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Abstract. We consider a Bose-Hubbard trimer, i.e. an ultracold Bose gas populating

three quantum states. The latter can be either different sites of a triple-well potential

or three internal states of the atoms. The bosons can tunnel between different

states with variable tunnelling strength between two of them. This will allow us

to study; i) different geometrical configurations, i.e. from a closed triangle to three

aligned wells and ii) a triangular configuration with a π-phase, i.e. by setting one

of the tunnellings negative. By solving the corresponding three-site Bose-Hubbard

Hamiltonian we obtain the ground state of the system as a function of the trap

topology. We characterise the different ground states by means of the coherence and

entanglement properties. For small repulsive interactions, fragmented condensates are

found for the π-phase case. These are found to be robust against small variations

of the tunnelling in the small interaction regime. A low-energy effective many-body

Hamiltonian restricted to the degenerate manifold provides a compelling description

of the π-phase degeneration and explains the low-energy spectrum as excitations of

discrete semifluxon states.
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1. Introduction

It is well known that bosons at sufficiently low temperatures tend to form Bose-Einstein

condensates (BECs), which essentially consist on the macroscopic population of a

single-particle state [1]. In absence of interactions, the macroscopically occupied state

is the lowest energy state of the single-particle Hamiltonian. When the interatomic

interactions are taken into account, and for sufficiently large number of atoms, the

main effect is a broadening of the single-particle state, which can be accounted for by

a mean-field Gross-Pitaevskii description. In the Onsager-Penrose picture, in a BEC

there is only one eigenvalue of the one-body density matrix which is of the order of the

total number of particles. This is the largest eigenvalue and is termed the “condensed

fraction”.

In contrast, an interesting scenario appears when, in absence of interactions, the

lowest single-particle states are degenerate. In this case, the many-body ground state

may get fragmented [2], as naively the atoms have no reason to condense in only one of

the degenerate single-particle states. This implies that a finite number of eigenvalues of

the single-particle density matrix are of order of the total number of atoms.

In Ref. [2] the authors describe three notable physical examples which produce

fragmented condensates, e.g. the highly correlated regime in ultracold gases subjected

to synthetic gauge fields, the two-site Hubbard model and the ground state of a spinor

condensate in absence of quadractic Zeeman terms. In the first two cases, interactions

need to dominate over tunnelling terms in order to get fragmentation. For instance,

for atoms in the double-well it is in the strongly repulsive regime that the condensate

fragments in two parts, with half the atoms populating each well. By increasing the

potential barrier between the wells, the system enters into the Fock regime (interaction

energy dominating over the tunnelling) and fragments in two BECs of equal number

of particles. This has been realized experimentally [3, 4, 5, 6]. Notably, the quantum

many-body correlations present in fragmented states can find applications in the field of

quantum metrology to improve precision measurements [5], and hold promise of being

useful in near future technological applications [7].

It is desirable to pin down quantum many-body systems which feature

fragmentation even at the single-particle level without explicit spatial separation. In

this article we consider a minimal system which fulfills this, and which therefore has

fragmented ground states both in absence of atom-atom interactions or for small ones.

We consider N identical bosons populating three single-particle states. The bosons are

assumed to be able to tunnel between the different states. There are two options that

are available with current techniques. The first one would be to trap the atoms in a

triple-well potential, with fully connected sites as in [8, 9], or aligned [10]. In this case,

the three quantum states are the three eigenstates of the single-particle Hamiltonian,

which are thus spatially localised. A second option is to consider three different internal

states of the boson as single-particle states, with the whole cloud being trapped on the

same harmonic potential. Transitions among the three internal states can be induced by
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Figure 1. Schematic depiction of the system under study. We consider a gas of

bosons which can populate three different modes, depicted as green balls. Bosons are

allowed to tunnel between the modes. The tunnelling between modes 1 and 3 is taken

to be tunable through the parameter γ. For γ = 0 the three sites are aligned and the

geometry is essentially one dimensional. For γ > 0 we have a triangular configuration,

which for γ = 1 is equilateral. In the limit of γ >> 1 the system is similar to a

two-mode one. For γ < 0 we have π-phase tunnelling between sites 1 and 3.

means of Rabi coupling. In this case, the three quantum states are not spatially localised.

These two cases may be referred to as external or internal, three-mode systems. The

properties of such triple-well potentials have been studied previously exploring the effect

of dipolar interaction in the system [11, 12, 13, 14, 15], the many-body properties of the

system [10, 16] or the melting of vortex states [9].

In the previous studies, the coupling between the different modes is provided by

the quantum tunnelling between the spatially localised modes. This has hindered the

exploration of the regime we discuss in the present article. Namely, we will consider

triangular setups in which one of the tunnelling terms can be taken negative. This means

that a particle tunnelling from one site to the next one acquires a phase of π. Thus, we

consider cases when a particle acquires either 0 or π phase when tunnelling around the

triangle in absence of interactions. The key idea is to consider systems where tunnelling

can be detuned [17] and particularly profit from the recent advances in producing phase

dependent tunnelling terms. For external modal configurations, an external shaking of

the system along one direction effectively results in a dressed tunnelling term whose sign

can be switched from positive (standard) values to negative (π-phase tunnelling) [18].

More recently, a deep laser dip in the centre of a junction has been proposed in Ref. [19]

to engineer π-phase tunnelling. In the internal case a phase-dependent tunnelling can

be obtained as in Ref. [20].

This paper is organised as follows. In Sec. 2, we present the three-mode Bose-

Hubbard Hamiltonian, and briefly recall the many-body magnitudes that are used to

characterise the entanglement and correlation properties in the system. In Sec. 3, we first

discuss the non-interacting case, whose properties are crucial to understand the onset of

fragmentation at the many-body level. Sec. 4 is devoted to analyse the role played by
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interactions. In Sec. 5 we provide a model developed to understand the appeareance of

fragmentation in the symmetric π phase. Finally, in Sec. 6 we summarise our conclusions

and provide possible implications for future experiments.

2. Three-mode Bose-Hubbard Hamiltonian

We assume N ultracold bosons populating three quantum states. As discussed above,

they can be different sites, e.g. an ultracold gas confined in a triple-well potential, or

three internal states of the atoms. For the time being, we will restrict our system to the

former case. We consider tunnelling terms between the three sites, and a tunable rate

between two of them. This tunable rate will allow us to explore colinear configurations,

closed ones, and also configurations with π phase. Besides the tunnelling, the atoms

interact via s-wave contact interactions. This interaction is assumed to be the same

between all atoms, which is straightforward in the external case, as there is only one

kind of atoms, but would require some tuning in the internal case depending on the

species. The three-mode Bose-Hubbard (BH) Hamiltonian we consider is thus,

Ĥ = − J
[
â†1â2 + γ â†1â3 + â†2â3 + h.c.

]
+
U

2

3∑
i=1

n̂i(n̂i − 1) , (1)

where âi (â†i ) are the bosonic annihilation (creation) operators for site i fulfilling

canonical commutation relations, and n̂i = â†i âi is the particle number operator on

the i-th site. J is the tunnelling coefficient between sites 1-2, and 2-3, and U is the

atom-atom on-site interaction that can be repulsive U > 0 or attractive U < 0. In

our study, sites 1 and 3 are always equivalent with respect to site 2, and the tunnelling

between sites 1-3 depends on the particular configuration through the parameter γ.

Figure 1 shows schematically the triple-well potentials we have addressed. When

γ = 0, no tunnelling exists between sites 1 and 3, which corresponds to an aligned triple-

well configuration. When 0 < γ < 1, sites 1 and 3 are connected but the tunnelling

between 1-2 (and 2-3 as well) is larger. In contrast, when γ = 1, the three sites are

fully equivalent with the same tunnelling rate among them, which can be geometrically

interpreted as arranged in an equilateral triangular potential. We will go beyond this

symmetric configuration, when γ > 1, by increasing the tunnelling rate between sites 1

and 3 with respect to 1-2 (and 2-3), up to γ = 2 and we will consider negative values

of γ besides. The last range can be engineered by lattice shaking along the direction of

sites 1 and 3 [18].

The Hamiltonian of Eq. (1) can also be reproduced with a three-component

(spinorial, isotopic or atomic) BEC mixture trapped on a single harmonic oscillator

with suitable Rabi coupling between the levels (which corresponds to the tunnelling

terms).

Our study will concentrate mostly on the repulsive interaction case, which is more

prone to be experimentally explored with current setups. We will also discuss briefly
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the attractive interaction case. In the latter even small asymmetries in the external

trapping potentials will eventually have a large impact on the properties of the ground

state [21]. Thus, we will introduce small symmetry breaking terms, compared to both

the tunnelling and interaction, to consider situations closer to experimental ones and

also to control numerically the degeneracies in the problem. We have added the biases

between sites 1-3 and 2-3, ε13 and ε23, respectively. The considered Hamiltonian now

reads:

Ĥ′ = Ĥ + ε13(n̂1 − n̂3) + ε23(n̂2 − n̂3) . (2)

2.1. Many-body basis

The system is studied through direct diagonalisation of the many-body Hamiltonian for

a fixed number of atoms, N . A suitable many-body basis is the Fock one, which labels

the number of atoms in each mode,

|n1, n2, n3〉 =
1√

n1!n2!n3!

(
â†1

)n1
(
â†2

)n2
(
â†3

)n3

|vac〉 , (3)

where |vac〉 stands for the vacuum, and N = n1 + n2 + n3. The elements of the Fock

basis can be expressed as a product state |n1, n2, n3〉 = |n1〉 ⊗ |n2〉 ⊗ |n3〉. A general

many-body wavefunction is thus written as

|Ψ〉 =
N∑

n1,n2

Cn1,n2 |n1, n2, n3〉 , (4)

where Cn1,n2 is the corresponding amplitude of the Fock state |n1, n2, n3〉, and n3 =

N − (n1 + n2).

2.2. Coherent states

Coherent states are the closest analogs to classical solutions, in the same way

wavepackets are the closest quantum analog to classical trajectories. A general coherent

state can be constructed by assuming that all N atoms populate the same single-particle

state `,

b̂†` ≡ c1 â
†
1 + c2 â

†
2 + c3 â

†
3 . (5)

The coherent state reads,

|ΨCOH〉=
1√
N !

(
b̂†`

)N
|vac〉 . (6)

Since ci ∈ C, this many-body state has 6 parameters to be determined. Properly

normalising the single-particle wavefunction and also realising that there is always an

arbitrary global phase, the number of free parameters can be reduced to 4. It is worth

stressing that a coherent state as the one defined above corresponds to a fully condensed

atomic cloud.
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2.3. Condensed fractions

The fragmentation properties of the ultracold atomic gas [2] can be investigated by

means of the eigenvalues of the one-body density matrix. In our system with N bosons

and three different modes, the one-body density matrix of a many-body state |Ψ〉 is a

3× 3 matrix whose elements are,

ρ̂
(1)
ij =

1

N
〈Ψ|â†i âj|Ψ〉 , (7)

with i, j = 1, 2, 3. Since |Ψ〉 is normalised, it follows that Tr ρ̂(1) = 1.

It is interesting to calculate its eigenvectors (natural orbitals), |ψi〉, and eigenvalues,

pi, with p1 ≥ p2 ≥ p3 ≥ 0, that satisfy p1 + p2 + p3 = 1. Each eigenvalue of the one-

body density matrix gives the relative occupation number of the corresponding natural

orbital: pi = Ni/N . In a singly condensed system, there is only one large eigenvalue

that corresponds to the condensed fraction of the single-particle state, |ψ1〉: p1 ∼ 1 and

N1 ∼ O(N), with all the other eigenvalues pj (j 6= 1) being small ∼ O(1/N). Instead a

fragmented system has more than one large eigenvalue, Ni ∼ O(N), with i = 1, . . . , s,

and the rest of eigenvalues pj (j > s) are small ∼ O(1/N). In this situation the system

is not fully condensed, but fragmented, quantum correlations become important and

the mean-field approximation fails to describe the system.

2.4. Entanglement properties: entanglement entropy and Schmidt gap

Correlations between different subsystems of a many-body quantum system can be

quantified performing different bipartite splittings. That is, considering the system as

made of two subsystems, tracing out one of the parts, and studying the von Neumann

entropy and the entanglement spectrum [22] of the resulting subsystem.

In our case, we consider different spatial partitions of the three-well configuration,

e.g. (1,23), (2,13), as in Ref. [14]. From the density matrix of the full system, ρ̂,

correlations between mode i and the rest can be determined by first taking the partial

trace of ρ̂ over the Fock-state basis of the other modes. This yields the reduced density

matrix on subsystem i, ρ̂i, that describes the state of this subsystem. For instance, in

our system, by tracing out sites 2 and 3, a bipartite splitting of the three-mode system

is obtained (1, 23), and the reduced density matrix on site 1, ρ̂1 = Tr23ρ̂, is found to be

diagonal in the single mode space of N particles (see Eq. (A.2) in Appendix Appendix

A),

ρ̂1 =
N∑
k=0

λ1k|k〉〈k| , λ1k ≥ 0 (8)

where |k〉 are states of k particles in mode 1. Note, that the reduced density matrix

for state 1 is in general a mixture without a well-defined number of particles. The

set of eigenvalues {λ1k} is called entanglement, or Schmidt spectrum [22, 23, 24], and

the eigenvalues are the Schmidt coefficients. The Schmidt coefficient λ1k is in this case
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directly the probability of finding k particles in site 1 without measuring the number

of atoms in sites 2 and 3. The Schmidt spectrum fulfills
∑

i λ
1
i = 1, and contains

information about the correlations and the entanglement properties of the state in

subsystem 1 with respect to the rest of the system. It is worth recalling that a many-

body state is entangled when it cannot be written as a product state. In the case of

spatially separated modes, the entanglement we are discussing is spatial.

A measure of the entanglement between the two subsystems is already provided by

the single-site von Neumann entropy, which can be computed as S1 = −Tr(ρ̂1 log ρ̂1).

Noting that in our case the density matrix, ρ̂1, is already diagonal, see Eq. (8), the

entropy can be evaluated from the Schmidt coefficients as S1 = −
∑

i λ
1
i log λ1i .

In the three-mode system, a signature of the entanglement on the Schmidt spectrum

is the following one: if site 1 is not entangled with sites 2 and 3, it should be pure after

tracing those sites out, and then the entanglement spectrum would be λ11 = 1 and

λ1i = 0 for i = 2, 3, . . .. This actually implies a zero of the corresponding von Neumann

entropy. A remarkable magnitude defined from the set of λ’s is the so-called Schmidt gap,

defined as the difference between the two largest and more relevant Schmidt coefficients

in the entanglement spectrum of subsystem i, ∆λi = λi1 − λi2 [23]. In the case of no

entanglement between the subsystems, the Schmidt gap takes its maximum value of 1.

A vanishing of the Schmidt gap marks large entanglement between the subsystems. As

has been recently pointed out in Ref. [14] for dipolar bosons in triple-well potentials,

the Schmidt gap is a good tool to distinguish between phase transitions and crossovers.

Note that no relation exists between fragmentation and entanglement, in the sense

that a system can be entangled and fragmented independently. For instance, a system

where all the bosons occupy the same spatial mode is nor fragmented neither spatially

entangled. A bosonic Josephson junction in the strong repulsive interaction (Fock)

regime is a clear example of a non entangled but fragmented state: |N/2, N/2〉. In

contrast, in the non-interacting regime the bosonic Josephson junction is in a fully

condensed state,

|Ψ〉 =
1√
N !

(
â†1 + â†2√

2

)N

|vac〉 , (9)

which has large entanglement between the two sites as seen by the Schmidt coefficients

which are λk = 2−N
(
N
k

)
. Finally, cat states, |Ψ〉 = (|N, 0〉 + |0, N〉)/

√
2, are a well

known example of fragmented and entangled many-body systems.

3. Non-interacting case

In this section we solve the non-interacting case for any value of the tunable tunnelling

link γJ . In our calculation we will keep the tunnelling parameter fixed J/h = 1 Hz,

since it essentially sets the overall energy scale.

The triple-well configuration we have chosen is intended to remark first, the role

played by the topology of the configuration, going from a disconnected chain (γ = 0) to
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Figure 2. Single-particle spectrum of the triple-well system as a function of γ. In

black, red and green solid lines we depict the eigenvalues E1, E2 and E3, from Eqs. (10).

The corresponding eigenstates, Eq. (11), are written explicitly for several relevant

values of γ. The dashed lines correspond to the spectrum computed with a bias term

ε13 = ε23 = J/4. The short notation for states (a, b, c) in the figure corresponds to the

states a|1, 0, 0〉+ b|0, 1, 0〉+ c|0, 0, 1〉 used in the main text.

an essentially double-well system at γ →∞, through a connected equilateral triangle at

γ = 1. It is worth emphasising that we do so by varying the tunnelling strength between

sites 1 and 3 and not by, for instance, adding sizeable bias terms to the Hamiltonian,

which would indeed also break the symmetry between the three sites. The second

important point, is that we consider π-phase tunnelling between the two wing sites

(γ < 0), which will indeed have dramatic consequences on the many-body properties of

the system.

3.1. Unbiased non-interacting case

The non-interacting case can be solved readily. The eigenvalues of the Hamiltonian (1)

with U = 0 are,

E1 = γJ

E2 =
J

2

(
−γ −

√
8 + γ2

)
E3 =

J

2

(
−γ +

√
8 + γ2

)
, (10)

and the corresponding unnormalized eigenvectors are:
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|ψ1〉 =
1√
2

(|1, 0, 0〉 − |0, 0, 1〉)

|ψ2〉 = |1, 0, 0〉+
4− γ2 + γ

√
8 + γ2√

8 + γ2 + 3γ
|0, 1, 0〉+ |0, 0, 1〉

|ψ3〉 = |1, 0, 0〉+
γ2 + γ

√
8 + γ2 − 4√

8 + γ2 − 3γ
|0, 1, 0〉+ |0, 0, 1〉 . (11)

The single-particle spectrum, see Fig. 2, has some interesting features. First,

there is one eigenvector that is independent of γ, |ψ1〉. This state does not involve

site 2, and its energy is proportional to the coupling between sites 1 and 3. For

γ = 0, which corresponds to an aligned configuration, the ground state is |ψ2〉γ=0 =

1/2
(
|1, 0, 0〉+

√
2 |0, 1, 0〉+ |0, 0, 1〉

)
, which has an excess of particles in site 2.

As γ is increased, the equilateral triangular configuration is reached for γ = 1.

This case has been studied thoroughly in Refs. [9, 25]. The ground state is |ψ2〉γ=1 =

(1/
√

3)(|1, 0, 0〉+ |0, 1, 0〉+ |0, 0, 1〉) and there are two excited degenerate single-particle

states that correspond to vortex states, with clockwise and counter-clockwise rotation:

|ψv1〉 =
1√
3

(
|1, 0, 0〉+ ei

2π
3 |0, 1, 0〉+ ei

4π
3 |0, 0, 1〉

)
|ψv2〉 =

1√
3

(
|1, 0, 0〉+ e−i

2π
3 |0, 1, 0〉+ e−i

4π
3 |0, 0, 1〉

)
. (12)

Notice that these two states are linear combination of

|ψ1〉 =
1√
2

(
e−i

π
6 |ψv1〉+ ei

π
6 |ψv2〉

)
|ψ3〉γ=1 =

1√
6

(|1, 0, 0〉 − 2|0, 1, 0〉+ |0, 0, 1〉)

=
1√
2

(
ei
π
3 |ψv1〉+ e−i

π
3 |ψv2〉

)
. (13)

Further increasing γ, sites 1 and 3 get further connected and the physics decouples

them from site 2. The ground state for γ →∞ is |ψ2〉γ→∞ = 1/
√

2 (|1, 0, 0〉+ |0, 0, 1〉),
the first excited state is |ψ3〉γ→∞ = |0, 1, 0〉 and the second excited state is |ψ1〉γ→∞ =

1/
√

2 (|1, 0, 0〉 − |0, 0, 1〉).
The situation for γ < 0 is very different and actually richer at the ground-

state level. For γ = −1 we have a crossing in the single-particle spectrum, which

therefore should have important consequences at the many-body level. At γ =

−1 the ground state is two-fold degenerate between states |ψ1〉 and |ψ2〉γ=−1 =

(|1, 0, 0〉+ 2|0, 1, 0〉+ |0, 0, 1〉) /
√

6. The first excited state is |ψ3〉γ=−1 = (|1, 0, 0〉 −
|0, 1, 0〉+ |0, 0, 1〉)/

√
3. When varying γ from γ < −1 to γ > −1, the system undergoes

a quantum phase transition in this non-interacting case. A possible order parameter
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would be the population of the second site, which goes from 〈n̂2〉 = 0 to 〈n̂2〉 > 0 as we

cross the γ = −1 point.

From Fig. 2, one can see that the main effect of varying γ is a large avoided crossing

of the asymptotic states (|1, 0, 0〉 + |0, 0, 1〉)/
√

2 and |0, 1, 0〉. When γ is positive the

ground state is (|1, 0, 0〉 + |0, 0, 1〉)/
√

2, whereas when γ is negative the lowest state is

the antisymmetric state, |ψ1〉 = (|1, 0, 0〉 − |0, 0, 1〉)/
√

2. The latter remains uncoupled

for all values of γ, with eigenenergy E = Jγ. This value is easy to obtain, since in the

Fock basis: [a†1a3 + a†3a1]|ψ1〉 = −|ψ1〉. Therefore, 〈ψ1| − Jγ(a†1a3 + a†3a1)|ψ1〉 = Jγ.

3.2. Explicit symmetry breaking, effect of the bias

The explicit symmetry breaking induced by bias terms in the Hamiltonian (2) breaks

the degeneracies present in the single-particle spectrum. As seen in Fig. 2, the crossings

at γ = −1 and γ = 1, which occur in the non-interacting system for the ground state

and excited states, respectively, become now avoided crossings. For the case we are

interested in, when the bias is much smaller than the tunnelling, we can obtain the

states dressed by the bias at the degeneracy points by means of first order perturbation

theory. In the case of ε13 > 0 and ε23 = 0, the ground-state manifold at γ = −1 splits,

∆E = ε13, and the corresponding dressed states are,

|ψ̃1〉 =
1√
2

(|ψ2〉 − |ψ1〉) =

=
1√
12

[
(1−

√
3)|1, 0, 0〉+ 2|0, 1, 0〉+ (1 +

√
3)|0, 0, 1〉

]
|ψ̃2〉 =

1√
2

(|ψ1〉+ |ψ2〉)

=
1√
12

[
(1 +

√
3)|1, 0, 0〉+ 2|0, 1, 0〉+ (1−

√
3)|0, 0, 1〉

]
. (14)

The first one is the new ground state of the system, which has a slightly larger population

of particles in site 3. This result is reasonable, since the bias we have considered, ε13 > 0,

promotes site 3.

4. Quantum many-body properties of the system

We consider now the effect of repulsive interactions between atoms. We calculate the

ground state, by exact diagonalisation of the Hamiltonian (1), for different values of

the tunnelling rate γ. In our numerics we will consider up to N = 48 particles. The

ground state of the system is characterised by means of, a) coherence properties and

fragmentation, b) analysis of the energy spectrum, and c) entanglement spectrum and

entanglement entropy.
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Figure 3. Phase diagram in the (γ, NU/J) plane obtained by exact diagonalisation for

N = 48. The colour gives the average occupation in the ground state, 〈ΨGS|n̂i|ΨGS〉/N ,

of site 1 (a) and 2 (b).

4.1. Analytic results in the |γ| � 1 limit

The structure of the single-particle spectrum, see Fig. 2, allows one to build a simple

model for |γ| � 1. This simple model will serve as guidance to understand many of the

properties of the many-body ground state which will be discussed in the forthcoming

sections.

We can distinguish two distinct regimes, a) γ � 1 and b) −γ � 1. In both cases,

for sufficiently large values of |γ| the single-particle spectrum approaches E0 = −|γ|J ,

E1 = 0, and E2 = |γ|J . In the (a) case, the non-interacting single-particle states are

|ψ0〉 = 1/
√

2(|1, 0, 0〉 + |0, 0, 1〉), |ψ1〉 = |0, 1, 0〉 and |ψ2〉 = 1/
√

2(|1, 0, 0〉 − |0, 0, 1〉),
respectively. In (b) the single-particle states exchange their role, with |ψ2〉 being

the ground state and |ψ0〉 the more energetic. For interaction strengths such that

NU/J � |γ|, the effect of the interaction can be considered perturbatively. In this limit

we can ignore particle-hole excitations to the highest single-particle state, and write

configurations with k excited atoms as,

|Ψ〉 = N (â†ψ0
)N−k(â†ψ1

)k|vac〉 (15)

where N is a normalisation constant and â†ψi creates a particle in the single-particle

state |ψi〉. The energy for this state, up to constant terms, reads,

E(N, k) = U
N − k

2

(
N − k + 1

2
− 1

)
+
U

2
k(k − 1) + |γ|Jk . (16)

In the non-interacting case, the energy is minimal for k = 0, as expected. For non-zero

interactions, this expression has a minimum for

k = Int

[
N

3

(
1− 4|γ|J − U

NU

)]
, (17)
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Figure 4. Condensed fraction p1 (largest eigenvalue of the one-body density matrix)

as a function of γ and NU/J . Notice that in this parameter regime p1 + p2 ' 1 and

p3 ' 0. N = 48.

where the Int[. . .] stands for the integer part of the expression. Incidentally, for large

interactions, NU/J � 1 (with |γ|J � U), the minimal energy is obtained for k = N/3,

as expected for a Mott insulator of filling N/3. As we decrease interactions, the system

goes step by step to k = 0. In particular, many-body states with k and k + 1 excited

atoms degenerate if,

NU

J
=

2N |γ|
N − 3k − 1

. (18)

In this limit, it is quite reasonable to expect that as we increase the atom-atom

interactions keeping γ fixed, the system tends to minimise the number of pairs per site,

which is achieved by equipopulating the three sites. Eq. (18) predicts ground state

degeneracies, i.e. energy crossings, for certain values of |γ| and NU/J .

This model works reasonably both for γ . −1 and γ & 1, where already the

structure of the single-particle spectrum starts to resemble the asymptotic one. There

is one important difference between γ . −1 and γ & 1. In the former case, the lowest

energy single-particle state is independent of γ (see Fig. 2) and has no population of

site 2. This makes the model outlined above fairly accurate to describe the different

transitions in the many-body ground state. In the latter however, the lowest single-

particle state only asymptotically approaches the state (1/
√

2)(|1, 0, 0〉 + |0, 0, 1〉). In

this case, the model only provides a qualitative picture at smaller values of |γ|. Note

also, that for |γ| � 1, the value of k which minimises the energy, corresponds in this

limit to the average population of site 2 in the ground state, while the average population

of sites 1 and 3 is (N − k)/2.
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Figure 5. The two largest eigenvalues of the one-body density matrix, p1 (solid) >

p2 (dashed), are depicted as a function of γ (left) and NU/J (right).

4.2. Coherence and one-body density matrix

To have an overall picture of the different regimes that we will encounter for different

values of NU/J and γ we first study the average populations of the three sites,

〈ΨGS|n̂i|ΨGS〉/N . Notice that in our system, without bias terms, sites 1 and 3 are

equivalent. In Fig. 3 we present results for −2 ≤ γ ≤ 2 and relatively small values of

the interaction NU/J ≤ 10, which do not reach the Fock regime. For very small values

of the dimensionless parameter NU/J , one does not expect substantial changes from

the single-particle case. Indeed in the ground states for γ > −1 the three modes are

substantially populated, whereas for γ < −1 the second mode is clearly less occupied

than the other two as reflected in the dark region on the left corner of Fig. 3 (b).

In the non-interacting limit, U = 0, the problem becomes a single-particle one and

in the case of a symmetric configuration, γ = 1, the many-body ground state can be

written as [9, 25],

|ΨU=0
GS 〉 =

1√
N !

(
1√
3

[â†1 + â†2 + â†3]

)N
|vac〉 , (19)

in which the average population on each site is, for symmetry reasons, N/3.

For large repulsive atom-atom interactions, regardless of the value of γ, the system

will fragment in an effort to diminish the number of pairs inside each site, in analogy to,

for instance, the double-well [2]. In the large interaction limit, that is in the Fock regime

U � J , the ground state can be well approximated by |ΨU�J
GS 〉 ' |N/3, N/3, N/3〉 ,

which is the equivalent to a Mott insulator of filling N/3. This ground state is non-

degenerate if the number of bosons is commensurate with 3. If the number of bosons is

not proportional to 3 the ground state becomes three-fold degenerate in the strong Fock
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Figure 6. Depiction of the three ordered eigenvalues of the one-body density matrix as

a function of NU/J for γ = −1. The figure shows the transition from bifragmentation

in the NU/J ' 1 regime, to trifragmentation in the NU/J →∞ (Fock) regime.

regime: |N/3± 1, N/3, N/3〉, |N/3, N/3± 1, N/3〉, and |N/3, N/3, N/3± 1〉, where the

plus (minus) sign refers to a single particle (hole) delocalization.

In the Josephson regime, defined as NU/J ' 1, the ground state of the system is

mostly condensed for γ . −0.5. This is reflected in the eigenvalues of the one-body

density matrix, see Fig. 4 and left panel in Fig. 5. As already pointed out in the single-

particle spectrum, a very interesting feature is readily found in the vicinity of γ = −1.

In this case, the ground state of the system is fragmented in two pieces even in the

non-interacting case. As the interaction increases, but still in the Josephson regime,

the system is seen to remain bifragmented. From Fig. 5, one can see that the region

in the γ-space, around γ = −1, which corresponds to a fragmented condensate, slightly

increases with the interaction.

As discussed above, in the limit of the strong Fock regime, the ground state should

be essentially fragmented in three pieces (in our case N = 48, which is multiple of 3),

corresponding to the ground state |N/3, N/3, N/3〉. This is clearly seen in Fig. 6, which

depicts the behavior of the three eigenvalues of the one-body density matrix in the

γ = −1 configuration for different values of the interaction. In the non-interacting case,

the system is fragmented in two condensates (p1 = p2 = 0.5 and p3 = 0), whereas as

NU/J increases, p1 = p2 < 0.5 decrease and p3 > 0 increases, fulfilling p1 + p2 + p3 = 1.

Moreover, one can see that pi → 1/3 asymptotically. Note however that the origin

of bifragmentation is directly related to the degeneracy at the single-particle level and

remains in the presence of tunnelling. Trifragmentation requires strong interactions

such that essentially tunnelling plays no role and the system can be regarded as three

independent condensates.
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Figure 7. (a) Energy gap between the ground state and the first excited state. (b)

Energy difference between the second and first excited states. N = 48.

In the right panel of Fig. 5 the behavior of the two largest eigenvalues of the

one-body density matrix is shown, as a function of NU/J , for a fixed γ configuration.

At γ = −0.99 there is a sharp transition from a singly condensed (at U = 0) to a

bifragmented system already for very small values NU/J > 0. However, as γ departs

further from −1 (γ = −0.7 and −1.3) the transition between both regimes becomes

smoother, and the system remains fully condensed for a larger range of interactions.

4.3. Energy spectrum

The model presented in Sec. 4.1 predicts a number of degeneracies in the many-body

energy spectrum of the system. Indeed, Eq. (18) predicts N/3 energy crossings for

both γ < −1 and γ > 1. As explained above, these predictions are expected to hold

for γ . −1 and are indeed found in the exact many-body spectrum as seen in Fig. 7.

Varying the value of k in Eq. (18) from 0 to N/3 one obtains the large |γ| behavior of

the different lines of zero gap in Fig. 7 (a). Similarly, albeit not shown in the figure, for

γ � 1 the corresponding gapless lines are also found in the system.

For γ > 0, also interesting is the closing of the energy gap between the first and

second excited states for γ = 1 (see the vertical line in the right panel of Figs. 7). It

corresponds to the degeneracy between vortex and antivortex states studied in Ref. [9],

whose wavefunctions have been previously obtained in the non-interacting case, see

Eq. (12). As the interaction is increased the degeneracy between the corresponding two

states remains.

4.4. Entanglement spectrum and entanglement entropy

The many-body ground state has been found to be fragmented in the vicinity of γ = −1

and mostly condensed otherwise, for NU/J ' 1. Besides fragmentation, the three-site
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Figure 8. Schmidt gap as a function of (γ, NU/J) for N = 48. (a) Between site 1

and the subsystem formed by sites 2 and 3. (b) Between site 2 and the subsystem

formed by sites 1 and 3.

configuration considered allows one to study the onset of entanglement and correlations

among the three different sites depending on the specific values of the parameters. To

characterise the spatial entanglement properties we will use the Schmidt gap and the

entanglement von Neumann entropy defined in Sect. 2.4.

Due to the structure of our system, with three sites where two of them, 1 and

3, are essentially equivalent, one can consider two bipartite splittings. The first one

corresponds to subsystem 1 where sites 2 and 3 have been traced off (1, 23). And

second, subsystem 2 where subsystems 1 and 3 have been traced off (2, 13).

The Schmidt gap corresponding to both bipartite splittings in the (γ,NU/J)

diagram is presented in Fig. 8. The first notable feature is that in both bipartite

splittings we observe two fan-like radial structures, with straight lines converging to

(−1, 0) and (1, c) (with c a constant to be determined later). This structure, similar

to the one discussed in Ref. [14], represents the crossings of the first two values of

the entanglement spectrum. To better understand the structure, in Fig. 9 we plot the

entanglement spectrum (N +1 coefficients) for both bipartite splittings for a fixed value

of NU/J = 2. For γ < −1, each zero of the Schmidt gap shown in Fig. 8 implies a

variation of one unit of the most probable population of the untraced mode. This can

be understood from the expression in Eq. (A.2), where the reduced density matrix is

shown to be diagonal in the Fock basis of the untraced mode.

The simple large |γ| model explained in section 4.1 also explains qualitatively the

observed behaviour. The degeneracies in the energy spectrum obtained there correspond

to many-body ground states in which the most likely value of the population in site 2

goes from 0 to N/3 and the corresponding one of sites 1 and 3 from N/2 to N/3. We

have considered N = 48, see Fig. 8, and thus we find 16 crossings in the left part of the

figure, with the most likely population of site 1 going from N/2 = 24 in the leftmost
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Figure 9. Entanglement spectrum of the reduced density matrix of mode 1 and mode

2, upper and lower panel, respectively. The spectrum is coloured according to the

corresponding most probable occupation of the mode singlelling out some relevant

cases, e.g. empty mode k = 0, half occupation k = N/2, etc. Both are computed for

NU/J = 2 and N = 48.

case to N/3 = 16 at γ = −1. As explained in the previous section, the perturbative

model captures the physics also for γ > 1. As we can see in the figure, at γ = 1 the most

likely population of site 1 is again N/3 = 16 and it keeps increasing as γ is increased.

These crossings described in the entanglement spectrum, clearly visible in Fig. 9,

are one of the main signatures of a crossover between two phases, whereas in a quantum

phase transition all the Schmidt coefficients degenerate to the same value in the

thermodynamic limit (N →∞) [23]. In our case, it is clear that at (γ = −1, NU/J = 0)

all the Schmidt coefficients degenerate even for finite N . This is due to the fact that we

already have a single-particle degeneracy.

Certain limiting cases are easily interpreted. For instance, for γ � −1, mode

2 is essentially unpopulated and decoupled from modes 1 and 3. This reflects in a
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Figure 10. Entropy as a function of (γ, NU/J) for N = 48. (a) Bipartite von

Neumann entropy between site 1 and the subsystem formed by sites 2 and 3. (b)

Bipartite von Neumann entropy between site 2 and the subsystem formed by sites 1

and 3.

singly populated entanglement spectrum for NU/J = 2 in Fig. 9 (lower panel). In this

regime, the system was shown to be condensed in Fig. 5, on the single-particle state

(|1, 0, 0〉+|0, 0, 1〉)/
√

2, which spatially entangles modes 1 and 3, as seen in Fig. 9 (upper

panel). In the γ � 1 limit the situation is exactly the same, but as explained above, this

limit is achieved in practice for much larger values of |γ| than in the γ < 0 case. In the

vicinity of γ = 0 the three single-particle states quasidegenerate. This makes that for

relatively low interactions, as in Fig. 9, the many-body ground state starts populating

the Fock states around N/3 approaching the Mott insulator phase.

These features, described on the full entanglement spectrum, reflect directly on

the corresponding von Neumann entropies, see Fig. 10. For instance, the fact that the

system approaches the Mott regime for relatively low values of the interaction in the

vicinity of γ = 0 reflects almost zero value of the von Neumann entropy for mode 1,

which starts to decouple from the other modes. For γ < −1 and small values of the

interaction, the system empties mode 2 and decouples it from the other two modes, see

Fig. 10 (right panel).

4.5. Quantum phase transition for attractive interactions

Similarly to the two-well system, a quantum phase transition can be expected for γ = 1

for attractive interactions [29, 30]. In this case, the three sites are completely equivalent.

Increasing the attractive atom-atom interactions, the system will minimise energy by

clustering the atoms in a single site. In absence of any spatial bias, the ground state of

the system will approach the Schrödinger cat-like state,

|Ψcs〉 =
1√
3

(|N, 0, 0〉+ |0, N, 0〉+ |0, 0, N〉) . (20)
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Figure 11. Schmidt gap as a function of (γ, NU/J) for N = 48. (a) Between site

1 and the subsystem formed by sites 2 and 3. (b) Between site 2 and the subsystem

formed by sites 1 and 3. This figure is similar to Fig. 8 but we extend to attractive

interactions to show the phase transition described in the text.

Analogously to the two-site case, this many-body state is not gapped and is

quasidegenerate with its first two excitations. In the thermodynamic limit, the transition

between the non-interacting state, Eq. (19), and the cat-like state Eq. (20) goes through

a transition point at a finite value of NU/J . This transition reflects in the behaviour

of the Schmidt gap of the system. As seen in Fig. 8, several zero-Schmidt-gap straight

lines tend to converge on a point in the attractive interaction regime on the γ = 1 line.

In Fig. 11 we extend the range of parameters to the attractive region and certainly the

lines seem to converge at γ = 1 and −9/2 < NU/J < −4, which is where the authors

of Ref. [13] predicted the existence of a quantum phase transition. Notably, in contrast

with the former phase transition described at γ = −1, this phase transition is only

present in the thermodynamic limit.

5. Detailed analysis of the γ = −1 case

As already shown in Figures 5 and 6, the γ = −1 ground state is found to be

bifragmented, with p1 = p2 = 1/2, in the non-interacting limit (NU/J = 0). To a good

approximation it remains bifragmented for finite but small (NU/J ' 1) interactions.

As NU/J increases further the system approaches the Fock regime and the ground state

tends to the well known trifragmented configuration with p1 = p2 = p3 = 1/3. We will

here instead focus on the description of the special bifragmented states obtained when

NU/J is non-vanishing but small.

At γ = −1 the single particle spectrum, see Fig. 2, has two degenerate eigenvalues,
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ES = EA = −J and Ee = 2J . A convenient choice for their eigenvectors is,

|S〉 =
1√
6

(|1, 0, 0〉+ 2|0, 1, 0〉+ |0, 0, 1〉)

|A〉 =
1√
2

(|1, 0, 0〉 − |0, 0, 1〉)

|e〉 =
1√
3

(|1, 0, 0〉 − |0, 1, 0〉+ |0, 0, 1〉) , (21)

so that, under the exchange of sites 1↔ 3, |S〉 is symmetric and |A〉 is antisymmetric.

|e〉 corresponds to the “excited” single-particle configuration, Ee − ES = 3J . To these

states we associate creation operators

Ŝ† ≡ 1√
6

(
â†1 + 2â2

† + â3
†
)

Â† ≡ 1√
2

(
â†1 − â

†
3

)
ê† ≡ 1√

3

(
â†1 − â

†
1 + â†3

)
, (22)

and their hermitian conjugates, Ŝ, Â and ê, act as annihilation operators. It is immediate

that

[Â, Â†] = 1 , [Ŝ, Ŝ†] = 1 , [ê, ê†] = 1 . (23)

Formally, it is a matter of convenience to use modes 1, 2, and 3 or S, A and e to

construct the single-particle basis.

To understand the onset of bifragmentation we will now develop an approximate model

in the following way: we will only use the subspace generated by the Â† and Ŝ† modes

to describe the lowest lying many body states, in particular the ground states. To do

so, inverting Eq. (22) one finds â†i in terms of Â†, Ŝ† and ê† but since the latter do not

operate in the chosen subspace, in our approximation,

â†1 =
1√
2
Â† +

1√
6
Ŝ†

â†2 =

√
2

3
Ŝ†

â†3 = − 1√
2
Â† +

1√
6
Ŝ† .

(24)

Within that subspace the interaction Hamiltonian reads,

H̃U =
3∑
i=1

(â†i )
2â2i =

1

2
(Â†)2Â2 +

1

2
(Ŝ†)2Ŝ2

+
2

3
Ŝ†Â†ŜÂ+

1

6

(
(Ŝ†)2Â2 + (Â†)2Ŝ2

)
, (25)

where for simplicity we have omitted the U/2 factor and the terms linear in N .

Introducing two new modes,

â†hv1 =
1√
2

(Ŝ† + iÂ†)
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Figure 12. Overlap between the exact two-fold quasidegenerate groundstate manifold,

|Φj〉 and the two k = 0 states in Eq. (30). The overlap is computed as |detO|, with

Oi,j = 〈Ψi
0|Φj〉, i = +,− and j = 1, 2. Note this overlap is 1 if the two sets of vectors

span the same manifold.

â†hv2 =
1√
2

(Ŝ† − iÂ†) (26)

the H̃U Hamiltonian becomes,

H̃U =
1

3

(
N̂2
hv1 + N̂2

hv2 + 4N̂hv1N̂hv2 − N̂hv1 − N̂hv2

)
(27)

where N̂hv1 = â†hv1âhv1 and N̂hv2 = â†hv2âhv2. From Eq. (27) it is clear that the Fock

states built from the new modes

|Nhv1, Nhv2〉 ≡
1√

Nhv1!Nhv2!
(â†hv1)

Nhv1 (â†hv2)
Nhv2 |vac〉 (28)

are the eigenvectors of H̃U , with an obvious expression for the eigenvalues. Since

Nhv1 + Nhv2 = N , it will be more clarifying to change notations to Nhv1 = k and

Nhv2 = N − k. Then the spectrum becomes

ẼU(k) =
1

3

(
k2 + (N − k)2 + 4k(N − k)−N

)
, (29)

which is degenerate in pairs, (k,N − k), except the topmost energy when N is odd. In

particular, the ground state is two-fold degenerate.

This approximation turns out to be very accurate for small interactions. The effect

of including the |e〉 manifold, breaks the degeneracy but does not promote any of the

states. The lowest many body states are then well approximated by,

|Ψ(±)
k 〉 =

1√
2

[|k,N − k〉 ± |N − k, k〉]
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Figure 13. Quantum phase in each site, color value, for the fluxon Eq. (12) and

the semifluxon Eq. (31) states. The fluxon is the usual vortex state, with a full 2π

variation of the phase around the triangle. In the semifluxon, the phase varies by π as

we go along the triangle.

with k = 0, . . . , N (30)

where the ± sign labels the two states which would be degenerate in energy in absence of

coupling with the |e〉’s. The Ψ
(±)
k are obviously bifragmented, and have p1 = p2 = 1/2.

Furthermore, the ground state is a cat-state with all atoms in one or the other of the

modes in Eq. (26). These a†hv can be considered creation operators of discrete semifluxon

states [32] because, combining Eqs. (22) and Eq. (26), they can be written as

â†hv1 =
1√
3

(
eiπ/3â†1 + â†2 + e−iπ/3â†3

)
â†hv2 =

1√
3

(
e−iπ/3â†1 + â†2 + eiπ/3â†3

)
. (31)

A semifluxon is a quantum state which carries half the quantum flux of the vortex states

of Eq. (12). In our case, we have a discrete version, as going around the triangle the

quantum phase grows from 0 to π, with the phase jump of π imposed by γ = −1. In

Fig. 13 we depict the phase structure of the discrete semifluxon state, compared to the

usual vortex, Eq. (12) (referred to as “fluxon”).

In the full three-mode space, as said above, the degeneracy of each doublet Ψ
(±)
k ,

splits and therefore the ground state should be a NOON state of both semifluxon states.

In Fig. 12 we depict the overlap between the exact ground state and first excited state

and the corresponding k = 0, ± states in Eq. (30). The model is seen to be fairly

accurate up to NU/J ' 10. In an experimental measurement, one should thus find a

fractional flux in one or the other direction.
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6. Summary and conclusions

A simple configuration consisting of three sites with a single tunable link has been shown

to exhibit a large variety of quantum many-body properties. An important novelty of

the proposed scheme is that we have considered cases in which the tunnelling rate in one

of the links is either zero-phase or π-phase tunnelling. In both cases, we have performed

diagonalisations for finite number of particles, up to N = 48, and have examined the

many-body properties of the systems as a function of the atom-atom interaction and

the tunable tunnelling rates.

By varying the tunnelling in one link, by means of the parameter γ, which is

within reach experimentally as explained in the introduction, one explores configurations

ranging from the colinear one γ = 0, the fully symmetric one γ = 1, to the symmetric

π-phase one, γ = −1. In the first two cases, the many-body ground state for small

interactions NU/J ∼ 1 is highly condensed, with one of the three eigenvalues of the one-

body density matrix clearly scaling with the total number of particles. As we approach

the γ = −1 point the system departs from condensation and becomes bifragmented for

small interactions. This is partly a consequence of the degeneracy in the single-particle

spectrum for γ = −1.

Two quantum phase transitions are present in this system. The first one takes

place in the symmetric configuration γ = 1, but only for attractive interactions,

which therefore makes it difficult to explore experimentally. This phase transition

is reminiscent of the one present in other few-site models, e.g. bosonic Josephson

junctions, and marks the transition to Schrödinger cat-like ground states in the

spectrum [29, 30, 31]. Interestingly, for γ = −1 we find a second quantum phase

transition, which takes place in absence of interactions and which has clear consequences

for small repulsive atom-atom interactions. This phase transition has been characterised

by the behaviour of the entanglement spectrum for the two possible independent

bipartite splittings as we approach the transition point [23]. At the transition the

entanglement spectrum degenerates and the corresponding von Neumann entropies

exhibit a maximum. Interactions do not wash out the main features of this transition,

which becomes essentially a crossover, which has clear consequences at finite interaction,

such as the bifragmentation discussed above.

Finally, for the γ = −1 case and small interactions, we have been able to derive

an approximate many-body Hamiltonian, which describes the low-energy excitations as

excitations of semifluxons. The bifragmentation is readily explained in this limit, and

the ground state of the system is found to be a macroscopic Schrödinger cat state of

discrete semifluxons with opposite currents.
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Appendix A. Diagonal structure of reduced density matrices

The many-body ground state of a Bose-Hubbard Hamiltonian of N atoms in a triple-well

potential, can be expressed as

|Ψ〉 =
∑
k,l

Ck,l |k, l, N − k − l〉 ,

where the Fock basis of the system can be written as a product state of the reduced

Fock basis {|k〉j} for each subsystem j = 1, 2, 3:

|k, l, N − k − l〉 = |k〉1 ⊗ |l〉2 ⊗ |N − k − l〉3 .

The reduced density matrix of subsystem 1 can be computed as

ρ̂1 =
∑
m,n

2〈m|3〈n|

(∑
k,l

Ck,l|k, l, N − k − l〉
∑
k′,l′

C∗k′,l′〈k′, l′, N − k′ − l′|

)
|m〉2|n〉3

=
∑
m,n

∑
k,k′

∑
l,l′

δk,m δN−k−l,n δN−k′−l′,n δk′,mC
∗
k′,l′Ck,l 1|l〉〈l′|1

=
∑
m,n

|Cm,n|2 |N −m− n〉〈N −m− n| . (A.1)

From this expression one can see that the reduced density matrix of one subsystem i is

diagonal in the reduced Fock basis of the corresponding mode {|k〉} ≡ {|k〉i} :

ρ̂i =
N∑
k=0

λik |k〉〈k| , (A.2)

with {λik} the Schmidt coefficients that contain the information concerning the

entanglement properties of subsystem i with the rest of the system.
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[21] Juliá-Dı́az B, Martorell J and Polls A 2010 Phys. Rev. A. 81 063625

[22] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504

[23] de Chiara G, Lepori L, Lewenstein M and Sanpera A 2012 Phys. Rev. Lett. 109 237208

[24] In our paper we adopt the definition of entanglement spectrum used in [23]. In Ref. [22], the

entanglement spectrum is defined as − log(λi), whose interpretation is analogous to energy

spectrum: the most occupied states are the low-lying ones in the entanglement spectrum.

[25] Casetti L and Penna V 2002 Journal of Low Temp. Phys. 126 455
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[32] Goldobin E, Koelle D, and Kleiner R 2002 Phys. Rev. B 66 100508(R); Walser R, Schleich W P,

Goldobin E, Crasser O, Koelle D, Kleiner R 2008 New J. Phys. 10 045020

http://arxiv.org/abs/1410.7280

	1 Introduction
	2 Three-mode Bose-Hubbard Hamiltonian
	2.1 Many-body basis
	2.2 Coherent states
	2.3 Condensed fractions
	2.4 Entanglement properties: entanglement entropy and Schmidt gap

	3 Non-interacting case
	3.1 Unbiased non-interacting case
	3.2 Explicit symmetry breaking, effect of the bias

	4 Quantum many-body properties of the system
	4.1 Analytic results in the ||1 limit
	4.2 Coherence and one-body density matrix
	4.3 Energy spectrum
	4.4 Entanglement spectrum and entanglement entropy
	4.5 Quantum phase transition for attractive interactions

	5 Detailed analysis of the =-1 case
	6 Summary and conclusions
	Appendix A Diagonal structure of reduced density matrices

