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Abstract

In this article we examine the relationship between capital allocation problems and com-
positional data, i.e., information that refers to the parts of a whole conveying relative in-
formation. We show that capital allocation principles can be interpreted as compositions.
The natural geometry and vector space structure of compositional data are used to operate
with capital allocation solutions. The distance and average that are appropriated in the
geometric structure of compositions are presented. We demonstrate that these two concepts
can be used to compare capital allocation principles and to merge them. An illustration is
provided to show how the distance between capital allocation solutions and the average of
these solutions can be computed, and interpreted, by risk managers in practice.

JEL classification: C02, G22, D81.
Keywords: Risk management, Simplex, Aitchison distance, Geometric average.

1 Introduction

Capital allocation lies on the disaggregation side of the management task, with capital alloca-
tion problems arising when a management unit has to distribute a given amount among different
agents (where agent should be understood in a broad sense, referring, for instance, to a com-
mercial agent, a business unit, a branch of the main business or a specific guarantee included
in a set of contracts). Within financial institutions, capital allocation problems are frequently
associated with the fact that risk managers have to determine (at different levels of granularity)
agents's contributions to the risk-based capital amount. The company's capital requirement is
not the only amount that managers are interested in allocating among agents. Other amounts
that can be distributed include the aggregate costs faced by the entity or total retributions.
Capital allocation problems are relevant in many other contexts, with similar risk management
problems being faced by asset management firms when planning investment strategies or when
assessing investment portfolio performance. In these contexts, they are usually referred to as risk
attribution or risk budgeting problems (see, for instance, Grégoire, 2007; Rahl, 2012). From the
perspective of enterprise risk management (ERM) programs, a sound implementation of capital
allocation techniques is primordial to an adequate business analysis.

In this paper we investigate the relationship between capital allocation problems and com-
positional data analysis. One solution to the capital allocation problem, which depends on an
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allocation criterion and a risk measure, is known as the capital allocation principle. We propose
that capital allocation principles can be interpreted as compositional data, which constitute
quantitative descriptions of the components of a whole, where relative information is more rele-
vant than absolute values. This reinterpretation of capital allocation principles as compositional
data enables us to use compositional methods that are coherent with the relative scale of compo-
sitions. An immediate practical application of such methods is that capital allocation principles
can be ranked according to the distance between them and the associated solutions can be ap-
propriately averaged. Ranking principles can be extremely useful for ordering capital allocation
methods and even for deciding which should be used. When decision-makers seek to merge
the principles, as opposed to ordering them, computing the mean allocation principle can be
valuable. To do so, the simplex and its vector and metric space structures are presented and a
discussion is provided as to how we might move from capital allocation principles to composi-
tions, and inversely. The practical application of the compositional methods in the context of
capital allocation problems is illustrated with an example extracted from the literature.

A vast number of studies in the literature have been devoted to the analysis of capital alloca-
tion problems (see, among others, Denault, 2001; Kalkbrener, 2005; Tsanakas, 2009; Buch et al.,
2011; van Gulick et al., 2012). Previous studies have focused on particular probability distribu-
tions of losses (Cossette et al., 2012, 2013), on alternative dependence structures between risks
(Cai and Wei, 2014), on asymptotic allocations based on commonly used risk measures (Asimit
et al., 2011) or on optimization function alterations in order to overcome limitations of the loss
function minimization allocation criterion (Xu and Hu, 2012; Xu and Mao, 2013). An exhaus-
tive list is not provided here but it is the object of ongoing research. For example, You and Li
(2014) analyze capital allocation problems in the context of mutually interdependent risks tied
through an Archimedean copula. Wang (2014) investigates the application of the Tail Covari-
ance Premium Adjusted principle in the case of two business lines with exponentially distributed
losses, where their dependence structure corresponds to a Farlie-Gumbel-Morgenstern copula.
Zaks and Tsanakas (2014) generalize the framework proposed in Dhaene et al. (2012), allow-
ing the inclusion of different hierarchical levels of risk preferences in the final solution. Urbina
and Guillén (2014) examine a set of allocation principles to solve capital allocation problems in
the context of operational risk. Two interesting recent contributions in this field are Tsanakas
and Millossovich (2015) and Li and You (2015). To the best of our knowledge, however, the
connection between capital allocation solutions and compositional data has not previously been
explored.

The rest of this article is structured as follows. The main concepts of capital allocation
problems are presented in the section that follows. The compositional data analysis is introduced
in section 3. The connection between capital allocation principles and compositional data is
examined in section 4. An illustration of the application of compositional methods is given in
section 5. Finally, section 6 concludes.

2 An overview on capital allocation problems

A capital allocation problem may be defined as a positive amount K that has to be distributed
across n agents in such way that the full allocation condition is satisfied, that is, all K units are
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distributed among the agents. In this framework, a capital allocation principle is the set of n
capitals {Ki}i=1,...,n such that

∑n
j=1Kj = K. The individual capital Ki is the amount assigned

to the i−th agent, which is computed based on her risk and the risk of the other agents. The
agent's risk is represented by a set of random variables {Xi}i=1,...,n frequently associated with
losses. So, the main elements in a capital allocation problem can be listed as follows:

- The capital K > 0 to be distributed;

- The agents, indexed by i = 1, . . . , n;

- The random variable linked to each agent Xi;

- A distribution criterion;

- A function fi that concentrates the information of Xi;

- The capital Ki assigned to each agent as a solution to the problem;

- The goal pursued by decision-makers with the allocation principle. Examples include the
cost of risk allocation, the reward to risk less allocation or the reward on risk & return
allocation.

Determining the distribution criterion that drives the allocation is a key issue in the char-
acterization of the capital allocation principle. Here, proportionality to the risk emerges as
a natural distribution choice. When a proportional allocation criterion is applied, individual
capitals are expressed as a proportion of the aggregate capital, as follows:

Ki = K · fi (Xi)
n∑
j=1

fj (Xj)

, i = 1, . . . , n, (1)

where fi is a function that provides information of the risk Xi. If the function is a risk mea-
sure ρ (Xi), then it is named a stand-alone proportional allocation principle. The criterion that
drives the stand-alone proportional allocation principle is that each agent should be assigned
the amount of risk that she faces, which is summarized in ρ (Xi) and rescaled by K. The main
weakness of this principle is that it ignores dependences between risks.

An alternative criterion that takes into account the fact that the capital is distributed among
a set of (likely) interdependent agents is that of the marginal proportional allocation principle.
Using the notation S =

∑n
j=1Xj , a marginal proportional allocation principle is adhered to if

the fi is selected in order to reflect the partial contribution of the loss Xi to the value that the
risk measure assigns to the aggregate random loss, i.e. fi = ρ (Xi | S). It holds, therefore, that
ρ (S) =

∑n
j=1 ρ (Xj | S), so the proportional allocation principle based on partial contributions

can be expressed as

Ki = K · ρ (Xi | S)

ρ (S)
, i = 1, . . . , n. (2)

Non-proportional allocation principles comprise all those solutions in which the individual
capitals cannot be expressed as in (1). Many non-proportional principles can be devised when
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using the quadratic optimization criterion in the framework suggested by Dhaene et al. (2012).
For instance, non-proportional principles are all the capital allocation principles defined as,

Ki = ρi(Xi) + vi ·

K − n∑
j=1

ρj(Xj)

 , i = 1, . . . , n, (3)

where ρi are risk measures and vi are weights that satisfy
∑n

j=1 vj = 1 and at least one of them

is not equal to ρi (Xi) /
(∑n

j=1 ρj (Xj)
)

.

The last element characterizing the capital allocation problem is the specific goal pursued
by the decision-makers (e.g., regulators, management team, etc.). The selection of the most
suitable capital allocation principle should depend, among other features, on the risk attitudes
decision-makers wish to stimulate/penalize among agents. Three possible goals pursued with
the capital allocation are cost of risk, reward to risk less and reward on risk & return. A capital
allocation problem with a cost of risk goal aims to distribute the cost among the agents taking
into account some measure of the risk faced by each one of them. An example of the cost of
risk goal can be found in the European insurance regulatory framework, Solvency II, where the
regulator claims the disaggregation of the solvency capital requirement (SCR) of an insurance
company among its lines of business.

If a management team is interested in stimulating a risk-averse attitude among business
units, it may adopt a compensation scheme in which rewards are inversely related to the risk
level taken by these business units. In such a situation, a capital allocation problem with a re-
ward to risk less objective is promoted. This means, lower risk is associated with higher rewards
regardless of returns, and so agents have incentives to take conservative business decisions. Such
problems, however, are rare in practice. For instance, it could be used to notionally distribute
the contribution of each agent to the overall diversification benefit, where there is only informa-
tion about a final cost of risk allocation and the overall diversification benefit. More common
situations are those in which reward on risk & return allocations are adhered to in order to
reward the performance of agents with higher return/risk ratios. This goal is of great relevance
for a sound ERM system because the allocation depends on the relationship between the risk
taken and the return obtained. If this is the goal sought then a return-on-risk measure seems
to be the natural choice of the f functions. For instance, the return on risk adjusted capital
(RORAC) measure, defined as the negative expected value divided by the risk measure value,
RORAC(X) = −E(X)/ρ(X), could be a suitable candidate. Three different allocation goals are
discussed here but other goals might equally be pursued by decision-makers.

3 Compositional data

Let's consider the (standard) simplex Sn = {~z ∈ Rn | zj ≥ 0, j = 1, . . . , n,
∑n

j=1 zj = 1}
provided with a particular vector and metric space structure. Any vector ~z ∈ Sn is called a
composition and any set of vectors in the simplex is referred to as compositional data. To be
considered a vector space over R, a set of vectors needs two operations: vector addition and
scalar multiplication. Following the notation used in Aitchison and Egozcue (2005), these two

4



operations in the context of compositional data are known as perturbation (denoted by ⊕) and
powering (denoted by �), respectively. The simplex Sn provided with operations ⊕ and � has
a linear vector space structure of dimension n− 1.

The perturbation operation has to satisfy the following properties: it must be commutative,
associative, and have a neutral element and, for each vector, it must be its additive inverse. In
the case of the powering operation, the combination of a real number with a vector for a vector
space over R has again to belong to the set of vectors. Additionally, a neutral element of the
powering operator must exist. Finally, the distributivity of the perturbation with respect to
the powering, and vice versa, must be satisfied. The perturbation and powering operations are
defined by expressions (4) and (5), where ~x, ~y ∈ Sn and λ ∈ R:

~x⊕ ~y =

(
x1 · y1∑n
j=1 xj · yj

, . . . ,
xn · yn∑n
j=1 xj · yj

)
, (4)

λ� ~x =

(
xλ1∑n
j=1 x

λ
j

, . . . ,
xλn∑n
j=1 x

λ
j

)
. (5)

An important concept in compositional data is the closure function, C. The closure function
applied to a vector in Rn returns another vector whose components are the components of the
original vector divided by the sum of all the components of the original vector. So, the following
two expressions hold,

~x⊕ ~y = C [(x1 · y1, . . . , xn · yn)] , λ� ~x = C
[
(xλ1 , . . . , x

λ
n)
]
.

The neutral element of the perturbation in the vector space structure (Sn,⊕,�) is denoted
as ~0. Given a vector ~x such that xi > 0 for all i, ~r is the inverse of ~x with respect to the
perturbation operation if the relationship ~x ⊕ ~r = ~0 holds1. Therefore, ~r can be expressed as
~r = (−1)� ~x or, equivalently, as

~r =

(
1/x1∑n

j=1(1/xj)
, . . . ,

1/xn∑n
j=1(1/xj)

)
.

Combining this result and (4), we obtain that

~0 = ~x⊕ ~r = C

[
(

1∑n
j=1(1/xj)

, . . . ,
1∑n

j=1(1/xj)
)

]
=

(
1

n
, . . . ,

1

n

)
,

which shows that the neutral element ~0 of the perturbation operation is the composition with
all elements equal to 1/n.

Finally, a distance is required in order to consider the vector space (Sn,⊕,�) a metric space.
Under the simplicial metric defined by Aitchison (1983), the distance between two compositions
~x and ~y is computed as

1Note that components are strictly positive. The treatment of zeros in compositional data presents some
difficulties. See, for instance, Palarea-Albaladejo et al. (2014).
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∆(~x, ~y) =|| ~x	 ~y ||∆=

 1

2n

n∑
i=1

n∑
j=1

[
ln

(
xi
xj

)
− ln

(
yi
yj

)]2
1/2

, (6)

where || · ||∆ denotes the norm and ~x	 ~y = ~x⊕ [(−1)� ~y].

The simplicial arithmetic mean of the compositional data ~x1, ~x2, . . . , ~xm is computed as,

AM∆ (~x1, . . . , ~xm) =
1

m
�

m⊕
k=1

~xk , (7)

where
⊕m

k=1 ~xk means the perturbation of the set of m compositions {~xk}k=1,...,m. As shown
in De Baets (2013), this simplicial arithmetic mean may be interpreted as a solution of the
minimization problem,

AM∆ (~x1, . . . , ~xm) = arg min
~z

m∑
k=1

|| ~z 	 ~xk ||2∆ .

This expression is equivalent to the arithmetic mean of m real numbers AM (u1, . . . , um) =

1

m
·
∑m

k=1 uk = arg min
v

m∑
k=1

|| v − uk ||22. That is, the simplicial metric is an adequate metric

when (simplicial) arithmetic means are pursued or, in other words, the expression (7) contains
the proper definition of the arithmetic mean of ~x1 . . . , ~xm in the metric space (Sn,⊕,�,∆). An
explicit expression for the simplicial arithmetic mean is

AM∆ (~x1, . . . , ~xm) = C [(G1, . . . , Gn)] , (8)

where Gk = GM(x1,k, x2,k, . . . , xm,k), ∀k = 1, . . . , n. That is, the Gk is the geometric mean

of k-th component of each composition, i.e. Gk = [Πm
i=1xi,k]

1/m. Therefore, the (simplicial)
arithmetic mean of the m compositions is computed as the closure of the vector of the geometric
means of their components.

4 From capital allocation principles to compositional data

We claim that relative capital allocation principles and compositions are naturally linked. Let's
denote an (absolute) capital allocation principle by ~K = (K1,K2, . . . ,Kn) and its relative coun-
terpart by the vector ~x with components xi = Ki/K satisfying

∑n
j=1 xj = 1. An abuse of

notation is made because K is used to denote the vector ~K whose components are Ki and the
amount to be distributed among agents such that K =

∑n
j=1Kj . If our attention is focused on

the proportional capital allocation principles defined in expression (1), the relative counterpart
~x of the absolute principle ~K can be interpreted as the closure of the vector with components
equal to fi(Xi), ~x = C [(f1(X1), . . . , fn(Xn))] ∀i = 1, . . . , n. Similarly, relative non-proportional
capital allocation principles can be interpreted as compositions.

Compositional methods can then be used to operate with relative capital allocation prin-
ciples. For instance, let's assume that a cost of risk relative capital allocation principle ~x is
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implemented and the managers wish to fulfill an allocation with a reward to risk less goal.
Intuitively, relative low costs correspond to relative high rewards, so the components should
be inverted and the sum normalized in order to provide a full allocation of reward amount K.
These actions have a natural interpretation in the simplex Sn. Given a relative capital allocation
principle ~x, let ~r be the closure of the vector with components 1/xi for i = 1, . . . , n, where ~r is
the inverse of ~x with respect to the perturbation operation, ~r = (−1) � ~x. The application of
risk-based capital allocation principles to determine penalizations/rewards may lead to undesir-
able behaviors on the part of agents. In order to prevent this, the managers may consider direct
absolute reward on return & risk capital allocation principles. Let's assume that the managers
allocate rewards based on the RORAC measure and depart from a given ~x = C [~y] such that
yi = RORAC(Xi | S)/RORAC(S), where RORAC(Xi | S) = −E(Xi)/ρ(Xi | S) (Tasche, 1999).
Then, the absolute principle ~K is obtained by Ki = K ·xi, ∀i = 1, . . . , n. The underlying idea
is to provide better rewards to those agents whose relative RORAC with respect to the overall
RORAC of the portfolio is highest. Note that alternative definitions of return-on-risk measures
may be employed and the objective of the allocation would not change.

One advantage of this relationship between capital allocation principles and compositions is
that the geometric structure of the simplex can be used to enrich the description of capital allo-
cation principles. Two important elements to characterize a set of capital allocation principles
in the metric space (Sn,⊕,�,∆) are the distance between principles and their average. The
simplicial distance ∆ which helps to constitute Sn as a metric space can be useful for comparing
capital allocation principles quantitatively. Let's denote ∆ (~xt, ~xg) the distance between the rel-
ative capital allocation principle ~xt and the relative capital allocation principle ~xg. If a relative
capital allocation principle is fixed as a benchmark, the distance between this and other relative
allocation principles provides a measure of how far they are from the benchmark. By so doing,
capital allocation principles can be ranked according to the distance to the capital allocation
principle of reference. Of special interest here is the distance between a relative capital allocation
principle ~x and ~0. Recall that ~0 ∈ Sn is the composition in which all n components are equal
to 1/n, so it can be understood as the neutral capital allocation principle in which all agents
are assigned the amount K/n. The distance between a relative capital allocation and ~0 provides
a quantitative indicator of how far the capital allocation principle is from the neutral assignment.

Finally, the average of a set of capital allocation principles can be computed. In practice,
different management teams often provide alternative capital allocations to the same assignment
problem. Taking advantage of the geometric structure of Sn, the concept of averaging the m
points of view on the same allocation problem is easily derived. Let's assume m different relative
capital allocation principles ~xk linked to ~Kk, k = 1, . . . ,m. The arithmetic mean of ~x1 . . . , ~xm
in the metric space (Sn,⊕,�,∆) is computed as shown in (7). Once the relative arithmetic
mean is obtained ~z, what remains to be done is to assign an amount of K̄i = K · zi monetary
units to each ith agent, i = 1, . . . , n, in order to provide an allocation principle that balances
the opinions of all the management teams involved.
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5 Illustration

To provide a practical illustration of the application, we follow the example given in van Gulick
et al. (2012). The authors consider an insurance company offering three types of life insurance
portfolios:

• a (deferred) single life annuity that yields a yearly payment in every year that the insured
is alive and older than 65;

• a survivor annuity that yields a yearly payment in every year that the spouse outlives the
insured, if the insured dies before age 65;

• a death benefit insurance that yields a single payment in the year the insured dies, if the
insured dies before age 65,

with 45, 000 insured males, 15, 000 insured males and 15, 000 insured males, respectively.

The random variables linked to each agent are the present values of liability payments made to
the insureds in each portfolio, and are represented by Xsl, Xsurv and Xdb, respectively. The capi-
tal amount to be distributed among the agents is K = TVaR99%(S), being S = Xsl+Xsurv+Xdb.
Three capital allocation principles are studied in van Gulick et al. (2012): two proportional al-
location criteria and one non-proportional criterion2. The two proportional allocation criteria
consist of a stand-alone proportional allocation principle, based on the standard deviation as
risk measure, and a marginal proportional allocation principle, where partial contributions are
computed in accordance with the gradient allocation principle3. Finally, the authors developed
a non-proportional allocation that lexicographically minimizes a portfolio’s excesses, denomi-
nated the excess based allocation principle. We use the symbols σ,∇, and EBA to denote the
proportional principle based on the standard deviation, the gradient allocation principle and the
excess based allocation principle, respectively.

The results provided in van Gulick et al. (2012) are as follows: the amount to be allocated
is equal to K = TVaR99%(Xsl + Xsurv + Xdb) = 376, 356, and the allocations derived from the
principles are shown in Table 1. The relative capital allocation principles associated with the
absolute principles, which belong to the simplex S3, are also presented.

These three capital allocation principles are driven by a cost of risk goal. The inverse of these
principles can be computed. Let's assume that risk managers are interested in the assignment
of diversification benefits among agents based on an allocation driven by a reward to risk less
objective. To move from the cost of risk goal to the reward to risk less objective, the inverse of
the relative capital allocation principle with respect to the perturbation operation ~r is computed
and the absolute allocations are derived. The risk measure values are TVaR99%(Xsl) = 364, 477,
TVaR99%(Xsurv) = 11, 657 and TVaR99%(Xdb) = 6, 346, so the diversification benefit to share
among agents is (364, 477 + 11, 657 + 6, 346) − 376, 356 = 382, 480 − 376, 356 = 6, 124. Results

2The authors analyzed an additional capital allocation principle that is omitted here because it reported
negative allocations.

3The gradient allocation principle is also known as the Euler allocation principle (McNeil et al., 2005) or, from
the game-theoretic perspective, the Aumann-Shapley allocation principle (Denault, 2001).
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Table 1: Cost of risk based capital allocation principles to allocate the aggregate risk and their
relative counterparts

Single life
annuity
(Xsl)

Survivor
annuity
(Xsurv)

Death
benefit
(Xdb)

Absolute allocations*

Proportional principle based on st.dev. (σ) 335,724 24,725 15,907
Gradient allocation principle (∇) 364,477 7,979 3,900
Excess based allocation principle (EBA) 360,324 10,495 5,537

Relative allocations
Proportional principle based on st.dev. (σ) 89.20% 6.57% 4.23%
Gradient allocation principle (∇) 96.84% 2.12% 1.04%
Excess based allocation principle (EBA) 95.74% 2.79% 1.47%
*The aggregate risk is K = TVaR99%(S) = 376, 356. Information provided in van Gulick et al. (2012).

are shown in Table 2.

We should emphasize that the allocations shown in Table 2 do not directly match the alloca-
tions derived from individual diversification benefits. For example, individual diversification ben-
efits linked to the gradient allocation principle are equal to 0 for the single life annuity (364,477-
364,477), 3,678 for the survivor annuity (11,657-7,979) and 2,446 for the death benefit (6,346-
3,900). These values may be interpreted as an absolute allocation principle directly derived from
the aggregate diversification benefit, with the relative counterpart (0.00%, 60.06%, 39.94%). In
contrast, the values of the relative gradient allocation principle shown in Table 2 are, respec-
tively, 0.71%, 32.60% and 66.69%. These differences reflect the fact that the former is based on
the absolute diversification benefit of each agent, while the latter takes into account the relative
riskiness of each agent with respect to the rest of the agents.

These relative principles can be ranked in accordance with their simplicial distances. Imagine
that decision-makers wish to know the distances between these allocation principles and the
neutral allocation principle -denoted as ~0-, and the distances between the proportional principle
based on the standard deviation and the excess based allocation principle with the gradient
allocation principle, respectively. Simplicial distances may be calculated from expression (6), as
follows:

∆σ,~0 =
√

3.557 + 0.522 + 1.354 = 2.3308 ,

∆∇,~0 =
√

7.764 + 1.072 + 3.066 = 3.4499 ,

∆EBA,~0 =
√

6.608 + 0.932 + 2.576 = 3.1806 ,

and

∆σ,∇ =
√

0.8107 + 0.0978 + 0.3452 = 1.1197 ,
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Table 2: Reward to risk less based capital allocation principle to allocate the diversification
benefits and their relative counterparts

Single life
annuity
(Xsl)

Survivor
annuity
(Xsurv)

Death
benefit
(Xdb)

Absolute allocations*

Proportional principle based on st.dev. (σ) 172 2,330 3,622
Gradient allocation principle (∇) 44 1,996 4,084
Excess based allocation principle (EBA) 61 2,094 3,969

Relative allocations
Proportional principle based on st.dev. (σ) 2.80% 38.05% 59.15%
Gradient allocation principle (∇) 0.71% 32.60% 66.69%
Excess based allocation principle (EBA) 1.00% 34.19% 64.81%
*The aggregate diversification benefit is equal to 6,124.

∆EBA,∇ =
√

0.0466 + 0.0049 + 0.0213 = 0.2698 .

Distances taken individually are normally not especially informative. However, a comparison
of the distances can be used to rank the principles. In Figure 5 the simplicial distances of the
relative principles with respect to the neutral relative principle are shown. In this example,
the gradient allocation principle provides the furthest allocation in comparison to the neutral
allocation, followed by the EBA and the σ allocations. If gradient allocation is the principle of
reference, then the EBA allocation principle is closer than the σ principle.

∇

3.4499

0.2698

1.1197EBA

3.1806 σ

2.3308

~0

Figure 1: Simplicial distances between capital allocation principles. Solid lines represent the
distances of principles against the neutral allocation principle (~0). Dotted lines represent the
distances of principles against the gradient principle (∇).
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Finally, the average of the three relative allocations is computed. Let ~xσ, ~x∇ and ~xEBA
denote each of the three relative allocations displayed in Table 1, that is,

~xσ = (89.20%, 6.57%, 4.23%),
~x∇ = (96.84%, 2.12%, 1.04%) and
~xEBA = (95.74%, 2.79%, 1.47%).

To average these principles, first, the three geometric means of the three components of these
relative allocations are computed. Their values are

G1 = (89.20% · 96.84% · 95.74%)1/3 = 93.87%,

G2 = (6.57% · 2.12% · 2.79%)1/3 = 3.39% and

G3 = (4.23% · 1.04% · 1.47%)1/3 = 1.88%.

Following expression (8), the simplicial arithmetic mean AM∆

(
~xσ, ~x∇, ~xEBA

)
is obtained as

the closure of the vector with components equal to the geometric means C [(G1, G2, G3)]. The
simplicial average of relative principles and the associated absolute allocation are shown in Table
3. Note that the simplicial mean is the adequate average in the simplex S3. The values shown
in Table 3 differ from the arithmetic mean of the components of the original relative principles,
which are, respectively, 93.93%, 3.83% and 2.25% .

Table 3: Average of the three capital allocation principles

Single life
annuity
(Xsl)

Survivor
annuity
(Xsurv)

Death
benefit
(Xdb)

Average (absolute allocations) 356,431 12,859 7,066
AM∆ (relative allocations) 94.71% 3.42% 1.88%

6 Conclusions

The relationship between capital allocation problems and compositional data has been demon-
strated, as has the fact that relative capital allocation principles can be interpreted as com-
positions. The immediate implication of this is that compositional methods can be applied
to capital allocation solutions. In the foregoing discussion, we have focused on the simplicial
distance and the simplicial arithmetic mean and on the information provided by them when
applied to capital allocation solutions. We show that the simplicial distance is useful for ranking
allocations based on distances and argue that managers can compute these distances to measure
just how far alternative allocation solutions lie from the neutral allocation solution in which all
agents are assigned the same amount. However, it should be noted that the arithmetic mean
cannot be used directly to average capital allocation solutions. Rather, the simplicial arithmetic
mean needs to be computed if decision-makers hope to obtain an adequate average of a set of
allocation solutions.
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In this study we have explored the information provided by a limited number of composi-
tional methods when applied to allocation solutions. As such, the aim has been to clarify the
relationship between these two areas of research. However, there are many other elements in-
volved in compositional data analysis and their application to allocation solutions deserves the
attention of our future research. It is our firm belief that there remains considerable scope for
further research connecting these fields.
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