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Abstract A generalization of the classical three-sided assignment market is
considered, where value is generated by pairs or triplets of agents belonging to
different sectors, as well as by individuals. For these markets we represent the
situation that arises when some agents leave the market with some payoff by
means of a generalization of Owen (1992) derived market. Consistency with
respect to the derived market, together with singleness best and individual
anti-monotonicity, axiomatically characterize the core for these generalized
three-sided assignment markets. When one sector is formed by buyers and the
other by two different type of sellers, we show that the core coincides with the
set of competitive equilibrium payoff vectors.
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1 Introduction

We consider a market with three-sectors where value is obtained by means of
coalitions formed by agents of different sectors, that is, either triplets, pairs
or individuals. Once the valuations of all these basic coalitions are known,
a coalitional game is defined, the worth of an arbitrary coalition being the
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maximum worth that can be obtained by a partition of this coalition into
basic ones.

Think, for instance, of one sector formed by firms providing landline tele-
phone and internet service, on the second sector firms providing cable TV and
on the third sector firms providing mobile telephone service. A triplet formed
by one firm of each sector can achieve a profit by pooling their customers and
offering them more services, but also a firm alone or a pair of firms of different
sectors can attain some value.

These markets have already been considered in Tejada (2013) to see that
agents of different sectors do not need to be complements and agents of the
same sector do not need to be substitutes. Clearly, this class of coalitional
games includes the classical three-sided assignment games of Quint (1991b)
where value is only generated by triplets of agents belonging to different sec-
tors. Another possible generalization of three-sided assignment games would
be just assigning a reservation value to each individual and assuming that
whenever an agent does not form part of any triplet then this agent can at-
tain his/her reservation value, in the way Owen (1992) generalizes the classical
two-sided assignment game of Shapley and Shubik (1972).

The difference between the generalized three-sided markets that we con-
sider and the three-sided assignment markets with individual reservation val-
ues is that when an agent does not form part of a triplet in the optimal
partition (that we will name optimal matching), apart from being alone in an
individual coalition, he/she may form part of a two-player coalition with some
agent belonging to a different sector and, in that case, the value of this two-
player coalition may be larger than the addition of the individual reservation
value of the two agents. As a consequence, ours is a wider class since it includes
games that are not strategically equivalent to a Quint (1991b) three-sided as-
signment game. Nevertheless, as in the classical three-sided assignment games,
these games may not be balanced (the core may be empty).

However, we present a subclass of balanced generalized three-sided assign-
ment markets. Besides non-negativeness, two additional properties define this
subclass: a) the worth of a triplet is the addition of the worths of the three
pairs that can be formed with its members and b) there is an optimal parti-
tion such that, when restricted to each pair of sectors, is also optimal for the
related two-sided market. This subclass of generalized three-sided assignment
markets is inspired by the balanced subclass introduced by Quint (1991b) and
the supplier-firm-buyer market of Stuart (1997), where also the value of a
triplet is obtained by the addition of the value of some of the pairs that can be
formed with its elements. However, in their classes, such a pair cannot attain
its value if not matched with an agent of the remaining sector.

We restrict to the three-sided case to keep notation simpler, but all the
arguments and results on the present paper can be extended to the multi-
sided case.

In this class of generalized three-sided assignment markets, we introduce
a reduced market at a given coalition and payoff vector, which represents
the situation in which members outside the coalition leave the game with a
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predetermined payoff and the agents that remain in the market reevaluate their
coalitional worth taking into account the possibility of cooperation with the
agents outside. In the case of only two sectors, this reduced market coincides
with the derived market defined by Owen (1992) for two-sided assignment
markets with agents’ reservation values.

Making use of consistency with respect to the derived market and two
additional axioms, singleness best and individual anti-monotonicity, we pro-
vide an axiomatic characterization of the core on the domain of generalized
three-sided assignment markets. Sasaki (1995) and Toda (2005) characterize
the core on the domain of two-sided assignment markets by means of some
monotonicity property that is not satisfied by the core in the three-sided case.
The reason is that when we raise the value of a triplet, a pair or an individual
in a three-sided market, the new market may fail to have core elements. This
is why the previous characterizations cannot be straightforwardly extended to
the three-sided case.

In the last part of the paper we consider that one of the sectors is formed
by buyers and the others by sellers of two different types of goods. Each buyer
can buy at most one good of each type and valuates all basic coalitions she/he
can take part in. From these valuations we introduce the demand of a buyer,
given a price for each object on sale. Then, as usual, prices are competitive if
there exists a matching such that each buyer takes part in a basic coalition
in its demand set, and prices of unsold objects are zero. We show that the set
of payoff vectors related to competitive equilibria coincide with the core. This
generalizes the result in Gale (1960) for two-sided assignment markets and
Tejada (2010) for the classical multi-sided assignment markets where buyers
are forced to acquire exactly one item of each type.

The paper is organized as follows. The model is described in Section 2.
The derived consistency of the core and the nucleolus is proved in Section
3, and an axiomatic characterization of the core is presented in Section 4.
Section 5 focuses on the case with one sector of buyers and two sectors of
sellers of different type of goods to prove the coincidence of core elements and
competitive equilibria payoff vectors. The Appendix contains some technical
proofs.

2 The model

In this section, we introduce a generalized three-sided assignment market and
its corresponding assignment game.

Let U1, U2 and U3 be three pairwise disjoint countable sets. A generalized
three-sided assignment market consists of three different sectors, M1 ⊆ U1,
M2 ⊆ U2, and M3 ⊆ U3 with a finite number of agents each, such that N =
M1 ∪M2 ∪M3 6= ∅, and a valuation fuction v. The basic coalitions in this
market are the ones formed by exactly one agent of each sector and all their
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possible subcoalitions. Let us denote by B this set of basic coalitions,

B = {{i, j, k} | i ∈M1, j ∈M2, k ∈M3}
∪ {{i, j} | i ∈Mr, j ∈Ms, r, s ∈ {1, 2, 3}, r 6= s} ∪ {{i} | i ∈M1 ∪M2 ∪M3}.

The valuation function v, from the set B to the real numbers, R, associates to
each basic coalition its value v(S).

Given a generalized three-sided assignment market γ = (M1,M2,M3; v),
for each non-empty coalition S ⊆ N = M1 ∪M2 ∪M3 we can define a sub-
market γ|S = (M1 ∩ S,M2 ∩ S,M3 ∩ S; v|S) where (v|S)(E) = v(E) for all
E ∈ BS = {R ∈ B | R ⊆ S}. Notice that if one of the sectors is empty,
then this generalized three-sided assignment market is a two-sided assignment
market with reservation values as introduced in Owen (1992).

Let ∅ 6= S ⊆ N be a coalition such that S = S1 ∪ S2 ∪ S3 with S1 ⊆ M1,
S2 ⊆ M2, and S3 ⊆ M3. Then, a matching µ for S is a partition of S in
coalitions of BS . Let M(S1, S2, S3) be the set of all possible matchings for
coalition S = S1 ∪ S2 ∪ S3. A matching µ ∈ M(S1, S2, S3) is optimal for the
submarket γ|S if

∑
E∈µ v(E) ≥

∑
E∈µ′ v(E) for any µ′ ∈ M(S1, S2, S3). We

denote by Mγ(S1, S2, S3) the set of optimal matchings for the market γ|S .
Given a generalized three-sided assignment market γ = (M1,M2,M3; v),

its corresponding generalized three-sided assignment game1 is a pair (N,wγ)
where N = M1 ∪M2 ∪M3 is the player set and the characteristic function wγ
satisfies wγ(∅) = 0 and for all S ⊆ N ,

wγ(S) = max
µ∈M(S1,S2,S3)

{ ∑
E∈µ

v(E)

}
,

where S1 = S ∩M1, S2 = S ∩M2 and S3 = S ∩M3. Notice that the game
(N,wγ) is superadditive because it is a special type of partitioning game as
introduced by Kaneko and Wooders (1982).

From now on, we denote by Γ3−GAM indistinctly the set of generalized
three-sided assignment markets or games.

An outcome for a generalized three-sided assignment market will be a
matching and a distribution of the profits of this matching among the agents
that take part.

Given γ = (M1,M2,M3; v), a payoff vector is x ∈ RN , where xi stands
for the payoff of player i ∈ N . We write x|S to denote the projection of a
payoff vector x to agents in coalition S ⊆ N . Moreover, x(S) =

∑
i∈S xi with

x(∅) = 0. A payoff vector x ∈ RN is individually rational for γ if xi ≥ wγ({i})
for all i ∈ N , and efficient if x(N) = wγ(N).

The core of a generalized three-sided assignment market γ = (M1,M2,M3; v)
is the core of the associated assignment game (N,wγ), where N = M1 ∪M2 ∪

1 A game is a pair formed by a finite set of players N and a characteristic function r that
assigns a real number r(S) to each coalition S ⊆ N , with r(∅) = 0. The core of a coalitional
game (N, r) is C(r) = {x ∈ RN |

∑
i∈N xi = r(N),

∑
i∈S xi ≥ r(S) for all S ⊆ N}. A

game is balanced if it has a non-empty core.
A game is said to be superadditive if for any two disjoint coalitions S, T ⊆ N , S ∩ T = ∅, it
holds r(S ∪ T ) ≥ r(S) + r(T ).
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M3. Then, a market γ is balanced if its associated game (N,wγ) has a non-
empty core. It is straightforward to see that this core is formed by those
efficient payoff vectors that satisfy coalitional rationality for all coalitions in
B. Given any optimal matching µ ∈Mγ(M1,M2,M3),

C(γ) =

x ∈ RN
∣∣∣∣∣∣x(N) =

∑
E∈µ

v(E) and x(E) ≥ v(E) for all E ∈ B

 .

As a consequence, given any optimal matching µ, if x ∈ C(γ), then x(E) =
v(E) for all E ∈ µ. Since this class is a generalization of the classical three-
sided assignment games, the core may be empty.

The following two examples show that the class of generalized three-sided
assignment games is indeed different from the class of classical three-sided
assignment games. If we give values to some two-player coalitions in a classical
three-sided assignment game with empty core (non-empty core), the core of the
new generalized three-sided assignment game may become non-empty (empty).
Moreover, we show that a generalized three-sided assignment game may not
be strategically equivalent to any classical three-sided assignment game.

Example 1 Consider M1 = {1, 2}, M2 = {1′, 2′} and M3 = {1′′, 2′′} and the
three-sided assignment game taken from Quint (1991b) where the value of
triplets is given by the following three-dimensional matrix A,

1′ 2′

1
2

(
0 0
0 1

)
1′′

1′ 2′

1
2

(
0 1
1 1

)
2′′

,

and the core is shown to be empty.
Define now a generalized three-sided market γ1 = (M1,M2,M3; v1) where

v1({i, j, k}) = aijk for (i, j, k) ∈M1×M2×M3, v1({1, 1′}) = 1 and v1(S) = 0
for any other S ∈ B. Notice that wγ1({1, 1′, 1′′}) = wγ1({1, 1′, 2′′}) = 1 and
x = (0, 0; 1, 1; 0, 0) ∈ C(γ1).

Moreover, the game (N,wγ1), where N = M1∪M2∪M3, is not strategically
equivalent to any classical three-sided assignment game. Indeed, if there existed
d ∈ RN and a three-dimensional matrixB such that wγ1(S) = wB(S)+

∑
i∈S di

for all S ⊆ N , then

1 = wγ1({1, 1′}) = wB({1, 1′}) + d1 + d2 = d1 + d2

which means either d1 > 0 or d2 > 0. If we assume without loss of generality
that d1 > 0, then we get a contradiction since 0 = wγ1({1}) = wB({1})+d1 >
0.

Example 2 Consider now a classical three-sided assignment game with a non-
empty core given in Quint (1991b). It is defined by M1 = {1, 2}, M2 = {1′, 2′},
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M3 = {1′′, 2′′} and the three-dimensional matrix C, where an optimal match-
ing is in boldface:

1′ 2′

1
2

(
2 0
1 0

)
1′′

1′ 2′

1
2

(
3 2
0 2

)
2′′

.

Define now a generalized three-sided market γ2 = (M1,M2,M3; v2) where
v2({i, j, k}) = cijk for (i, j, k) ∈ M1 ×M2 ×M3, v2({1, 2′}) = v2({2, 1′}) = 2
and v2(S) = 0 for any other S ∈ B. This implies that wγ2({1, 1′, 2, 2′}) = 4. If
x ∈ C(γ2), we have x1+x1′ +x2+x2′ ≥ 4 and hence x1′′ = x2′′ = 0. Moreover,
from wγ2({1, 1′, 1′′}) = 2 we have x1 + x1′ = x1 + x1′ + x1′′ = 2. On the other
side, from wγ2({1, 1′, 2′′}) = 3, x1 + x1′ = x1 + x1′ + x2′′ ≥ 3, which leads to
a contradiction and implies that C(γ2) = ∅.

To conclude the discussion of the model, we introduce a subclass of gener-
alized three-sided assignment markets. For the markets in this subclass, core
allocations always exist.

2.1 A subclass of markets with non-empty core

We say a generalized three-sided assignment market is 2-additive if the three
following conditions hold. The first one requires non-negativeness of the valu-
ation function, with null value for single-player coalitions. Secondly, the valu-
ation of each triplet (i, j, k) ∈ M1 ×M2 ×M3 is the sum of the valuations of
all pairs of agents in the triplet. Finally, we require the existence of an optimal
matching that induces an optimal matching in each two-sided market. The
reader will notice that the spirit of this class of 2-additive generalized three-
sided assignment markets, that we denote by Γ add3−GAM , is similar to that of the
balanced classes of multi-sided assignment games in Quint (1991b) and Stuart
(1997). In both cases, the authors impose that the worth of a triplet is the
addition of some numbers attached to its pairs. The difference is that in their
models a pair cannot attain its worth if not matched with a third agent of the
remaining sector, while in our case there is an underlying two-sided market
for each pair of sectors.

As in Quint (1991b), we will assume from now on that the market is square,
that is |M1| = |M2| = |M3|. Let us introduce some notation: given a general-
ized three-sided assignment market γ = (M1,M2,M3; v), for all r, s ∈ {1, 2, 3},
r < s, we consider the two-sided market γrs = (Mr,Ms; v|BMr∪Ms ). Then,
we denote by Mγrs(Mr,Ms) the set of optimal matchings for the two-sided
market γrs, that is, partitions of Mr ∪ Ms in mixed pairs and singletons
that maximize the sum of the valuations of the coalitions in the partition.
And C(γrs) stands for the core of the underlying two-sided assignment game
(Mr ∪Ms, wγrs).

Given a matching µ ∈ M(M1,M2,M3) and two different sectors r, s ∈
{1, 2, 3}, r < s, the matching µ induces a matching µrs in the two-sided
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market γrs simply by defining E ∈ µrs if there exists a basic coalition E′ ∈ µ
such that E = E′ ∩ (Mr ∪Ms) and E 6= ∅.

Definition 1 A generalized three-sided assignment market γ = (M1,M2,M3; v),
with |M1| = |M2| = |M3|, belongs to the class Γ add3−GAM if and only if

1. v ≥ 0 and v({k}) = 0 for all k ∈M1 ∪M2 ∪M3,
2. v({i, j, k}) = v({i, j})+v({i, k})+v({j, k}) for all (i, j, k) ∈M1×M2×M3,
3. there exists µ ∈ Mγ(M1,M2,M3) such that µrs ∈ Mγrs(Mr,Ms) for all
r, s ∈ {1, 2, 3}, r < s.

Conditions (1) and (2) imply that the valuation function v is superadditive.
Condition (3) requires that there is an optimal matching µ ∈Mγ(M1,M2,M3)
that induces an optimal matching in each bilateral market γrs, for r < s. Next
proposition shows that the three conditions together guarantee that the core
of any generalized three-sided assignment market in the class Γ add3−GAM is non-
empty.

Proposition 1 Each 2-additive generalized three-sided assignment market is
balanced.

Proof Let γ = (M1,M2,M3; v) ∈ Γ add3−GAM and let µ = {E1, E2, . . . , Ep} be an
optimal matching, µ ∈ Mγ(M1,M2,M3), such that µrs ∈ Mγrs(Mr,Ms) for
all r, s ∈ {1, 2, 3}, r < s. For all r, s ∈ {1, 2, 3}, r < s, and l ∈ {1, 2, . . . , p},
define Ersl = El ∩ (Mr ∪Ms) and notice that by definition µrs = {Ersl | 0 ≤
l ≤ p,Ersl 6= ∅}.

From Shapley and Shubik (1972), it is known that each two-sided assign-
ment market is balanced. So, take core allocations (x1, y1) ∈ C(γ12), (x2, z2) ∈
C(γ13) and (y3, z3) ∈ C(γ23). We will see that (x1+x2, y1+y3, z2+z3) ∈ C(γ).

By optimality of µ12, we have that if for some l ∈ {1, 2, . . . , p}, E12
l = {i, j},

then x1i + y1j = v({i, j}). Similarly, if E12
l = {i}, for i ∈M1, then x1i = 0; and

if E12
l = {j} for some j ∈M2, then y1j = 0. Analogous equalities are obtained

for E13
l and E23

l , for l ∈ {1, 2, . . . , p}.
Hence,∑
i∈M1

(x1i + x2i ) +
∑
j∈M2

(y1j + y3j ) +
∑
k∈M3

(z2k + z3k) =∑p
l=1

[∑
{i,j}∈E12

l
(x1i + y1j ) +

∑
{i,k}∈E13

l
(x2i + z2k) +

∑
{j,k}∈E23

l
(y3j + z3k)

]
=∑p

l=1

[∑
{i,j}∈E12

l
v({i, j}) +

∑
{i,k}∈E13

l
v({i, k}) +

∑
{j,k}∈E23

l
v({j, k})

]
=∑p

l=1 v(El) = wγ(N).

Once proved efficiency, it only remains to prove coalitional rationality of
the payoff vector (x1 + x2, y1 + y3, z2 + z3). Indeed, take any {i, j, k} ∈ B and
notice that

x1i + x2i + y1j + y3j + z2k + z3k = (x1i + y1j ) + (x2i + z2k) + (y3j + z3k)

≥ v({i, j}) + v({i, k}) + v({j, k}) = v({i, j, k})
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where the inequality follows from the core constraints of (x1, y1), (x2, z2) and
(y3, z3) in each two-sided market.

Similarly, if {i, j} ∈ B, we may assume without loss of generality that
i ∈ M1 and j ∈ M2, and hence, taking into account x2i ≥ v({i}) = 0 and
y3j ≥ v({j}) = 0, we get

x1i + x2i + y1j + y3j = (x1i + y1j ) + x2i + y3j ≥ v({i, j}).

Finally, if {i} ∈ B, let us assume without loss of generality that i ∈M1. Then
x1i + x2i ≥ 0 = v({i}) follows also from the individual rationality of (x1, y1)
and (x2, z2). ut

In the above proposition we have deduced the existence of core elements
for γ ∈ Γ add3−GAM by operating with three core elements of the related two-sided
markets. However, as the next example shows, there are 2-additive generalized
three-sided markets where not all core elements can be obtained in this way.

Example 3 Let us consider a generalized three-sided asignment market γ where
M1 = {1, 2}, M2 = {1′, 2′} and M3 = {1′′, 2′′}. The value of individual coali-
tions is null, the value of those basic coalitions formed by a pair of agents is
given by

1′ 2′

1
2

(
4© 6
0 4©

) 1′′ 2′′

1
2

(
6© 9
1 5©

) 1′′ 2′′

1′

2′

(
2© 0
8 7©

)
,

and the value of triplets is given by the following three-dimensional matrix

1′ 2′

1
2

(
12 20
3 13

)
1′′

1′ 2′

1
2

(
13 22
5 16

)
2′′

.

The reader can check that the above values define a 2-additive generalized
three-sided market. Optimal matchings of the underlying two-sided markets
are circled and the optimal matching of the three-sided market is shown in
boldface. The payoff vector u = (6, 0; 0, 8; 6, 8) belongs to the core but cannot
be obtained by core allocations of the three underlying two-sided assignment
markets. Indeed, if there existed (x1, y1) ∈ C(γ12), (x2, z2) ∈ C(γ13) and
(y3, z3) ∈ C(γ23) such that (x1 + x2; y1 + y3; z2 + z3) = (6, 0; 0, 8; 6, 8), then
0 = x12+x22 and 0 = y11+y31 imply x22 = y31 = 0. Then, from the core constraints
in the underlying two-sided markets, x22 + z22 = 5 and y31 + z31 = 2, we obtain
z22 = 5 and z31 = 2. Now, 6 = z21 + z31 implies z21 = 4, and by substitution
in (x2, z2) we obtain (x2, z2) = (x21, 0; 4, 5). But such a payoff vector is not
in the core of γ13 since the two core constraints x21 + z21 = x21 + 4 = 6 and
x21 + z22 = x21 + 5 ≥ 9 are not compatible.

Once established our model, and shown one subclass with non-empty core,
we look for a notion of reduction that makes the core a consistent solution on
the class of generalized three-sided assignment markets.
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3 Consistency of the core and the nucleolus

In this section, we introduce the derived market (and game) for the generalized
three-sided assignment market, and the corresponding consistency property.

Given any coalitional game, and given a particular distribution of the worth
of the grand coalition, we may ask what happens when some agents leave the
market after being paid according to that given distribution. The remaining
agents must reevaluate the worth of all the coalitions they can form. The
different ways in which this reevaluation is done correspond to the different
notions of reduced game that exist in the literature.

Maybe the best known notion of reduced game is that of Davis and Maschler
(1965), where the remaining coalitions take into account what they could ob-
tain by joining some agents that have left, with the condition of preserving
the amount they have already been paid.

Definition 2 (Davis and Maschler, 1965) Given a generalized three-sided
assignment game (N,wγ), a non-empty coalition S and a payoff vector x ∈
RN\S , the Davis and Maschler reduced game for the coalition S at x is the
game (S,wS,xγ ) that is defined by

wS,xγ (T ) =


0 if T = ∅,
wγ(N)− x(N \ S) if T = S,

max
Q⊆N\S

{wγ(T ∪Q)− x(Q)} otherwise.

In general, the reduced game of a generalized three-sided assignment game
is not superadditive, and hence it is not a generalized three-sided assignment
game. Take for instance coalition S = {1, 2′, 1′′, 2′′} and the core element
u = (6, 0; 0, 8; 6, 8) in the market of Example 3 and notice that wS,uγ ({1′′}) +

wS,uγ ({2′′}) = 3 + 5 > 7 = wS,uγ ({1′′, 2′′}).
To solve this, we introduce a new reduction for the generalized three-sided

assignment market (and game) that extends the derived game introduced by
Owen (1992) for the two-sided case. We will see that this notion of reduced
game is closely related to the Davis and Maschler reduction.

Definition 3 Given a generalized three-sided assignment market γ = (M1,M2,M3; v),
∅ 6= S = S1 ∪ S2 ∪ S3, S 6= N , where S1 ⊆ M1, S2 ⊆ M2, S3 ⊆ M3 and
x ∈ RN\S , the derived market at S and x is γ̂S,x = (S1, S2, S3; v̂S,x) where

v̂S,x(E) = max
Q⊆N\S
E∪Q∈B

{v(E ∪Q)− x(Q)} for all E ∈ BS . (1)

Then, the corresponding derived game at S and x is (S,wγ̂S,x) where for
all R ⊆ S,

wγ̂S,x(R) = max
µ∈M(M1∩R,M2∩R,M3∩R)

{∑
E∈µ

v̂S,x(E)
}
. (2)
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To obtain the derived game, we first consider the valuation in the reduced
situation of the basic coalitions of the submarket. The valuation of such a
basic coalition is obtained by allowing it to cooperate only with agents that
have left but with whom it can form a basic coalition of the initial market.
In particular, when E = {i, j, k} with i ∈ S1, j ∈ S2 and k ∈ S3, then
v̂S,x({i, j, k}) = v({i, j, k}). Thus, the worth wγ̂S,x(R) in the derived game
for any coalition R ⊆ S is obtained from the valuations v̂S,x of the basic
coalitions in BS by imposing superadditivity. Hence, the derived assignment
game is always a superadditive game.

Notice that in (2) different basic coalitions E in the same matching µ ∈
M(M1∩R,M2∩R,M3∩R) can use the same coalition Q ⊆ N \S to establish
their value v̂S,x(E). Thus, (S,wγ̂S,x) is not a game in the ordinary sense; it
serves only to determine the distribution of wγ̂S,x(S) among the members of
S. Also in the Davis and Maschler reduced game the expectations of different
disjoint subcoalitions may not be compatible with each other, because they
may require cooperation of the same subset of N \ S.

However, it is interesting to remark that the worth of the grand coalition
of the derived game (at a core allocation) is indeed attainable. The reason is
there exists an optimal matching of the derived game such that no two basic
coalitions of this matching need the cooperation of a same outside agent to
attain their worth. We will argue this fact in Remark 1, below the proof of
Theorem 1.

A market with some empty sector is a two-sided market (with individual
reservation values) and the definition of derived game coincides with the one
given by Owen (1992) for these markets.

Given a game (N,w), its superadditive cover is the minimal superadditive
game (N, w̃) such that w̃ ≥ w. Next proposition extends a result obtained for
two-sided assignment games by Owen (1992). We show that for any general-
ized three-sided assignment game (N,wγ), its derived game (S,wγ̂S,x) at any
coalition S and core allocation x is the superadditive cover of the correspond-
ing Davis and Maschler reduced game (S,wS,xγ ). This means that the derived
game of a generalized three-sided assignment market is closely related to the
Davis and Maschler reduced game. The proof is consigned to the Appendix.

Proposition 2 Let γ = (M1,M2,M3; v) be a generalized three-sided assign-
ment market, N = M1∪M2∪M3, (N,wγ) the associated generalized three-sided
game and x ∈ C(γ). Then for any ∅ 6= S ( N , the derived game (S,wγ̂S,x),
where γ̂S,x = (M1 ∩ S,M2 ∩ S,M3 ∩ S; v̂S,x), is the superadditive cover of the
Davis and Maschler reduced game (S,wS,xγ ).

Our objective now is to introduce a consistency property with respect to
the derived market. We name this property derived consistency.

Before doing that, we need to introduce the notion of solution in the class of
generalized three-sided assignment markets or games. Next definition extends
to our setting the notion of feasibility that is usual in two-sided assignment
markets.
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Definition 4 Given a generalized three-sided assignment market γ = (M1,M2,M3; v),
an allocation x ∈ RM1 × RM2 × RM3 is feasible-by-matching if there exists a
matching µ ∈M(M1,M2,M3) such that for all E ∈ µ, x(E) = v(E).

In that case, we say that x and µ are compatible. Notice that a matching
µ compatible with x may not be optimal. Moreover, the set of feasible-by-
matching allocations is always non-empty since we can take the matching
µ = {{i}}i∈N and then x = (v({i}))i∈N is feasible with respect to µ.

Definition 5 A solution on a class Γ ⊆ Γ3−GAM is a correspondence σ that
assigns a subset of feasible-by-matching payoff vectors to each γ ∈ Γ .

Given γ ∈ Γ , we write σ(γ) to denote the subset of feasible-by-matching
payoff vectors assigned by solution σ to the assignment market γ. Notice that
a solution σ is allowed to be empty. The core correspondence and the mapping
that gives to each agent his/her individual value (compatible with the match-
ing formed by all individual coalitions) are examples of solutions on the class
of generalized three-sided assignment markets. Similarly, the nucleolus, which
will be defined below, is a solution on the subclass of balanced generalized
three-sided assignment markets.

Definition 6 A solution σ on the class of generalized three-sided assignment
markets satisfies derived consistency if for all γ = (M1,M2,M3; v), all ∅ 6=
S ( N and all x ∈ σ(γ), it holds x|S ∈ σ(γ̂S,x).

Next theorem shows that the core satisfies derived consistency on the do-
main of generalized three-sided assignment markets.

Theorem 1 On the domain of generalized three-sided assignment markets,
the core satisfies derived consistency.

Proof Let γ = (M1,M2,M3; v) be a generalized three-sided assignment mar-
ket, let x be a core allocation and ∅ 6= S (M1∪M2∪M3. To simplify notation,
let us write v̂ = v̂S,x and ŵ = wγ̂S,x .

Consider all possible basic coalitions in BS . First, for all {i, j, k} ∈ M1 ∩
S×M2 ∩S×M3 ∩S, xi +xj +xk ≥ v({i, j, k}) = v̂({i, j, k}). Secondly, for all
{i, j} ∈ (M1∩S)× (M2∩S), xi+xj ≥ v({i, j}) and xi+xj ≥ v({i, j, k})−xk
for all k ∈ M3 \ S. Hence, xi + xj ≥ v̂({i, j}). Finally, for all i ∈ M1 ∩ S,
xi ≥ v({i}), and xi ≥ v({i, j})− xj for all j ∈M2 \ S, and xi ≥ v({i, k})− xk
for all k ∈ M3 \ S, and xi ≥ v({i, j, k}) − xj − xk for all j ∈ M2 \ S and for
all k ∈ M3 \ S. Hence, xi ≥ v̂({i}). Proceeding similarly for the remaining
E ∈ BS , we obtain

x(E) ≥ v̂(E) for all E ∈ BS . (3)

Finally, it remains to show that x(S) = ŵ(S). Expression (3) implies
x(R) ≥ ŵ(R) for all R ⊆ S. Now, appyling Proposition 2 we obtain

x(S) ≥ ŵ(S) ≥ wS,xγ (S) = x(S),
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where the second inequality follows from Proposition 2 and the last equality
from the Davis and Maschler reduced game property of the core (see Peleg,
1986). Thus, x(S) = ŵ(S) and this completes the proof of x|S ∈ C(γ̂S,x). ut

As a consequence of the proof of the above theorem, we can justify, by
means of the following remark, that the worth of the grand coalition of the
derived game is indeed attainable.

Remark 1 An optimal matching of the derived market at a core allocation
is induced by an optimal matching of the initial market. To see that, take
γ = (M1,M2,M3; v) a balanced generalized three-sided assignment market
and µ an optimal matching, µ ∈Mγ(M1,M2,M3). Let γ̂S,x = (M1 ∩ S,M2 ∩
S,M3 ∩ S; v̂S,x) be the derived market at S ⊆ M1 ∪M2 ∪M3 and x ∈ C(γ).
It turns out that µ|S = {E ∩ S | E ∈ µ} is optimal for γ̂S,x. Indeed, given any
other µ′ ∈Mγ̂S,x(M1 ∩ S,M2 ∩ S,M3 ∩ S),∑

E∈µ′

v̂S,x(E) ≤
∑
E∈µ′

x(E) = x(S) =
∑
E∈µ|S

x(E)

=
∑
E∈µ|S

v(D(E))− x(D(E) \ E) ≤
∑
E∈µ|S

v̂S,x(E),

where the first inequality follows from (3); for all E ∈ µ|S , D(E) is defined as
the unique basic coalition in µ such that D(E)∩S = E; and the last inequality
follows from (1). Hence, µ|S is optimal for γ̂S,x. Because of that, no two basic
coalitions of µ|S need the cooperation of the same outside agent to attain their
worth.

To finish this section we show another solution concept that satisfies de-
rived consistency. The nucleolus is a well-known single-valued solution for
coalitional games introduced by Schmeidler (1969). When the game is bal-
anced, the nucleolus is the unique core allocation that lexicographically mini-
mizes the vector of decreasingly-ordered excesses of coalitions.2

The nucleolus of a generalized three-sided assignment market γ = (M1,M2,M3; v)
is the nucleolus of the associated assignment game (N,wγ), and it will be de-
noted by η(γ). Next, we show that when a generalized three-sided assignment
market is balanced the nucleolus also satisfies derived consistency.

Theorem 2 On the class of balanced generalized three-sided assignment mar-
kets, the nucleolus satisfies derived consistency.

Proof Let γ = (M1,M2,M3; v) be a balanced generalized three-sided assign-
ment market, η(γ) = η be the nucleolus and ∅ 6= S ( M1 ∪M2 ∪M3. Since
the nucleolus satisfies the Davis and Maschler reduced game property (Pot-
ters, 1991), η|S = η(wS,ηγ ) which implies η(S) = wS,ηγ (S). On the other hand,

2 Given a game (N, r), the excess of a coalition S ⊆ N at a payoff vector x ∈ RN is
r(S)−

∑
i∈S

xi.
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since η ∈ C(γ), by Theorem 1 we know that η|S ∈ C(wγ̂S,η ) which implies
η(S) = wγ̂S,η (S). Hence, taking into account Proposition 2, we have that the
Davis and Maschler reduced game (S,wS,ηγ ) and its superadditive cover have
the same efficiency level, which implies (Miquel and Núñez, 2011) that both
games have the same nucleolus. Therefore, η|S = η(wγ̂S,η ). ut

In the next section we combine derived consistency with two additional
properties in order to characterize the core of generalized three-sided assign-
ment games.

4 An axiomatic characterization of the core

In this section, we give an axiomatic characterization of the core on the class
of generalized three-sided assignment markets making use of derived con-
sistency and two additional properties, singleness best and individual anti-
monotonicity, that are introduced in the sequel.

Definition 7 A solution σ on Γ ⊆ Γ3−GAM satisfies singleness best if for all
γ = (M1,M2,M3; v) ∈ Γ , it holds that whenever the partition in singletons is
optimal in γ, then (v({i}))i∈N ∈ σ(γ).

Singleness best simply says that if the partition in individual coalitions is
optimal, then the vector of individual values should be an outcome of the solu-
tion. This axiom has some resemblance with the zero inessential game property
of Hwang and Sudhölter (2001) in the sense that it is a non-emptiness axiom
for generalized three-sided assignment games that are trivial or inessential.

Before introducing the property of individual anti-monotonicity we need
to establish how to compare the individual values of all agents across different
games.

Given two payoff vectors x = (xi)i∈N , x′ = (x′i)i∈N in RN and µ ∈
M(M1,M2,M3), we write x′ ≥µ x when xi = x′i for all {i} ∈ µ and x′i ≥ xi
if {i} /∈ µ. That is, x′ is greater than x with respect to µ when agents that
are matched with some other partner receive at least as much in x′ than in x,
while agents that are alone receive the same payoff in both allocations.

Definition 8 A solution σ on Γ ⊆ Γ3−GAM satisfies individual anti-monotonicity
if for all γ′ = (M1,M2,M3; v′) ∈ Γ , all γ = (M1,M2,M3; v) ∈ Γ , all u ∈ σ(γ′)
and matching µ compatible with u, if v(E) = v′(E) for all E ∈ B with |E| > 1
and (v′({i}))i∈N ≥µ (v({i}))i∈N , then it holds u ∈ σ(γ).

Individual anti-monotonicity says that if the individual values decrease (in
the sense defined above) any payoff vector in the solution of the original market
should remain in the solution of the new market. Notice that the value of pairs
and triplets coincide in both markets. Individual anti-monotonicity is a weaker
version of anti-monotonicity introduced by Keiding (1986) and also used by
Toda (2003).
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Now, we characterize the core on the class of generalized three-sided assign-
ment games by means of derived consistency, singleness best and individual
anti-monotonicity.

Theorem 3 On the domain of generalized three-sided assignment markets,
the core is the unique solution that satisfies derived consistency, singleness
best and individual anti-monotonicity.

Proof By Theorem 1 we know the core satisfies derived consistency. It is
straightforward that the core satisfies singleness best and individual anti-
monotonicity. Assume now that σ is a solution on Γ3−GAM also satisfying
these axioms. Take any γ = (M1,M2,M3; v) ∈ Γ3−GAM .

We first show that σ(γ) ⊆ C(γ). Take x ∈ σ(γ). We need to show that
x satisfies coalitional rationality and efficiency. Notice that if some side of
the market is empty, the game is a two-sided assignment market and the
statement follows from Proposition 2 in (Llerena et al, 2015). So, we can
assume without loss of generality that Ml 6= ∅ for all l ∈ {1, 2, 3}. Then,
for all i ∈ M1 ∪M2 ∪M3 consider the derived market relative to S = {i}
at x. By derived consistency of σ, xi ∈ σ(γ̂{i},x). Moreover, feasibility-by-
matching of σ implies that xi = v̂{i},x({i}). Now, let E ∈ B be any basic
coalition such that i ∈ E. By definition of derived market at {i} and x we
have xi = v̂{i},x({i}) ≥ v(E)−

∑
k∈E\{i}

xk. Hence,
∑
k∈E

xk ≥ v(E) which states

that x satisfies coalitional rationality.
In order to prove efficiency, let µ be an optimal matching and µ′ be a

matching compatible with x. Then, wγ(N) =
∑
E∈µ

v(E) ≤
∑
E∈µ

(
∑
i∈E

xi) =∑
E∈µ′

(
∑
i∈E

xi) =
∑
E∈µ′

v(E), where the last equality follows from the fact that

µ′ is compatible with x. Since µ is optimal and wγ(N) ≤
∑
E∈µ′

v(E), we get

that µ′ is also optimal and x is efficient. Hence, x ∈ C(γ) and we have proved
σ(γ) ⊆ C(γ).

To show that C(γ) ⊆ σ(γ), take u ∈ C(γ) and µ ∈ M(M1,M2,M3)
compatible with u. Then, µ is optimal for γ. Now, define a market γ′ =
(M1,M2,M3; v′) where v′(E) = v(E) for all E ∈ B such that |E| > 1 and
v′(E) = ui for all E = {i}. Notice that v′({i}) = ui = v({i}) for all {i} ∈ µ
and v′({i}) = ui ≥ v({i}) for all {i} /∈ µ. Hence, (v′({i}))i∈N ≥µ (v({i}))i∈N .
Let us see that µ′ = {{i} | i ∈ N} is optimal for γ′. To this end, take any
matching µ′′ ∈M(M1,M2,M3). Then,∑

E∈µ′

v′(E) =
∑
i∈N

v′({i}) =
∑
i∈N

ui =
∑
E∈µ′′

|E|>1

∑
i∈E

ui +
∑
E∈µ′′

|E|=1

∑
i∈E

ui

≥
∑
E∈µ′′

|E|>1

v′(E) +
∑
E∈µ′′

|E|=1

v′(E) =
∑
E∈µ′′

v′(E).
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The inequality follows from the fact that u ∈ C(γ) and the relationship be-
tween v and v′. Thus, µ′ is optimal for γ′. By singleness best, u = (ui)i∈N =
(v′({i}))i∈N ∈ σ(γ′) and then, by individual anti-monotonicity, u ∈ σ(γ).
Hence, C(γ) ⊆ σ(γ). Together with the reverse inclusion, σ(γ) ⊆ C(γ), we
conclude that C(γ) = σ(γ). ut

We now show that no axiom in the above characterization is implied by
the others. To this end, we introduce different solutions satisfying all axioms
but one.

Example 4 For all γ = (M1,M2,M3; v) ∈ Γ3−GAM , let us consider

σ1(γ) = ∅.

Clearly, σ1 satisfies derived consistency and individual anti-monotonicity but
not singleness best.

Example 5 For all γ = (M1,M2,M3; v) ∈ Γ3−GAM , write N = M1 ∪M2 ∪M3

and let us consider

σ2(γ) =

u ∈ RN
∣∣∣∣∣∣
u is feasible-by-matching for γ,
ui ≥ wγ({i}), for all i ∈ N,
u(N) = wγ(N)

 .

Notice that if u ∈ σ2(γ), every matching µ that is compatible with u is optimal.
It can be easily checked that σ2 satisfies singleness best and individual anti-
monotonicity but, since σ2 is different from the core, the characterization of
the core in Theorem 3 implies that σ2 does not satisfy derived consistency.

Example 6 For all γ = (M1,M2,M3; v) ∈ Γ3−GAM , let η(γ) be the nucleolus
of γ and consider

σ3(γ) =

{
∅ if C(γ) = ∅,
{η(γ)} if C(γ) 6= ∅.

The solution σ3 satisfies singleness best and derived consistency (see Theorem
2), but, since σ3 is different from the core, the characterization of the core in
Theorem 3 implies that σ3 does not satisfy individual anti-monotonicity.

These three examples prove that none of the axioms is redundant in the
above characterization of the core.

5 Core and competitive equilibria

We now focus on the particular case where M1 = {1, ...,m} and M2 =
{1′, ...,m′} are two sets of sellers, each selling an indivisible good. Goods of
sellers in M1 are of a different type of those of sellers in M2. The third sector
M3 = {1′′, ...,m′′} is formed by buyers, each interested in buying at most one
unit of each type of good. Each seller r ∈ M1 ∪M2 has a reservation value



16 Ata Atay, Francesc Llerena, Marina Núñez

cr ≥ 0 for his object, meaning he will not sell for a price lower than that. We
denote by c the vector of sellers’ reservation values.

We denote by Bk, the set of basic coalitions that contain buyer k ∈ M3,
Bk = {E ∈ B | k ∈ E}. Then, each buyer k ∈ M3 places a value wk(E) ∈ R+

on each basic coalition E ∈ Bk and we denote by w = (wk)k∈M3
the vector of

buyers’ valuations.
All these valuations (w, c) give rise to a generalized three-sided assignment

market (M1,M2,M3; vw,c) where vw,c(E) = wk(E)− c(E \ {k}) if E ∈ Bk for
some k ∈M3 and vw,c(E) = 0 if E ∈ B with E ∩M3 = ∅. We denote by ΓSSB
this subclass of generalized three-sided assignment markets that are defined
by some valuations (w, c).

We want to show that each core allocation is the result of trading goods
following an optimal matching and according to some prices. To introduce the
notion of competitive price vector, some previous definitions are needed.

Given a generalized three-sided assignment market γ = (M1,M2,M3; vw,c) ∈
ΓSSB , a feasible price vector is p ∈ RM1∪M2

+ such that pr ≥ cr for all r ∈
M1 ∪M2.

Next, for each feasible price vector p ∈ RM1∪M2
+ we introduce the demand

set of each buyer in sector M3.

Definition 9 Given a market γ = (M1,M2,M3; vw,c) ∈ ΓSSB , the demand
set of a buyer k ∈M3 at a feasible price vector p ∈ RM1∪M2

+ is

Dk(p) = {E ∈ Bk | wk(E)−p(E\{k}) ≥ wk(E′)−p(E′\{k}) for all E′ ∈ Bk}.

Note that Dk(p) describes the set of basic coalitions containing buyer k
that maximize the net valuation of buyer k at prices p. Notice also that the
demand set of a buyer k ∈ M3 is always non-empty. If µ ∈ M(M1,M2,M3),
for all k ∈ M3 we will write µ(k) to denote the basic coalition E such that
k ∈ E ∈ µ.

Given a matching µ ∈ M(M1,M2,M3), we say a seller r ∈ M1 ∪M2 is
unassigned (by µ) if there is no k ∈M3 such that r ∈ µ(k)

Now, we can introduce the notion of competitive equilibrium for our market.

Definition 10 Given a market γ = (M1,M2,M3; vw,c) ∈ ΓSSB , a pair (p, µ),
where p ∈ RM1∪M2

+ is a feasible price vector and µ ∈ M(M1,M2,M3), is a
competitive equilibrium if

i for all buyer k ∈M3, µ(k) ∈ Dk(p),
ii for all seller r ∈M1 ∪M2, if r is unassigned by µ, then pr = cr.

If a pair (p, µ) is a competitive equilibrium, then we say that the price
vector p is a competitive equilibrium price vector. The corresponding payoff
vector for a given pair (p, µ) is called competitive equilibrium payoff vector.
This payoff vector is (x(p, µ), y(p, µ), z(p, µ)) ∈ RM1 ×RM2 ×RM3 , defined by

xi(p, µ) = pi − ci for all sellers i ∈M1,

yj(p, µ) = pj − cj for all sellers j ∈M2,

zk(p, µ) = wk(µ(k))− p(µ(k) \ {k}) for all buyers k ∈M3.
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We denote the set of competitive equilibrium payoff vectors of market γ by
CE(γ).

We now study the relationship between the core of the market γ = (M1,M2,M3; vw,c) ∈
ΓSSB and the set of competitive equilibrium payoff vectors. First, we need to
point out that if a matching µ constitutes a competitive equilibrium with a
feasible price vector p, then µ is an optimal matching. The proof is consigned
to the Appendix.

Lemma 1 Given a market γ = (M1,M2,M3; vw,c) ∈ ΓSSB, if a pair (p, µ) is
a competitive equilibrium, then µ is an optimal matching.

Now, we can give the main result in this section.

Theorem 4 Given a market γ = (M1,M2,M3; vw,c) ∈ ΓSSB, the core of the
market, C(γ), coincides with the set of competitive equilibrium payoff vectors,
CE(γ).

Proof First, we show that if (p, µ) is a competitive equilibrium, then its corre-
sponding competitive equilibrium payoff vectorX = (x(p, µ), y(p, µ), z(p, µ)) ∈
CE(γ) is a core element. Recall from its definition that xi(p, µ) = pi−ci for all i ∈
M1, yj(p, µ) = pj − cj for all j ∈ M2 and zk(p, µ) = wk(µ(k)) − p(µ(k) \
{k}) for all k ∈ M3. Let us check that for all basic coalitions E ∈ B it holds
X(E) ≥ vw,c(E). Notice that if E does not contain any buyer k ∈ M3, then
vw,c(E) = 0 and hence the core inequality holds. Otherwise, take E ∈ B such
that k ∈ E for some k ∈M3. Then,

X(E) = p(E \ {k})− c(E \ {k}) + wk(µ(k))− p(µ(k) \ {k})
≥ p(E \ {k})− c(E \ {k}) + wk(E)− p(E \ {k})
= wk(E)− c(E \ {k}) = vw,c(E),

where the inequality follows from the fact that (p, µ) is a competitive equi-
librium. It remains to check that X is efficient. Since µ is a partition of
N = M1 ∪M2 ∪M3, we get

X(N) =
∑
k∈M3

[
wk(µ(k))− p(µ(k) \ {k})

]
+ p(M1 ∪M2)− c(M1 ∪M2)

=
∑
k∈M3

[
wk(µ(k))− p(µ(k) \ {k}) + p(µ(k) \ {k})− c(µ(k) \ {k})

]
+

∑
l/∈

⋃
k∈M3

µ(k)

(pl − cl)

=
∑
k∈M3

[
wk(µ(k))− c(µ(k) \ {k})

]
=
∑
k∈M3

vw,c(µ(k)) =
∑
E∈µ

vw,c(E),

where the third equality holds since pl = cl for unassigned objects l.
We have shown that if (p, µ) is a competitive equilibrium, then its compet-

itive equilibrium payoff vector X is a core allocation.



18 Ata Atay, Francesc Llerena, Marina Núñez

Next, we show that the reverse implication holds. That is, if X ∈ RN is a
core allocation, then it is the payoff vector related to a competitive equilibrium
(p, µ), where µ is any optimal matching and p is a competitive equilibrium price
vector.

Let us define p ∈ RM1×RM2 by pl = Xl+cl for all l ∈M1∪M2. Notice first
that since X ∈ C(γ), if an object l ∈M1 ∪M2 is unassigned by the matching
µ, then pl = Xl + cl = cl. Moreover, X(µ(k)) = vw,c(µ(k)) for all k ∈M3 and
X(E′) ≥ vw,c(E′) for all E′ ∈ Bk where k ∈M3. Then, for all k ∈M3 and all
E′ ∈ Bk,

wk(µ(k))− p(µ(k) \ {k}) = vw,c(µ(k)) + c(µ(k) \ {k})− p(µ(k) \ {k})
= X(µ(k)) + c(µ(k) \ {k})− p(µ(k) \ {k})
= Xk

≥ vw,c(E′)−X(E′ \ {k})
= vw,c(E′)−

[
p(E′ \ {k})− c(E′ \ {k})

]
= wk(E′)− p(E′ \ {k})

where the inequality follows from the fact that X ∈ C(γ). This shows that
µ(k) ∈ Dk(p) which concludes the proof. ut

Once shown that on the class of generalized three-sided assignment markets
the set of competitive equilibrium payoff vectors, CE(γ), coincides with the core
of the market, C(γ), we have that competitive equilibria exist for this model
if and only if the core is non-empty. 3

Notice to conclude that the class ΓSSB contains all classical three-sided
assignment markets as defined in Kaneko and Wooders (1982) or Quint (1991).
Indeed, the class ΓSSB is characterized by two facts: a) individual values are
null, v({i}) = 0 for all seller i ∈ M1 ∪M2 and b) any pair of sellers is also
valued at zero, v({i, j}) = 0 if i ∈ M1 and j ∈ M2. Now, if we have any
classical three-sided assignment market defined by a three-dimensional matrix
A = (aijk)(i,j,k)∈M1×M2×M3

, simply define ci = 0 for all i ∈ M1, cj = 0 for

all j ∈ M2 and, for all k ∈ M3, wk({i, j, k}) = aijk for all (i, j) ∈ M1 ×M2,
wk({i, k}) = 0 for all i ∈ M1, wk({j, k}) = 0 for all j ∈ M2. This defines a
market in ΓSSB .

Since ΓSSB contains all classical three-sided assignment markets, balanced-
ness is not guaranteed in this class.

Appendix

Proof of Proposition 2:

3 See Quint (1991a) for a characterization of the non-emptiness of the core of games in
partition form in terms of the solutions of the linear program that provides an optimal
matching.
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Proof Let us write ŵ = wγ̂S,x . We have to show that ŵ is superadditive, ŵ ≥ wS,xγ and ŵ
is minimal with these two properties.

By definition, ŵ is superadditive. Now, we show that ŵ(T ) ≥ wS,xγ (T ) for all T ⊆ S.
Notice that, for all T ⊆ S there exists Q ⊆ N \ S such that

wS,xγ (T ) = wγ(T ∪Q)−
∑
l∈Q

xl. (4)

Let µ be a matching on T ∪ Q such that wγ(T ∪ Q) =
∑
E∈µ v(E). We introduce the fol-

lowing partition of the set of basic coalitions in µ:
I1 = {{i, j, k} ∈ µ | i ∈ T, j ∈ T, k ∈ T}
I2 = {{i, j, k} ∈ µ | i 6∈ T, j 6∈ T, k 6∈ T}
I3 = {{i, j, k} ∈ µ | i ∈ T, j ∈ T, k /∈ T}
I4 = {{i, j, k} ∈ µ | i ∈ T, j /∈ T, k /∈ T}
I5 = {{i, j} ∈ µ | i ∈ T, j ∈ T}
I6 = {{i, j} ∈ µ | i /∈ T, j /∈ T}
I7 = {{i, j} ∈ µ | i ∈ T, j /∈ T}
I8 = {{i} ∈ µ | i ∈ T}.
I9 = {{i} ∈ µ | i /∈ T}.

We write wγ(T ∪Q) in terms of the above partition.

wγ(T ∪Q) =
∑

{i,j,k}∈I1

v({i, j, k}) +
∑

{i,j,k}∈I2

v({i, j, k}) +
∑

{i,j,k}∈I3

v({i, j, k})

+
∑

{i,j,k}∈I4

v({i, j, k}) +
∑

{i,j}∈I5

v({i, j}) +
∑

{i,j}∈I6

v({i, j}) (5)

+
∑

{i,j}∈I7

v({i, j}) +
∑
{i}∈I8

v({i}) +
∑
{i}∈I9

v({i}).

Then, substitute (5) in equation (4) and distribute
∑
l∈Q

xl among the sets of the partition.

wS,xγ (T ) = wγ(T ∪Q)−
∑
i∈Q

xi

=
∑

{i,j,k}∈I1

v({i, j, k}) +
∑

{i,j,k}∈I2

v({i, j, k})− xi − xj − xk

+
∑

{i,j,k}∈I3

v({i, j, k})− xk +
∑

{i,j,k}∈I4

v({i, j, k})− xj − xk

+
∑

{i,j}∈I5

v({i, j}) +
∑

{i,j}∈I6

v({i, j})− xi − xj +
∑

{i,j}∈I7

v({i, j})− xj

+
∑
{i}∈I8

v({i}) +
∑
{i}∈I9

v({i})− xi.

Since x ∈ C(γ), the second, the sixth and the last term are non-positive.
Let us consider v̂ = v̂S,x (see Definition 3). For all t, r, s ∈ {1, 2, 3} such that r 6= s,

r 6= t, s 6= t and all i ∈Mr ∩ T , j ∈Ms ∩ T ,

v̂({i, j}) = max
k∈Q∩Mt

{v({i, j, k})− xk, v({i, j})}.

As a consequence, for all {i, j, k} ∈ I3, v({i, j, k})−xk ≤ v̂({i, j}) and for all {i, j} ∈ I5,
v({i, j}) ≤ v̂({i, j}).

Also, for all t ∈ {1, 2, 3} and l ∈ Mt ∩ T , if r, s are such that r 6= s, s 6= t and t 6= r,
then,
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v̂({l}) = max
i∈Mr∩Q
j∈Ms∩Q

{v({i, j, l})− xi − xj , v({i, l})− xi, v({j, l})− xj , v({l})}.

As a consequence, for all {i, j, k} ∈ I4, v({i, j, k})− xj − xk ≤ v̂({i}); for all {i, j} ∈ I7,
v({i, j})− xj ≤ v̂({i}) and trivially v({i}) ≤ v̂({i}) for all {i} ∈ I8.

To sum up, taking into account that ŵ is superadditive by definition,

wS,xγ (T ) ≤
∑

{i,j,k}∈I1
v̂({i, j, k}) +

∑
{i,j,k}∈I3
{i,j}∈I5

v̂({i, j}) +
∑

{i,j,k}∈I4
{i,j}∈I7
{i}∈I8

v̂({i}) ≤ ŵ(T ).

Now, we only need to show that ŵ is the minimal superadditive game satisfying the
above inequality. First, consider {k} ∈ BS . Then,

wS,xγ ({k}) = max
Q⊆N\S

{wγ({k} ∪Q)− x(Q)}

≥ max
Q⊆N\S
{k}∪Q∈B

{wγ({k} ∪Q)− x(Q)}

≥ max
Q⊆N\S
{k}∪Q∈B

{v({k} ∪Q)− x(Q)} (6)

= v̂({k}).

Similarly, we obtain

wS,xγ {i, j} ≥ v̂({i, j}) for all {i, j} ∈ BS , (7)

wS,xγ ({i, j, k}) ≥ v̂({i, j, k}) for all {i, j, k} ∈ BS . (8)

Assume now (N,w) is superadditive and w ≥ wS,xγ . For all T ⊆ S, let µ be an optimal

matching for γ̂S,x|T . Then,

w(T ) ≥
∑

{i,j,k}∈µ
w({i, j, k}) +

∑
{i,j}∈µ

w({i, j}) +
∑
{k}∈µ

w({k})

≥
∑

{i,j,k}∈µ
wS,xγ ({i, j, k}) +

∑
{i,j}∈µ

wS,xγ ({i, j}) +
∑
{k}∈µ

wS,xγ ({k})

≥
∑

{i,j,k}∈µ
v̂({i, j, k}) +

∑
{i,j}∈µ

v̂({i, j}) +
∑
{k}∈µ

v̂({k})

= ŵ(T ),

where the last inequality follows from (6), (7) and (8).

This shows that ŵ is the minimal superadditive game such that ŵ ≥ wS,xγ , which implies

that ŵ is the superadditive cover of wS,xγ . ut

Proof of Lemma 1:

Proof In order to see this, we need to show that if (p, µ) is a competitive equilibrium, then
the matching µ is a partition of maximal value. Consider a competitive equilibrium (p, µ)
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and another matching µ′ ∈M(M1,M2,M3). Then,∑
E∈µ

vw,c(E) =
∑
k∈M3

wk(µ(k))− c(µ(k) \ {k})

≥
∑
k∈M3

wk(µ′(k))− c(µ(k) \ {k})− p(µ′(k) \ {k}) + p(µ(k) \ {k})

=
∑
k∈M3

wk(µ′(k))− c(µ(k) \ {k})− p

 ⋃
k∈M3

µ′(k) \M3

+ p

 ⋃
k∈M3

µ(k) \M3


=
∑
k∈M3

wk(µ′(k))− c

 ⋃
k∈M3

µ(k) \M3

− p
 ⋃

k∈M3

µ′(k) \
⋃

k∈M3

µ(k)

 \M3

+ p

 ⋃
k∈M3

µ(k) \
⋃

k∈M3

µ′(k)

 \M3


=
∑
k∈M3

wk(µ′(k))− c

 ⋃
k∈M3

µ(k) \M3

− c
 ⋃

k∈M3

µ′(k) \
⋃

k∈M3

µ(k)

 \M3

+ p

 ⋃
k∈M3

µ(k) \
⋃

k∈M3

µ′(k)

 \M3


=
∑
k∈M3

wk(µ′(k))− c

 ⋃
k∈M3

µ′(k) \M3

− c
 ⋃

k∈M3

µ(k) \
⋃

k∈M3

µ′(k)

 \M3

+ p

 ⋃
k∈M3

µ(k) \
⋃

k∈M3

µ′(k)

 \M3


≥
∑
k∈M3

wk(µ′(k))− c(µ′(k) \ {k}) =
∑
E∈µ′

vw,c(E),

where the first inequality follows from the definition of the demand set and the fact that
(p, µ) is a competitive equilibrium: wk(µ(k)) ≥ wk(µ′(k))− p(µ′(k) \ {k}) + p(µ(k) \ {k}).
The fourth equality follows from the fact that for all l ∈

(⋃
k∈M3

µ′(k) \
⋃
k∈M3

µ(k)
)
\M3,

pl = cl, and the last inequality follows from the feasibility of the price vector p. ut
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