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We look at small Turing machines (TMs) that work with just two colors (alphabet symbols) and either two or three states. For
any particular such machine 𝜏 and any particular input 𝑥, we consider what we call the space-time diagram which is basically the
collection of consecutive tape configurations of the computation 𝜏(𝑥). In our setting, it makes sense to define a fractal dimension
for a Turing machine as the limiting fractal dimension for the corresponding space-time diagrams. It turns out that there is a
very strong relation between the fractal dimension of a Turing machine of the above-specified type and its runtime complexity. In
particular, a TM with three states and two colors runs in at most linear time, if and only if its dimension is 2, and its dimension
is 1, if and only if it runs in superpolynomial time and it uses polynomial space. If a TM runs in time O(𝑥

𝑛

), we have empirically
verified that the corresponding dimension is (𝑛 + 1)/𝑛, a result that we can only partially prove. We find the results presented here
remarkable because they relate two completely different complexity measures: the geometrical fractal dimension on one side versus
the time complexity of a computation on the other side.

1. Part I: Theoretical Setting

In the first part of the paper, we will define the basic notions
we work with. In particular, we will fix on a computational
model: small Turing machines with a one-way infinite tape.
For these machines, we will define the so-called space-
time diagrams which are a representation of the memory
state throughout time. For these diagrams, we will define a
notion of fractal dimension.Next, some theoretical results are
proven about this dimension.

1.1. ComplexityMeasures. Complexity measures are designed
to capture complex behavior and quantify how complex,
according to that measure, that particular behavior is. It
can be expected that different complexity measures from
possibly entirely different fields are related to each other in a
nontrivial fashion. This paper explores the relation between

two rather different but widely studied concepts and mea-
sures of complexity. On the one hand, there is a geometrical
framework inwhich the complexity of spatiotemporal objects
is measured by their fractal dimension. On the other hand,
there is the standard framework of computational (resources)
complexity where the complexity of algorithms is measured
by the amount of time and memory they take to be executed.

The relation we have between both frameworks is as
follows.We start in the framework of computations and algo-
rithms and for simplicity assume that they can be modeled
as using discrete time steps. Now, suppose we have some
computer 𝜏 that performs a certain task 𝜏(𝑥) on input 𝑥.
We can assign a spatiotemporal object to the computation
corresponding to 𝜏(𝑥) as follows.

We look at the spatial representation 𝜎
0
of the memory

when 𝜏 starts on input 𝑥. Next we look at 𝜎
1
: the spatial

representation of the memory after one step in the computa-
tion and so forth for 𝜎

2
, 𝜎
3
, . . .. Then, we “glue” these spatial
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objects together into one objectΣ(𝜏, 𝑥) by putting each output
in time next to the other: ⟨𝜎

0
, 𝜎
1
, 𝜎
2
, . . .⟩. Each 𝜎

𝑖
can be seen

as a slice of Σ(𝜏, 𝑥) of the memory at one particular time 𝑖 in
the computation. This is why we call Σ(𝜏, 𝑥) the space-time
diagram of 𝜏(𝑥). It is of these spatiotemporal objects Σ(𝜏, 𝑥)

and in particular the limit of 𝑥 going to infinity that we can
sometimes compute or estimate the fractal dimension that we
shall denote by 𝑑(𝜏).

One can set this up in such a way that 𝑑(𝜏) becomes
a well defined quantity. Thus, we have a translation from
the computational framework to the geometrical framework.
Next, one can then investigate the relation between these two
frameworks and, in particular, whether complex algorithms
(in terms of time and space complexity) get translated to
complex (in the sense of fractal dimension) space-time
diagrams.

It is this main question that is being investigated in this
paper. The computational model that we choose is that of
Turing machines. In particular, we look at small one-way
infinite Turing machines (TMs) with just two or three states
and a binary tape alphabet.

For these particular machines, we define a notion of
dimension along the lines sketched above. In exhaustive
computer experiments, we compute the dimensions of all
machines with at most three states. Among the various
relations that we uncover is the notion that such a TM runs
in at most linear time if the corresponding dimension is 2.
Likewise, if a TM (in general) runs in superpolynomial time
and uses polynomial space, we see that the corresponding
dimension is 1.

Admittedly, the way in which fractal geometry measures
complexity is not entirely clear and one could even sustain
the view that fractal geometry entirely measures something
else. Nonetheless, dimension is clearly related to degrees of
freedom and as such related to an amount of information
storage.

In [1], space-time diagrams of Turing machines and
one-dimensional cellular automata were investigated in the
context of algorithmic information theory. Notably, an
incompressibility test on the space-time diagrams led to
a classification of the behavior of CAs and TMs thereby
identifying nontrivial behavior [2]. The same type of space-
time diagrams was also investigated in connection to two
other seminal measures of complexity [3–5] connected to
Kolmogorov complexity, namely, Solomonoff ’s algorithmic
probability [2, 6] andBennett’s logical depth [7, 8]. Interesting
connections between fractal dimension and spatiotemporal
parameters have also been explored in the past [9–11],
delivering a range of applications in landscape analysis and
even medicine in the study of time series.

The results presented in this paper were found by com-
puter experiments and proven in part. To the best of our
knowledge, it is the first time that a relation is studied between
computational complexity and fractal geometry, of a nature as
presented here.

Outline. The current paper is naturally divided into three
parts. In the first part (Sections 1.2–1.4), we define the ideas
and concepts and prove various theoretical results. In the

second part, Sections 2.1-2.2, we describe our experiment
and its results to investigate those cases where none of our
theoretical results would apply. Finally, in the third part, we
present a literature study where we mention various results
that link fractal dimension to other complexity notions.

More in detail, in Section 1.2, we describe the kind of TMs
we will work with. This paper can be seen as part of a larger
project where the authors mine and study the space of small
TMs. As such, various previous results and data sets could be
reused in this paper and in Section 1.2 we give an adequate
description of these used data sets and results.

In Section 1.3, we revisit the box-counting dimension and
define a suitable similar notion of fractal dimension 𝑑(𝜏) for
TMs 𝜏. We prove that 𝑑(𝜏) = 2 in case 𝜏 runs in at most linear
time in the size of the input. Next, in Section 1.4, we prove
an upper and a lower bound for the dimension of Turing
machines. The Upper Bound Conjecture is formulated to the
effect that the proven upper bound is actually always attained.
For special cases, this can be proved. Moreover, under some
additional assumptions, this can also be proven in general.
In our experiment, we test whether in our test space the
sufficient additional assumptions were also necessary ones
and they turn out to be so.

Section 2.1 describes how we performed the experiment,
what difficulties we encountered, and how they were over-
come, and also somepreliminary findings are given.Themain
findings are presented in Section 2.2.

We conclude the paper with Section 3.1 where we present
various results from the literature that link different notions
of complexity to put our results within this panorama.

1.2. The Space of Small Turing Machines. As mentioned
before, this paper forms part of a larger project where the
authors exhaustively mine and investigate a set of small
Turing machines. In this section, we will briefly describe the
raw data that was used for the experiments in this paper and
refer for details to the relevant sources.

1.2.1. The Model. A TM can be conceived as both a com-
putational device and a dynamical system. In our studies, a
TM is represented by a head moving over a tape consisting
of discrete tape cells where the tape extends infinitely in one
direction. In our pictures and diagrams, we will mostly depict
the tape as extending infinitely to the left. Each tape cell can
contain a symbol from an alphabet. Instead of symbols, we
speak of colors and in the current paper we will work with
just two colors: black and white.

The head of a TM can be in various states as it moves over
the cells of the tape.Wewill refer to the collection of TMs that
use 𝑛 states and 𝑘 symbols/colors as the (𝑛, 𝑘)-space of TMs.
Wewill always enumerate the states from 1 to 𝑛 and the colors
from 0 to 𝑘 − 1. In this paper, we work with just two symbols
so that we represent a cell containing a 0 with a white cell and
a cell containing a 1 with a black cell.

A computation of a TM proceeds in discrete time steps.
The tape content at the start of the computation is called the
input. By definition, our TMs will always start with the head
at the position of the first tape cell, that is, the tape cell next
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to the edge of the tape; in our pictures, this is normally the
rightmost tape. Moreover, by definition, our TMs will always
commence their computation in default start state 1.

A TM 𝜏 in (𝑛, 𝑘) space is completely specified by its
transition table. This table tells what action the head should
perform when it is in State 1 ≤ 𝑗 ≤ 𝑛 at some tape
cell 𝑐 and reads there some symbol 0 ≤ 𝑖 < 𝑘. Such an
action in turn consists of three aspects: changing to some
state (possibly the same one); the head moving either one
cell left or one cell right but never staying still; writing
some symbol at 𝑐 (possibly the same symbol as before).
Consequently, each (𝑛, 𝑘)-space consists of (2 ⋅ 𝑛 ⋅ 𝑘)

𝑛⋅𝑘 many
different TMs. We number these machines according to
Wolfram’s enumeration scheme [12, 13] which is similar to the
lexicographical enumeration.

Clearly, each TM in (𝑛, 𝑘) space is also present in (𝑚, 𝑘)

space for 𝑚 ≥ 𝑛, by just not using the extra states since they
are “inaccessible” from State 1. Many rules in a (𝑛, 𝑘) space are
trivially equivalent in the computational sense up to a simple
transformation of the underlying geometry, for example, by
relabeling states by reflection or complementation, hence,
for all identical purposes. In the literature, machines that
have equivalents are sometimes called amphicheiral; we will
sometimes refer to them as machine twins.

We say that a TM halts when the head “falls off” the tape
on the right-hand side, in other words, when the head is at the
rightmost position and receives an instruction to move right.
The tape configuration upon termination of a computation is
called the output.

We will refer to the input consisting of the first 𝑚 tape
cells by black on an otherwise white tape as the input 𝑚

(this is in slight discrepancy with the convention in [14]).
In this context, a function is a map sending an input 𝑚 to
some output tape configuration. We call the function where
the output is always identical to the input the tape identity
function.

By Rice’s theorem, it is in principle undecidable if two
TMs compute the same function. Nonetheless, for spaces
(𝑛, 2) with 𝑛 small, no universal computation is yet present
[15, 16]. In [14], the authors completely classify the TMs
in (3,2) space among the functions they compute, taking
pragmatic approaches that possibly produce small errors to
deal with undecidability and unfeasibility issues.

1.2.2. Space-Time Diagrams. As previouslymentioned in this
paper, a central role is played by the so-called space-time
diagrams. A space-time diagram for some computation is
nothing more but the joint collection of consecutive memory
configurations. We have included a picture of space-time
diagrams for a particular TM for inputs 1 to 14 in Figure 1.

Since these space-time diagrams are such a central notion
to this paper, let us briefly comment on Figure 1. The top-
row of each of these fourteen diagrams always represents the
input tape configuration of the TM.We have chosen to depict
the space-time diagrams of our TM on inputs 1 to 14. The
rightmost cell in the diagram is actually not representing a
tape cell. Rather it represents the end of the tape so that we
depict it with a different color/grey-tone.

Figure 1: The figure shows a sequence of space-time diagrams
corresponding to the TM in (2,2) space with number 346 (according
to Wolfram’s enumeration scheme [12, 13] for (2,2) space) on inputs
1 up to 14.

Remember that the computation starts with the head
of the TM in State 1 in the rightmost cell. Each lower
row represents the tape configuration of a next step in the
computation. So, there can at most be one cell of different
color between two adjacent rows in a space-time diagram.We
see that this particular (2,2) TMwith number 346 first moves
over the tape input erasing it. Then, it gradually moves back
to the edge of the tape writing alternatingly black and white
cells to eventually fall of the tape, whence it terminates.

Clearly, these space-time diagrams define spatiotemporal
objects by focusing on the black cells. We wish to measure
the geometrical complexity of these spatiotemporal objects.
Subsequently, we wish to see if there is a relation between this
geometrical complexity and the computational complexity
(space or time usage) of the TM in question.

In Section 1.3.2, we will see how to assign a measure
of geometrical complexity to these space-time diagrams and
call this measure the dimension of the TM. Various relations
between computational complexity of a TM on the one hand
and its dimension on the other hand can be proven. Other
relations will be investigated via experiments.

1.2.3. On Our Coding Convention. Note that for this paper it
is entirely irrelevant how to numerically interpret the output
tape configuration whence we will refrain from giving such
an interpretation. However, it has been a restrictive choice to
represent our input in a unary way. That is to say, the notion
of a function in our context only looks at a very restricted
class of possible inputs: blocks of 𝑛 consecutive black cells
for 𝑛 > 0. The main reason why we do this is that if we do
not do this, our functions all behave in a very awkward and
highly undesirable way. In [14], this undesirable behavior is
explained in the so-called Strips Theorem.

Basically, the StripsTheorem boils down to the following.
Let us consider a TM 𝜏 in (𝑛, 2) space on input 𝑥 and suppose
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𝜏(𝑥) is a terminating computation. If we number the cells on
the tape by their distance to the edge, let 𝑖 be the largest cell
number that is visited in the computation of 𝜏(𝑥). Clearly, any
tape input that is equal to 𝑥 on the first 𝑖 cells but possibly
different on the cells beyond 𝑖 will perform exactly the same
computation and in this sense it is input-independent.

We have chosen our input-output convention in such a
way to prevent the StripsTheorem.There are two undesirable
side effects of our coding. Firstly, it is clear that any TM that
runs in less than linear time actually runs in constant time.
Secondly, the thus defined functions are very fast growing
if we were to represent the output in binary. In particular,
the tape identity represents an exponentially fast growing
numerical function in this way.

A positive feature of our input convention is that the
amount of symmetry present in the input coding facili-
tates various types of analysis and in particular automated
function-completion seems to run more smoothly.Warning.
A clear drawback of our convention is that one tends to think
of the 𝑛th input as the number 𝑛. In the context of this paper,
this would not be good practice since it would, for example,
yield a linear primality test and factorization algorithm.

We will here describe an alternative way of representing
the input 𝑎 and denote the representation by 𝜌(𝑎). This
representation 𝜌(𝑎) will be such that it avoids the Strips
Theorem yet does not intrinsically entail exponential growth
of the tape identity and similar functions in case we would
interpret our output configuration in binary. Although we do
not use nor explore the alternative input coding, we find it
worth mentioning here and hope that future investigations
can take up the new coding.

In order to represent the input 𝑎 according to 𝜌, we first
write the input 𝑎 in binary as ∑

∞

𝑛=0
𝑎
𝑛
2
𝑛 with all but finitely

many 𝑎
𝑛
= 0. Let us denote the cells on the tape by 𝑐

0
, 𝑐
1
, 𝑐
2
, . . ..

Here, 𝑐
0
is the cell at the edge, 𝑐

1
is the cell immediately next

to it, and so forth. For 𝑎 ̸= 0, let 𝑘 = ⌊log
2
(𝑎)⌋ + 1 and 𝑘 = 1

otherwise. That is, 𝑘 + 1 is the number of digits in the binary
expansion of 𝑎.

For each 0 ≤ 𝑖 ≤ 𝑘, we will represent 𝑎
𝑖
in 𝑐
2⋅𝑖

in the
canonical way: we set 𝑐

2⋅𝑖
to be one/black whenever 𝑎

𝑖
= 1

and we set 𝑐
2⋅𝑖

to be zero/white otherwise. Moreover, we set
all odd-labeled cells 𝑐

2⋅𝑖+1
to be zero with the sole exception at

cell 2𝑘 + 1 that we define to be one/black.
It is clear that 𝜌 avoids the Strips Theorem. Moreover, if

we were to interpret the output as binary, the tape identity
defines a function whose growth rate is only in the order of
𝑥 → 𝑥

2.

1.3. Fractal Dimensions. In this section, we will briefly
recall the definition of and ideas behind the box-counting
dimension which is a particular fractal dimension having
the better computational properties whence better suited for
applications. In Section 3.1, we relate the box dimension to
various other notions of fractal dimension and in particular
to the well-known Hausdorff dimension.

After revisiting the notion of box-counting dimension,we
see how to apply these to Turing machines and their space-
time diagrams.

1.3.1. Box Dimension. We will use the notion of box dimen-
sion. This notion of fractal dimension can be seen as a
simplification of the well-known Hausdorff dimension (see
[17] and our survey section, Section 3.1). The Hausdorff
dimension is mathematically speaking more robust than
the box dimension. However, the box dimension is easier
to compute and is known to coincide with the Hausdorff
dimension in various situations.

Let us briefly recall the definition of the box dimension
and the main ideas behind it. The intuition is as follows.
Suppose we have a mathematical object 𝑆 of bounded size
whose “volume” 𝑉(𝑆) we wish to estimate. For example, let
us work with a space R𝑛 that has dimension 𝑛 large enough
to embed our object 𝑆.The idea now is to cover the object 𝑆 by
boxes in R𝑛 and estimate the “volume” 𝑉(𝑆) of 𝑆 as function
of the total number of boxes𝑁(𝑆) needed to cover 𝑆. Clearly,
the number of boxes 𝑁(𝑆) needed to cover 𝑆 depends on the
size of the boxes used. Therefore, in the analysis, we will take
along the parameter 𝑟which denotes the length of the edge of
the boxes used, andwe will write the number of boxes needed
to cover 𝑆 as 𝑁(𝑆, 𝑟).

If 𝑆 is a line, which is a one-dimensional object, the
corresponding notion of “volume” 𝑉(𝑆) is just the length of
the line segment. To estimate the length𝑉(𝑆), we clearly have

𝑉 (𝑆) = lim
𝑟↓0

𝑟𝑁 (𝑆, 𝑟) , (1)

if this is well defined.
If 𝑆 is a plane, or more in general a two-dimensional

manifold, the corresponding notion of “volume” 𝑉(𝑆) is just
the surface of the plane/manifold segment for which we have

𝑉 (𝑆) = lim
𝑟↓0

𝑟
2

𝑁(𝑆, 𝑟) , (2)

if this is well defined.
Likewise, for a three-dimensional object, to estimate its

volume, we would have

𝑉 (𝑆) = lim
𝑟↓0

𝑟
3

𝑁(𝑆, 𝑟) , (3)

if this is well defined, and in general, for a 𝑑-dimensional
object, we would obtain

𝑉 (𝑆) = lim
𝑟↓0

𝑟
𝑑

𝑁(𝑆, 𝑟) . (4)

The idea behind the definition of the box dimension is
to take (4) as a defining equation of dimension if this makes
sense mathematically speaking. Thus, solving for 𝑑 in (4), we
obtain

𝑉 (𝑆) = lim
𝑟↓0

𝑟
𝑑

𝑁(𝑆, 𝑟) ⇒

log (𝑉 (𝑆)) = lim
𝑟↓0

(𝑑 log (𝑟) + log (𝑁 (𝑆, 𝑟))) ⇒

lim
𝑟↓0

(𝑑 log (𝑟) + log (𝑁 (𝑆, 𝑟)) − log (𝑉 (𝑆))) = 0 ⇒

lim
𝑟↓0

(𝑑 +

log (𝑁 (𝑆, 𝑟))

log (𝑟)

−

log (𝑉 (𝑆))

log (𝑟)

) = 0 ⇒
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𝑑 = lim
𝑟↓0

(−

log (𝑁 (𝑆, 𝑟))

log (𝑟)

+

log (𝑉 (𝑆))

log (𝑟)

)

= lim
𝑟↓0

(

log (𝑁 (𝑆, 𝑟))

log (1/𝑟)

+

log (𝑉 (𝑆))

log (𝑟)

)

= lim
𝑟↓0

log (𝑁 (𝑆, 𝑟))

log (1/𝑟)

.

(5)

The last equality is justified in case 𝑆 is bounded as by
assumption and𝑉(𝑆) is finite so that lim

𝑟↓0
(𝑉(𝑆)/ log(𝑟)) = 0.

The reflections above form the main ideas behind the
definition of box dimension that we will use in this paper.

Definition 1 (box dimension). Let 𝑆 be some spatiotemporal
object that can be embedded in some R𝑛; let 𝑁(𝑆, 𝑟) denote
the minimal number of boxes of size 𝑟 needed to fully cover
𝑆. The box dimension of 𝑆 is denoted by 𝛿(𝑆) and is defined
by

𝛿 (𝑆) fl lim
𝑟↓0

log (𝑁 (𝑆, 𝑟))

log (1/𝑟)

, (6)

in case this limit is well defined. In all other cases, one will say
that 𝛿(𝑆) is undefined.

1.3.2. Box Dimension for Space-Time Diagrams. Let us see
how we can adapt the notion of box dimension to our space-
time diagrams. The spatiotemporal figure 𝑆 that we wish to
measure will be defined by the black cells in the space-time
diagram. Clearly, for each particular input on which the TM
halts, the corresponding space-time diagram is finite and has
dimension 𝑑(𝑆) = 2: each black cell defines a piece of surface.
It gets interesting when we consider limiting behavior of the
TM on larger and larger inputs.

A First Attempt. Let 𝜏 be some TM and let 𝑆(𝜏, 𝑥) denote the
space-time diagram corresponding to TM 𝜏 on input 𝑥 if this
is well defined, that is, if 𝜏 eventually halts on input 𝑥 which
we will denote by 𝜏(x)↓. The question is as follows: what is
the sensible way to define the dimension 𝑑(𝜏) of our TM 𝜏? It
does notmakemuch sense to define 𝑑(𝜏) = lim

𝑥→∞
𝛿(𝑆(𝜏, 𝑥))

for a couple of reasons.
Firstly, 𝜏 might diverge on various inputs. We can easily

bypass that by tacitly understanding lim
𝑥→∞

as 𝑥 getting
larger and larger among those 𝑥 for which 𝜏(x)↓ demanding
that there are infinitely many such 𝑥. In case there are just
finitely many 𝑥 on which 𝜏 converges, we could say that 𝑑(𝜏)
is undefined.

The second objection is more serious. As for each 𝑥

with 𝜏(x)↓, we have that 𝛿(𝑆(𝜏, 𝑥)) = 2; we see that all
limits converge to the value 2 if they are well defined.
This of course is highly undesirable. We can overcome this
objection by scaling the length of each 𝑆(𝜏, 𝑥) to some
figure scale(𝑆(𝜏, 𝑥)) whose length has unit size. Thus, the

black areas in scale(𝑆(𝜏, 𝑥)) become more and more fine-
grained so that it seems to make sense to define 𝑑(𝜏) =

𝛿(lim
𝑥→∞

scale(𝑆(𝜏, 𝑥))).

A Second Attempt and Formal Definition. The new candidate
𝑑(𝜏) = 𝛿(lim

𝑥→∞
scale(𝑆(𝜏, 𝑥))) has many good properties.

However, for this new candidate, we again see two main
objections.

The first objection is that lim
𝑥→∞

scale(S(𝜏, 𝑥)) need not
exist at all and, even worse, is likely not to be well defined
in most cases. We could try to remedy this by working with
subsequences for which the limit is defined but it all seems
very hairy.

The second objection is that this new definition seems
hard to numerically approximate at first glance. We will see
how to overcome the second objection which will yield to us
automatically a solution to the first objection.

As we mentioned before, we cannot first approximate
lim
𝑥→∞

scale(𝑆(𝜏, 𝑥)) and then compute the correspond-
ing 𝛿 as this would always yield the answer 2. However,
what we can do is simultaneously approximate both 𝛿 and
lim
𝑥→∞

scale(𝑆(𝜏, 𝑥)). There are a lot of choices in how we
approximate and in how fast we approximate 𝛿 and how
fast we approximate lim

𝑥→∞
scale(𝑆(𝜏, 𝑥)) relatively to the

approximation of 𝛿.
There seems to be a canonical choice though.The approx-

imation of the dimension 𝛿 is dependent on the size 𝑟 of the
boxes. It seems very natural to take the size of our boxes to
be exactly the size of one tape cell. The size of one tape cell is
naturally determined by scale(𝑆(𝜏, 𝑥)). Let us determine 𝑟 as
dictated by scale(𝑆(𝜏, 𝑥)). In order to facilitate our discussion,
we first fix some notation.

Definition 2. For 𝜏 a TM and 𝑥 an input so that 𝜏(x)↓, we
denote by 𝑡(𝜏, 𝑥) the amount of time steps 𝜏 needed on
input to terminate. Likewise, 𝑠(𝜏, 𝑥) denotes the amount of
space cells used by the computation of 𝜏 on input 𝑥. Thus,
𝑠(𝜏, 𝑥) measures the distance between the edge of the tape
and the furthest tape cell visited by the head during the
computation.

We will sometimes write 𝑡
𝜏
(𝑥) or even just 𝑡(𝑥) if the

context allows us to, similar for the space-usage function
𝑠(𝜏, 𝑥).

By the nature of our input-output protocol, there exist
no TMs whose runtime is sublinear but not constant. Let
us first concentrate on the TMs that run in at least linear
time and deal with the constant time TMs later. If a TM
halts in nonconstant time, the least it should do is read all
the input, do some calculations, and then go back to the
beginning of the tape. Thus, clearly 𝑡(𝜏, 𝑥) > 𝑠(𝜏, 𝑥), whence
the scaling of the figure 𝑆(𝜏, 𝑥) is best done by resizing the
runtime to get length 1. Consequently, the size of 𝑟 scales to
𝑟 = 1/𝑡(𝜏, 𝑥).

Recall that𝑁(Σ, 𝑟) denotes the minimal number of boxes
of size 𝑟 needed to cover the spatiotemporal object Σ. Now
that we have determined the size of 𝑟, we can write 𝑁(𝜏, 𝑥)

instead of 𝑁(𝑆(𝜏, 𝑥), 1/𝑡(𝜏, 𝑥)) and it is clear that 𝑁(𝜏, 𝑥) is
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just the number of black cells in the space-time diagram of
𝜏 on input 𝑥. Thus, the second attempt of defining 𝑑(𝜏) then
translates to

𝑑 (𝜏) fl lim
𝑥→∞

log (𝑁 (𝜏, 𝑥))

log (𝑡 (𝜏, 𝑥))

. (7)

In this definition, we could address the issue of unde-
finedness by replacing lim by lim sup or lim inf. Notwith-
standing the theoretical correctness of this move, it seems
hardly possible to sensibly compute lim sup or lim inf in the
general setting.

In the current paper, however, we have only considered
TMs with either two or three states and just two colors. It
turned out that in this settingwe could determine both lim inf
and lim sup. In all cases that we witnessed where the limit
(7) outright was not well defined, we were able to identify
different subsequences where the limit (7) did converge so
that we could choose to go with either lim sup or lim inf. It
turns out that, in general, the lower the dimension, the more
interesting the corresponding TM, so that we decided towork
with lim inf.

For TMs with constant runtime, we know that only a
constant number of cells will be visited and possibly changed
color. For these TMs, the figure 𝑆(𝜏, 𝑥) can only be sensibly
scaled by using the input size. By doing so, we see that in
the limit we just get a black line whose dimension is clearly
equal to one. However, as we consider constant runtime TMs
as a degenerate case so to say, we will for convenience define
the dimension of such machines to be equal to 2. We do
so in order to have them more like linear time TMs (see
Lemma 4). All these considerations and reflections lead us
to the following definition.

Definition 3 (box dimension of a Turing machine). Let 𝜏 be a
TM that converges on infinitely many input values 𝑥. In the
case of 𝜏(x)↓, let 𝑁(𝜏, 𝑥) denote the number of black cells in
the space-time diagram of 𝜏 on input 𝑥 and let 𝑡(𝜏, 𝑥) denote
the number of steps needed for 𝜏 to halt on 𝑥.

We will define the box dimension of a TM 𝜏 and denote it
by 𝑑(𝜏). In case 𝑡(𝜏, 𝑥) is constant from some 𝑥 onwards, we
define 𝑑(𝜏) fl 2. Otherwise, we define

𝑑 (𝜏) fl lim inf
𝑥→∞

log (𝑁 (𝜏, 𝑥))

log (𝑡 (𝜏, 𝑥))

. (8)

Note that our definition of dimension can readily be gen-
eralized to nonterminating computations. Also, restricting to
computational models with discrete time steps is not strictly
necessary.

1.3.3. Linear Time Turing Machines. For certain TMs 𝜏, we
can actually compute their box dimension. Let us reconsider
TM 346 again whose space-time diagrams were displayed
in Figure 1. Due to the extreme regularity in the space-time
diagrams, we can see that TM 346 runs in linear time, that is
to say, linear in the length of the representation of the input.

Thus, after scaling each space-time diagram so that the
vertical time axis is rescaled to 1, we will always have a little

surface in the shape of a black triangle in the scaled space-
time diagram.The box dimension of a triangle is of course 2.
Wemay conclude that 𝑑(2,2-TM 346) = 2. Of course the only
important feature used here is the linear-time performance of
2,2-TM 346. We can summarize this observation in a lemma.

Lemma 4. Let 𝜏 be a TM that runs at most linear time. Then,
𝑑(𝜏) = 2.

Proof. We fix some TM 𝜏 that runs at most linear time. Our
input/output convention is such that either 𝜏 is constant time
or 𝜏 is linear time. In case 𝜏 runs in constant time, we have
that 𝑑(𝜏) = 2 by definition.

Let us consider the case that 𝜏 runs in linear time. It must
be the case that the head goes all the way to the end of the tape
input; if not, 𝜏 would run in constant time from some input
𝑦 onwards. Input 𝑥 is represented by 𝑥 + 1 consecutive black
cells. In the worst case (the fewest amount of black cells), at
all the first steps, the input is erased and replaced by a white
cell as is the case in Figure 1.

However, 𝜏 runs in linear time, for example, for any 𝑥, the
machine 𝜏 runs at most 𝑎⋅(𝑥+1)many steps with 2 ≤ 𝑎 < ∞.
After scaling, the input will get size (𝑥 + 1)/(𝑎 ⋅ (𝑥 + 1)) =

1/𝑎. Thus, in the worst case, the upper triangle has size 1/2𝑎
2

which is independent of𝑥 and thus nonvanishing. Clearly, the
box dimension of a triangle of whatever size equals 2. Thus,
𝑑(𝜏) = 2 as what we wanted to see.

1.4. The Space-Time Theorem and Applications. Above we
saw that for linear time TMs we can actually compute the
corresponding dimension. However, for nonlinear TMs, we
can only prove an upper bound on the box dimension.

1.4.1. The Space-Time Theorem: An Upper Bound

Theorem5 (Space-TimeTheorem). For a given TM 𝜏, let 𝑠(𝑥)
denote the amount of cells visited by 𝜏 on input 𝑥, and let 𝑡(𝑥)
denote the amount of computation steps it took 𝜏 to terminate
on input 𝑥:

If lim inf
𝑥→∞

log (𝑠 (𝑥))

log (𝑡 (𝑥))

= 𝑛 then 𝑑 (𝜏) ≤ 1 + 𝑛. (9)

Proof. The box dimension is maximal in case all cells under
consideration are black.This number is bounded above by 𝑠⋅𝑡.
Plugging this in the definition of 𝑑(𝜏) gives us our result:

𝑑 (𝜏) = lim inf
𝑥→∞

log (𝑁 (𝜏, 𝑥))

log (𝑡 (𝜏, 𝑥))

≤ lim inf
𝑥→∞

log (𝑠 (𝑥) ⋅ 𝑡 (𝑥))

log (𝑡 (𝑥))

≤ lim inf
𝑥→∞

log (𝑠 (𝑥)) + log (𝑡 (𝑥))

log (𝑡 (𝑥))

≤ 1 + lim inf
𝑥→∞

log (𝑠 (𝑥))

log (𝑡 (𝑥))

≤ 1 + 𝑛.

(10)
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As we will see, in all cases, the upper bound given by the
Space-Time Theorem is actually attained in our experiment.
It is unknown, however, whether it holds in general.

1.4.2. A Lower Bound. We first observe that for any Turing
machine 𝜏we have that 𝑑(𝜏) ≥ 1.Themain idea is that if there
are too many white cells, then the Turing machine would
enter a loop and either finish straightaway or never finish (we
would like to thank an anonymous referee for suggesting this
simple argument to us).

Theorem 6. The dimension 𝑑(𝜏) ≥ 1 for any Turing machine
𝜏.

Proof. Let 𝜎 be the number of states of some fixed TM 𝜏. It
is clear that if we have a sequence of 𝜎 consecutive steps in
a computation of 𝜏 where the tape is entirely white, then 𝜏

will enter a loop. Thus, for 𝜏, in order to exhibit nontrivial
behavior, we should have, modulo an additive constant, that

𝑁(𝜏, 𝑥)

𝑡 (𝜏, 𝑥)

>

1

𝜎

. (11)

For linear or constant time TMs 𝜏, we had already observed
in Lemma 4 that𝑑(𝜏) ≥ 1 sowemay assume that 𝜏 has super-
linear runtime asymptotic behavior. But then, from (11), it
follows that in the limit we have log (𝑁(𝜏, 𝑥))/ log (𝑡(𝜏, 𝑥)) ≥

1 as was to be shown.

The method in proving the lower bound seems very
crude: no blocks of 𝜎 consecutive entirely white tapes may
occur. It seems that more in-depth analysis could yield
sharper lower bounds.

1.4.3. The Asymptotic Conjectures. In Theorem 6, we proved
𝑑(𝜏) ≥ 1. However, we conjecture that something stronger
actually holds.

Conjecture 7 (space-time ratio conjecture). For each TM
𝜏 which runs in more than linear time, we have that
lim
𝑥→∞

(𝑠(𝜏, 𝑥)/𝑡(𝜏, 𝑥)) = 0.

In certain cases, the Space-Time Theorem (Theorem 5)
and the lower bound as proved inTheorem 6 coincide.

Lemma 8. In case a TM 𝜏 uses polynomial space and runs
superpolynomial time, one has that 𝑑(𝜏) = 1.

More in general, if for a TM 𝜏 we have that
lim
𝑥→∞

(𝑠(𝜏, 𝑥)/𝑡(𝜏, 𝑥)) = 0, then

lim inf
𝑥→∞

log (𝑠
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

= 0 ⇐⇒ 𝑑 (𝜏) = 1. (12)

Proof. By combining our general lower and upper bound as
proven inTheorems 6 and 5, respectively, we see that

1 ≤ 𝑑 (𝜏) ≤ 1 + lim inf
𝑥→∞

log (𝑠
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

≤ 1. (13)

Lemma 8 shows us that, in certain cases, the upper bound
as given in the Space-Time Theorem is actually attained. We
will empirically verify that this is always the case in (3,2) space
and conjecture that holds more in general.

Conjecture 9 (Upper Bound Conjecture). We conjecture that
for each 𝑛 ∈ 𝜔 and each TM 𝜏 in (𝑛, 2) space we have 𝑑(𝜏) =

1 + lim inf
𝑥→∞

(log (𝑠
𝜏
(𝑥))/ log (𝑡

𝜏
(𝑥))).

Thus, Lemma 8 provides a proof of the Upper Bound
Conjecture in certain situations. For any TM that performs
at most in linear time, we have also proven the Upper Bound
Conjecture in Lemma 4. In Lemma 11, we will prove the
Upper Bound Conjecture for some other situations too. In
order to prove this, we first need an additional insight.

Lemma 10. For each TM 𝜏, there is a constant 𝑐
𝜏
∈ [0, 1] with

lim inf
𝑥→∞

𝑁
𝜏
(𝑥)

𝑠
𝜏
(𝑥) ⋅ 𝑡

𝜏
(𝑥)

= 𝑐
𝜏
. (14)

Proof. Since 𝑁
𝜏
(𝑥) is bounded above by 𝑠

𝜏
(𝑥) ⋅ 𝑡

𝜏
(𝑥) (we

observed this before in the proof of Theorem 5), we get that
for each TM 𝜏 we have for each 𝑥 that𝑁

𝜏
(𝑥)/(𝑠

𝜏
(𝑥) ⋅ 𝑡
𝜏
(𝑥)) ∈

[0, 1]. But then clearly lim inf is well defined and within the
closed interval [0, 1].

Lemma 11. In case lim
𝑥→∞

(𝑁
𝜏
(𝑥)/(𝑠

𝜏
(𝑥) ⋅ 𝑡

𝜏
(𝑥))) ̸= 0, one

can prove the Upper Bound Conjecture; that is,

𝑑 (𝜏) = 1 + lim inf
𝑥→∞

log (𝑠
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

. (15)

Proof. We may assume that 𝜏 runs in at least linear time
for, otherwise, the claim is proved by Lemma 4. Thus,
lim
𝑥→∞

(1/𝑡
𝜏
(𝑥)) = 0. Our assumption gives us

lim
𝑥→∞

(𝑁
𝜏
(𝑥)/(𝑠

𝜏
(𝑥) ⋅ 𝑡

𝜏
(𝑥))) = 𝑐

𝜏
for some 𝑐

𝜏
̸= 0. Note

that in this assumption we have a limit and not lim inf so that
any subsequence converges to the same limit. Consequently,
we have

lim inf
𝑥→∞

log (𝑁
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

= lim inf
𝑥→∞

log (𝑐
𝜏
⋅ 𝑠
𝜏
(𝑥) ⋅ 𝑡

𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

= lim inf
𝑥→∞

log (𝑐
𝜏
) + log (𝑡

𝜏
(𝑥)) + log (𝑠

𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

(16)

which implies the Upper Bound Conjecture provided 𝑐
𝜏

̸=

0.

The following proposition provides an almost equivalent
formulation of the Upper Bound Conjecture.

Proposition 12. For each TM 𝜏, one has that if

lim inf
𝑥→∞

log (𝑁
𝜏
(𝑥))

log (𝑠
𝜏
(𝑥) 𝑡
𝜏
(𝑥))

= 1, (17)

then the Upper Bound Conjecture holds.
Moreover, if the Upper Bound Conjecture holds uniformly

for some TM 𝜏, that is, 𝑑(𝜏) = 1 + lim
𝑥→∞

(log (𝑠
𝜏
(𝑥))/

log (𝑡
𝜏
(𝑥))), then lim inf

𝑥→∞
(log (𝑁

𝜏
(𝑥))/ log (𝑠

𝜏
(𝑥)𝑡
𝜏
(𝑥))) =

1.
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Proof. If lim inf
𝑥→∞

(log (𝑁
𝜏
(𝑥))/ log (𝑠

𝜏
(𝑥)𝑡
𝜏
(𝑥))) = 1, we

also have lim
𝑥→∞

(log (𝑁
𝜏
(𝑥))/ log (𝑠

𝜏
(𝑥)𝑡
𝜏
(𝑥))) = 1 since

log (𝑁
𝜏
(𝑥)) ≤ log (𝑠

𝜏
(𝑥)𝑡
𝜏
(𝑥)) for each 𝑥. Consequently,

𝑑 (𝜏) = lim inf
𝑥→∞

log (𝑁
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

= lim inf
𝑥→∞

log (𝑠
𝜏
(𝑥) 𝑡
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

= lim inf
𝑥→∞

log (𝑡
𝜏
(𝑥)) + log (𝑠

𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

= 1 + lim inf
𝑥→∞

log (𝑠
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

.

(18)

For the other direction, we assume 𝑑(𝜏) = 1 +

lim
𝑥→∞

(log (𝑠
𝜏
(𝑥))/ log (𝑡

𝜏
(𝑥))). Consequently,

lim inf
𝑥→∞

log (𝑁
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

= 1 + lim
𝑥→∞

log (𝑠
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

= lim
𝑥→∞

(1 +

log (𝑠
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

)

= lim
𝑥→∞

(

log (𝑡
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

+

log (𝑠
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

)

= lim
𝑥→∞

log (𝑠
𝜏
(𝑥) 𝑡
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

.

(19)

Using this identity lim inf
𝑥→∞

(log (𝑁
𝜏
(𝑥))/ log (𝑡

𝜏
(𝑥))) =

lim
𝑥→∞

(log (𝑠
𝜏
(𝑥)𝑡
𝜏
(𝑥))/ log (𝑡

𝜏
(𝑥))), we see that for any

subsequence 𝑥
𝑛
→ ∞ we have that

lim
𝑛→∞

(log (𝑁
𝜏
(𝑥
𝑛
)) / log (𝑡

𝜏
(𝑥
𝑛
)))

(log (𝑠
𝜏
(𝑥
𝑛
) 𝑡
𝜏
(𝑥
𝑛
)) / log (𝑡

𝜏
(𝑥
𝑛
)))

≥ 1. (20)

Consequently,

lim inf
𝑥→∞

log (𝑁
𝜏
(𝑥))

log (𝑠
𝜏
(𝑥) 𝑡
𝜏
(𝑥))

= lim inf
𝑥→∞

log (𝑁
𝜏
(𝑥)) / log (𝑡

𝜏
(𝑥))

log (𝑠
𝜏
(𝑥) 𝑡
𝜏
(𝑥)) / log (𝑡

𝜏
(𝑥))

≥ 1.

(21)

But since 𝑁
𝜏
(𝑥) ≤ 𝑠

𝜏
(𝑥)𝑡
𝜏
(𝑥), the possibility

lim inf
𝑥→∞

(log (𝑁
𝜏
(𝑥))/ log (𝑠

𝜏
(𝑥)𝑡
𝜏
(𝑥))) > 1 cannot occur

and we are done.

1.4.4. The Space-TimeTheorem and P versus NP. As usual, we
denote by P the class of problems that can be solved by a
TM which uses an amount of time that is bounded by some
polynomial applied to the size of the input (representing an
instantiation of the particular problem).

Likewise, we denote by NP the class of problems so that
any solution of this problem can be checked to be indeed a
solution to this problem by a TM which uses an amount of
time that is bounded by some polynomial applied to the size

of the input. Here,N inNP stands for nondeterministic.That is
to say, a nondeterministic TM would run in polynomial time
by just guessing the right solution and then checking that it
is indeed a solution. It is one of the major open questions in
(theoretical) computer science whether P = NP or not.

By PSPACE we denote the class of problems that can be
solved by aTMwhich uses an amount ofmemory space that is
bounded by some polynomial applied to the size of the input.
It is well known that NP ⊆ PSPACE. Thus, by Lemma 8, we
can state a separation of P and NP in terms of dimensions.

LetΠ be someNP-complete problem. If for each PSPACE
Turing machine 𝜏 that decides Π we have that 𝑑(𝜏) = 1, then
P ̸= NP.

Clearly, this does not constitute a real strategy since, for
one, in general it is undecidable whether 𝑑(𝜏) = 1 [18].

2. Part II: Experimental Setting

In this second part of the paper, we describe the experiment
we have performed to empirically test whether the theoretical
results also hold in cases that do not satisfy the necessary
requirements for the theoretical results to be applied.

2.1. The Experiment. We have already proven on purely
theoretical grounds that there is a relation between runtimes
and fractal dimension of the space-time diagrams. However,
our theoretical results only apply to a restricted class of TMs.

In the experiment, we wanted also to study the fractal
dimension of the space-time diagrams in cases where our
theoretical results do not apply. Moreover, guided by the first
outcomes of our experiment, we formulated theUpperBound
Conjecture (Conjecture 9) and gathered data as to investigate
if the conjecture holds in (3,2) space.

2.1.1. Slow Convergence. For TMs 𝜏 that run in at most linear
time, we have proven in Lemma 4 that 𝑑(𝜏) = 2. Our aim is
to use computer experiments to compute the box dimension
of all TMs 𝜏 where 𝑑(𝜏) is not predicted by any theoretical
result.

A substantial complication in this project is caused
by the occurrence of logarithms in the definition of 𝑑(𝜏).
As a consequence, increase in precision of 𝑑(𝜏) requires
exponentially larger inputs. This makes direct brute-force
computation unfeasible. As an example, let us consider 2,2-
TM 346 again whose space-time diagrams we saw in Figure 1.
By Lemma 4, we know that the box dimension of this Turing
machine equals two. However, Figure 2 shows us how slow
the rate of convergence is.

Our way out here is to apply numerical andmathematical
analysis to the functions involved so that we can retrieve
their limit behavior. In particular, we were interested in three
different functions.

As before, for 𝜏 a TM we denote by 𝑡
𝜏
(𝑥) the amount of

time steps needed for 𝜏 to halt on input 𝑥; by𝑁
𝜏
(𝑥)we denote

the number of black cells in the space-time diagram of 𝜏 on
input 𝑥 and by 𝑠

𝜏
(𝑥) the distance between the edge of the tape

and the furthest cell visited by 𝜏 on input 𝑥.
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Figure 2: The figure shows an estimate of the box dimension of 2,2
TMwith TMnumber 346. On the horizontal axis, the input is shown
and the vertical axis shows the corresponding approximation of the
box dimension. Note that we know that the function converges to 2
when the input tends to infinity.

With these functions and knowledge of their asymptotic
behavior, we can compute the corresponding dimension
𝑑(𝜏) and the upper bound 1 + lim inf

𝑥→∞
(𝑠
𝜏
(𝑥)/𝑡
𝜏
(𝑥)). The

functions are guessed by looking at large enough initial
sequences of their outcomes in a mechanized fashion. The
few cases that cannot be done in a mechanized version were
analyzed by hand.

It is important to bear in mind this process and the fact
that we work with guesses that can be wrong in principle.
For example, if we speak of a TM 𝜏 that performs in time
of order 𝑛

2, this means in this paper that, by definition, after
applying our particular analyzing process, 𝜏 was classified as
anO(𝑛

2

) time performer. It may well be that in reality 𝜏 needs
exponential time. However, there are strong indications that
our guessing process is rather accurate [14, 19].

2.1.2. Methodology. In this section, we will describe the steps
that were performed in obtaining our results. Basically, the
methodology consists of the following steps:

(1) Each TM that lives in 2,2 space also occurs in (3,2)
space so for the final results it suffices to focus on
this data set. The TMs that diverge on all inputs were
removed from the initial list of 2 985 984 TMs in the
(3,2) space, since for them the dimension is simply
not defined. For the remaining TMs, we erased all
diverging inputs from the sequence to which we were
to apply our analysis. Since we are only interested in
limit behavior of any subsequences, this does not alter
our final results.
We isolated the TMs for which there is no theorem
that predicts the corresponding dimension. By Lem-
mas 4 and 8, this means that we only needed to pay
attention to those TMs which use more than linear
time. Moreover, we also removed all simultaneous
EXP-time and PSPACE performers to finally end up
with a collection of TMs. The distribution of the
resulting collection is summarized in Table 1.

Table 1: Distribution of those TMs in (3,2) space of which we
had to compute the corresponding dimension over their complexity
classes. By 𝜔(P) we denote the little 𝜔 notation of the class of
polynomials and hereby collect any superpolynomial behavior in
one bucket.

Boxes Runtime Space Machines
O(𝑛
3

) O(𝑛
2

) O(𝑛) 3358
O(𝑛
4

) O(𝑛
3

) O(𝑛) 6
𝜔(P) 𝜔(P) 𝜔(P) 14

In addition, there are 1 792 TMs that perform in
exponential time and linear space, but clearly they
needed no further analysis since we know on theoret-
ical grounds that their corresponding dimension is 1.
All other machines in (3,2) space were very simple in
terms of time computational complexity; that is, they
perform at most in linear time.

(2) Per TM 𝜏, we determined/guessed its function 𝑠
𝜏
(𝑥)

corresponding to the space usage of 𝜏 on input 𝑥.
Although this guessingwas already performed in [14],
we decided to redo the process. The main reasons
to do this were a new release of our analyzing tool
Mathematica together with the fact that the authors
had obtained new insights into how to best perform
the analysis. Our results coincided in large part with
the ones obtained in [14] but also showed minor
discrepancies.

(3) Per TM 𝜏, we determined its function 𝑡
𝜏
(𝑥) corre-

sponding to the time usage of 𝜏 on input 𝑥.
(4) Per TM 𝜏, we determined its function 𝑁

𝜏
(𝑥) corre-

sponding to the number of black cells in the space-
time diagram of 𝜏 on input 𝑥.

(5) Per TM 𝜏, we computed lim inf
𝑥→∞

(𝑠
𝜏
(𝑥)/𝑡
𝜏
(𝑥)).

(6) Per TM 𝜏, we computed its dimension 𝑑(𝜏) as 𝑑(𝜏) =

lim inf
𝑥→∞

(log (𝑁
𝜏
(𝑥))/ log (𝑡

𝜏
(𝑥))).

(7) Per TM 𝜏, we compared its dimension 𝑑(𝜏) to its
theoretical upperbound 1 + lim inf

𝑥→∞
(log (𝑠

𝜏
(𝑥))/

log (𝑡
𝜏
(𝑥))) which we computed separately.

(8) Per TM 𝜏, we computed lim inf
𝑥→∞

(log (𝑁
𝜏
(𝑥))/

log (𝑠
𝜏
(𝑥)𝑡
𝜏
(𝑥))) and lim inf

𝑥→∞
(𝑁
𝜏
(𝑥)/(𝑠

𝜏
(𝑥) ⋅

𝑡
𝜏
(𝑥))).

2.1.3. Alternating Convergent Behavior. Some of the Turing
machines possessed alternating asymptotic behavior. This
has been already observed in [14]. Typically, the alternation
reflectsmodular properties of the input like being odd or even
or of the number of states.

The differences between the alternating subsequences can
be rather drastic though.Themost extreme examplewe found
is reflected in Figure 3.

Figure 3 shows the space-time diagrams for TM 𝜏 with
number 1 728 529 for inputs 1 to 7. For convenience, we have
changed the orientation of the diagrams so that time “goes
from left to right” instead of going from “top to bottom.”
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Figure 3: Alternating linear and exponential runtime behavior for
TM 1 728 529.

This machine runs in linear time for even inputs and
exponential time for odd inputs. The runtime is given by

𝑡
𝜏
(𝑥) =

{

{

{

2 (𝑥 − 2) + 9 if 𝑥 is even;

2 (𝑥 − 1) + 3 2
(𝑥−1)/2+1

+ 5 if 𝑥 is odd.
(22)

The number of black cells (𝑁
𝜏
(𝑥)) in the space-time diagram

exhibits the same behavior. Note, however, that the space that
𝜏 uses is linear in the size of the input and in particular the
amount of tape cells used is equal to the size of the output.

Moreover, we note that the sequence of outputs is of a
very simple and regular nature. The outputs can be grouped
in series of two, where the output on input 2⋅𝑛+1 consecutive
black cells is equal to the output on input 2 ⋅ 𝑛+ 2 consecutive
black cells. So, in a sense this TM incorporates two different
algorithms to compute this output: one in linear time and the
other in exponential time.

We have found alternating sequences of periodicities 2, 3,
and 6. Like we noted in [14], the periodicity typically reflects
either the number of states, the number of colors, or a divisor
of their product. Figure 4 shows an example of TM number
1 159 345 whose corresponding box-counting sequence𝑁

𝜏
(𝑥)

has periodicity six.
In Figure 4(a) we show the points 𝑁

𝜏
(𝑥) on the vertical

axis plotted against the input 𝑥. In Figure 4(b) we estimated
a fit from below.

This alternating behavior reflects the richness of what
we sometimes refer to as the microcosmos of small Turing
machines. It is this alternating behavior that complicated
analyzing the data set in a straightforward automated fashion.

2.1.4. Determining the Important Functions. In this section,
we would mainly like to stress that most of the compu-
tational effort for this paper has actually been put into
determining/guessing the functions 𝑠

𝜏
(𝑥), 𝑡
𝜏
(𝑥), and 𝑁

𝜏
(𝑥)

and computing the corresponding limits.
As may have become manifest from the previous section,

it is hard to automatically guess perfect matches for these
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N
𝜏
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Figure 4: Alternating values for 𝑁
𝜏
(𝑥) with periodicity 6. The

depicted values are for TM number 1 159 345. The diagram in (a)
shows the data set and in (b) we included a fit from below.

functions in case there is alternating behavior present. Finally,
we could deal with all functions in a satisfactory way.
Notwithstanding our confidence, it is good to bear in mind
that all classifications provided in this paper are given the
current methodology.

We will here briefly describe how we proceeded to guess
our functions. The methodology is fairly similar to that
performed in [14]. However, for this project, we used newer
tools and a slightly more sophisticated methodology which
accounts for possible differences from [14]. Schematically, the
guessing process can be split into the following steps:

(1) We collected the sequences for time usage 𝑡
𝜏
(𝑥) and

space usage 𝑠
𝜏
(𝑥) from the TM data set as described

in Section 1.2 of this paper.
(2) These sequences 𝑡

𝜏
(𝑥) and 𝑠

𝜏
(𝑥) are only given

for the first 21 different inputs. We used an initial
segment of 15 elements of these sequences to guess
in an automated fashion the corresponding function
that allegedly generates this sequence. In some
cases, the beginning of the sequence (up to three
elements) was removed because the beginning did
not match the general pattern that only occurred
later on in the sequence. If we would leave the first
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values, Mathematica was no longer able to find
the general pattern. The guessing process was
done in Mathematica versions 8 and 9 using
the FindSequenceFunction as built-in in this
software. In some cases, FindSequenceFunction
came with a solution; in other cases, it did not. The
function FindSequenceFunction does various
standard numerical and algebraic analyses on the
sequences but also checks for obvious recurrence
patterns. The function, built-in into the computer
algebra system Mathematica, takes a sequence of
integer values {𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑚
} to define a function

that yields a sequence {𝑎
𝑛
}
𝑛∈𝜔

which coincides on the
first 𝑚 values.
FindSequenceFunction finds results in terms of
a wide range of integer functions such as sums and
series coefficients, as well as implicit solutions to
difference equations using early elements in the list
to find candidate functions, and then validates the
predicted function by looking at later elements.

(3) Thus, we obtain two lists: a list 𝐿
1
of TMs where

we found a guess and a list 𝐿
2
where we did not

find any guess. From the initial list of 528 runtime
sequences, we could not guess 11, and from the 167
space sequences, we could not guess 15. Note that this
number need not be equal since TMs from various
different functions had the same space sequence.
Moreover, 288 runtime sequences and 85 space
sequences in 𝐿

1
were alternators. Mathematica

guessed the right function using terms like (−1)
𝑥.

However, in computing lim inf, we manually split
those sequences into, for example, an even and an
odd part, to obtain the corresponding limits.

(4) We performed a check on our guesses as collected
in 𝐿
1
by applying the guessed function to inputs

16–21. In almost all cases, our guess turned out to
be predictive and coincided with the real values.
For those few cases where there was a discrepancy
between the guesses and the actual values, we made
a new guess based on a larger initial segment, now
consisting of the first 18 elements, and then testing it
once more on new real values. Finally, we were able
to guess and successfully check all of the sequences,
both space and time usage, in 𝐿

1
.

(5) From the list 𝐿
1
, we deleted all complexities for which

we knew the dimension on theoretical grounds so as
to obtain a list 𝐿

3
.

(6) For the TMs in 𝐿
3
, we used the supercomputing

resources of CICA (Andalusian Center for Scientific
Computing) to compute the corresponding sequences
𝑁
𝜏
(𝑥) with a C++ TM simulator. To reduce the

computational effort, for each set of equivalent TMs
(up to a geometrical transformation, such as statemir-
roring), only one representative was run. We applied
the guessing process as described above for 𝑡

𝜏
(𝑥) and

𝑠
𝜏
(𝑥) also to 𝑁

𝜏
(𝑥) to come up with corresponding

functions.

(7) For the sequences in 𝐿
2
, we applied a semimanual

process. Basically, there were three different proce-
dures that we applied so as to find solutions also in
𝐿
2
for the sequences 𝑠

𝜏
(𝑥), 𝑡
𝜏
(𝑥), and 𝑁

𝜏
(𝑥).

(a) In most of the cases, there was alternating
behavior present. We could read off the peri-
odicity from looking at graphs as, for example,
in Figure 4. Sometimes, looking directly at
the space-time diagrams was more informa-
tive. In all of these cases but one, we finally
did find functions for the subsequences using
our methodology as described above. As split-
ting the sequences into 2, 3, or 6 alternating
ones reduces the length of the input sequence
of FindSequenceFunction, we run in some
cases 40 or 60 more inputs with the C++
simulator to end up with a sufficiently large data
set.
One alternating TM did not succumb to this
methodology. This was TM 582 263 whose
treatment is included in Section 2.2.3. We run
this TM for 35 inputs with the simulator and
observed that 𝑁

𝜏
(𝑥)/(𝑠

𝜏
(𝑥)𝑡
𝜏
(𝑥)) clearly con-

verges to a constant, one for each subsequence,
sowe approximated𝑁

𝜏
(𝑥) by 𝑐⋅𝑠

𝜏
(𝑥)𝑡
𝜏
(𝑥)which

was enough for the log-limit without knowing
the exact value of 𝑐.

(b) In some cases, the regularity was not obvious
to Mathematica but was evident when look-
ing at space-time diagrams and/or the binary
expansion of the output. In these cases, we
could manage by just feeding our insight into
Mathematica in that we let it work, for example,
on the binary expansion of the sequences.

(c) In some cases, the recurrences were just too
complicated forMathematica version 8. In these
cases, we carefully studied the space-time dia-
grams analyzing what kind of recurrences were
present. Then, the observed recurrences were
fed into FindSequenceFunction where we
let FindSequenceFunction find out the exact
nature and coefficients of the corresponding
recurrences. One such example concerns the
TM that produces the largest possible outputs in
(3,2) space: the so-called Busy Beaver as detailed
in Section 2.2.2.

(8) After having successfully (allegedly) found the func-
tions 𝑠

𝜏
(𝑥), 𝑡
𝜏
(𝑥), and 𝑁

𝜏
(𝑥), we could compute the

values for 𝑑(𝑥) = lim inf
𝑥→∞

(𝑁
𝜏
(𝑥)/𝑡
𝜏
(𝑥)) and

lim inf
𝑥→∞

(𝑠
𝜏
(𝑥)/𝑡
𝜏
(𝑥)). Inmost cases, a simple limit

sufficed. For alternating behavior, we had to select
most of the times the subsequences by hand so as to
end up with the lim inf value. For some alternating
sequences, the lim inf value could just be obtained
by combining on the one hand lim inf of 𝑁

𝜏
(𝑥) (as

depicted in Figure 4) or 𝑠
𝜏
(𝑥), respectively, and on the

other hand 𝑡
𝜏
(𝑥).
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Figure 5: The figure shows the four different functions that are computed by the four TMs that have quadratic runtime in 2,2 space. The
diagrams show the outputs on increasing inputs. So, for example, in the leftmost diagram, we see that TMwith number 1383 (recall this is the
code in (2,2) space) outputs two black consecutive cells on input 1, and more in general it outputs 2𝑛 black consecutive cells on input 𝑛.

2.2.Most Salient Results of the Experiment. In this section, we
will present the main results of our investigations. The space
of TMs which employ only 2 colors and 2 states is clearly
contained in (3,2) space. However, we find it instructive to
dedicate first a section to the findings in (2,2) space. Apart
from the first section, all other results in this section refer to
our findings in (3,2) space.

2.2.1. Findings in (2,2) Space. In (2,2) space, there was a total
of 74 different functions. Of these functions, only 5 of them
where computed by some superlinear time TMs. Note that
this does not mean that all TMs computing this function
performed in superlinear time. For example, the tape identity
has many constant time performing TMs that compute it but
also some exponential time performing TMs that compute it.

In total, in (2,2) space, there are only 7 TMs that run in
superpolynomial time. Three of them run in EXP-time, all
computing the tape identity. The other four TMs compute
different functions. These functions do roughly compute a
function that doubles the tape input (see Figure 5).

All these four TMs perform in quadratic time and linear
space. We computed the dimension for these functions and
all turned out to have dimension 3/2. We observe that this
is exactly the upper bound as predicted by the Space-Time
Theorem. We saw this phenomenon in (3,2) space as well.

The only three exponential time performers used linear
space so by Lemma 8 we already know that the dimension
of those TMs should be one. This has been checked also in
Mathematica. The check was not really performed to check
our theoretical results; rather, the checkwas used as a test case
for our analyzing software.

We saw that a TM in (2,2) space runs in superpolynomial
time if and only if its dimension equals 1. This observation is
no longer valid in (3,2) space though.

2.2.2. Exponential Space and the Busy Beaver. In the remain-
der of this section, we will focus on the TMs in (3,2) space.
That space contains 2 985 984 many different TMs which
compute 3 886 different functions. Almost all TMs used at
most linear space for their computations. The only exception
to this was when the TM used exponential space. Curiously
enough, in (3,2) space, there was no space usage in between
linear and exponential space.

In [20], one can see an overview of the EXP-space
performing TMs. For most of these TMs, it was not too hard
to find an explicit formula for the space usage. An example is
TM with number 683 863 whose corresponding space usage
is

𝑠
683.863

(𝑥) = 2 (

𝑥 + 1

2

+ 2
(𝑥+1)/2

− 1) . (23)

The space-time diagrams for TM 683 863 contained suffi-
ciently much regularity so that Mathematica could guess
the corresponding functions. For various other EXP-space
performers, we had to help Mathematica by suggesting to it
what kind of recursion it should look for. This occurred also
with the so-called Busy Beaver.

Classically speaking, the Busy Beaver function outputs on
input 𝑛 the longest time that any TM with 𝑛 states runs when
executed on a two-way infinite tape with empty input [21].
In analogy, in the context of this paper, we will call a TM
𝛽 a Busy Beaver whenever, for each TM 𝜏, there is some
value 𝑥

0
so that for all 𝑥 ≥ 𝑥

0
we have 𝑡

𝛽
(𝑥) ≥ 𝑡

𝜏
(𝑥).

The equivalent machines 599 063 and 666 364 are the Busy
Beavers in the (3,2) space. They compute the largest runtime,
space, and boxes sequences. They also produce the longest
output strings. For the remainder of this section, we will
denote the Busy Beaver TM by 𝛽. As mentioned, there are
of course two actual TMs that compute the Busy Beaver but
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Table 2: The structure of the space sequence of machine 666 364 in
(3,2) space.

𝑥 𝑠
𝛽
(𝑥) 𝑠

𝛽
(𝑥) − 𝑠

𝛽
(𝑥 − 1) 3/2(𝑠

𝛽
(𝑥 − 1) − 𝑠

𝛽
(𝑥 − 2)) Difference

1 3 — — —
2 7 4 — —
3 13 6 6 0
4 22 9 9 0
5 36 14 13 + 1/2 1/2

6 57 21 21 0
7 88 31 31 + 1/2 −1/2

8 135 47 46 + 1/2 1/2

9 205 70 70 + 1/2 −1/2

10 310 105 105 0

Figure 6: Execution of the Busy Beaver on the first three inputs.

they have the exact same behavior and we will not distinguish
between them.

Figure 6 shows the execution of machine 666 364 for
inputs 1 to 3. The diagrams have been rotated to save
space. As one can see, the series of outputs is very regular
and so is the sequence of cells used by the computation.
Nonetheless,Mathematica did not find a recurrence between
the consecutive values. This was due to a minor error term.

That is, if one looks at the amounts of used cells for
consecutive inputs and their differences, then modulo a
small error term, there is a clear tendency. Let 𝑥 denote the
number of consecutive black input cells. Looking at the ratio
between consecutive values helped us to isolate the disturbing
difference term (Table 2).

So, ignoring the exact nature of the error term, the
recurrence equation for the space is given in the following:

𝑠
𝛽
(1) = 3,

𝑠
𝛽
(2) = 7,

𝑠
𝛽
(𝑝) =

1

2

(5𝑠
𝛽
(𝑝 − 1) − 3𝑠

𝛽
(𝑝 − 2) + 𝑔 (𝑝)) ,

(24)

where 𝑔(𝑝) is a function that takes values in {−1, 0, 1}. When
we forcedMathematica to focus on the error term, it came up
with the exact recurrence relation where 𝑔(𝑝) = (−(3𝑠

𝛽
(𝑝 −

3)−5𝑠
𝛽
(𝑝−2)+2𝑠

𝛽
(𝑝−1))

3

−2((3/2) 𝑠
𝛽

(𝑝−4) −(5/2)𝑠
𝛽
(𝑝−3)

+ 𝑠
𝛽
(𝑝 − 2))(1 − (3𝑠

𝛽
(𝑝 − 3) − 5𝑠

𝛽
(𝑝 − 2) + 2𝑠

𝛽
(𝑝 − 1))

2

) + (1 −

(3𝑠
𝛽
(𝑝−4)−5𝑠

𝛽
(𝑝−3) + 2𝑠

𝛽
(𝑝−2))

2

)(1−(3𝑠
𝛽
(𝑝−3)−5𝑠

𝛽
(𝑝−

2) + 2𝑠
𝛽
(𝑝 − 1))

2

)) sin2(𝜋((5/2)𝑠
𝛽
(𝑝 − 1) − (3/2)𝑠

𝛽
(𝑝 − 2)))

after defining 𝑠
𝛽
(−1) = 𝑠

𝛽
(0) = 0.

The runtime depends on the space and we found the
following recurrence relation for it:

𝑡
𝛽
(1) = 7

𝑡
𝛽
(𝑖) =

3

2

𝑠
𝛽
(𝑖 − 1)

2

−

1

2

sin4 (1

2

𝜋𝑠
𝛽
(𝑖 − 1))

+

1

2

𝑠
𝛽
(𝑖 − 1) (cos (𝜋𝑠

𝛽
(𝑖 − 1)) + 15)

+ 𝑡
𝛽
(𝑖 − 1) + 8.

(25)

Finally, by close inspection on the space-time diagrams,
we could guide Mathematica to look for specific kind of
recurrences to finally come up with

𝑁
𝛽
(1) = 13,

𝑁
𝛽
(𝑖) =

1

32

(32𝑁
𝛽
(𝑖 − 1) + 32𝑡

𝛽
(𝑖) + 32𝑠

𝛽
(𝑖 − 1)

3

+ 152𝑠
𝛽
(𝑖 − 1)

2

+ 140𝑠
𝛽
(𝑖 − 1) + 16𝑠

𝛽
(𝑖)
2

+ 16𝑠
𝛽
(𝑖) + 16𝑠

𝛽
(𝑖 − 1)

2 cos (𝜋𝑠
𝛽
(𝑖 − 1))

+ 24𝑠
𝛽
(𝑖 − 1) cos (𝜋𝑠

𝛽
(𝑖 − 1))

− 4𝑠
𝛽
(𝑖 − 1) cos (2𝜋𝑠

𝛽
(𝑖 − 1))

− 3 cos (𝜋𝑠
𝛽
(𝑖 − 1)) − 9 cos (2𝜋𝑠

𝛽
(𝑖 − 1))

− cos (3𝜋𝑠
𝛽
(𝑖 − 1)) + 32𝑖 − 19) .

(26)

Using these recurrence equations, we could finally com-
pute the limits. We computed the limits by both standard
methods on limits of recurrence relations and employing
Mathematica and bothmethods gave the same answers to the
effect that all simultaneous EXP-time and EXP-space TMs in
(3,2) space have fractal dimension 3/2.

2.2.3. The Space-Time Theorem Revisited. One of our most
important empirical findings is that the upper bound as given
by the Space-Time Theorem is actually always attained in
(3,2) space. Moreover, we found two related empirical facts
for (3,2) space. We mention them in this section.

Finding 0. For all TMs 𝜏 in (3,2) space, we found that𝑑(𝜏) ≥ 1.
More in particular, we found that for each TM 𝜏 in (3,2) space
which performed in superlinear time we have

lim
𝑥→∞

𝑠 (𝜏, 𝑥)

𝑡 (𝜏, 𝑥)

= 0. (27)

And we conjecture that this holds in general for TMs with a
larger number of states.

Finding 1. For all TMs 𝜏 in (3,2) space, we found that

𝑑 (𝜏) = 1 + lim inf
𝑥→∞

log (𝑠
𝜏
(𝑥))

log (𝑡
𝜏
(𝑥))

, (28)
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Figure 7: Execution of machine 582 263 on the first six inputs and
their corresponding space-time diagrams.

and we conjectured in the Upper Bound Conjecture 9 that
this holds in general for TMs with a larger number of states.

In Proposition 12, we saw that a sufficient condi-
tion for the Upper Bound Conjecture to hold is that
lim inf

𝑥→∞
(log (𝑁

𝜏
(𝑥))/ log (𝑠

𝜏
(𝑥)𝑡
𝜏
(𝑥))) = 1 but it is not

known if this is also a necessary condition. The following
finding is related to this.

Finding 2. For all TMs 𝜏 in (3,2) space, we found that

lim inf
𝑥→∞

log (𝑁
𝜏
(𝑥))

log (𝑠
𝜏
(𝑥) 𝑡
𝜏
(𝑥))

= 1. (29)

In Lemma 11, it was shown that lim
𝑥→∞

(𝑁
𝜏
(𝑥)/(𝑠

𝜏
(𝑥) ⋅

𝑡
𝜏
(𝑥))) ̸= 0 is a sufficient condition for the Upper Bound

Conjecture to hold but it is not known if it is also necessary.
The following finding is related to this.

Finding 3. For all TMs 𝜏 in (3,2) space, we found that

lim
𝑥→∞

𝑁
𝜏
(𝑥)

𝑠
𝜏
(𝑥) ⋅ 𝑡

𝜏
(𝑥)

∈ (0, 1] , (30)

if this limit was well defined. Thus, in particular, we found
that lim

𝑥→∞
(𝑁
𝜏
(𝑥)/(𝑠

𝜏
(𝑥) ⋅ 𝑡

𝜏
(𝑥))) ̸= 0. Moreover, we

found that only limited amounts of numbers were attained
as limits of this quotient. The values found in (3, 2) for
lim
𝑥→∞

(𝑁
𝜏
(𝑥)/𝑠
𝜏
(𝑥)𝑡
𝜏
(𝑥)) are

1/9, 1/6, 7/30, 1/4, 5/18, 5/16, 1/3, 3/8, 8/21, 7/18, 5/12,
3/7, 4/9, 7/15, 1/2, 5/9, 9/16, 2/3, 3/4, 7/9, 1.

It is possible that a few other limit values exist but were
not found by the way we computed the functions generating
𝑁
𝜏
(𝑥).
For two of the EXP-space performers, we could not

find the boxes function. These TMs were 582 263 (and their
twin machine), whose execution for inputs 1 to 6 is shown
in Figure 7. This TM possesses alternating behavior with
periodicity two. For these two machines, we used Lemma 10
to settle the computation of 𝑑(𝜏).

For the sequences of even number of consecutive black
input cells, we found that the fraction 𝑁(𝑥)/(𝑠

𝜏
(𝑥) ⋅ 𝑡

𝜏
(𝑥))

tended to 0.31 whereas for the odd number of consecutive
black input cells we saw it tended to 0.11. The exact value of

the fraction is of course irrelevant in the computation of the
limit that determines 𝑑(𝜏).

Finding 4. For all TMs 𝜏 in (3,2) space, we found that 𝑑(𝜏) =

1 if and only if the TM ran in superpolynomial time using
polynomial space. We suspect that this equivalence holds no
longer true in higher spaces, that is, spaces (𝑛, 2) for 𝑛 > 3.

Finding 5. For all TMs 𝜏 in (3,2) space, we found that 𝑑(𝜏) = 2

if and only if the TM ran in at most linear time. It is unknown
if this equivalence holds true in higher spaces. Part of it holds
in general (Lemma 4): if 𝜏 runs in at most linear time, then
𝑑(𝜏) = 2.

2.2.4. Richness in the Microcosmos of Small Turing Machines.
Theauthors have explored the space of small Turingmachines
before. On occasion, they have been so much impressed by
the rich structures present there that they came to speak of
the microcosmos of small Turing machines. For this paper, we
had to mine (3,2) space even further and at some point were
surprised to be surprised once more.

In particular, Figure 8 shows a very curious phenomenon
that we call symmetric performers. There turned out to be a
pair of different TMs so that the space-time diagram on every
even input of the one machine is the exact symmetric image
of the space-time diagram of the other TMon the same input.

Of course, this can only happen in case the TM computes
the tape identity since the input must equal the output in
order to yield a symmetric image. At first, one might be
tempted to think that this phenomenon is bound to occur
since we can define for each TM 𝜏 its reversed machine
�̂�: replace each instruction ⟨color, state⟩ → ⟨color, state,

direction⟩ by its canonical reversal:

⟨color


, state


⟩ → ⟨color, state, direction⟩ , (31)

where direction changes right to left and vice versa. However,
note that both machines start in State 1 so that this imposes
already a strong condition on possible solutions of symmetric
performers.

Let us denote by 𝜏 and �̃� a pair of symmetric performers.
It is clear that if a TM 𝜏 terminates on input 𝑥, it does so
in an even number of steps: for each computation where the
head moves one to the left (the end of the tape is on the right
by our convention), there must be a step where the machine
moves one step to the right. In particular, for symmetric
performers that terminate in 2𝑛 many steps on input 𝑥, we
have that if the tape configuration at step 𝑚 differs from the
tape configuration at step𝑚+1 in 𝜏(𝑥), then the head position
in step 𝑚 on 𝜏(𝑥) is the same as the head position in step
2𝑛 − (𝑚 + 1) on �̃�(𝑥).

Indeed, it comes as a surprise that all these constraints can
be met in (3,2) space, if only just for the even inputs.

3. Part III: A Brief Literature Survey

In the third and final part of the paper, we will try to locate
our results within the landscape of known theoretical results
that link fractal dimensions to other notions of complexity.
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Figure 8: Symmetric performers.

3.1. Relations between Fractal Dimensions and Other Notions
of Complexity: An Incomplete Survey of the Literature. In
this paper, we have worked with a variant of box-counting
dimension and with space and time complexity for processes
implemented on Turing machines. These are just some out
of a myriad of different complexity measures in the literature.
Since eventually the notion of being complex or not is relative
to a framework and the ultimate framework inwhich all these
complexity notions can be embedded in is our own cognitive
system, on philosophical grounds, one can expect relations
between the various a priori unrelated complexity notions
(see [22, 23]). And, indeed, in the literature, we find various
relations between different notions of complexity.

In this final section, we wish to place our results in the
context of other results in the literature that link different
complexity notions. Our point of departure will be fractal
dimensions and possible relations to complexity notions of
a computational nature.

Neither is the current section self-contained nor do we
pretend to give an exhaustive overview of the literature.
Rather, we will try to provide sufficient pointers so that this
section at least can serve as a point of departure for a more
exhaustive and self-contained study.

3.1.1. Box-Counting Dimension within the Landscape of Topo-
logical and Fractal Dimensions. In this paper, we decided to
work with a variant of box-counting dimension since this
has many desirable computational properties and applica-
tions. Let us first see where box-counting dimension fits
into the landscape of various versions of fractal and other
dimensions.

Edgar divides geometrical dimensions in two main
groups, topological and fractal dimensions (see [24]). Topo-
logical dimensions are invariants of topological spaces in
that they are invariant under homeomorphisms. Moreover,

topological dimensions have integer values although some
versions allow transfinite (ordinal) values too.

The most basic of all topological dimensions is the so-
called cover dimension, also called Lebesgue dimension. In
order to describe this dimension, we need some additional
notions.

The order of a family A of sets is ≤n by definition when
any 𝑛 + 2 of the sets have empty intersection. We denote this
by 𝑜(A) ≤ 𝑛. We say that 𝑜(A) = 𝑛 when 𝑜(A) ≤ 𝑛 but not
𝑜(A) ≤ 𝑛 − 1. Thus, for example, if any two sets in A have
empty intersection, the order ofA is 0.

The cover dimension of a set 𝑆 is 𝑛, we write Cov(S) = n,
whenever each open covering of 𝑆 has a refinement of order
𝑛.Thus, for example, a collection of two separate points inR𝑛
has cover dimension 0 sincewe can separate the points by two
disjoint opens. Likewise, any line-like space admits an open
cover of order 1; that is, any intersection of three different
opens is empty. Similarly, we can cover a planar set by open
tiles where each row of tiles is shifted to the right, for example,
with respect to the adjacent rows of tiles. This collection of
tiles has order two since any collection of four different ones
of such open tiles will be empty.

Fractal dimensions on the other hand can have noninte-
ger values. In a sense, the fractal dimension of some object
𝑆 is an indication of how close 𝑆 is to some integer-valued
dimensional space.Dimension in integer-valued dimensional
spaces in a sense expresses degrees of freedom and as
such this provides us with an information theoretical focus
on dimension. More common is the geometrical focus on
(fractal) dimension as, for example, expressed by Falconer
[25]: “Roughly, dimension indicates how much space a set
occupies near to each of its points.”

The most fundamental and most common notion of
fractal dimension is that of Hausdorff dimension [17] which
was introduced already in 1919 building forth upon ideas of
Carathéodory from 1914 [26].
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In order to relate our box-counting dimension to the
more common Hausdorff dimension, we will outline the
definition and some basic properties ofHausdorff dimension.

For 𝑆 a subset of some metric space, we can consider
countable open coveringsA of 𝑆 and define

H
𝑠

𝜀
(𝑆) fl inf ∑

𝐴∈A

(diam𝐴)
𝑠

. (32)

Here, diam𝐴 denotes the usual diameter of 𝐴 as the supre-
mum of distances between any two points in𝐴. The infimum
is taken over allA that are countable open 𝜀-covers of 𝑆. This
means that the diameters of the open sets in our cover do not
exceed 𝜀. It is essential that we may take the diameters of the
open sets in our cover to vary and in particular we can choose
them as small as convenient. Next, we define

H
𝑠

(𝑆) fl lim
𝜀→0

H
𝑠

𝜀
(𝑆) . (33)

Themain theorem about theseH𝑠(𝑆) is that there is a unique
𝑠 so that

(i) H𝑡
𝜀
(𝑆) = ∞ for 𝑡 < 𝑠;

(ii) H𝑡
𝜀
(𝑆) = 0 for 𝑡 > 𝑠.

This unique 𝑠 is called the Hausdorff dimension of
𝑆: dimH(𝐹). As mentioned, this dimension was introduced
in 1919 by Hausdorff [17] and the main theory was later
developed mainly by Besicovitch and his students [27–31] so
that [17] Mandelbrot often speaks of Hausdorff-Besicovitch
dimension.

The Hausdorff dimension comes with a natural dual
dimension called packing dimension. Although the notion of
packing dimension is natural and related to the Hausdorff
dimension, it was only introduced about sixty years later by
Tricot Jr. [32] and Sullivan [33].

The main idea behind packing dimension of some spa-
tiotemporal object 𝐹 is to somehow measure the volume of
disjoint balls one can find so that the center of these balls
lies within 𝐹. As with the case of Hausdorff dimension, one
parametrizes this concept with the target dimension 𝑠:

P
𝑠

𝛿
(𝐹)

fl {sup∑

𝑖





𝐵
𝑖





| {𝐵
𝑖
}
𝑖
are disjoint balls at radii

≤ 𝛿 and center in 𝐹} .

(34)

Since lim
𝛿→0

P𝑠
𝛿
(𝐹) is not a measure (this is easy to see by

considering countable dense sets of some 𝐹 with positive
dimension), one applies a standard trick which transforms
this into a measure by defining

P
𝑠

(𝐹) fl inf
{𝐹𝑖}𝑖

{∑

𝑖

lim
𝛿→0

P
𝑠

𝛿
(𝐹
𝑖
) | 𝐹 ⊆

∞

⋃

𝑖=1

𝐹
𝑖
} . (35)

Here, the infimum is taken over countable collections of sets
𝐹
𝑖
so that𝐹 ⊆ ⋃

∞

𝑖=1
𝐹
𝑖
.Themain theorem of this notionP𝑠(𝐹)

shows that packing dimension is in a sense dual to Hausdorff
dimension: There is a unique 𝑠 so that

(i) P𝑡(𝐹) = 0 for 𝑡 < 𝑠;

(ii) P𝑡(𝐹) = ∞ for 𝑡 > 𝑠.

This unique 𝑠 is called the packing dimension of 𝐹 and we
write dimP(𝐹). It is not hard to see that packing dimension is
an upper bound to Hausdorff dimension; that is, dimH(𝐹) ≤

dimP(𝐹).
A fundamental property that is not hard to prove of the

dimensions we have seen so far is that Cov(𝐹) ≤ dimH(𝐹).
Mandelbrot defines a fractal to be any set 𝐹 with Cov(𝐹) <

dimH(𝐹). However, this notion of fractal is often considered
(also by Mandelbrot himself) a notion of fractal that is too
broad, since it admits “true geometric chaos.” Taylor proposes
(see [34]) to denote by fractals only Borel sets 𝐹 for which
dimH(𝐹) = dimP(𝐹).

We can now see how box-counting dimensions (or box
dimensions for short) naturally fit the scheme of fractal
dimensions we have seen above. In particular, the box
dimension is like Hausdorff dimension only that we now
cover the spatial object by balls/boxes of fixed size rather than
by balls of flexible size not exceeding some maximum value
𝜀.

Alternatively and equivalently, in order to define the box
dimension, we can divide space into a regular mesh with
mesh size 𝛿 and count how many cells 𝑁

𝛿
(𝐹) are hit by a

set 𝐹. Then, we define B𝑠
𝛿
(𝐹) fl 𝑁

𝛿
(𝐹)𝛿
𝑠 and B𝑠(𝐹) fl

lim inf
𝛿→0

𝑁
𝛿
(𝐹)𝛿
𝑠.

Again, there is a cut-off value 𝑠
0
so that B𝑠(𝐹) = ∞ for

𝑠 < 𝑠
0
andB𝑠(𝐹) = 0 for 𝑠 > 𝑠

0
. This cut-off value is given by

lim inf
𝛿→0

log (𝑁
𝛿
(𝐹))

log (1/𝛿)

, (36)

which is close to the notion we started out with in this paper
in Definition 1. Inspired by this cut-off value, we define

dimB fl lim inf
𝛿→0

log (𝑁
𝛿
(𝐹))

log (1/𝛿)

,

dimB fl lim sup
𝛿→0

log (𝑁
𝛿
(𝐹))

log (1/𝛿)

.

(37)

In case dimB(𝐹) = dimB(𝐹), we call this the box-
counting dimension: dimB(𝐹) which now exactly coincides
with Definition 1. One can easily show that box dimension
always provides an upper bound to Hausdorff dimension.
Moreover, box dimension has many desirable computational
properties thereby being amenable for computer applications.

Notwithstanding the good computational behavior, box
dimension has various undesirable mathematical proper-
ties: in particular, a countable union of measure zero
sets can have positive box dimension. For example, one
can show that in R with the standard topology we have
dimB{0, 1/2, 1/3, 1/4, . . .} = 1/2 which is of course highly
undesirable.



Advances in Mathematical Physics 17

Mathematically, this undesirable properties can be
impaired with the same trick that was applied to the packing
dimension by definingmodified box dimension as

dimMB (𝐹) fl inf
{𝐹𝑖}

{sup
𝑖

dimB (Fi) | 𝐹 ⊆

∞

⋃

𝑖=1

𝐹
𝑖
} ,

dimMB (𝐹) fl inf
{𝐹𝑖}

{sup
𝑖

dimB (Fi) | 𝐹 ⊆

∞

⋃

𝑖=1

𝐹
𝑖
} .

(38)

But, of course, by doing so, we would lose all the good
computational properties. In general, we have that

dimH (𝐹) ≤ dimMB (𝐹) ≤ dimMB (𝐹) = dimP (𝐹)

≤ dimB (𝐹) ,

(39)

and it is known that none of the inequalities can be replaced
by equalities. However, we note that, under Taylor’s definition
of fractal, the first four dimensions collapse and modified
box dimension is an equivalent of Hausdorff dimension and
indeed the modified box-counting dimension is a natural
quantity to consider.

Moreover, if 𝐹 has a lot of self-similarity, then modified
box-counting dimension is actually equal to the plane box-
counting dimension.

Proposition 13. Let 𝐹 ⊆ R be compact so that for any open set
𝑉we have dimB(𝐹) = dimB(𝐹∩𝑉); then, dimB(𝐹) = dimMB(𝐹).

So, in various situations, box counting coincides with
Hausdorff dimension. The most famous example is probably
that this equality holds for the Mandelbrot set. In addition,
there are various other situations where box-counting and
Hausdorff dimension coincide [35, 36].

3.1.2. Computability Properties of Fractals. As a first link
between fractals and computability properties, we want to
mention that of various fractal objects one has studied the
computational complexity.

Probably the most famous examples of fractals are Julia
sets and the corresponding “roadmap Mandelbrot set.” Let
us briefly recall some basic definitions. By FJ(𝑓) we denote
the filled Julia set of a function 𝑓 defined on the complex
numbers. This set FJ(𝑓) is defined as the set of values 𝑧 in
the domain of 𝑓 on which iterating 𝑓 on 𝑧 does not diverge.
That is,

FJ (𝑓) fl {𝑧 | lim sup
𝑛→∞





𝑓
𝑛

(𝑧)




< ∞} . (40)

By 𝐽(𝑓), the Julia set of 𝑓, we denote the boundary of FJ(𝑓).
Following Chong [37], we can consider 𝑓

𝜃
(𝑧) = 𝑧

2

+ 𝜆𝑧 with
𝜆 = 𝑒
2𝜋𝑖𝜃 and 𝜃 ∉ Q. Using this notation, the corresponding

Julia sets are denoted by 𝐽
𝜃
.

One can express that 𝐽
𝜃
is well behaved by saying that it

has a Siegel disk at 𝑧 = 0. Basically, this says that 𝑓 is locally
linearizable at 𝑧 = 0 by a rotation and we refer the reader to,
for example, [38] for further details.

The Turing degree of a set is an indication of how
complicated that set is. A set of natural numbers𝐴 is of Turing
degree, atmost that of𝐵; wewrite𝐴≤

𝑇
𝐵, if the question about

𝑥 ∈ 𝐴 can be decided on an idealized computer using various
queries of the form 𝑦 ∈ 𝐵. We say that two sets 𝐴 and 𝐵

have the same Turing degree, we write𝐴≡
𝑇
𝐵, whenever both

𝐴≤
𝑇
𝐵 and 𝐵≤

𝑇
𝐴.

Likewise, we say that a set 𝐵 is computably enumerable,
or c.e. for short, in 𝐴 if we can, using an idealized computer,
enumerate all the elements of 𝐵 using queries about 𝐴. Note
that enumerability of 𝐵 does not give a procedure to decide
membership. It only guarantees you that if some element
belongs to 𝐵, then at some stage it will be enumerated in the
enumeration.

We call a set𝐴 recursive, computable,or simply decidable if
we can decide with an idealized computer without any oracles
whether 𝑥 ∈ 𝐴 or not for any 𝑥 ∈ N. Likewise, we call a set 𝐴
simply c.e. when it is c.e. in the empty set ⌀.

The Turing degree of a set, the equivalence class under
≡
𝑇
so to say, is a robust notion in various ways. For example,

it makes sense to speak of “being c.e. in the degree of 𝐴”
whence we will often refrain from distinguishing 𝐴 from its
corresponding degree.

We can conceive a real number as a set of natural
numbers. Let us restrict ourselves to the real interval [0, 1].
Then, we can conceive any real number 𝑎 in this interval as
a set by looking at the binary expansion of 𝑎 and using this
string 0, a

0
a
1
a
2
. . . to define a set 𝐴 where 𝑖 ∈ 𝐴 iff 𝑎

𝑖
= 1.

So by this identification, it makes sense to speak of the Turing
degree of a real number.

We will shortly discuss that one can set up real analysis
in such a way that it also makes sense to speak about the
Turing degree of nondiscrete objects like 𝐽

𝜃
. Braverman and

Yampolsky follow in [39] an approach of what is called
constructive analysis as initiated by Banach and Mazur [40],
with influences of Markov [41]. The main idea behind this
constructive analysis is that we can conceive continuous
objects as entities that we can computably approximate to the
precision that we require (see, e.g., [42] for an overview).

Braverman and Yampolsky have studied (see [39]) the
relations between the Turing degree of 𝜃 and that of 𝐽

𝜃
. In

particular, they prove that b is a c.e. Turing degree if and only
if it is the degree of 𝐽

𝜃
with 𝜃 recursive so that 𝐽

𝜃
has a Siegel

disk.
Chong has generalized this result [37]: Let c be a Turing

degree. For every d ≥ c,we have that d is c.e. in c if and only if
it is the degree of a Julia set 𝐽

𝜃
with Siegel disk and deg(𝜃) = c.

It is good to stress that all these results are sensitive to
the underlying model of computation and real analysis and
the results would change drastically if one were to switch
to other models like the so-called Blum-Schub-Smale model
(see [43]).

The results presented in this section relate the Turing
complexity of the fractal to the complexity of the parameter
generating it. However, there are no links from the Turing
degrees of the Julia sets to the corresponding dimensions.
In the next section, we will discuss various results of this
sort.
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3.1.3. Effective Dimension and Computations. In this section,
we will present certain results that relate Hausdorff dimen-
sion to other notions of complexity. In order to do so, we
will first rephrase the notion of Hausdorff dimension in
the setting of binary strings. Next, we will define the so-
called effectivizations of Hausdorff dimension. It is these
effectivizations that can be related to other notions of com-
plexity. Again, this section will be far from self-contained.
We refer the reader to [44] for further details. And actually
the presentation here is largely based on this treatise (mainly
Chapter 13) and we will closely follow it in structure.

Thus, let us reformulate the definition of Hausdorff
dimension in the realm of binary sequences, that is, in the
realm of Cantor space which we will denote by 2

𝜔. We will
interchangeably speak of sequences or of reals when we refer
to elements of Cantor space. We will denote by 2

<𝜔 the
collection of finite binary strings.

For 𝜎 ∈ 2
<𝜔, we denote the length of 𝜎 as |𝜎|. For 𝜎 ∈ 2

<𝜔,
we define ⟦𝜎⟧ fl {𝜎𝜏 | 𝜏 ∈ 2

𝜔

}, where 𝜎𝜏 denotes just string
concatenation. Whenever we will consider Cantor space as a
topological space, we will consider the topology generated by
the basic open sets of the form ⟦𝜎⟧. For Σ ⊆ 2

<𝜔, we define
⟦Σ⟧ fl ⋃

𝜎∈Σ
⟦𝜎⟧.

Thus, for any 𝑅 ⊆ 2
𝜔, we define an 𝑛-cover of 𝑅 to be a set

Σ ⊆ 2
≥𝑛 so that 𝑅 ⊆ ⟦Σ⟧. Cantor space can be endowed with

a measure in the standard way by defining 𝜇(⟦𝜎⟧) = 2
−|𝜎|.

Thus, in analogy to Section 3.1.1, we now define

H
𝑠

𝑛
(𝑅) fl inf {∑

𝜎∈Σ

2
−𝑠|𝜎|

| Σ an 𝑛-cover of 𝑅} (41)

and H𝑠(𝑅) fl lim
𝑛→∞

H𝑠
𝑛
(𝑅). So, as before, we define

dimH(𝑅) fl inf{𝑠 | H𝑠(𝑅) = 0}. It is easy to see that for every
𝑟 ∈ [0, 1] there is 𝑅 ⊆ 2

𝜔 with dimH(𝑅) = 𝑟.
Within the context of Cantor space, we will now give a

definition of what is called effective Hausdorff dimension. The
effective pendant is defined via

EH
𝑠

𝑛
(𝑅) fl inf {∑

𝜎∈Σ

2
−𝑠|𝜎|

| Σ a c.e. 𝑛-cover of 𝑅} (42)

and EH𝑠(𝑅) = lim
𝑛→∞

EH𝑠
𝑛
(𝑅), so that the effective

Hausdorff dimension is defined as dimEH(𝑅) fl inf{𝑠 |

EH𝑠(𝑅) = 0}.
One can now show [45] that, for every computable real

𝑟 ∈ [0, 1], there is a set 𝑅 ⊆ 2
𝜔 with dimEH(𝑅) = 𝑟. By a

theorem of Hitchcock, we have that for important subsets 𝐹

of Cantor space it holds that dimH(F) = dimEH(F):

Theorem 14 (Hitchcock [46]). Let 𝐹 be a countable union of
Π
0

1
classes (a subset 𝐴 of Cantor space is a Π

0

1
class if it is the

collection of paths for some computable tree. An alternative
definition requires that for some computable relation 𝑅 one
has 𝐴 fl {𝜎 ∈ 2

𝜔

| ∀𝑛 𝑅(𝜎 ↾ 𝑛)}) of Cantor space; then,
dimH(F) = dimEH(F).

In the same paper, Hitchcock also proves an equality
for Σ
0

2
classes and computable Hausdorff dimension (covers

are required to be computable rather than c.e.). So, for

some objects, Hausdorff dimension and effective Hausdorff
dimension coincide.

However, for other important classes, they differ. In
particular, we have that the Hausdorff dimension of any
sequence in Cantor space equals zero. However, there may
be no simple effective covers around so that a single sequence
can have positive effective Hausdorff dimension.

There is a link between Turing degrees and effective
Hausdorff dimension although this link is not very straight-
forward. Recall that for 𝐴 ∈ 2

𝜔 we have dimH(𝐴) = 0 but that
we can have dimEH(𝐴) > 0 when no simple effective covers
are around.

Thus, in a sense, having nonzero effective Hausdorff
dimension is an indication of containing complexity. And in
fact it can be shown that if𝐴 ∈ 2

𝜔 with dimEH(𝐴) > 0, then𝐴

can compute a nonrecursive function. To be more precise, 𝐴
can compute a fix-point free function 𝑓 (i.e., a function 𝑓 so
that 𝑊

𝑓(𝑒)
̸= 𝑊
𝑒
for all numbers 𝑒) by results of Terwijn et al.

[47, 48].
This result establishes a relation between effective Haus-

dorff dimension and computational complexity in the guise
of degrees of undecidability. However, the relation between
effective dimension and computable content is notmonotone
nor simple. In particular, one can show that if dimEH(𝐴) = 𝛼,
then there exist sets 𝐵 of arbitrary high Turing degree with
dimEH(𝐵) = 𝛼. However, locally, Hausdorff dimension can
provide an upper bound to Turing degrees.

Theorem 15 (Miller [49]). Let 𝑟 be a left-c.e. real (the technical
details here are omitted and referred to in [44]. However, one
can think of a left-c.e. real as a c.e. real that does converge
but for which one cannot computably estimate the rate of
convergence). There is a Δ

0

2
-definable set 𝑅 ∈ 2

𝜔 with
dimEH(𝑅) = 𝑟 so that moreover

𝐴≤
𝑇
𝑅 ⇒ dimEH (𝐴) ≤ 𝑟. (43)

It is exactly this kind of results that we are interested in
here in this section: theorems that relate different notions
of complexity. Another classical result links Kolmogorov
complexity to effective Hausdorff dimension. Let us briefly
and loosely define Kolmogorov complexity referring to, for
example, [50] for further details.

For a string 𝑠 ∈ 2
<𝜔, the Kolmogorov complexity 𝐾(𝑠)

is roughly the length of the shortest program that outputs 𝑠

when computed on a particular universal Turing machine.
Of course this is dependent on a particular choice of a
universal Turing machine, but different choices of a universal
Turing machine only manifest themselves in an additive
constant in 𝐾. The relation between Kolmogorov complexity
and effective Hausdorff dimension is given by a theorem of
Mayordomo.

Theorem16 (Mayordomo [51]). Let𝐴 be a sequence inCantor
space and let 𝐴 ↾ 𝑛 denote the first 𝑛 bits of this sequence:

dimEH (𝐴) = lim inf
𝑛→∞

𝐾 (𝐴 ↾ 𝑛)

𝑛

. (44)
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Moreover, there is a link from effective Hausdorff dimen-
sion to a notion that is central to probability theory: Mar-
tingales. Martingales indicate expected outcomes of betting
strategies. Lutz introduced in [52] an adaptation of this
notion that can be linked to effective Hausdorff dimension
(or constitute an alternative definition for that matter).

Definition 17. An 𝑠-gale is a function 𝑑 : 2
<𝜔

→ R≥0 such that
𝑑(𝜎) = (𝑑(𝜎0) + 𝑑(𝜎1))/2

𝑠.

This is a generalization of “gales” (as introduced/
simplified by [53])where𝑑(𝜎) = (𝑑(𝜎0)+𝑑(𝜎1))/2 expresses a
certain fairness condition of the betting strategy. In particular,
one can see 𝑑 as a pay-off function where the equality
expresses that your expectation is to not lose nor gain money.

We say that a certain gale 𝑑 succeeds on A whenever
lim sup

𝑛→∞
𝑑(𝐴 ↾ 𝑛) = ∞.

The success set of 𝑑 is the collection of all 𝐴 on which 𝑑

succeeds and is denoted by 𝑆[𝑑]. The link from Hausdorff
dimension to these gales is given by a theorem by Lutz.

Theorem 18 (Lutz [52]). Consider

dimEH (𝑋)

= inf {𝑞 ∈ Q | 𝑋 ⊆ 𝑆 [𝑑] for some 𝑞-gale 𝑑} .

(45)

In the context of this paper, it is good to mention that
other notions of dimension also have their effective coun-
terparts. In particular, Reimann studied an effectivization
of box-counting dimension in [54] and the corresponding
relations to the other complexity notions are similar to the
ones mentioned here.

Also, for various dimensions, the computable versions
have been studied, where the open covers are no longer
required to be c.e. but rather computable. We refer the reader
to [44] for further details.

3.1.4. Our Results. In this section, we have tried to present
a selection of readily accessible results in the literature that
relate fractal dimension to other notions of complexity.

We mentioned results of Braverman and Yampolsky and
the generalization thereof by Chong in Section 3.1.2. These
results related computational (Turing degrees) properties
of Julia sets to the same computational properties (Turing
degrees) of the parameter that generates the Julia set. In a
sense, this is not a result that links Hausdorff dimension to a
different notion of complexity. However, since it is one of the
few results on computational properties of fractals, we have
decided to include it in the overview.

Next, in Section 3.1.3, we only worked in the realm
of Cantor space. There we considered an effectivization of
Hausdorff dimension and this notion was linked to Turing
degrees as in Theorem 15, to Kolmogorov complexity as in
Theorem 16, and to martingales as in Theorem 18.

Effective Hausdorff dimension however works with
highly idealized notions relatively high up in the computa-
tional hierarchy. Our results involve complexity classes which
are more down-to-earth like PTIME and PSPACE. More-
over, in our theorems, the two complexity notions that are

related, computational complexity versus fractal dimension,
are not applied to exactly the same object as is the case in
the earlier mentioned results. Rather they link two attributes
of a small Turing machine: the computational (runtime)
complexity on the one hand and the fractal dimension of the
corresponding space-time diagrams on the other hand. It is in
these respects that, to the best of our knowledge, our results
are new in their kind.
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Villars, Paris, France, 1937.

[54] J. Reimann, Computability and fractal dimension [Ph.D. thesis],
Universitä Heidelberg, 2004.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


