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We study the static properties of the Little model with asymmetric couplings. We show that the ther-
modynamics of this model coincides with that of the Sherrington-Kirkpatrick model, and we compute
the main finite-size corrections to the difference of the free energy between these two models and to some
clarifying order parameters. Our results agree with numerical simulations. Numerical results are
presented for the symmetric Little model, which show that the same conclusions are also valid in this

case.

I. INTRODUCTION

Encouraged by some numerical results on the exact
evaluation of the partition function for small systems,1
which signaled the possibility of different behavior be-
tween the Little spin-glass model? and the Sherrington-
Kirkpatrick (SK) model,® we have performed an exten-
sive study of their static properties in order to see to what
extent they differ.

The Little model consists of two sets of N spins {o;,7;;
i=1,...,N} and the interaction is governed by the
Hamiltonian

i#*j

iTj

- (1)

where J;; are quenched variables with zero mean and
variance 1/N. When the coupling matrix is symmetric
(J;;=Jj;), we have the symmetric Little model. On the
contrary, if J;; and J;; are uncorrelated variables, we have
the asymmetric Little model.

The symmetric Little model, which has been applied in
the context of neural networks,* gives the dynamics of a
neural net with parallel updating. Cabasino et al.! have
studied the eigenstates and limit cycles of the SK model,
performing a parallel updating of the spins. In their nu-
merical results, done at T =0, it was shown that the ener-
gy of the lowest-lying limit cycles was clearly lower than
that obtained for the lowest eigenstates. The difference of
the energies grew when the size of the system was in-
creased. As the eigenstates of lowest energy correspond
to the ground states of the SK model and the cycles of
lowest energy correspond to the ground states of the sym-
metric Little model, we then considered the possibility
that, in the thermodynamic limit, the free energy of the
SK model might be larger than the free energy of the
symmetric Little model. In the replica-symmetric ap-
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proximation, the same energy was found in the context of
neural networks.* The question concerning a possible
difference between these energies when the replica sym-
metry is broken remained open.

Since the symmetric Little model is analytically more
complex than the asymmetric one, and since our main in-
terest is the study of static properties, we have concen-
trated on the asymmetric case which simplifies consider-
ably the analysis. In fact, similar behavior is found in the
symmetric and the asymmetric cases at low temperatures,
as shown in Figs. 1(a) and 1(b). In Fig. 1(a), we plot the
energies for the symmetric Little model with binary cou-
plings i.e., at T=0.5, J=+1/V' N —1 vs N~ '/2. These
results (as those shown in Ref. 1 at T =0) suggest that the
energy of the symmetric Little model is clearly lower
than that in the SK model. For small sizes, the difference
between these energies increases as the size grows. If we
were to extrapolate the energy of the Little model to the
limit N — oo by a straight line, as is sometimes done® for
the SK model, we would obtain different values. On the
other hand, in Fig. 1(b) we plot the energies of the asym-
metric Little model and the SK model for the case of
Gaussian couplings [zero mean and 1/(N —1) variance]
at T=0.5 vs N~ 12, As happens for the data shown in
Fig. 1(a) for the symmetric Little model, the energy of the
asymmetric case is also lower than that in the SK model.

It has to be pointed out that the differences in energy
between the Little model (both symmetric and asym-
metric cases) and the SK model for small sizes is strongly
dependent on the nature of the distribution of couplings
(if it is binary or Gaussian and if their variances behaves
like 1/N or 1/N —1). For instance, the analog of Fig.
1(b) for the asymmetric Little model, but using binary
couplings instead of Gaussian ones, shows that both mod-
els seem to converge to the same value of energy in the
thermodynamic limit. Since the different distribution of

5339 ©1992 The American Physical Society



5340

couplings introduce 1/N corrections to all the thermo-
dynamic quantities, we are led to the conclusion that only
a systematic study (theoretical and also numerical for
large sizes) will shed light on these questions. Even
though this task could be undertaken for the Little model
in the symmetric case, we have focused our study in the
asymmetric one.

In fact, all features and conclusions of this work are
common to both models. In many aspects (the formula-
tion of the problem, the mathematical structure of the
formulas, and the procedure to follow in solving it), when
solving the asymmetric Little model we are facing the
same type of questions as in the symmetric case but with
greater simplicity. This gives us confidence that the main
features for the asymmetric Little model can be extended
to the symmetric case. In fact, in our original investiga-
tion we looked for the symmetric Little model. When
solving the symmetric Little model by means of the repli-
ca method, one arrives at a saddle-point equation in an
order-parameter space consisting of four matrices and
one vector. The order-parameter space is too much large
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FIG. 1. (a) Energy for the symmetric Little model and the
SK model plotted vs N ~!/?2 by making exact calculations of the
partition function for small samples at T =0.5. Analog results
at T =0 are shown in Ref. 1. It seems that f;;r < fsk, signaling
the possibility of a different behavior between both models. (b)
Energy for the asymmetric Little model and the SK model plot-
ted vs N ~'/? by making exact calculations of the partition func-
tion for small samples at T =0.5. It seems that f 1 < fsk, sig-
naling the possibility of a different behavior between both mod-
els.
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to perform reliable calculations. Moreover, if the sym-
metric Little model coincides with the SK model, further
study of the spectrum of fluctuations in order to compute
finite-size effects can be very cumbersome. On the other
hand, in case of the asymmetric Little model, one arrives
to a problem in which the only order parameters are two
matrices which reduce considerably the complexity of the
analysis. Then, a lot of simplicity is gained.

To substantiate the main idea on the similarity of the
results between the symmetric Little model and the asym-
metric Little model, we present in Sec. VI numerical re-
sults for the symmetric case. They confirm our predic-
tions and strengthen our conclusions.

From now on, when we speak about the Little model
we are implicitily assuming that we are treating the
asymmetric case. In this work we will corroborate a re-
sult already suggested in earlier works, i.e., the Little
model converges to the SK model in the thermodynamic
limit. We will explain how the finite-size behavior of the
Little model, which led us to suspect the possible ex-
istence of different thermodynamic limits for these mod-
els, can be understood.

The paper is organized as follows. In Sec. II, we solve
the model by using the standard techniques of spin-glass
theory. We introduce some order parameters and we
show some peculiar features in their solutions. In Sec.
III, we will study and prove the stability of the SK-like
solution for the Little model. In Sec. IV, we will compute
the main finite-size corrections for the difference of free
energy between the Little model and the SK model and
we will see that it goes as 1/N. In Sec. V, we will obtain
the main finite-size corrections for an interesting order
parameter which vanishes with a 1/N correction. These
results will clearly show that the SK solution is the
correct one (the stable solution of lowest free energy) for
the Little model. Numerical results will be presented in
Secs. IV and V in order to test the theoretical predictions.
In Sec. VI, we present numerical results on the symmetric
Little model in the same line as presented in Secs. IV and
V. They strengthen the main ideas of our work. Section
VII summarizes the results. Some comments on finite-
size corrections for the SK model in the spin-glass phase
will be in order.

II. ANALYTICAL SOLUTION OF THE LITTLE MODEL

In this section we proceed in order to solve the asym-
metric Little model defined in Eq. (1). Applying the re-
plica technique® and using standard procedures for spin
glasses,” we obtain the following saddle-point equation:

. 2
Z- [ I % dP,,dQ,, | exp[—N A (P,Q)],
a<b
where ?
__Bn_ 5 2 2
A(P,Q) ) +B E(Pab+Qab)
a<b
—InTr,exp [ S (P, +iQu)0,0, l
a<b
— InTr exp [BZ D (Pyy,—iQu )7, Ty ] 3)
a<b
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and — 5T %
(g5 )=%+—2 S (oloiojo})
Py=—3(0,0,)+{1,m)), N ij=1
. 4) (i#j)
Qab=—é((aaab)—(‘ra‘rb)), ~(0,0,)? asN—ow . 9)
with Now we have to sum over all transformations of the
matrices P and Q which contribute equally to the saddle-
Tr,o,0,exp (B> S (P, +iQ,)0,0, ] point exponent. In the SK model, these transformatlons
(o.0,)= a<b (5) are all the permutations of the order-parameter matrix.?
b Tr,exp (B> 3 (P, +iQ,,)0,0, l ’ In our case one has to be careful because we have two
a<b order-parameter matrices P,Q and only certain permuta-
Tr 7,7, exp [B? S (Poy—iQu )7, Ty tions are allowed. To find these permutations we look at
(r.r )= a<b ) A(P,Q) in formula (3) and search for all the per-
a’b Tr,exp B? > (P —iQgp )T, Ty mutations of the matrices P,Q which leave it invariant.
a<b Let us consxder the two terms Ea < (PL+Q2%) and

We extract the free energy per spin making the usual
analytic continuation:

L Z)]
Sfrir=Ilim lim

n—0N—>w 2Nn @

(the factor 2N comes when normalizing correctly the free
energy in order to compare it with the free energy of the
SK model).

The correct solution minimizes the free energy in the
space of matrices P,Q. The usual SK solution is
recovered if we suppose that the symmetry between o
and 7 is not broken. That is, {o,0,)={7,7,) which
means P =Pgx (which is the hierarchical parameteriza-
tion for the SK model) and Q =0. On the contrary, if
Q0 below a certain temperature, it would mean that
the symmetry between o and 7 is broken and another
phase transition is expected.

We can obtain several order parameters for the Little
model depending on what correlation functions we con-
sider. We want to show some peculiarities to take into
account when solving the Little model because they will
be of interest in Sec. IV. To this end, we introduce the
following overlap'

In Tr exp [+ ]+ InTr exp[ -] The term
InTr exp[ * - ]+ InTr, exp[ -+ ] is invariant if we
make an arbitrary permutation of the matrix P or a per-
mutation of the matrix Q. That is, in terms of the indices
of the matrices, we can change freely o,«>0;, T 7).
But the term 3, ,(P%+Q2) is 1nvar1ant only when
permutations of the indices of o and 7 are done in such a
way that the product (P, +iQ,, (P, —iQ,,) is invari-
ant. Then, the permutation o ;«>0; implies the permuta-
tion 7,<>7;. Another allowed transformation is that
which changes o;<»>7; for all i. These transformations
generate all the equivalent saddle points which contribute
to the saddle-point integral. Summarizing, the transfor-
mations in question are (1) o; (>0 j, T, [1<i,j<n,and
(2) o;>7; alli.

To obtain the correct expression for the second mo-
ment (g% ) we perform the sum over all equivalent sad-

dle points and we obtain

<q§)— 2(<0' 0'b> +<T Tb)2
( -1 a<b
— 2
= __1) agb( —Qun) - (10)

We can obtain, for the Little model, the Bray and

N lgl 7] (8) Moore formula for the energy (proceeding as for the SK
model®):
It is the overlap between two sets of spins o belonging to B
two different replicas. Averaging over all the phase space =— —( 1—(o;7; (o)) . an
of configurations o, [{( ---))] and averaging over the
disorder [( - - - )], we obtain In this case
|
(077, 02={ 0,0, a7y
=sum over all saddle points
= 2 <0' a%p )<T Ty >
( a<b
=n(n—1) agb(Pab Q4 N(Pgp +1Q4p )= (n—l) ‘Z:b(P » +0%) - (12)
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Then, the formula is

2

U==h|1— nin—1)

S (PL+02) | . (13)

a<b

If Q=0, P=Pg, the energy converges to the value
found in the SK model. With this introductory discus-
sion we can test the stability of the SK solution for the
Little model and compute the most interesting finite-size
corrections.

III. STABILITY OF THE SK SOLUTION
FOR THE LITTLE MODEL

To see if the solution P =Pg, Q =0 is stable, we have
to investigate the spectrum of fluctuations around it in-
side the space of matrices P,Q. One finds:

A[P,Q]= A [P)+B*8PTGSP+B*6Q M50  (14)

(terms of the type 8P78Q are absent, which is not the
case for the symmetric Little model), where M =2—G
and G is the de Almeida—Thouless stability matrix for
the SK model:!°

G<ab)(cd):5<ab>(cd)“32((UanUcUd)_<Uan Y o.0o4)) .
(15)

To get a stable solution, all the eigenvalues of the ma-
trix G and M have to be non-negative. We already know
that this is the case for the matrix G if the hierarchical
solution'"'? is the correct one for the SK model."”* The
crucial point refers to the matrix M. Does it have any
negative eigenvalues?

Remaining near and below 7, one can see very easily
that P=Pgg, Q=0 is a stable solution. If Q=0 is a
stable solution in the spin-glass phase, the de
Almeida—Thouless matrix has to satisfy G <2. This im-
plies {(o,0,0.0,)—(0o,0,){0.04) to be positive
definite, which seems to be some kind of ‘“reversed”
Schwarz inequality. This could be a consequence of the
analytic continuation n —0.

Anyway, because it is needed to study finite-size
corrections in the following section, we have obtained all
the spectra of eigenvalues for the matrix M at zero and
first order of replica-symmetry breaking to test the stabil-
ity of the Q =0 solution. This is the same as finding the
spectrum of eigenvalues for the matrix G (remember
M =2—G). Our purpose is to look for the dangerous ei-
genvalues for the matrix M (the lowest eigenvalues of the
spectrum) and to see if there is at least one of them which
becomes negative. Since M =2—G, those sectors in re-
plica space which can be unstable for M correspond to
the most stable ones for the stability matrix G. The spec-
trum of eigenvalues for the matrix M is the following.

(1) Replica symmetric solution. The spectrum has
three eigenvalues.!® Two of them coincide in the limit
n—0 (the anomalous and the longitudinal one). The be-
havior of the longitudinal anomalous eigenvalue (the
most dangerous for the matrix M) is plotted in Fig. 2(a) in
all the spin-glass phase.

(2) First order of replica-symmetry breaking. At this

R. BRUNETTI, G. PARISI, AND F. RITORT 46

order, following the work of De Dominicis and Kon-
don,'* we find a spectrum of 10 eigenvalues (2 longitudi-
nals, 4 anomalous, and 4 replicas). We have not found in
the literature an expression for the eigenvalues and their
degeneracies. Since it could be of some interest to other
people, we present our results in the Appendix.

In Fig. 2(b) we plot the three most unacceptable eigen-
values for the matrix M in the spin-glass phase (one be-
longs to the longitudinal spectrum, one to the anoma-
lous, and the other to the replicon sector). Since it is
difficult to solve numerically the eigenvalues for tempera-
tures less than 0.1, data for this regime are lacking. Any-

‘way an extrapolation of the data suggests that the eigen-

values are well behaved when the temperature goes to
zero.

In both cases we find M = 1. This fact strongly sug-
gests that this will be a general result at any step of
replica-symmetry breaking. Then, we expect the SK
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FIG. 2. (a) We plot the most unacceptable eigenvalue of the
matrix M (the longitudinal anomalous) for the replica-
symmetric case. The SK solution for the Little model is stable
at this zeroth-order step. The eigenvalue is always positive and
greater than 1 according to the “reversed” Schwarz inequality.
(b) At first order of replica-symmetry breaking the matrix M
gives a spectrum of 10 eigenvalues (2 longitudinals, 4 anoma-
lous, and 4 replicons). We plot the three most unacceptable ei-
genvalues at a temperature greater than 0.1. The eigenvalues
are all positive and greater than 1 indicating that the SK solu-
tion remains stable at this order of replica-symmetry breaking.
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solution to be stable for the Little model. The following
step will be to see whether the SK solution is the solution
of lowest free energy for the Little model. The study of
finite-size effects is a powerful tool to settle the question.

IV. FINITE-SIZE CORRECTIONS TO THE ENERGY

If we want to see numerically if the asymmetric Little
model really converges to the SK model, it is not useful
to look at properties as, for example, the energy. In fact,
we cannot extrapolate to N— oo numerical results for
finite sizes because finite-size corrections are unknown
even at the level of mean-field theory for spin glasses. In
Fig. 3, we plot the energy of the Little model vs N /2 at
T =0.5 obtained by means of Monte Carlo numerical
simulation (binary distribution of couplings with 1/N
variance) and the theoretical prediction for the SK model
at first order of replica-symmetry breaking (which is very
near to the solution at infinite order of replica-symmetry
breaking by a difference less than 1073). A polynomial
fits the data well but we are not sure whether the finite-
size effects behave as N~ !/2> mainly because, for those
sizes which would decide finally which is the main
correction that controls the convergence, numerical
simulations need too much CPU time (even though we
have made use of a very efficient program). The error
bars of the data, being of order 1073, are smaller than the
size of the square symbols.

Now we want to obtain more precise information
about the convergence of the Little model towards the
SK model and we want to understand the nature of the
finite-size corrections which could explain the results
shown in Figs. 1(a) and 1(b). We already know that the
finite-size corrections to the free energy of the SK model
are by now an unsolved problem. What we can do is to
look for magnitudes in which the main behavior is con-
trolled by a finite-size correction of the type 1/N. These
corrections are easily tractable because they do not con-

ENERGY
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FIG. 3. Energy for the asymmetric Little model for different
sized plotted vs N ~!/2 at T =0.5. We find the usual finite-size
corrections as in the SK model. A polynomial fits the data very
well and converges towards the expected result for the SK mod-
el U~—0.711 at infinite order of replica-symmetry breaking.
By looking at this figure, one is tempted to say that the dom-
inant corrections behave as N ~!/%.
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tain a complex spectrum of zero modes which are, in fact,
the difficult point in computing finite-size corrections for
the SK model. Now it is easy to understand what those
magnitudes are that show this kind of finite-size correc-
tion. Since, when Q =0, we recover the SK model, we
expect to find 1/N corrections for those magnitudes
whose fluctuations are governed by the spectrum of
modes in the space of Q matrices, i.e., fluctuations given
by the stability matrix M introduced in the last section.

In this work we study the behavior of two quantities.

(1) The first one is the difference between the free ener-
gies of the Little model and the SK model. Even though
we do not know which is the main finite-size correction
to each one of these magnitudes, its difference goes like
1/N since fluctuations are governed by the stability ma-
trix M. Higher-order corrections become confusing and
it is not clear how the series proceeds at higher orders.
We speculate about powers of N 172,

(2) The second one is an overlap proportional to
3. <»Q2% which is nonzero if the symmetry between the
spins o and 7 is broken. We will show that this term goes
to zero in the limit N — oo with a main finite-size correc-
tion of the type 1/N (also in this case, the spectrum of
fluctuations around the solution Q =0 is given by the sta-
bility matrix M).

To study the energy, the first thing which we have to
take into account is that there are many factors which
affect the 1/N correction in a spin glass. For example,
we can consider for the SK model a distribution of binary
or Gaussian couplings with zero mean and variance 1/N.
Even though in both cases the thermodynamic limit is
the same, 1/N corrections are strongly dependent on the
choice. Since we want to compare our theoretical predic-
tion with numerical simulations, we have to take into ac-
count, in the theoretical treatment, what the probability
distribution of couplings is that we are going to imple-
ment in the Monte Carlo simulation.

Because it is computationally faster, we have con-
sidered the case of a binary distribution of couplings:

P(J,)=1[8(J;+J)+8(J;—J)] (16)

with J=1/V'N. We have to proceed step by step and to
add all different contributions of order 1/N.

Let us begin by studying the asymmetric Little model
with a Gaussian distribution of couplings:

172 2

2

P(J;;)= exp (17)

27

After, we will consider the correction due to the fact that
we are using binary couplings.
In this case, if we do not neglect corrections of order

1/N, we arrive at a saddle-point expression [similar to
Eq. (2)]:

NpB?

T

Zj(G)=exp

[ 1

a<b

_BZn
2

dP, ab anb }

X exp[—NA(P,Q)], (18)

where G stands for Gaussian and
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2 .
A(P,Q)=——Bz—n+32 S (PR +0Q2) with
a<b
N
—InTr, exp[C(P, Q)] 19 epo=1-£ 5 (0,077 +0 | L (22)
. N a<b N
with
C(P;Q)=Bz 2 (Pab+iQab )aaob and
a<b
2 .
B 3 (PoyiQ0)7as ol P, Q)~-—‘3—"~+B2 S (PL+0Q34)—InZ, (@3)
B;< a<b
N agba a%5TaTsp - (20)  where Z is given by
If we expand the term (1/N) 3, ., 0,07, Ty, We get
p 2 <b bla'b g Z= Tr[m_] exp BZ 2 (Pab+iQab)aan
a<b
ZjG)=exp |— | [ I | |75 |dP.,dQus
a<b B2 S (Pay—iQu 7,7, (24)
X exp[ —NAy(P,Q)] a<b
xXg(P,Q) (21)  and the angular brackets mean
J
Tr, (- )exp (B 3 [(Poy +iQ0p)0,0 5 +(Pop Q0 )7, T ]
(C---n= T . (25)
TraTexp BZ 2 [(Pab+lQab )0a0b+(Pab_lQab )TaTb]
a<b
But
S (o,0,7,7,)= 3 (0,0,)*+0(1/N) (26)
a<b a<b
as we will see in the next section [in fact, (o,0,7,7,)=(0,0,)(7,7,) and we will show that
Sy (0,0, —7,75)2=0(1/N)].
We get the expression
fer(N)= 2NB In[Z}G)]
=B 1—»—2 (0,0,)% |- in [ 1 H NB | 4p . dg,, | expl—NAo(P,Q)]. 7
N (n—1) a<b ZNB a<b *
f
NBZ 172
Now we expand Ay(P,Q) around the stable solution S _(N)=
Q:O: 0 fLIT( ) ZNB lnf al;lb dPab
44(P,0)= A (P)+B0TMQ +0(0Y) 28) X exp[ ~NAsk (P, Q)]
Usk | In(detM)
- +
where 2N | 4BNn
ﬁ 5 + (higher-order terms) . (30)
ASK(P)z +B 2
a<bh The first term in the rhs is nothing else but the normal-
_ 2 ized free energy of the SK model with 2N spins and we
2InTr,exp |B a§b Papoacs @9 Sbtain the desired result

and M =2— G is the stability matrix quoted before.
Performing the Gaussian integral over Q, we finally ob-
tain

U
G SK In( detM)
—f&QN)=——C+

S5k (2N) 2N 48nN

+ (higher-order terms) .

S ()

(31)
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By high-order terms we mean unknown finite-size correc-
tions which decrease faster than 1/N. Since we are work-
ing with binary couplings, we want to obtain the finite-
size correction to the free energy of the Little model
when considering binary couplings versus Gaussian ones.

This factor is easy to obtain. In fact, for the binary
case we have

Zj(B)= Tr(4, { [ cosh

i#*j

L[za;’r;?]H, (32)

172
N a

where B stands for binary. Expanding the hyperbolic
cosine, we obtain the first-order correction

— Bz a B4 4
cosh | —— [%0’77’? =exp| o [%air}? TN [?0? J} ,
ZiB=2}(6) |1--L— 2( S oo 4> : (33)
12N i#j a
B — fG 1 34 < a_a 4>
= - In|1— a,.a ,
fLIT(N) fLIT(N) ZBNn n|l 12N2 % I%O’,’TJ c
[
- B
where { - - ); means the average over the weight given 8U=Ufyr(N)—Ugy (2N)
by ZJ(G). a b c 1
We obtain =—J\7+ N2 +F+O N2 (40)
Fer(N)=fE (N )=—aA7+(higher-order terms) , (B34 and
_B 8 , 1 ) _ b c 1
=2 42 —= =a+—2-+<4+0|—=+ 41
a==27 2+n (%)(Uaab) " (a%d)<aaabacod) , N&U=a N2 TN 0 N2 (41)

(35)

and the sums run over different replica indices.
The same expression can be obtained for the SK model:

Fe (N —f& (N)= % + (higher-order terms) . (36)
Combining formulas (31), (34), and (36), we obtain
FE(N)—FB (2N)= }1\7 +(high-order terms) (37)
with

a+Ugk

1
A:—-— —
46n In( detM)

2

and, for the internal energy,
U (N)—UE (2N)= % + (higher-order terms) (39)

with a =3(BA) /9.

Now we can understand the results shown in Figs. 1(a)
and 1(b). There we plot U (N) and U2, (N) and we see
how their difference behaves as N grows. This difference
does not behave purely as 1/N since one should compare
the Little model with the SK model, the last with a dou-
ble number of spins.

If we suppose (as seems to be the case, at
least for small sizes) that all the thermodynamic quan-
tities  (Usk, Sa{0405)%  Siabear(0a040.04)%
3 a6){0,0,7,7,),...) have finite-size corrections like
powers of N ~!/2, then

One hopes that N 8U will be a polynomial in terms of
N2, At T=0.5, in the spin-glass phase, we obtain
from (37)

a=0.0998 (RS case),
a=0.1053 (first-order RSB) .

(42)

At infinite order of replica-symmetry breaking (RSB), we
expect to obtain a value of a near 0.106. In fact, this
magnitude only depends on extensive quantities like, for
instance, the energy. At least for T =0.5 its variation
will be less than 10~ 3 if we compute it at infinite order of
replica-symmetry breaking in respect to the value we
would obtain at first order of replica-symmetry breaking.

To test the correctness of our prediction, we plot in
Fig. 4 the results obtained from Monte Carlo numerical
simulations. As we said before, we have performed the
numerical simulations for the case of binary couplings
and variance 1/N. The first four points, without error
bars, are obtained by evaluating exactly the partition
function for small systems N =3,4,5,6 [these results are
different form those shown in Fig. 1(b) in which the dis-
tribution of couplings was Gaussian and not binary]. The
other points have been obtained by Monte Carlo simula-
tion for N =12,18,24,32,48,64,96,128,256 and a number
of samples which varies from 3000 to 6000. We cannot
go to larger sizes because the error bars are as large as
the finite-size correction we want to compute. It is very
difficult to reduce the size of the error bars because it
would be take too much CPU time. Anyway, our results
seem to be in agreement with the predicted result for
N— .
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FIG. 4. N8U (as defined in the text) plotted vs N '/2. It
should converge towards ~0.105 (the point indicated by an ar-
row). Since numerical error bars are as large as the finite-size
correction, it is very difficult to predict with precision the value
of a. The points without error bars are obtained by exact calcu-
lation of the partition function.

Looking at the results shown in Fig. 4, one is led to the
conclusion that the difference of energy between the Lit-
tle model and SK model decreases monotonically as we
increase the size. This does not seem to be the case for
the data shown in Fig. 1(b) where the distance does not
decrease monotonically (in the case of results like those
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spins. On the contrary, in Fig. 4 we are comparing the
energy of the Little model for N spins with the energy of
the SK model with 2N spins. In fact, if we plotted the
differences of energies shown in Figs. 1(a) and 1(b) vs
N ~'2, we would not find a 1/N behavior but corrections
which decrease slower, for instance, like N~ * with a < 1.

V. FINITE-SIZE CORRECTIONS TO AN OVERLAP

Let us now analyze how the term 3., Q2 behaves as
we make N — . We define two overlaps:

z

lo?, (43)

(44)

We want to find what the behavior_is of the difference
of the squared overlaps 8g ={gq% ) — (g3 ) which can be
directly computed by means of a Monte Carlo simulation.
It is trivial to obtain

_ 1 2
8 2N1 n(n—l (Z-"b(a aTh?
N“l 2
2N n( n——l ag,b(a a0b " TaTh)

Uk N-—1 1

shown in Fig. 1(b) for a distribution of binary couplings, =— + S (0,0, =747 )2
this difference would decrease much more slowly than we NB 2N n(n—1) S,
would infer from looking at Fig. 4). This is due to the 45)
fact that, in Figs. 1(a) and 1(b), we plot the energies for
the Little and the SK models with an equal number of = We compute the second term of the rhs
J
J L. <, [(NB*/m)dP,,dQuy | expl — N A (P, Q)1 (P,Q)
S (0,0, —T,7 )= . (46)
a<h J Lo <, [(NB*/m)dP,dQy, 1 expl —N 4 (P,Q)]
) f
with Bapyeay =(0,040.0.)—(0,0,)(0.04) (50)
Tr, (0,0, —71,7,)exp[C(P,Q)]
f(P,Q)= 3 z : ! and Q is a vector with components Q,,. We have to
Tr, exp[C(P,Q)] )
a<b or ’ compute
(47)
and —4p* [ 40 Q"BQ
30,0, =7,7,)°= — 51)
CP.QI=F 3 (Py+iQy)0,0, Ja2
a<b
+B2S (Pyy—iQup)TaTs with the measure
a<b '
2 NBZ 2T
N > 0,0,T,Ty - 48) dO=T1] dQ,, | exp[ —NB°Q 'MQ] (52)
a<b a<b

We expand f(P,Q) around Q =0:
f(P,Q)=—4/B* 3 (BQ),,,=—4B*Q"B*Q , (49)

a<b

where

and M=I+pB’B is the usual stability matrix studied in
Sec. III. Making an orthogonal transformation, we diag-
onalize simultaneously B and M and we can perform very
easily the Gaussian integrals:
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FIG. 5. N 8q (as defined in the text) plotted vs N /2. It
should converge towards ~0.0707 (the point indicated by an ar-
row). The prediction seems to be in agreement with the data.

S (0,0, —7,7)?
a<b

2 2
= —% Tr % J+(higher-order terms) . (53)

We substitute in (45)

(g% ) — (g2 )=8g =L +(higher-order terms) (54)

N
with
‘;/=—E;£+B—2Tr %2 (55)
For T =0.5 we obtain the results
y=8.52X10"2% (RS case) ,
(56)

y=7.077X10"2 (first-order RSB) .

If we want to know what the value of y is at infinite or-
der of replica-symmetry breaking, the same observations
which we made in the last section apply in this case.
Similarly, as we made before for the energy, we can sup-
pose that the higher-order corrections behave as powers
of N™1/2. We should see a polynomial behavior of N8q
when plotted vs N ~!/2. Figure 5 shows the results ob-
tained by making numerical simulations for several sizes
(N =6,12,18,14,32,48,64,96,128,256 and a number of
samples which varies from 3000 to 6000). Now, we find a
slow convergence towards the expected result which is
affected by higher-order corrections.

VI. NUMERICAL RESULTS
FOR THE SYMMETRIC LITTLE MODEL

In order to substantiate our ideas and to strengthen the
main conclusions of this work, numerical results are
presented for the symmetric Little model. As was said in
the Introduction, when studying the symmetric Little
model by means of the replica technique, we arrive at a
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saddle-point equation depending on four matrices and
one vector. The SK solution is recovered in the special
case in which two of these matrices vanish (which corre-
sponds to the case in which the symmetry o,;<>; is not
broken). Even though we agree that, for the symmetric
Little model, the complexity of the order-parameter
space further complicates the theoretical analysis, we
think that the same features as in the asymmetric Little
model are valid in this case.

We have performed Monte Carlo numerical simula-
tions for the symmetric Little model (as in the asym-
metric case, we have used a binary distribution of cou-
plings with 1/N variance) at 7 =0.5. In Fig. 6, we show
a plot of the internal energy of the symmetric Little mod-
el versus size (we have explored sizes from N =18 to 640
spins). It is now compatible with an N ~!/2 behavior
(even though we should say that N ~2/3 corrections fit the
numerical data better). Now, as in Fig. 3, the error bars
are of the size of the square marks.

Figures 7 and 8 show the same kind of results as have
been plotted in Fig. 4 and 5. Data are available from
N =18 to 256 with a number of samples which vary be-
tween 2000 and 10000. All simulations have also been
performed in the middle of the spin-glass phase at
T =0.5. The points where the error bars have not been
plotted are because they are smaller than the size of the
square symbols.

In Fig. 7 we show the difference of the internal energy
between the symmetric Little model with N spins and
that of the SK model with 2N spins. This difference goes
like 1/N as was expected. Nevertheless, for the sym-
metric Little model, the expression N[E{3(N)
—Egk (2N)] tends to a negative value instead of a posi-
tive one like that found in the asymmetric Little model.

In Fig. 8 we plot the order parameter N 6q as defined
in Eq. (54). This is the corresponding plot of that shown
in Fig. 5 and curiously similar values for N 8q seem to be
obtained as in the asymmetric case. The 1/N behavior is
confirmed and 8q vanishes in the thermodynamic limit
(which means that the symmetric Little model converges
to the SK model).

Some comments concerning the error bars in this last

P —
—050 |
—055 |

—0.60 |

ENERGY

~065 F

0.3
N—l/z

FIG. 6. Energy for the symmetric Little model for different
sizes plotted vs N "!/2 at T=0.5. The size of the error bars are
smaller than the size of the square symbols.



5348
02 £ — T
i'r
0.0 —
f
g e L
\"\_1, —ozL— ]WLL{[%
% r ; }
= L il
A
Z -0.4 - -
g i
=
— f
z L
06 bl L ——
0 01 0.2 0.4 05 0.6

0.3
N-1/2

FIG. 7. N&U (as in Fig. 4) plotted vs N ~!/2 for the sym-
metric Little model. The points without error bars are obtained
by means of exact calculation of the partition function.

plot are in order. Since the plotted magnitude N &q is the
difference of two quantities, we could obtain the size of
the error bars by means of the triangular law (if the size
of the error bars for both overlaps g, and gy are the
cateta of a rectangular triangle, then the size of the error
bar for the difference is represented by the hypothenusa
of the same triangle). This result supposes that both
overlaps g , and gy are uncorrelated. This is not the case
for the Little model (in the symmetric or asymmetric
cases). Nevertheless, for the symmetric case, the correla-
tion between g, and gy for one sample is expected to be
greater than in the asymmetric case because, in the sym-
metric case, each spin o sees the same local field as each
spin 7 due to the fact that the coupling matrix J;; is sym-
metric. In fact, the simulations show that the size of the
error bars for the quantity N 8¢q in the symmetric case are
approximately three times smaller than in the asym-
metric case.

It would be interesting to test our numerical results
shown in Figs. 7 and 8 against theoretical predictions for

0.20 e r—r—————

0.15

010

N(Q,-Qp)

0.00 & | e
0 005 0.1 0.15 02 025 03

N~1/2

FIG. 8. N 8¢ (as in Fig. 5) plotted vs N ~!/? for the symmetric
Little model. The size of the error bars is smaller than the size
of the square symbols. It seems to be constant over the studied
range of sizes.
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the symmetric Little model. The numerical predictions
would be safer in this case because the error bars are
neatly smaller than in the asymmetric case. We think
that these last plots clarify the question about the ther-
modynamic behavior of the symmetric Little model at
infinite order of replica-symmetry breaking.

VII. CONCLUSIONS

In this work we have proved, by a stability analysis and
a study of the finite-size corrections, that the asymmetric
Little model converges to the SK model in the thermo-
dynamic limit. We have shown that the SK solution is
stable for the Little model. Then, to be sure that this is
really the stable solution of minimum free energy, we
have performed a study of the finite-size corrections. We
have discovered that the free-energy difference between
the Little model and the SK model, the latter with a dou-
ble number of spins, behaves as 1/N plus nontrivial
high-order terms. Our theoretical prediction is compati-
ble with the data obtained from numerical simulations.
By constructing a difference of two overlaps, we have
shown that its main finite-size corrections also behave as
1/N. For both magnitudes we find a convergence compa-
tible with the one we expect to be the correct result.
However, large error bars do not allow us to predict the
value as N — . The same conclusions are achieved by
performing numerical studies for the symmetric Little
model. The theoretical analysis, following the same lines
as in the asymmetric case, is expected to yield the same
results.

Two observations can be made by looking at Figs. 4
and 5. Since N 8U tends to a finite value as N — oo, it
means that §U—0 and the Little model have the same
energy as the SK model in the thermodynamic limit.
Also, since Ndq tends to a finite value when N — o0, we
see that 3, Q2 (which is 3, ., (0,0,—7,7,)?) goes
to zero in the thermodynamic limit. That is, Q =0 and
P =Pgy is the correct stable solution for the asymmetric
Little model.

The second observation refers to the nature of the
aforementioned high-order terms. From our data, we
cannot say what the main behavior of these corrections
is. In Figs. 4 and 5, we find that the plotted magnitudes
could be accounted for by a power-law behavior of the
type N~ 7 but it is not possible to decide on the value of
a. It is important to observe that these high-order
corrections are a “mass” of factors all emerging from the
spectrum of zero modes which are present in the spin-
glass phase. It should be interesting to perform an exten-
sive study (at a theoretical or numerical level) of what the
nature of the finite-size corrections is for the SK model.
There are some hints in the literature which point to-
wards finite-size corrections for self-averaging quantities
of a power-law type N ~'/2.15> But these studies, some-
times done for small systems and a large number of sam-
ples or large systems but a small number of samples, have
not yet been able to decide the question. The situation
worsens when one notes the fact that we do not have any
theoretical prediction. In our work, we have supposed
for a the value ;. However, we do not have any convinc-
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ing reason to discard other values. In fact, we have found
the exponent a=2 to be compatible with the results
shown in the Figs. 3 and 6. For us, this is an interesting
open question which merits further investigation along
this line.

We have also done extensive numerical simulations for
the symmetric Little model which suggest that the results
we have shown for the asymmetric Little model are also
valid for the symmetric case. In the symmetric case the
error bars are smaller and it could be interesting to test
the numerical results presented here against theoretical
predictions. The theoretical study of the symmetric case
presents more technical difficulties because the spectrum
of fluctuations around the SK solution is more complex
but we think that the main physics and the nature of the
finite-size corrections will follow the same lines as in the
asymmetric case.
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APPENDIX

We present the spectrum of eigenvalues for the de
Almeida—Thouless matrix G at first order of replica-
symmetry breaking. These have been obtained following
the process described in Ref. 14. If P, is the order-
parameter matrix, let us suppose, at first order of
replica-symmetry breaking, that P, =p, when the repli-
cas a and b belong to the same subblock of size m and p,
otherwise.

Then, we define the following averages:

(4)= _“w(zgl/ze—*/u, (A1)
_ 7 1dy/@2m) e 2 cosh™ [ f(p,2)] 4
A="== e , (A2
where f(y,2)=B[pd*z+(p, —p,)""*y] and

D)= [" D e oot f(y,2)]. (A

— (277.)1/2

If ky,k,,. . . define difference subblocks of the hierarchi-
cal matrix P,,, we construct the following correlation
functions:

p1=(0,0,)(a,bEk)={tanh?f) ,
po=(0,0,)a€k,,bEk,)={(tanhf)?) ,
ro=(0,0,0.0,)(a,b,c,d Ek)={(tanh*f) ,

ri=(o,0,0.0,)(a,b,c Ek,,d Ek,)={ tanh®*f tanhf ) ,
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r,={0,0,0.04)(a,b,Ek,c,d Ek,)={(tanh’f)?) ,
ry=(0,0,0.0,)a,bEk,cEk,dEk;)
=( tanh’f(tanhf)?) ,
ry=(o,0,0.0,(a€EkbEk,cEk; dEk,)
=((tanhf)*) .

Then, we construct the different elements for the stability
matrix G, which are

Gapyapy =P, =1—P*(1—pl)/(ab)EK ,
G apyapy =Po=1—P1—p})/aEk\bEK, ,
G abyaey =Qo=Bp3—p,)/a €k, b,cEKL, ,
Gabyaes =Q1=B*pi—p,)/a,b,cEk ,
Glabyac) =Q2=PBp3—po)/aEk b Ek,cEk, ,
G (abac =Q3=B*(pop1—Po)/a,b Ekc Ek, ,
Gapyeay =Ro=B*p}—ry)/a,b,c,dEk ,
G apyeay =R1=B*pop,—r1)/a,b,c Ek\d Ek, ,
or a€k,b,c,d €k, ,
G apycay =R, =PB*p}—r;)/a,b,€k\c,dEk, ,
G abycay =R3=B*p}—r,)/a,cEk b, dEk, ,
G aycay =Rs=B*pop,—r3)/a,bEk,cEk,dEk; ,
ora€k,bE€k,c,d€Ek; ,
Gapycay =Rs=B*p5—r;)/aEk b,cEk,d Ek; ,
G apyca) =R6=BHpd—r,)/aE€Ek bEkycEkdEK, .

The spectrum of eigenvectors contains three invariant
sectors. We present the eigenvalues and degeneracies for
finite n. Finally, the analytic continuation n —0 has to
be performed.

1. Longitudinal invariant sector
It contains two eigenvalues each one with degeneracy
equal to 1. These are obtained by solving a second degree
equation:
_ A+D+V(4—D)*+4BC
2 b
(m —3)(m —2)
2

AL

A=P +2(m —2)Q,+ R,

+ (n—m)(m —I)R

2 27
B=2(n—m)Q;+(n —m)(m —2)R,

(n—m)(n—2m)
2

C=2(m —1)Q;+(m —2)(m — )R,

(n —2m)im —1)
2

+ R 4> (A4)

+

R, ,
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D=Py+2(m —1)Qy+2(n —2m)Q, +(m —1)°R,

(n —3m)(n —2m)
2

+2(m —1)(n —2m)Rs+ R¢ .

2. Anomalous invariant sector

We have four eigenvalues. Two of them coincide with
the longitudinal ones in the limit » —0 and have degen-
eracy equal to (n —m)/m. The other two eigenvalues
have a degeneracy equal to n(m —1)/m and are also
given by a second degree equation:

A+D+V' (A4 —D)¥+4BC

Ay= 2 > (AS5)
A=P,+(m—4)Q,—(m —3)R, ,

_(h—m)(m —2)
=" ‘&R,
C=(m—1)X(Q;—R,),

D=Py+(m —2)Qy+(n —2m)Q,
—(m —1)R;—(n —2m)R; .
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3. Third invariant sector

We have four eigenvalues:

AL =P, —20,+R, la/————"('"z_3) J :
Ay =Py+2(m —1)Q,—2mQ,+(m —1)°R,
2 __(n—3m)n
—2m(m —1)Rs+m-Rg a/—————z— ,
2m

Ay =Py+(m —2)Qq—mQ,—(m —1)R;+mR

. n(n—2m)m—1)

a/:

M‘z =Py—20,+R;
2m

n(m—1%n —m) ]
{ .

These results have been given in the literature near T,.
The spectrum we give is valid at all temperatures.
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