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Department of Actuarial, Financial and Economic Mathematics,

University of Barcelona, Avd. Diagonal, 690; E-08034 Barcelona, Spain.

E-mail: jesus getan@ub.edu, jesus.montes@ub.edu, jizquierdoa@ub.edu, crafels@ub.edu
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1 Introduction and preliminaries

Convex cooperative games (Shapley, 1971) play a central role in the development and anal-

ysis of the cooperative game theory, both in the aspect of theoretical analysis (see Csóka

et al. (2011), Branzei et al.(2009) or Pulido and Sánchez-Soriano (2009) among others)

and in applications of operations research (see Borm et al.(2002), Hamers (1997) or Top-

kis (1987)). They have a broad number of significant properties: they are totally balanced,

the extreme core allocations are the marginal worth vectors, the bargaining set coincides

with the core, the kernel reduces to the nucleolus, the core is the unique stable set or von

Neumann-Morgenstern solution,....

In this paper we study whether the coincidence of the bargaining set with the core, the

coincidence of the kernel with the nucleolus and the stability of the core still hold if we

decrease the worth of the grand coalition of a convex game beyond the threshold where con-

vexity still holds. Therefore, this paper is a sensitivity analysis of these three well-known

properties when shifting the worth of the grand coalition of a convex game. A similar analy-

sis for the extreme core allocations is done in Nuñez and Rafels (1998) and a first theoretical

characterization of the coincidence between the bargaining set and the core and the inclu-

sion of the kernel in the core for superadditive games and N-zero-monotonic games is done

in Solymosi (1999).

A cooperative game with transferable utility is a pair (N,v), where N = {1,2, . . . ,n} is

the set of players and v is the characteristic function, v : 2N→R, assigning to every coalition

S ⊆ N a real number v(S), the worth of S, with v(∅) = 0. We denote by G N the set of all

games on N = {1, . . . , n}. Given a nonempty coalition S⊆ N, we denote by (S,vS) (or (S,v)

if no confusion arises) the subgame of (N,v) related to coalition S (i.e. vS (R) = v(R) for all

R⊆ S). A game (N,v) is monotonic if v(S)≤ v(T ), for all S ⊆ T ⊆ N. Moreover, it is zero-
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monotonic if v(S)+∑i∈T\S v({i})≤ v(T ), for all S⊆ T ⊆ N. A game (N,v) is superadditive

if v(S)+ v(T )≤ v(S∪T ) for all S,T ⊆ N with S∩T =∅.

A payoff allocation is a vector z = (zi)i∈N ∈ RN , where zi is the payoff to player i ∈ N.

We write z(S) = ∑
i∈S

zi for any nonempty coalition S ⊆ N and z(∅) = 0. A payoff allocation

z∈RN is a preimputation of a game (N,v) when z(N) = v(N) (efficiency). The set of all the

preimputations of a game v is denoted by I∗(N,v). Moreover, we say that a preimputation

z ∈ I∗(N,v) is an imputation of the game (N,v) when zi ≥ v({i}) for all i ∈ N (individual

rationality). The set of all the imputations of a game v is denoted by I(N,v). A game (N,v)

is said to be essential if I(N,v) 6= ∅ (i.e., if ∑
i∈N

v({i}) ≤ v(N)). The core of a game (N,v)

is the set C (N,v) = {z ∈ I(N,v) | z(S)≥ v(S) for all S⊆ N}. The nonemptiness of the core

can be characterized by using balanced collections of coalitions.

A nonempty collection C ⊆ 2N is called balanced (over N) if for all S ∈ C a positive

number δS > 0 exists such that ∑
S∈C

δSχS = χN , where χS ∈ RN is the characteristic vector

of S given by χS
i = 1 if i ∈ S, and χS

i = 0 if i ∈ N \ S. The collection (δS)S∈C is called

a balancing weights system. A game (N,v) is said to be balanced if for each balanced

collection C with weights (δS)S∈C

∑
S∈C

δSv(S)≤ v(N). (1)

We denote by BN the set of all balanced collection of N. Bondareva (1963) and Shap-

ley(1967) proved independently that a necessary and sufficient condition for the nonempti-

ness of the core of a game (N,v) is its balancedness. In fact, in order to guarantee a game

to be balanced, it is enough to evaluate condition (1) for minimal balanced collections (with

respect to the inclusion). A game (N,v) is said to be totally balanced if the subgames (S,vS)

are balanced for any nonempty coalition S⊆ N.
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The marginal contribution of a player i ∈ N to a coalition S⊆ N \{i} in the game (N,v)

is v(S∪ {i})− v(S). The convexity of a cooperative game (Shapley, 1971) is defined by

means of increasing marginal contributions of players whenever coalitions where players

add becomes larger (snowballing effect). We said a game (N,v) is convex if for all i ∈ N and

for all S⊆ T ⊆ N \{i},

v(S∪{i})− v(S)≤ v(T ∪{i})− v(T ).

It is well-known that convex games are totally balanced. The proof is done by check-

ing that marginal worth vectors associated to the different ordering of players are all core

elements.

An ordering on the player set N is a bijection θ : {1,2, . . . ,n} → N. We denote an ar-

bitrary ordering by θ = (i1, i2, . . . , in), where ik = θ(k) ∈ N, and by ΘN the set of all such

orderings. Given a game v ∈ G N and an ordering θ = (i1, i2, . . . , in), we define the marginal

worth vector mθ (v) = (mθ
i )i∈N ∈ RN associated to v and θ as:

mθ
i1 = v({i1}),

mθ
ik
= v({i1, i2, . . . , ik})− v({i1, i2, . . . , ik−1}), for all k = 2, . . . ,n.

It is well-known that a game (N,v) is zero-monotonic if and only if all marginal worth

vectors are imputations, mθ (v) ∈ I(N,v), and that the game is convex if and only if all of

them are core elements, mθ (v) ∈ C(N,v) (Shapley, 1971; Ichiishi, 1981). An equivalent

definition of convexity is the supermodularity of its characteristic function,

v(S)+ v(T )≤ v(S∪T )+ v(S∩T ), for all S, T ⊆ N. (2)

A game (N,v) is almost-convex if condition (2) holds for all S, T ⊆ N such that S∪T 6=

N. That is equivalent to say that all proper subgames (S,vS), S 6=∅,N, are convex. Therefore,

the class of almost-convex games includes the class of convex games and they also form a
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convex cone in G N . Moreover, balanced almost-convex games are totally balanced games

and so superadditive and zero-monotonic.

Let (N,v) be an essential game, let x ∈ I(N,v) and let i, j ∈ N be two different players.

A pair (S,y) is an objection at x of player i against j when

i ∈ S⊆ N \{ j} , y ∈ RS, y(S) = v(S) and yk > xk for all k ∈ S. (3)

A counter-objection to the above objection (S,y) is a pair (T,z) where

j ∈ T ⊆ N \{i} , z ∈ RT , z(T ) = v(T ),

zk ≥ yk for all k ∈ T ∩S, and zk ≥ xk for all k ∈ T \S.

An objection is justified if there is no counter-objection to it. The bargaining set of a

game (N,v) (Davis and Maschler, 1963, 1967) is the set

M i
1(N,v) = {x ∈ I (N,v) | there is no justified objection at x}.

By definition, we have C(N,v)⊆M i
1(N,v)⊆ I(N,v) since each core allocation cannot

be objected. Moreover, M i
1(N,v) is always nonempty provided the game (N,v) is essential

(Davis and Maschler, 1963).

A nonempty subset of the bargaining set of a game is the kernel (Davis and Maschler,

1965). Let (N,v) be a game and x∈ I(N,v). The maximun surplus of player i∈N over player

j ∈ N with respect to the imputation x in the game (N,v) is given by sv
i j(x) = max{v(S)−

x(S) | S∈Γi j}, where Γi j = {S⊂ N | i ∈ S, j /∈ S} is the set of all coalitions containing player

i but not player j. The kernel1 of a zero-monotonic game (N,v), K (N,v) can be defined as

the set of all imputations x ∈ I (N,v) satisfying sv
i j (x) = sv

ji (x) for all i, j ∈ N, i 6= j.

1 In fact, this definition corresponds to the set of imputations contained in the prekernel of the game.

However, we adopt this definition since the kernel coincides with the prekernel for zero-monotonic games

(see Mashler et al, 1979).
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Maschler et al. (1972) show that the bargaining set of a convex game coincides with its

core and its kernel reduces to the nucleolus of the game, defined as the unique imputation of

the game that lexicographically minimizes the vector of non-increasingly ordered excesses

over the set of imputations (Schmeidler, 1969). We denote by η(v) the nucleolus of the

game (N,v). Let us point out that the nucleolus always belongs to the kernel of any essential

game.

In Section 2 we prove the main result of the paper, that is the Core Equivalence Theo-

rem2 for balanced almost-convex games. The analysis of the kernel, the nucleolus and the

stability of the core constitute Section 3.

2 The bargaining set

To prove the core and the bargaining set of a balanced almost-convex game do coincide, we

prove that any imputation not in the core of the game is not in its bargaining set. To this aim

let us introduce the basic concepts of excess of a coalition and excess game and stress some

important properties related to balanced almost-convex games.

Given a game (N,v) and an imputation x ∈ I(N,v), the excess of a coalition S ⊆ N at

x is ev,x(S) = v(S)− x(S). The excess game of v at x is the game (N,ev,x) that assigns to

each coalition S ⊆ N its corresponding excess at x. Notice ev,x(N) = 0 and ev,x({i})≤ 0 for

all i ∈ N. Moreover, the excess game (N,ev,x) is balanced whenever the initial game (N,v)

is balanced. Finally, it is easy to check that the excess game (N,ev,x) is almost-convex if

(N,v) is almost-convex, for any x ∈ I(N,v). The maximal excess game of v at x, denoted by

2 We use “Core Equivalence Theorem” as synonymous of the coincidence of the bargaining set of a game

with its core.
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(N, êv,x), is the monotonic cover of the excess game of v at x, that is, for all S⊆ N

êv,x(S) = max
R⊆S

ev,x(R).

Notice êv,x(N) = 0, if x∈C(N,v) and vice versa. Moreover êv,x(N) represents the largest

excess of v at x. Given x ∈ I(N,v), we denote by M(v,x) the set of coalitions with largest

excess of v at x , that is

M(v,x) = {S⊆ N | ev,x(S) = êv,x(N)} .

Notice M(v,x) 6= ∅ for any game (N,v) and x ∈ I(N,v). Moreover, M(v,x) is a finite

ordered set with respect to the inclusion and ∅ 6∈M(v,x) if x ∈ I(N,v)\C(N,v).

Given a balanced almost-convex game and an imputation outside the core of the game,

let us first check that the intersection of all coalitions with the largest excess is always a

nonempty set.

Lemma 1 Let (N,v) be a balanced almost-convex game with n ≥ 3 and let x ∈ I(N,v) \

C (N,v), then ⋂
S∈M(v,x)

S 6=∅.

PROOF: We denote by M∗(v,x) the set of minimal coalitions of M(v,x) w.r.t. the inclusion.

It is straightforward that
⋂

S∈M(v,x) S =
⋂

S∈M∗(v,x) S. If |M∗(v,x)| = 1, say M∗(v,x) = {R}

then R 6= ∅ since x 6∈ C(N,v). Therefore
⋂

S∈M(v,x) S = R 6= ∅. Let us suppose now that

|M∗(v,x)| ≥ 2.

We claim S∪ S′ = N for any S, S′ ∈ M∗(v,x), with S 6= S′. If not, since (N, êv,x)is an

almost-convex game, we have

êv,x(S)+ êv,x(S′) ≤ êv,x(S∪S′)+ êv,x(S∩S′)≤ êv,x(S)+ êv,x(S∩S′),

which implies êv,x(S′) = êv,x(S∩S′) involving a contradiction with S′ ∈M∗(v,x).
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Let S∗ =
⋂k

r=1 Sk where M∗(v,x) = {S1, . . . ,Sk}, k ≥ 2. Assume S∗ = ∅ then, by the

above claim, Qr = N \ Sr, r = 1, . . . ,k forms a partition of N. Thus {S1, . . . ,Sk} forms a

balanced collection with weights δSr =
1

k−1 for all r = 1, . . . ,k. Since the game (N,v) is

balanced, then (N,ev,x) is also a balanced game, and thus

0 <
k

∑
r=1

ev,x(Sr)≤ (k−1) · ev,x(N) = 0,

reaching a contradiction. Therefore, S∗ =
⋂

S∈M∗(v,x) S =
⋂

S∈M(v,x) S 6=∅. �

Using the previous result we show the main theorem of the paper.

Theorem 1 Let (N,v) be a balanced almost-convex game. Then

M i
1(N,v) =C(N,v).

PROOF: For 1 ≤ n ≤ 2 the proof is straightforward. From now on, we suppose n ≥ 3.

Clearly C(N,v)⊆M i
1(N,v). Let us prove that if x∈ I(N,v)\C(N,v) then x 6∈M i

1(N,v). Let

S∗ ∈M(v,x) be a maximal coalition w.r.t the inclusion of the largest excess at x. We know

1 < |S∗|< n. By Lemma 1 we can choose i0 ∈
⋂

S∈M(v,x) S and j0 ∈ N \S∗. Let us point out

that player i0 belongs to S∗, since
⋂

S∈M(v,x) S⊆ S∗.

At this point let us introduce the game (S∗ \{i0},w) defined as follows:

w(S) := max
j0∈Q⊆N\S∗

{ev,x(S∪Q)}, for all ∅ 6= S⊆ S∗ \{i0},

w(∅) := 0.

We claim (S∗ \{i0},w) is a convex game. To see it, let S,T ⊆ S∗ \{i0} be two arbitrary

coalitions and let QS, QT ⊆N \S∗ be the corresponding coalitions satisfying w(S) = ev,x(S∪

QS) and w(T ) = ev,x(T ∪QT ). Notice we have (S∪T )∪(QS∪QT )⊆N \{i0}, which implies

(S∪T )∪ (QS∪QT ) 6= N and (S∪QS)∩ (T ∪QT ) = (S∩T )∪ (QS∩QT ), since S∩QT =∅



The bargaining set and the kernel for almost-convex games 9

and T ∩QS =∅. Hence, by the almost-convexity of the game (N,ev,x) we obtain

w(S)+w(T ) = ev,x(S∪QS)+ ev,x(T ∪QT )

≤ ev,x(S∪T ∪QS∪QT ) + ev,x((S∩T )∪ (QS∩QT ))

≤ w(S∪T )+w(S∩T ),

proving our claim, (S∗ \{i0},w) is a convex game. Now consider the corresponding mono-

tonic cover (S∗ \{i0}, ŵ) defined by

ŵ(S) = max
R⊆S

w(R) = max{0, max
∅ 6=R⊆S

{w(R)}}

= max{0, max
∅6=R⊆S

{ max
j0∈Q⊆N\S∗

{ev,x(R∪Q)}}}, for all S⊆ S∗ \{i0}.

Since (S∗ \ {i0}, ŵ) is the monotonic cover of the convex game (S∗ \ {i0},w) it is also a

convex game. We claim ∆ := êv,x(N)− ŵ(S∗ \{i0})> 0. To see it, if ŵ(S∗ \{i0}) = 0 we get

∆ > 0 since êv,x(N)> 0, for any x ∈ I(N,v)\C(N,v). Otherwise, ŵ(S∗ \{i0}) = ev,x(R∪Q)

for some ∅ 6= R⊆ S∗ \{i0} and j0 ∈Q⊆ N \S∗. Notice that i0 6∈Q since i0 ∈ S∗. Therefore

ŵ(S∗ \ {i0}) = ev,x(R∪Q) ≤ êv,x(N). If ev,x(R∪Q) = êv,x(N) then R∪Q ∈ M(v,x), which

involves a contradiction since i0 ∈
⋂

S∈M(v,x) S but i0 6∈ R∪Q.

Being (S∗ \{i0}, ŵ) a convex game, let u ∈C(S∗ \{i0}, ŵ) be an arbitrary core element.

We know uk ≥ ŵ({k})≥ 0, for any k ∈ S∗ \{i0}.

Then, define the objection (S∗,y) at x of player i0 ∈ ∩S∈M(v,x)S ⊆ S∗ against any player

j0 ∈ N \S∗ as

yi0 : = xi0 +
∆

|S∗|
> xi0 ,

yk : = xk +uk +
∆

|S∗|
> xk, for k ∈ S∗ \{i0}.

Notice we have

y(S∗) = x(S∗)+u(S∗ \{i0})+∆

= x(S∗)+ ŵ(S∗ \{i0})+∆

= x(S∗)+ êv,x(N) = v(S∗),
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where the last equality comes from the fact that S∗ ∈M(v,x).

Let us see there is no counter-objection to the objection (S∗,y) at x. To this aim, let

(T,z) be a arbitrary counter-objection. We have j0 ∈ T , i0 6∈ T and ev,x(T )≥ 0. First notice

T ∩ S∗ 6= ∅. If not, T ∩ S∗ = ∅ and, by the superadditivity of the game (N,ev,x) (recall

(N,ev,x) is a balanced almost-convex game), we have

ev,x(S∗)≤ ev,x(S∗)+ ev,x(T )≤ ev,x(S∗∪T ),

which contradicts S∗ ∈M(v,x) to be a maximal coalition with respect to the inclusion of the

largest excess at x. Moreover,

z(T ) ≥ y(T ∩S∗)+ x(T \S∗)

= x(T ∩S∗)+u(T ∩S∗)+ |T ∩S∗| ∆

|S∗| + x(T \S∗)

> x(T )+u(T ∩S∗)≥ x(T )+ ŵ(T ∩S∗)

≥ x(T )+ v((T ∩S∗)∪ (T \S∗))− x((T ∩S∗)∪ (T \S∗))

= x(T )+ v(T )− x(T ) = v(T ),

which contradicts (T,z) to be a counter-objection to the objection (S∗,y) at x. This ends the

proof. �

The above theorem enlarges the classes of games where the bargaining set coincides

with the core: assignment games (Solymosi, 1999), average monotonic games (Izquierdo

and Rafels, 2001), partitioning games (Solymosi, 2008), clan games (Potters et al., 1989),

monotonic simple games with veto control (Einy and Wettstein, 1996), etc. This coincidence

is known in the literature as the Core Equivalence Theorem (Einy et al., 1997) and it gives

insights into the core allocations: they are the unique allocations robust in front to objections.

Moreover, in our case we can also see Theorem 1 as an extension of the corresponding

result for the class of convex games. To evaluate the relevance of Theorem 1 it is important to
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know its applicability range. In other words, how different are the class of balanced almost-

convex games and the class of convex games? To check this point, we introduce and recall

some concepts.

A game (N,v), with n ≥ 2, is rooted if the nonemptiness of the core starts just at its

efficiency level (see Calleja et al., 2009). Furthermore, to every game (N,v) we can associate

its unique rooted game (N,vr) just by moving appropriately the worth of the grand coalition,

that is, vr(S) = v(S), for S 6= N and

vr(N) = max
C∈BN ,C 6={N} and

minimal w.r.t. the inclusion

∑
S∈C

δSv(S). (4)

With this notation at hand, a game (N,v), n≥ 2, is rooted if it coincides with its rooted

game, i.e. v = vr. Using this concept, notice that any convex game (N,v) such that its rooted

game (N,vr) is not convex illustrates the applicability of our Theorem 1. This represents a

majority of convex games, since to be (N,vr) a convex game requires that the maximum in

(4) is attained at a partition formed by only two nonempty subsets of N. This argument is

stated in the the next proposition.

Proposition 1 Let (N,v), n≥ 2, be a convex game. The following statements are equivalent:

1. (N,v) is a rooted game.

2. There exists a nonempty coalition S, S 6= N, such that

v(N) = v(S)+ v(N \S).

PROOF: 1.→ 2.) Let (N,v) be a rooted convex game, i.e. (N,v) is convex and v = vr.

Since v is rooted, by (4), there must exist a coalition S 6=∅,N satisfying x(S) = v(S), for all

x ∈C(N,v). Now, take any ordering θ = (i1, . . . , in) on N, where the members of coalition

S occupy the last positions, i.e. S = {in−s+1, . . . , in}, where s represents the cardinality of

coalition S, and let mθ (v) be the corresponding marginal worth vector of v associated to
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θ . Since the game (N,v) is convex, we have mθ (v) ∈ C(N,v) and so mθ (S) = v(S), since

x(S) = v(S) for all x ∈ C(N,v). Moreover, by the specific ordering θ , we have mθ (S) =

mθ (N)−mθ (N \S) = v(N)− v(N \S). Therefore, (N,v) satisfies condition 2.

2.→ 1.) It is straightforward since, being (N,v) a convex game, the equality in condition

2 implies that the game is rooted. �

There is another possibility to characterize rooted convex games in terms of its unanim-

ity coordinates. For all nonempty coalition T ⊆ N, the unanimity game (N,uT ) is defined

by uT (S) = 1, if S ⊇ T and uT (S) = 0, otherwise. Any game (N,v) can be expressed as a

linear combination of unanimity games, i.e. v = ∑T⊆N λT ·uT . Using these concepts we can

state now that a convex game (N,v), with v = ∑R⊆N λRuR, is rooted if and only if there exists

S 6=∅,N such that λR = 0 when R∩S 6=∅ and R∩ (N \S) 6=∅. The straightforward proof

is left to the reader.

A direct application of Proposition 1 is to check that the rooted game associated to any

strictly convex3 game, with n≥ 3, is a balanced almost-convex game but not convex4. This

shows that, starting from a strictly convex game and lowering the efficiency level, we will

reach some efficiency level where the game is non-convex but balanced. For all these cases,

Theorem 1 applies and states a non-obvious coincidence of the core and the bargaining set.

3 A game (N,v) is strictly convex if v(S)+ v(T ) < v(S∪T )+ v(S∩T ), for any S,T ⊆ N, S \T 6= ∅ and

T \S 6=∅.
4 Given a strictly convex game (N,v), if its rooted game (N,vr) is convex then we have, by Proposition

1, vr(N) = vr(S)+ vr(N \ S), for some nonempty coalition S 6= N. Taking T  N, T ∩ S 6= ∅, T ∩ (N \ S) 6=

∅ (n ≥ 3 is needed), and since (N,vr) is convex, we have that vr(T )+ vr(S) ≤ vr(T ∪ S)+ vr(T ∩ S) and

vr(T ∪S)+ vr(N \S)≤ vr(N)+ vr(T ∩ (N \S). Moreover, adding up this two inequalities we obtain vr(T )≤

vr(T ∩S)+ vr(T ∩ (N \S)). Hence, by superadditivity of the game (N,vr), we conclude vr(T ) = vr(T ∩S)+

vr(T ∩ (N \ S)) and so v(T ) = v(T ∩ S) + v(T ∩ (N \ S)), which contradicts the game (N,v) to be strictly

convex.



The bargaining set and the kernel for almost-convex games 13

From the seminal paper by Davis and Maschler (1963), other definitions of bargain-

ing sets have been introduced with the aim to qualify the concept of what objections and

counter-objections are. Among the ones defined over the imputation set we want to quote

the individual rational Mas-Colell bargaining set introduced by Vohra (1991), the reactive

bargaining set (Granot, 2010) and a variation of the original Mas-Colell bargaining set given

by Shimomura (1997). All these variations satisfy the Core Equivalence Theorem when we

deal with convex games.

Let us briefly describe the behavior of the Core Equivalence Theorem for these bar-

gaining sets on the class of balanced almost-convex games. With respect to the reactive

bargaining set, it always includes the core and it is included in the Davis and Maschler

bargaining set. Therefore, by Theorem 1, it satisfies the Core Equivalence Theorem within

the class of balanced almost-convex games. With respect to the Shimomura’s bargaining

set, Izquierdo and Rafels (2011) recently prove that the only class of games where the core

and the Mas-Colell bargaining set à la Shimomura coincide is the class of convex games.

Therefore, for any proper (not convex) balanced almost-convex game, the Core Equivalence

Theorem does not hold for the Mas-Colell bargaining set à la Shimomura. Unfortunately, we

do not know whether the Core Equivalence Theorem is preserved for the individual rational

bargaining of Vohra (1991) or even for the original Mas-Colell bargaining set (Mas-Colell,

1989), remaining both questions opened for future work.

3 The kernel, the nucleolus and the stability of the core

An important property of convex games is the coincidence of the kernel with the nucleo-

lus (Schmeidler, 1969). We generalize this property to the class of zero-monotonic almost-

convex games. Moreover, we also show another interesting property which is the fact that
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the nucleolus (and so the kernel) of a zero-monotonic almost-convex game coincides with

the nucleolus (the kernel) of a suitable convex game associated. This property allows for

the application of specific efficient algorithms to calculate the nucleolus of zero-monotonic

almost-convex game (see Faigle et al.,2001; Arin and Iñarra, 1998; Kuipers, 1996).

Let (N,v) be an arbitrary almost-convex game. Notice the nonemptiness of the core is

not needed. For any ε ≥ 0 we take the ε-shifted associated game (N,vε) defined as vε(S) =

v(S)− ε , for all S 6=∅,N, vε(N) = v(N) and vε(∅) = 0.

Let ε∗=min{ε ≥ 0 | (N,vε) is a convex game }. Notice ε∗ is well-defined since (N,v) is

an almost-convex game. Indeed, to provide a formula for such ε∗ let us remark that analyzing

the marginal contributions of an arbitrary player i ∈ N to a coalition ∅ 6= S ⊆ N \ {i}, S 6=

N \{i} in the games (N,v) and (N,vε) we obtain for any ε ≥ 0

vε({i})≤ v({i}),

vε(S∪{i})− vε(S) = v(S∪{i})− v(S) and

v(N)− v(N \{i})≤ vε(N)− vε(N \{i}) = v(N)− v(N \{i})+ ε.

Furthermore, if (N,v) is an almost-convex game and we impose the corresponding ε-

shifted game (N,vε), with ε ≥ 0, to be a convex game we obtain

ε ≥ ε
∗ = max

i6= j
{v(N \{i})+ v(N \{ j})− v(N)− v(N \{i, j}),0}, (5)

since we only have to guarantee the inequalities v(N \ { j})− v(N \ {i, j}) ≤ v(N)− v(N \

{i})+ε , for all i, j ∈N, j 6= i. Notice ε∗ = 0 if the original game (N,v) is convex and ε∗ > 0

when (N,v) is a proper (not convex) almost-convex game. Next we prove our second main

result.
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Theorem 2 Let (N,v) be a zero-monotonic almost-convex game5, n ≥ 2. Then, the kernel

reduces to the nucleolus, K (N,v) = {η(v)}. Moreover, the nucleolus of the game (N,v)

coincides with the nucleolus of the convex game (N,vε∗), where ε∗ is defined in (5).

PROOF: It is easy to see that for any efficient allocation x ∈ RN , x(N) = v(N) = vε∗(N),

we have svε∗
i j (x) = sv

i j(x)− ε∗, for all i 6= j ∈ N. Being (N,vε∗) a convex game and (N,v) a

zero-monotonic almost-convex game, we easily obtain K (N,v) = K (N,vε∗) = {η(vε∗)}

which implies η(v) = η(vε∗) and finishes the proof. �

Next example shows that zero-monotonicity is necessary in the statement of Theo-

rem 2. Let (N,v) be the three-player game given by v({1}) = 1, v({2}) = 2, v({3}) = 3,

v({1,2}) = 4, v({1,3}) = 6, v({2,3}) = 8 and v({1,2,3}) = 7. It can be checked that ε∗ = 4

and η(vε∗) = ( 1
3 ,2

1
3 ,4

1
3 ) 6∈ I(N,v). Thus η(v) 6= η(vε∗). Notice the game (N,v) is almost-

convex but not zero-monotonic since v({1})+ v({2,3}) = 9 6≤ v({1,2,3}) = 7.

In this paper we have proved that moving down the worth of the grand coalition of a

convex game does not affect the relationship between prominent solutions of cooperative

games, namely the core versus the bargaining set and the kernel versus the nucleolus. We

might erroneously conclude that all the relationships between cooperative solutions that

holds for convex games are naturally extended to the class of almost-convex games. Now,

we can check that the outstanding stability of the core (in the sense of von Neumann and

Morgenstern, 1944) of convex games is not preserved for balanced almost-convex games. In

fact, if the game is not convex, but balanced almost-convex, this property is lost as the next

proposition states.

5 In some connexion with Solymosi (1999), note that zero-monotonic almost-convex games are equivalent

to N-zero-monotonic almost-convex games, where (N,v) is N-zero-monotonic if v(S)+∑i∈N\S v({i})≤ v(N),

for all S⊆ N.
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Before this, let us recall that given an essential game (N,v) and two imputations x,y ∈

I(N,v), we say that x dominates y if there exists S ⊆ N such that xi > yi, for all i ∈ S and

x(S) = v(S). A set V ⊆ I(N,v) is a stable set if: (a) for all x, x′ ∈ V neither x dominates x′

nor vice versa (internal stability); (b) for all y ∈ I(N,v) \V , there exist x ∈ V such that x

dominates y (external stability).

Proposition 2 Let (N,v) be an essential almost-convex game. The following statements are

equivalent.

1. (N,v) is convex.

2. C(N,v) is a stable set.

PROOF: If an almost-convex game (N,v) is convex, it is well-known its core is a stable

set. Let us suppose now that the game (N,v) is almost-convex and the core of (N,v) is a

stable set, but the game is not convex. Hence there exists a marginal worth vector relative to

some ordering of players θ = (i1, i2, . . . , in) which is not in the core of the game6, mθ (v) ∈

I(N,v)\C(N,v). However, by hypothesis, the core is a stable set and so there is z ∈C(N,v)

such that it dominates mθ (v) via some coalition S ⊆ N. Since the game v is almost-convex,

the subgame (N \ {in},v) is convex and so mθ (v)(S) ≥ v(S), for all S ⊆ N \ {in}. Hence, z

dominates mθ (v) through some coalition S containing player in. Thus, zin > mθ
in = v(N)−

v(N \ {in}), but then we obtain z(N \ {in}) < v(N \ {in}) which contradicts z to be a core

element. �

6 The marginal worth vectors are imputations since the game (N,v) is both balanced and almost-convex,

which implies the zero-monotonicity of the game (N,v).
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4 Conclusions

In this study, we analyze whether some properties of cooperative solutions applied to convex

games still hold when the efficiency level is moved down and the convexity of the game is

lost. We approach this situation by means of the analysis of almost-convex games, since the

convexity structure of subgames remains unaltered . First, we have proved that the bargain-

ing set of such games is equal to the corresponding core, whenever this latter is nonempty.

This is important since it reflects that the core of a convex game is still robust in front of bar-

gaining among players, even if some loose of efficiency occurs. This fact contrast with other

types of games7 like symmetric games (see Meertens et al., 2007). We have also checked

that another important property of convex games, that is the kernel reduces to the nucleolus,

is also preserved for zero-monotonic almost-convex game. However other properties of con-

vex games vanishes for the larger class of almost convex games like the von Neumann and

Morgenstern stability of the core or the fact that the Shapley value (Shapley, 1953) of the

game is always a core element. As the Shapley value is a population monotonic allocation

scheme (Sprumont, 1990) for convex games, it remains open for future work the existence

of population monotonic allocation scheme for any almost-convex game.

Acknowledgements Institutional support from Ministerio de Ciencia e Innovación and FEDER under grant

ECO2011-22765, and Generalitat de Catalunya under grant 2009SGR0960 is acknowledged.

7 To see it, take for instance the five-player game defined in Maschler(1976) as v(S) = min{|S∩P|, 1
2 |S∩

Q} for all S ⊆ N = {1,2,3,4,5}, where P = {1,2} and Q = {3,4,5}. In his paper, Maschler determine that

the bargaining set of this game is strictly larger than the corresponding core that consists of a unique point

(0,0, 1
2 ,

1
2 ,

1
2 ). However, if we raise the efficiency level up to v(N) = 2.5, it is not difficult to check that then

the core and the bargaining set coincide.
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