber et al., 2004). Además, los sensores UV tienen otra ventaja - que 

pueden generar una gran cantidad de datos en un período corto de tiempo (Rieger et al., 
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2006). Los datos de calidad del agua, registrados con sensores UV, se pueden analizar 

mediante métodos de análisis multivariante de datos. La estrategia de registrar 

conjuntamente datos de parámetros  fisicoquímicos y de espectros de UV puede ser muy 

útil para obtener información sobre la evolución de la calidad del agua a lo largo del 

tiempo; facilitar la determinación de la variabilidad espacial (es decir, comparar entre 

puntos de muestreo) de la calidad del agua en las plantas ETAP, EDAR o en la WDS. 

Por otra parte, el análisis multivariante de la calidad del agua se puede aplicar para la 

detección de eventos en tiempo real y en sistemas de alerta temprana. Además, los 

modelos multivariante en tiempo real pueden utilizar para predecir instantáneamente la 

calidad del agua en diferentes puntos de observación donde se encuentra el sensor o una 

estación automática de monitorización multi-paramétrica. 

Esta Tesis es coherente con la política medioambiental de la UE, que intenta  

evitar la contaminación del agua y la preservación de los recursos hídricos. 

Esta tesis está relacionada directamente con dos directivas de la Unión Europea: a) la 

Directiva 98/83/CE relacionada con la calidad del agua potable, y b) la Directiva 

91/2271/ CEE relacionada con el tratamiento de las aguas residuales urbanas. 

a) La directiva 98/83/CE está relacionada con la calidad del agua potable 

destinada al consumo humano. Esta directiva  tiene como objetivo establecer nuevas 

normas de calidad para muchos parámetros microbiológicos, tóxicos y  organolépticos. 

Entre los parámetros investigados en esta Tesis están los trihalometanos (subproductos 

de la desinfección en ETAP). La Directiva 98/83/CE regula la concentración máxima de 

la suma de todos THMs, que debe ser inferior a 100 mg/l. 

b) La Directiva 91/2271/CEE está relacionada con el tratamiento de las aguas 

residuales urbanas. Esta directiva procura una reducción de la contaminación de las 

aguas superficiales, por ejemplo, mediante la mejora de la calidad de las aguas 

residuales urbanas vertidas al  medio ambiente después de su tratamiento en EDAR. 

En general, cada componente del ciclo urbano del agua está diseñado para 

generar mejoras sociales y beneficios económicos, su gestión de manera eficiente es un 

gran desafío. Para conseguir un ciclo urbano del agua sostenible, lo  más importante es 

el mantenimiento adecuado de todos los procesos de tratamiento de agua,  a partir de la 

aplicación de sistemas eficientes de monitorización y control de la calidad del agua. Con 

el fin de posibilitar el desarrollo de soluciones sostenibles, en primer lugar hay que 

entender los desafíos y los problemas encontrados en el funcionamiento del círculo 

urbano del agua 
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5.4 Resultados 

Esta tesis  incluye seis artículos que presentan diferentes estudios basándose en 

la aplicación de diversos métodos quimiométricos  en la investigación de varios 

problemas relacionados con la calidad del agua en su círculo urbano. Los artículos están 

organizados en tres bloques de acuerdo con los objetivos principales.  

 

Modelización  de la formación de trihalometanos en una ETAP y en condiciones de 

laboratorio basándose en métodos quimiométricos 

 

La formación de trihalometanos (THMs) en la estación de tratamiento de agua 

potable  de Sant Joan Despí (ETAP-SJD) está asociado con los procedimientos de 

desinfección, empleados para garantizar la calidad del agua potable. Estos 

procedimientos pueden favorecer la formación de altas concentraciones de THMs y 

pueden incumplir con los límites legislativos de la UE. Por eso es tan importante 

identificar cuáles son los principales factores que afectan a la formación de 

trihalometanos y predecir sus concentraciones.  

En este primer bloque, se presentan tres artículos relacionados con la 

investigación del problema de formación de THMs.  

Los resultados de la modelización quimiométrica de la formación de los 

subproductos de desinfección THMs (CHCl3, CHBr3, CHCl2Br, y CHBr2Cl),  generados 

en la ETAP-SJD se presentan en los dos primeros artículos. Ambos trabajos investigan 

las relaciones lineales y no lineales entre los THMs en el agua potable y diversos 

parámetros de operación y funcionamiento, controlados en diferentes procesos y que 

han sido monitorizados en diferentes ubicaciones del tratamiento. Diversos métodos 

quimiométricos, como el análisis de componentes principales (PCA), la regresión lineal 

múltiple (MLR), la regresión de componentes principales (PCR) y la regresión de 

mínimos cuadrados parciales (PLS), la regresión Kernel  de mínimos cuadrados 

parciales (K-PLS) y la regresión con máquinas de vectores de soporte  (SVR), han sido 

aplicados y comparados  a la hora de predecir y visualizar las concentraciones de los 

trihalometanos y  de los parámetros importantes que son responsables de su formación. 

El tercer artículo presenta una metodología para la interpretación de la 

formación  y especiación de los THM,  durante la reacción entre la materia orgánica 
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natural (NOM) y el cloro en experimentos de desinfección simulada en laboratorio y 

utilizando procedimientos quimiométricos. Se han aplicado dos tipos de diseños 

experimentales con el objetivo de evaluar y describir algunos de los principales factores 

influentes en la reacción de formación de trihalometanos.  

En el primer artículo la correlación entre veintitrés parámetros  del 

funcionamiento de la planta potabilizadora ETAP-SJD, medidos en diferentes puntos 

del proceso de desinfección durante un año, se ha analizado  en relación con la 

formación de los trihalometanos medidos de forma independiente en el laboratorio por 

cromatografía d gases. Se han aplicado y comparado el método de análisis de 

componentes principales (PCA), la regresión lineal múltiple (MLR), la regresión de 

componentes principales (PCR) y la regresión de mínimos cuadrados parciales (PLS) en 

la modelización de la formación de los  trihalometanos medidos en el agua potable a la 

salida de la planta. Los resultados, obtenidos con PCA, la interpretación de la 

significancia estadística de los coeficientes de regresión lineal obtenidos (MLR), y la 

evaluación de los variables latentes (en PCR y PLS) revelaron que los parámetros más 

importantes para la formación de trihalometanos eran: la temperatura del agua, la 

concentración del carbono orgánico total, las concentraciones de cloro disuelto, la 

absorbancia ultravioleta, la turbidez, así como otros parámetros como las cantidades 

añadidas del agua subterránea  y la edad de los filtros de los cartuchos de carbón  

activado granular utilizados. En general, los métodos MLR y PLSR consiguieron   

resultados predictivos con errores de predicción similares. Se han obtenido  las mejores 

predicciones (errores de predicción más bajos) para la suma de todos los trihalometanos, 

THMs.  Los errores relativos en su predicción fueron de 12% (en la calibración) y de 

16% (en la validación externa) respectivamente. Entre los trihalometanos individuales, 

las concentraciones de CHBr3 fueron predichas con errores relativos altos,  entre 21-

25% (en la calibración)  y 29-31% (en la validación externa), seguidos por CHCl2Br con 

23-26% y 25-27%. Las mejores predicciones fueron  obtenidas para las concentraciones 

de CHBr2Cl con errores relativos entre 17% y 21%, y para las concentraciones de 

CHCl3 con 21-24% y 23-25%.  

El segundo artículo ha sido continuación del trabajo hecho en la investigación 

previa con un  la incorporación de medidas sobre parámetros nuevos. Los 23 parámetros 

de funcionamiento medidos en ETAP-SJD en el primer estudio,  fueron obtenidos en las 

últimas etapas del proceso de desinfección (después de las etapas de filtración con 

arena), los cuales eran controlados desde dentro de la planta. Varios parámetros 
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importantes de la ETAP–SJD no eran incluidos en este primer análisis.  Se sospechó  

por lo tanto, que estos parámetros podían ser críticos para mejorar la capacidad de 

predicción de los modelos. La revisión de la literatura sugirió  que algunos parámetros 

de calidad medidos en ETAP-SJD, como los del agua cruda y los del pre-tratamiento 

inicial con cloro, podían ser importantes para el proceso de formación de 

trihalometanos. Por eso en este segundo estudio,  se incorporaron  dieciocho nuevos 

parámetros medidos en el agua cruda  y en las etapas de precloración  (las dos primeras 

etapas omitidas en el primer estudio).  Se hizo un nuevo análisis del conjunto de datos 

con el objetivo de mejorar los resultados de la predicción de THMs del estudio anterior. 

La nueva investigación analizó las correlaciones  entre los cuarenta y uno parámetros de 

la ETAP-SJD durante un período de un año.  

Como novedad de este segundo estudio ha sido también la aplicación de técnicas 

de regresión no lineales, tales como la regresión de Kernel por mínimos cuadrados 

parciales (K-PLS) utilizando las funciones de base radial y la regresión  con máquinas 

de soporte vectorial (SVR). EL objetivo fue la modelización de las posibles relaciones 

no lineales entre los parámetros  de funcionamiento y del agua cruda y las 

concentraciones de THMs en el agua potable en la salida de la planta. 

La modelización lineal basándose en los 41 parámetros de ETAP-SJD resultó 

mejor con errores de predicción entre  2-4% más bajos en la validación externa en 

comparación a cuando se utilizaron 23 parámetros (en el primer estudio). La 

incorporación de los nuevos 18 parámetros resultaba pues importante para la mejora en  

la predicción global de THMs.  

Los mejores resultados se han logrado sin embargo con la aplicación de K-PLSR 

y SVR. Los errores relativos de predicción fueron entre  6% y  10% más bajos en 

comparación con  los obtenidos aplicando métodos de regresión lineal. Se encontró que 

la mejor predicción se obtuvo  para la suma de todos THMs con  errores relativos de 

predicción de 13,6%. En este segundo estudio la predicción del cloroformo y del 

bromoformo se ha mejoraron   con errores de 8-10% más bajos en comparación con los 

errores obtenidos en el primer estudio.  

También en este estudio, se han evaluado las posibilidades de interpretar los 

resultados de las técnicas de regresión no lineal. . En este estudio se conseguía la 

visualización e interpretación de las interacciones entre los parámetros en los modelos 

de  K-PLSR y SVR. Las observaciones demostraron que es posible discutir las 

relaciones no lineales entre los parámetros de monitorización en ETAP-SJD. Entre los 
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nuevos parámetros más importantes para la formación de los THMs  destacaron la 

temperatura del agua cruda, la oxidabilidad, la turbidez, los cloruros y el consumo de 

cloro al principio de la precloración. También se han confirmado como influentes  todos 

los parámetros destacados en el primer estudio. 

Finalmente, en el tercer artículo se han estudiado los factores que influyen de 

forma más importante en la formación de trihalometanos entre diferentes fracciones 

(parte coloidal, parte hidrofóbica y parte transphilica) de la materia orgánica disuelta 

(DOM) a partir de la reacción con cloro en la desinfección simulada en el laboratorio de 

soluciones acuosas. La DOM fue fraccionada utilizando agua de embalse de  Caldeirão 

(Portugal). Esta investigación implicó el diseño  experimental factorial  por el 

procedimiento  Plaquet-Burman con cinco factores (la concentración de DOM, la dosis 

de cloro, la temperatura, el pH y la concentración de bromuros) y un segundo diseño 

experimental factorial Box-Behnken para un análisis  detallado de tres de los factores 

más importantes (la concentración de DOM, la dosis de cloro y la temperatura). Los 

resultados mostraron que la fracción coloidal tiene una contribución relativamente baja 

a la formación de THM. La fracción transphilica es importante para  la formación 

aproximadamente del 50% de  del cloroformo. La fracción hidrofóbica fue la fracción 

más importante para la formación de los THM bromados. Cuando se desinfectaron 

soluciones acuosas con fracción coloidal y fracción hidrofóbica, la mayor concentración 

de la fracción de DOM generó mayores concentraciones de THM. El aumento del pH 

produjo mayores niveles de cloroformo y reducción de los del bromoformo; dosis altas 

de cloro y temperaturas altas produjeron un aumento de la formación de THM en total, 

y más específicamente de los THMs clorados. Por otra parte la mayor concentración de 

bromuros generó mayores concentraciones de los THM bromados. Se aplicaron  

modelos lineales de mezcla y se obtuvieron gráficos de superficie de respuesta para las 

cuatro concentraciones de THM y para su suma en total, en función de la concentración 

de DOM, de la dosis de cloro, y de la temperatura. En general, los resultados indicaron 

que los modelos de formación de THM son muy complejos debido a los efectos de los 

factores individuales y de las interacciones significativas entre los factores. 

 

Lista de artículos científicos incluidos en este bloque: 

1. Article 1 – Platikanov, S., Puig, X., Martin, J. and R.  Tauler. Chemometric 

modeling and prediction of trihalomethane formation in Barcelona’s water 

works plant. Water Research 41 (2007) 3394-3406. 
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2. Article 2 – Platikanov, S.,  Martin, J. and R.  Tauler. Linear and non-linear 

chemometric modeling of THM formation in Barcelona's water treatment plant. 

Science of Total Environment 432 (2012) 365-374. 

 

3. Article 3 – Platikanov, S.,  Tauler, R., Rodriguez, P., Antunes, M., Pereira, D. 

and J. Esteves da Silva. Factorial Analysis of the trihalomethane formation in 

the reaction of colloidal, hydrophobic and transphilic fractions of DOM with 

free chlorine. Environmental Science and Pollution Research 17 (2010) 1389-

1400. 

 

 

 

Modelización quimiométrica  de  datos espectrales de ultravioleta y de parámetros 

físico-químicos en el agua potable y en el agua residual 

 

El segundo  bloque incluye dos artículos con estudios de modelización 

quimiométrica  utilizando datos espectrales de ultravioleta (UV) y parámetros físico-

químicos del agua potable o residual con el objetivo de mejorar la monitorización de la 

calidad del agua en la red  de distribución del agua de Barcelona (WDS) y en la salida 

de la planta de tratamiento de aguas residuales (EDAR) cerca de la ciudad de Girona 

(Cataluña).  

Las fuentes principales de agua cruda (superficial, subterránea o del mar), agua 

tratada (diferentes instalaciones y proceso de desinfección)  o agua residual (urbana o 

industrial) se caracterizan por  su materia orgánica natural (NOM)  y presentan una  

composición química específica.  En función de esta composición de NOM, las fuentes 

principales del agua cruda  presentan  características muy particulares o huellas 

(fingerprint) en sus espectros de UV, porque en general están asociados con su origen 

geográfico. En los estudios incluidos en los dos artículos se ha investigado la 

posibilidad de monitorizar y predecir la calidad del agua aplicando quimiometría a datos 

espectrales. 

En el primer trabajo se han desarrollado modelos quimiométricos capaces de 

predecir diferentes fuentes u orígenes del agua potable (en función del su origen 
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geográfico o del tratamiento empleado en ETAP) en sus mezclas, situación típica de la 

red de distribución de Barcelona.  

El área metropolitana de Barcelona tiene una red de distribución (WDS) del 

agua potable muy larga y sofisticada, en continua reconstrucción. Hasta cinco  

diferentes orígenes de agua de suministro se pueden distinguir en esta red - diferentes 

plantas de tratamiento de agua potable tratando agua cruda procedente de los dos ríos (el  

Llobregat y  el Ter), de acuíferos  y del mar Mediterráneo. El conocimiento de  las 

fuentes de agua en diferentes lugares de la WDS a lo largo del tiempo facilita a los 

operadores mejorar la gestión global del sistema de distribución. 

Los métodos empleados se han basado en el uso combinado de datos espectrales 

de UV entre 190 y 270 nm, y en la aplicación de la regresión de mínimos cuadrados 

parciales (PLS). A partir de las diferencias en la composición de la materia orgánica de 

las diferentes fuentes de agua y de sus características espectrales, el modelo PLS fue 

capaz de determinar las cantidades relativas (en mezclas diseñadas) de los dos 

principales origines  de agua cruda - los ríos el Llobregat y el Ter, con muestras 

tomadas en diferentes lugares (agua de la red de distribución, del grifo)  de WDS de 

Barcelona. A continuación, se ha ampliado este  estudio al desarrollo de un nuevo 

método con el objetivo de determinar las cantidades relativas de las aguas potables 

presentes en mezclas diseñadas sintéticamente,  a partir de agua de las cinco plantas de 

tratamiento de agua potables de Barcelona. Durante esta modelización se ha  requerido 

información adicional de otros parámetros que se ha incorporado al modelo PLS. En 

particular, la determinación y cuantificación del origen del agua potable procedente de 

una planta de desalinización,  se ha logrado cuando las concentraciones de  boro  ese 

han incluidos en el análisis. 

En el segundo artículo de este bloque se estudian las correlaciones entre 

diferentes parámetros físico-químicos de funcionamiento y los datos espectrales de UV 

en relación con la calidad del agua residual en la entrada y la salida de una planta de 

tratamiento de aguas residuales real. También se realizaron  varios experimentos 

diseñados en laboratorio con mezclas sintéticas de agua.  

Los métodos  quimiométricos tales como el análisis de componentes principales 

(PCA) y la regresión por mínimos cuadrados parciales (PLS) se han aplicado para 

explorar y analizar los procesos de tratamiento, para comparar y evaluar las  técnicas  de 

monitorización de los parámetros de calidad del agua en una planta de tratamiento de 

aguas residuales (EDAR). Diferentes conjuntos de datos (obtenidos del análisis de 
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laboratorio rutinario y por un sistema automático de seguimiento o monitorización 

multi-paramétrica con un nuevo dispositivo espectral) han sido investigados con los 

métodos quimiométricos. Se han detectado variaciones en la de calidad de agua 

monitorizada en el influente y  en el efluente de  la planta depuradora en función del 

tratamiento. También, los resultados obtenidos han permitido la investigación de las 

relaciones más importantes entre los parámetros monitorizados y de su dependencia 

cíclica en el tiempo (variación diaria, mensual y anual). En este estudio también se ha 

investigado la modelización y predicción de las concentraciones de varios de los 

parámetros fisicoquímicos del agua que son relevantes en la evaluación de la calidad del 

agua.  Los parámetros de modelización han sido la materia orgánica disuelta (DOM), el 

carbono orgánico total (TOC),  las concentraciones de nitratos, de detergentes, y del 

fenol. Estos modelos PLS han sido desarrollados para  correlacionar las concentraciones 

de un determinado parámetro en función  de los espectros de UV, medidos en muestras 

recogidas en: (1) en el laboratorio a partir de mezclas de agua sintética y pre-diseñadas); 

y (2) in-situ en una EDAR, con  muestras reales de agua residual medidas en la planta. 

En el estudio con las mezclas de agua sintética pre-diseñadas, se seleccionaron 

longitudes de onda específicas que permitieran establecer modelos simples y fiables de 

predicción. De esta manera, se obtuvieron resultados de  predicción con errores relativos 

de 3%  a 4% para las concentraciones de los nitratos, de los detergentes y del fenol.  El 

error relativo en la predicción de DOM era  15% en la validación externa. La predicción 

de los nitratos y de la TOC en muestras reales medidas en  el efluente de la planta  ha 

sido bastantes buenas con errores de predicción bajos (menos de 20%). 

 

Lista de artículos científicos incluidos en este bloque: 

1. Article 4 – Platikanov, S., Garcia, V., Landeros, E., Devesa, R., Matía, L.,  

Tauler, R., Determination of water supply sources in the Barcelona distribution 

system by UV spectrophotometry and PLS. Water Science and Technology- 

Water Supply 11 (2011) 45-54. 

 

 

2. Article 5 – Platikanov, S., Rodriguez-Mozaz, S., Huerta, B., Barcelo, D., Cros, 

J., Batlle, M., Poch, G., Tauler, R.  Chemometrics quality assessment of 

wastewater treatment plant effluents using physicochemical parameters and UV 
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absorption measurements. Journal of Environmental management 140 (2014) 

33-44. 

 

Aplicación de métodos quimiométricos a datos relacionados con el gusto del agua y 

el  análisis  sensorial 

 

El Área Metropolitana de Barcelona (BMA) suministra agua potable 

principalmente procedente de  los dos ríos -el río Llobregat y el rio Ter. Como 

consecuencia del clima local, los recursos hídricos están expuestos a sequías cíclicas.  

En términos de la gestión del agua potable y de su suministro, tiene también un efecto 

negativo la contaminación del agua debido a la industria minera y  a los vertidos 

industriales en las dos cuencas hidrográficas, afectando gravemente a la calidad del 

agua cruda en las entradas de ETAP.  Las tecnologías de filtración por membranas y de 

desalación de agua de procedente del mar permiten mejorar la calidad y cumplir con la 

demanda del agua potable, como nuevos recursos alternativos. Dichas  tecnologías son 

muy eficientes en la eliminación de compuestos tóxicos, la materia orgánica y los 

patógenos, pero su uso requiere una re-mineralización para mejorar las propiedades 

organolépticas del agua potable y para minimizar el efecto corrosivo de muchas sales. 

En general la calidad del agua potable es apreciada por la gente. Por ejemplo, se sabe 

que el gusto del agua depende de la composición química (contenido de sales)  y que 

cationes y los aniones contribuyen en manera diferente a partir de mecanismos de  

interacción por sinergismo y antagonismo. Las preferencias del gusto del agua en la red 

de distribución del agua de la BMA han sido investigadas durante varios años. Sin 

embargo, se requiere mejorar el conocimiento sobre los efectos de los compuestos  

químicos  en la satisfacción de los gustos de la gente. Los experimentos  del análisis 

sensorial empleando panelistas entrenados pueden proporcionar información valiosa 

para entender mejor  el gusto del agua. 

En este artículo, se realizó un análisis quimiométrico de dos conjuntos de datos 

sensoriales obtenidos en estudios separados. Han sido examinadas veinte aguas  

embotelladas por panelistas entrenados en un primer estudio, veinte aguas  embotelladas 

y veinticinco aguas embotelladas o de la red de distribución en el segundo estudio. . Los 

panelistas han expresado sus preferencias del gusto de cada muestra del agua 

calificando de 0 (el peor gusto) a 10  (el mejor gusto del agua). La puntuación media de 

todos los panelistas se correlaciono con las propiedades físico-químicas de las mismas 
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muestras. Trece diferentes parámetros físico-químicos fueron analizados en ambos 

estudios. En el segundo estudio se añadieron los niveles de cloro residual de  aguas del 

sistema de distribución. Se aplicó el Análisis de componentes principales (PCA) a los 

parámetros físico-químicos y a la puntuación promedio de todos los panelistas.  Los 

modelos PCA desarrollados han explicado la mayor parte de la varianza (información) 

presente en los datos experimentales. Por otra parte, se ha aplicado la regresión de 

mínimos cuadrados parciales (PLS)  para correlacionar las puntuaciones promedio de 

los panelistas con los datos físico-químicos, con el objetivo de explicar cuales son los 

motivos de estos evaluaciones de los panelistas. Los resultados obtenidos en los dos 

estudios surgirieron  que las  muestras preferidas de agua se caracterizaban con un 

contenido de minerales de  concentración  moderada  y con unas concentraciones de 

HCO3
-, SO4

2-, Ca2+ y Mg2+ relativamente altas y con valores de pH relativamente alto. 

Las altas concentraciones de Na+, K+ y Cl- se puntuaron con valores  bajos por parte de 

muchos de los panelistas, mientras el cloro residual no afectó a las puntuaciones. Se ha 

comprobado que la presencia de cloro residual ha permitido a los panelistas distinguir 

entre muestras de aguas embotelladas  y aguas del grifo. 

 

Lista de artículos científicos incluidos en este bloque: 

1. Article 6 – Platikanov, S., Garcia, V., Fonseca, I., Rullan, E., Devesa, R., 

Tauler, R., Influence of minerals on the taste of bottled and tap water: A 

chemometric approach. Water Research 47 (2013) 693-704. 
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5.5 Conclusiones  

 

Conclusiones relacionadas con el análisis y monitorización de la calidad del 

agua 

 

 

 Se ha confirmado que en el caso de la planta de potabilización de aguas de 

Sant Joan Despí, la formación de trihalometanos dependía de los parámetros 

de funcionamiento de la planta de tratamiento en el proceso de desinfección 

y de algunos parámetros ambientales típicos que afectan a  la calidad de 

agua del río. Los parámetros ambientales más importantes han sido la 

temperatura del agua, la absorbancia ultravioleta a 254 nm (que refleja el 

contenido en materia orgánica), las concentraciones del carbono orgánico 

total, la conductividad del agua, la oxidabilidad y la turbidez. Estos 

parámetros son controlados en el agua original del río y a lo largo del 

proceso de desinfección en la planta. Los parámetros de funcionamiento 

más importantes para la formación THMs durante la desinfección han sido: 

la dosis del cloro y la edad (tiempo de uso) de los filtros de carbón. 

 

 Se ha confirmado que la formación de trihalometanos en la planta de San 

Juan Despí empieza durante la etapa de pre-cloración y continúa en las 

etapas de post-cloración. El proceso de filtración con carbón activo y la 

adición temporal de determinadas cantidades de agua subterránea reduce 

significativamente la formación de trihalometanos. 

 

 Se ha detectado que la formación de trihalometanos está caracterizada por  

una variación estacional apreciable. La estación con más formación de 

trihalometanos ha resultado ser la primavera, con predominio de las 

especies bromadas de los THMs y con disminución  del cloroformo. 

 

 Se ha confirmado, que la materia orgánica disuelta (DOM) ha sido un factor 

muy importante para la especiación de los THMs durante su formación. La 

fracción coloidal de DOM generó aproximadamente 20-30% de cada THMs 

y aproximadamente 25% de los trihalometanos formados en total. La 
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fracción hidrofóbica ha sido la más relevante en la formación de los 

trihalometanos bromados. En cambio la fracción transphilica?? resulta  más 

importante en la formación del cloroformo. Ambas fracciones, resultan ser 

responsables  de la formación de alrededor el 80% de los THMs totales. 

 

 Se ha confirmado la importancia de la presencia inicial en el agua de  

bromuro en la formación de los trihalometanos bromados durante la 

desinfección. Cantidades pequeñas de bromuros en el agua de entrada del 

rio alterara significativamente la formación de trihalometanos bromados. 

 

 En esta tesis se ha demostrado que la espectrofotometría ultravioleta visible 

acoplada con los métodos quimiométricos puede ser una herramienta 

analítica poderosa para el análisis de la composición de mezclas de agua de 

diferente funete7origen. Se pudo diferenciar hasta cinco diversas 

fuentes/orígenes del agua potable para Barcelona, basándose en el contenido 

de materia orgánica natural, detectable a partir de espectrofotometría UV-

VIS. Además, se pudo predecir las concentraciones de varios parámetros de 

calidad del agua, tales como materia orgánica disuelta, nitratos, detergentes 

y fenoles.   

 

 Se ha utilizado la espectrofotometría ultravioleta visible, individualmente o 

de forma complementaria con los parámetros fisicoquímicos,  para  la 

modelización y seguimiento de la calidad del agua. 

 

 Se han detectado las variaciones temporales y espaciales (estacionales,  de 

actividad urbana diurna y nocturna, de los cambios de calidad del agua en el  

influente o en el  efluente) en la calidad de las aguas residuales, a partir del 

análisis quimiométrico conjunto de los datos espectrales y fisicoquímicos. A 

partir del análisis de estos datos se pueden detectar los  eventos no típicos y 

poco frecuentes, tales como los episodios de precipitación y accidentes de 

contaminación del agua también. 

 

 Se ha demostrado que la mineralización total de las aguas embotelladas y 

del grifo ha sido el factor más influyente que determina el gusto por el agua 

de los panelistas empleados en los experimentos sensoriales. Ha sido más 
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apreciada  la mineralización total del agua, entre 200- 400 mg/L, (expresada 

en forma de sólidos disueltos totales). No han sido tan apreciadas las aguas 

con mineralización total por encima de 800 mg/L y por debajo de 50 mg/L. 

Se ha detectado que un gran número de panelistas que preferían aguas con 

concentraciones relativamente altas de Ca2+, Mg2+, SO4
2- y HCO3

-. Se ha 

detectado también que existe un grupo más reducido de panelistas que 

preferían las aguas con altas concentraciones de K+, Na+ y Cl-. 

 

 Se ha  detectado que el cloro residual en al agua del grifo (en los niveles en 

que se encuentra y a la temperatura de los ensayos) no influye de forma 

determinante en el gusto de los panelistas, sin embargo, los panelistas 

usaban este parámetro para discriminar entre las muestras de agua 

embotellada y del grifo. 

 

 

Las conclusiones relacionadas con la aplicación de los métodos quimiometría en el 

análisis de datos y monitorización de calidad del agua son las siguientes: 

 

 Se ha comprobado la validez de diversos métodos quimiométricos  para el 

análisis de  problemas relacionados con la determinación y seguimiento de 

la calidad del agua. En esta Tesis, se ha demostrado la eficacia de los 

métodos del análisis exploratorio de datos multivariante, tales como el 

Análisis de Componentes Principales (PCA),  y de los métodos de 

calibración multivariante., tales como los métodos de análisis de regresión 

múltiple (MLR), regresión de mínimos cuadrado parciales (PLS), regresión 

mediante máquinas de soporte vectorial (Support Vector Machine 

Regressión), regresión Kernel no lineal de Mínimos Cuadrados Parciales 

(K-PLS). Se ha comprobado la aplicabilidad de la estrategia de diseño 

experimental mediante superficies de respuesta,  que ha resultado ser una 

herramienta útil y económica  en el descubrimiento de los factores más 

importantes en la formación de trihalometanos. 

 



  Chapter 5. Summary in Spanish 

240 

 

 Se ha confirmó la eficacia de las diversas técnicas y herramientas de 

visualización de PCA y PLS a partir de los gráficos de los ‘scores’, 

‘loadings’ y ‘weights’. Esta visualización ha permitido a descubrir las 

fuentes principales (factores) de varianza de los datos en los casos 

investigados. El análisis de los ‘scores’ ha permitido detectar la variabilidad 

temporal, las variaciones semanales, diurnas o nocturnas en la formación de 

THM, la actividad urbana en relación con la calidad del agua residual y el 

comportamiento de los diversos grupos de panelistas en función de su 

preferencia por el gusto del agua. También se han analizado los mapas de 

distribución de los scores que permiten diagnosticar la variabilidad  

relacionada con los cambios dinámicos en la calidad del agua residual en la 

entrada o en la salida  de la planta de trataminto;  los eventos no típicos del 

proceso de tratamiento, tales como los episodios de precipitaciones y de 

accidentes no deseados de contaminación del agua. Todo esto confirma  la 

utilidad de la metodología quimiométrica utilizada para análisis de control 

de calidad.  

 

 La visualización de los ‘loadings’, y  ‘loadings weights’  (pesos de los 

variables)  en PCA y PLS,  hizo posible identificar diversos parámetros 

ambientales y de operación de planta, que han sido importantes en la 

formación de trihalometanos durante la desinfección  del agua potable; 

permiten determinar cuáles han sido  las variables con mayor influencia en 

la dinámica de la calidad del agua de las aguas residuales y cuáles son los 

compuestos minerales más determinantes del gusto del agua embotellada o 

del grifo. 

 

 En esta tesis, se ha confirmado la  utilidad de las nuevas técnicas de 

visualización   obtenidas durante la modelización no lineal con K-PLS y 

SVR, que permiten revelar cuales son las relaciones no lineales entre los 

varios parámetros ambientales y de operación en la planta potabilizadora. 

 
 El procedimiento  de evaluación de la  importancia de las  variables en 

proyección (Variable Importance in Projection, VIP)  ha resultado útil para 

la selección óptima de un conjunto reducido de diferentes parámetros físico-
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químicos, de longitudes de onda espectrales, y de  compuestos minerales en 

la predicción de la calidad del agua.  

 Las técnicas de regresión tales como MLR,  PLS y K-PLS han producido 

estimaciones precisas de los parámetros de calidad investigados. Se 

recomienda  la aplicación rutinaria de estas técnicas para la modelización de 

los compuestos y parámetros de interés en estudios relacionados con la 

calidad del agua. 

 

 

 Se ha comprobado que el análisis factorial basado en el diseño experimental  

es muy útil  para comprender los factores principales que afectan a la 

formación de THMs durante la desinfección del agua. Los diseños 

experimentales aplicados en esta Tesis, tales como el Plaquet-Burman y  el 

Box-Behnken,  han sido muy útiles para seleccionar y evaluar la 

importancia de los parámetros influyentes y sus efectos e interacciones en la 

formación de trihalometanos. 
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