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Summary

Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells

represent a promising therapeutic tool for many diseases, includ-

ing aged tissues and organs at high risk of failure. However, the

intrinsic self-renewal and pluripotency of ES and iPS cells make

them tumorigenic, and hence, the risk of tumor development hin-

ders their clinical application. Here, we present a novel approach

to limit their tumorigenicity and increase their safety through

increased copy number of tumor suppressors. iPS containing an

extra copy of the p53 or Ink4a ⁄ ARF locus show normal pluripoten-

cy, as determined by in vitro and in vivo differentiation assays.

Yet, while retaining full pluripotency, they also possess an

improved engagement of the p53 pathway during teratocarci-

noma formation, which leads to a reduced tumorigenic potential

in various in vitro and in vivo assays. Furthermore, they show an

improved response to anticancer drugs, which could aid in their

elimination in case tumors arise with no adverse effects on cell

function or aging. Our system provides a model for studying

tumor suppressor pathways during reprogramming, differentia-

tion, and cell therapy applications. This offers an improved under-

standing of the pathways involved in tumor growth from

engrafted pluripotent stem cells, which could facilitate the use of

ES and iPS cells in regenerative medicine.
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Introduction

The p53 tumor suppressor gene integrates the response of multiple

stress-activated pathways and plays a critical role in tumor prevention.

It is estimated that p53 is directly mutated or indirectly inactivated in

the majority of human tumors (Lane & Levine, 2010). Linked to the p53

pathway, the Ink4 ⁄ ARF tumor suppressor locus encodes three impor-

tant tumor suppressors, p16Ink4a and p19ARF from Cdkn2a and

p15Ink4b from Cdkn2b. This locus therefore integrates two main antit-

umoral pathways, the p53 pathway, via the interaction of p19ARF with

the p53 inhibitor protein Mdm2, and the pRB pathway, via the inhibi-

tion of cyclin-D-dependent kinases CDK4 and CDK6 by p15Ink4b and

p16Ink4a (Collado & Serrano, 2006). The effect of activating these

pathways in tumor prevention ⁄ treatment strategies has therefore been

long studied.

However, little is known regarding the role of these tumor suppres-

sors in tumors arising from cell therapy techniques involving embryonic

stem (ES) and induced pluripotent stem (iPS) cells. Such techniques

hold the promise of revolutionizing the field of regenerative medicine

(Thomson et al., 1998; Takahashi et al., 2007), but the tumorigenic

risk of iPS and ES cell replacement therapies hinders their clinical appli-

cation (Blum & Benvenisty, 2008; Belmonte et al., 2009; Kiuru et al.,

2009). Pluripotent stem cells generate benign teratomas or more

aggressive teratocarcinomas upon engraftment in vivo (Ben-David &

Benvenisty, 2011), with as few as 20 undifferentiated cells being able

to generate a tumor (Lawrenz et al., 2004). In addition, other sources

of pluripotent or multipotent cells such as mesenchymal stem cells

(MSC) or cord blood stem cells can also drive tumor formation upon

engraftment in vivo in human patients after cell therapy (Ando et al.,

2006; Greaves, 2006). We hypothesized that the p53 pathway may be

engaged during teratoma formation and that taking advantage of the

endogenous pathways that prevent tumorigenesis could provide an

attractive approach to limit the tumorigenicity of pluripotent stem

cells.

However, p53 is linked to many cell processes, including metabolism

and aging. The constitutive activation of p53, in fact, has been linked to a

premature aging phenotype (Tyner et al., 2002). As stress-induced activa-

tion of p53 leads to cell senescence, it is logical that prolonged activation

of p53 would affect organismal aging. We have recently described iPS cell

models that offer a relevant system to study both physiological and path-

ological aging (Liu et al., 2011), highlighting the utility of iPS systems to

model these processes.

Here, we present an iPS model system in which we employ increased

dosage of the tumor suppressors p53 and the InK4a locus to investigate

the pathways involved in teratoma formation from ES and iPS cells used

in cell therapy applications. Our models could prove useful for studying

the involvement of these tumor suppressor pathways in organismal

aging and aging-related pathologies. We demonstrate that increased

dosage of these tumor suppressors leads to a reduced tumorigenic

potential and an increased therapeutic index, in the event of tumors

arising, without any apparent adverse effects on normal cell function or

aging.
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Results

iPS derivation and characterization

We employed iPS cells derived from mouse embryonic fibroblasts (MEFs)

harboring an extra copy of either the p53 tumor suppressor gene (p53

super mice) (Garcia-Cao et al., 2002) or the Ink4a ⁄ ARF tumor suppressor

locus (Ink4a ⁄ ARF super mice) (Matheu et al., 2004) to investigate the

effect of increased tumor suppressor dose on the tumorigenic potential

of pluripotent cells. Initially, we reprogrammed passage-one MEFs

derived from p53 super mice (p53 iPS), Ink4a ⁄ ARF super mice (Ink4a ⁄ ARF

iPS), or the parental wild-type control (wt iPS). Three individual iPS clones

from each cell type were selected by morphological criteria and charac-

terized by immunostaining for the pluripotency markers Oct4, Sox2, Na-

nog, and SSEA1 (Figs 1a and S1). Quantitative PCR analysis confirmed

that total levels of c-Myc, Klf4, Oct4, and Nanog mRNA were comparable

to the control ES cell line (Fig. S2), indicating pluripotency and silencing

of the transgenes in the lines tested. All iPS lines could differentiate to the

three germ layers in vitro (Fig. S3) and in vivo (Figs 1b and S4) and had

normal karyotypes (Fig. S5). Furthermore, p53 and Ink4a ⁄ ARF iPS cells

could contribute to chimera formation when injected into mouse blast-

ocysts, with a success rate at least as high as that of the wt iPS cell con-

trols in every attempt (five representative chimeric pups per condition are

shown in Fig. 1c). Finally, wt, p53, and Ink4a ⁄ ARF iPS can all support

germ-line transmission (Fig. 1d). These results confirm the bona fide plu-

ripotent nature of the iPS generated from MEFs harboring an extra copy

of p53 or Ink4a ⁄ ARF. In addition, the cell cycle profile and growth rate

(Fig. 1e,f) of wt, p53, or Ink4a ⁄ ARF iPS cell lines are equivalent under nor-

mal growth conditions, indicating that the tumor suppressors are not

constitutively active in the absence of stress signaling and that the pres-

ence of the extra copy of the p53 or Ink4a ⁄ ARF locus has little influence

on the iPS cells behavior under nonstressed conditions. These data are as

expected from mouse models as the tumor suppressors are subject to the

normal regulatory controls and do not show increased levels or activity

under nonstressed conditions (Garcia-Cao et al., 2002; Matheu et al.,

2004).

We further analyzed our wt, p53, and Ink4a ⁄ ARF iPS cell lines and com-

pared them with three ES cell lines of the same genetic background using

an expression profile array. As expected, all iPS cell lines have highly simi-

lar expression profiles with each other and with ES cells (Pearson correla-

tion coefficient higher than 0.99 for all comparisons, see Figs 2a,b and

S6), further confirming their bona fide pluripotent nature. From this anal-

ysis, we also observed that the differences in the expression profiles

between wt, p53, and Ink4a ⁄ ARF iPS cell lines were comparable with the

differences observed between different clones of iPS cells of the same

type (shown for three different clones of wt iPS cells and one clone of wt,

p53, and Ink4a ⁄ ARF iPS cells, see Fig. 2c). This indicates that under nor-

mal growth conditions the presence of one extra tumor suppressor copy

has little impact on the iPS cells expression profile. These data also show

that the presence of an extra copy of the p53 or Ink4a ⁄ ARF locus prior

(A) (C)

(D)

(E) (F)(B)

Fig. 1 wt, p53, and Ink4a ⁄ ARF induced pluripotent stem (iPS) cells show equivalent pluripotency and chimera contribution efficiency (a) wt, p53, or Ink4a ⁄ ARF iPS cell

colonies grown over a mouse embryonic fibroblast (MEFs) feeder layer were stained with antibodies (Ab) against Sox2 or Oct4 as indicated. (b) wt (not shown), p53, and Ink4a

iPS cells were injected intramuscularly in NOD-SCID mice (1 · 106 cells per injection). Resulting teratomas were removed when they reached an appropriate size and then

fixed and analyzed by immunohistochemistry with Ab against Tuj1 (green) and GFAP (red), aFP (green) and FOXA2 (red), aSMA (green) and aSA (red) as indicated to

demonstrate differentiation to the relevant germ layers. (c) wt, p53, and Ink4a ⁄ ARF iPS cells (C57BL ⁄ 6J background, black coat color) were injected into 3.5-dpc blastocyst of

B6(cg)-Tyrc-2J ⁄ J mice (abbreviated Tyr, white coat color) and then transferred into pseudo-pregnant Tyr recipients for chimera generation. Five representative chimeras

derived from wt, p53, or Ink4a ⁄ ARF iPS cells are shown. (d) Transgenic mice derived from wt, p53, or Ink4a ⁄ ARF iPS cells are shown together with a Tyr wt control mouse.

(e) FACs analysis of the cell cycle profile or (f) growth curve quantification of undifferentiated wt, p53, and Ink4a ⁄ ARF iPS cells grown in culture under nonstressed conditions

show that there is no significant difference in their proliferation rate.
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Fig. 2 Mutation rate is not affected by increased tumor suppressor dosage. (a) Pearson correlation coefficients of the averaged expression profiles of three independent

embryonic stem (ES) clones, three independent p53 induced pluripotent stem (iPS) clones, two independent Ink4a ⁄ ARF iPS clones, and three independent wt iPS clones

(shown individually to highlight clonal variation among equivalent samples) are shown. (b) Scatter plots of global gene expression profiles of the average of ES versus the

average of wt, p53, and Ink4a ⁄ ARF iPS cells are shown. (c) Venn diagrams showing the number of differentially expressed genes between the average of ES and the average

of wt, p53, and Ink4a ⁄ ARF iPS cells (left) or three independent wt iPS cells (right) are shown. (d) Chromosomal location enrichment analysis of three independent ES cells

clones and one clone of wt, p53, and Ink4a ⁄ ARF iPS cells that was used in all experiments performed throughout the manuscript unless otherwise stated is shown. P-values

<0.0001 are highlighted in green. (e) Hierarchical clustering of ES and iPS samples described in (d) based on real-time RT-PCR data. Scale bar shows log2-transformed ratio

values.
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and during the process of reprogramming has no effect on the final

expression profile of iPS cells.

Mutation rate is not affected by increased tumor suppressor

dosage

Mutations accumulate during the reprogramming process in at least a

proportion of iPS cell lines (Mayshar et al., 2010; Gore et al., 2011;

Hussein et al., 2011). Because p53 protects proliferating cells from the

accumulation of mutations, it is possible that an increased copy number

could limit the accumulation of mutations during reprogramming. Our

direct analysis of the expression profile array data suggests that this is not

the case in the clones that we have analyzed (three wt-, three p53-, and

two Ink4a ⁄ ARF-independent iPS cell clones). However, to further explore

this possibility, we mined our expression profile array data to look for

large duplications or deletions accumulated during reprogramming. A

similar approach has already been validated and has a sensitivity range

capable of identifying duplications or deletions from 10 kb in size (May-

shar et al., 2010). We did not identify any highly significant overrepre-

sentation of overexpressed or underexpressed genes in our wt, p53, or

Ink4a ⁄ ARF iPS cell lines or in our control ES cell lines (Fig. 2d), indicating

that there were no detectable large duplications or deletions in our iPS

or ES lines. The differences observed between our wt, p53, or Ink4a ⁄ ARF

iPS cell lines were at the level that could be expected from clonal varia-

tion, as quantitatively similar variations were observed among the three

ES lines used as a control (Fig. 2d). As the mutational changes reported

to accumulate during reprogramming are biased toward loss of tumor

suppressor and ⁄ or gain of oncogenes (Gore et al., 2011; Hussein et al.,

2011), to further validate our conclusions, we designed a ‘focused array’

based on tumor suppressors, oncogenes, and genes involved in various

aspects of cancer such as metastasis, intercellular interactions, and trans-

duction signaling. We then performed quantitative real-time PCR analy-

sis to measure mRNA expression for this gene set in our wt, p53, or

Ink4a ⁄ ARF iPS cell lines using three clones of ES cells as a baseline

(Figs 2e and S7). In agreement with our mRNA array data, we did not

observe any differences in mRNA expression between our wt, p53, or

Ink4a ⁄ ARF iPS cell lines beyond the clonal variation seen among our ref-

erence ES cell lines, further confirming that the presence of the tumor

suppressor transgenes during reprogramming did not alter the iPS cell

lines obtained.

Increased p53 or Ink4a ⁄ ARF dosage reduces the tumorigenic

potential of iPS cells

We then tested the effect of increased p53 or Ink4a ⁄ ARF copy number

on the tumorigenic potential of iPS cells. Firstly, we performed soft agar

growth assays, which are a standard test of tumorigenicity that reflects

the capacity of a cell to grow in conditions of low nutrients and low oxy-

gen and in an anchorage-independent manner. A marked reduction in

the growth of p53 and Ink4a ⁄ ARF iPS cells was observed compared with

the wt control for several independent iPS clones, indicating that the

tumorigenic potential of p53 and Ink4a iPS is reduced compared with wt

cells and that this is independent of differences caused by retroviral

insertion (Fig. 3a). To study the tumorigenic potential of engrafted iPS

cells in vivo, we performed long-term and short-term teratoma assays

(see Data S1). These assays are not a measurement of the pluripotency of

the iPS cells (which has already been demonstrated in Figs 1 and S1–S4)

as the cells were injected under ‘nonsaturating’ conditions (as detailed in

Data S1) and are therefore informative in relation to the comparative effi-

ciency with which the different cell lines can give rise to tumors. In long-

term teratoma formation assays, in which animals were sacrificed

depending on stringent predefined health parameters (see Experimental

procedures), a substantial reduction in teratoma formation in mice

injected with p53 and Ink4a ⁄ ARF iPS was observed compared with wt iPS

(Fig. 3b,c). Interestingly, some Ink4a ⁄ ARF iPS-injected mice failed to

develop any teratomas for the entire duration of the assay (Figs 3b and

S8). In agreement, in short-term teratoma assays, in which the end point

was predetermined, a decrease in tumor size and weight was observed

for p53 iPS- and Ink4a ⁄ ARF iPS- compared with wt iPS-injected mice.

Again, p53 iPS- and Ink4a ⁄ ARF iPS-injected individuals were observed

that failed to develop teratomas throughout the duration of the assay,

whereas teratomas were formed in all wt-injected animals (Figs 3d,e and

S9). Importantly, we observed a clear decrease in the proliferation rate of

p53 iPS- and Ink4a ⁄ ARF iPS-derived teratomas compared with the wt

control (Fig. 3e). This is in stark contrast to undifferentiated iPS in non-

stressed culture conditions, where there was no difference in the prolifer-

ation rate between wt, p53, and Ink4a ⁄ ARF cells (Fig. 1e,f). We did not

observe an increase in the apoptotic rate in these tumors (data not

shown), suggesting that limited proliferation was a major cause for the

reduction in tumor size and number in p53 iPS- and Ink4a ⁄ ARF iPS-

derived teratomas. Tumors derived from injection of mouse iPS in immu-

nocompromised mice have been shown to contain a malignant undiffer-

entiated population of embryonic carcinoma (EC) cells and, therefore,

should be categorized as teratocarcinomas (Blum et al., 2009). This EC

cell component is positive for the EC markers Oct4 and Nanog and is

responsible for the proliferation of the tumor and its capability to form

secondary teratomas (Blum & Benvenisty, 2008). When the EC compart-

ment of our teratomas was analyzed, we observed a marked decrease in

the percentage of Oct4-positive cells in the p53- and Ink4a ⁄ ARF-derived

teratocarcinomas (Figs 3f and S10). By dissociation of the teratocarcino-

mas, we isolated EC cells that could be passaged in vitro. As expected, we

obtained a higher proportion of EC cells from wt iPS-derived teratocarci-

nomas than from p53 iPS- or Ink4a ⁄ ARF iPS-derived teratocarcinomas

(Fig. 3g). Together, these results demonstrate that p53 and Ink4a ⁄ ARF

iPS have decreased tumorigenicity compared with wt iPS in a range of

established in vitro and in vivo assays.

Increased tumor suppressor dosage reduces the tumorigenic

potential of differentiated iPS cells

We next studied the tumorigenic potential of the p53 and Ink4a ⁄ ARF iPS

in an in vivo context relevant for cell therapy. In this regard, we differenti-

ated iPS lines into skeletal muscle (Mizuno et al., 2010) (Fig. 4a,b), a ther-

apeutically relevant cell type that can be used in the treatment for

muscular dystrophies (Darabi et al., 2008), and injected them into the

skeletal muscle tissue of NOD-SCID mice. We injected a nonpurified pop-

ulation of differentiated cells for all three cells types. These populations

did not contain Oct4- or Nanog-positive cells at the detection level

achieved by FACs analysis (data not shown); however, a small amount of

Nanog and Oct4 mRNA was still detectable in the samples by quantitative

real-time PCR (data not shown), indicating that some undifferentiated

cells still remained in the injected sample. Teratocarcinomas arose in all of

the wt iPS cell-injected mice; however fewer and, when present, smaller

tumors were observed in both the p53 iPS- and Ink4a ⁄ ARF iPS-injected lit-

termates, indicating that the increased dosage of p53 or Ink4a ⁄ ARF offers

substantial protection against teratocarcinoma formation in this system

(Fig. 4c). Importantly, we detected a differential induction of the p53,

p21Cip1, p19ARF, and p16INK4a proteins in teratocarcinomas derived

from p53 and INK4a ⁄ ARF iPS cells compared with wt iPS-derived terato-

carcinomas (Figs 4d and S11). This demonstrates a more effective

Safer iPS by enhancement of tumor suppressors, S. Menendez et al.

ª 2011 The Authors
Aging Cell ª 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland

44



(A)

(C)

(B)

(D)

(F)

(E)

(G)

Fig. 3 Increased p53 or Ink4a ⁄ ARF dosage reduces the tumorigenic potential of induced pluripotent stem (iPS) cells. (a) Soft agar colony formation assays were performed

with three different clones of wt, p53, or Ink4a ⁄ ARF iPS cells. Cells were grown for approximately 2 weeks, fixed, and stained, and the total number of colonies was

quantified. The colony formation efficiency corresponding to each clone was calculated by dividing the total number of colonies by the initial number of cells seeded. The

relative colony formation efficiency of the different clones was then calculated against that of the wt iPS cells and plotted as shown. (b) Long-term teratoma formation assay.

wt, p53, or Ink4a ⁄ ARF iPS cells were injected intramuscularly and subcutaneously (1 · 105 cells per injection point, and one intramuscular and one subcutaneous injection

point per animal) in NOD-SCID mice. Animals were sacrificed after tumor formation following stringent predetermined parameters (see Data S1) at a time advised by a

specialized veterinarian. Teratomas formed were measured and fixed for further analysis at the point of sacrifice. The day of sacrifice, teratoma presence (h = subcutaneous,

s = intramuscular), and grade (+++ 2 cm teratoma, ++ 1–2 cm teratoma, + teratoma smaller than 1 cm, and – no teratoma) are plotted. T = the number of teratomas

formed out of the total number injected. A Student t-test statistical analysis was performed on the total teratoma number for p53 or Ink4a ⁄ ARF iPS versus the wt iPS-injected

animals. P-values are indicated. (c) Table summarizes the results from b. The mean sacrifice day and the mean actual and relative (as compared with the wt control) tumor

grade for the subcutaneous and intramuscular tumors derived from injection of wt, p53, or Ink4a ⁄ ARF iPS cells are represented. Mean tumor grade was calculated assigning

an arbitrary value of three to 2-cm tumors (+++), two to 1- to 2-cm tumors (++), one to tumors smaller than 1 cm (+) and zero to absence of tumor ()). (d) Short-term

teratoma experiment. wt, p53, or Ink4a ⁄ ARF iPS cells were injected intramuscularly and subcutaneously (1 · 105 cells per injection point) in NOD-SCID mice. Four weeks after

injection, mice were sacrificed and the resulting teratomas were extracted and weighed. The mean intramuscular teratoma weight is represented relative to the wt. Statistical

analysis was performed as in b. (e) Proliferation analysis of the wt-, p53-, or Ink4a ⁄ ARF iPS-derived teratomas. After extraction, teratomas were fixed, sectioned, and stained

with Ab against the proliferation markers PCNA, Ki67, and phospho-histone H3 (Phh3). Sections from the whole length of each teratoma were stained and quantified using

MetaMorph software. Percentage of positive cells for each marker is represented as shown. (f) Graph shows the percentage of Oct4-positive cells present in teratomas from

wt-, p53- and Ink4a ⁄ ARF iPS-injected mice, as indicated. At least three sections of two independent teratomas per condition were quantified. Statistical analysis was

performed as in b. (g) wt-, p53-, or Ink4a ⁄ ARF-derived teratomas were extracted, disaggregated to a single-cell suspension. The cells were counted, then plated on slide

flasks, and stained for the embryonic carcinoma cell markers Oct4 and Nanog. Double positive colonies after seeding of 1 · 105 cells were quantified and plotted for each

condition.
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Fig. 4 Increased tumor suppressor dosage reduces the tumorigenic potential of differentiated induced pluripotent stem (iPS) cells. (a) Bright-field images of p53 and

Ink4a ⁄ ARF iPS differentiated to skeletal muscle. Arrowheads identify individual muscle fibers at 10· and 20· magnification. (b) Reverse transcription PCR for the skeletal

muscle markers Pax3, MyoD, and Myogenin in undifferentiated iPS and iPS differentiated to skeletal muscle. (c) Graph showing the weight of each individual teratoma and

the overall mean teratoma weight from wt, p53, and Ink4a ⁄ ARF skeletal muscle differentiated cells injected intramuscularly in the gastrocnemius of NOD-SCID mice. A

Student t-test statistical analysis was performed for p53 or Ink4a ⁄ ARF iPS versus the wt iPS, and P-values are indicated. (d) Analysis of the proportion of p19ARF-, p53-,

p21Cip1, and p16Ink4-positive cells present in teratomas from wt-, p53-, and Ink4a ⁄ ARF iPS-injected mice, as indicated. At least three sections of three independent

teratomas per condition were analyzed. One representative section is shown per condition. For further images, please see Fig. S10. (e) Generation of functional neurospheres

(NS) from wt and p53 iPS. Bright-field image of primary NS and staining of primary NS differentiated on laminin with the neuronal marker Tuj1, the astrocyte marker GFAP,

and the oligodendricyte marker CNPase as indicated. (f) Images from the engraftment area (p53) or teratomas (wt) originating from injection of disaggregated primary NS

into the right striatum of NOD-SCID mice (5 · 105 cells per injection point). iPS cells were labeled with GFP using lentiviral infection prior to the differentiation in order to be

able to track cell engraftment in vivo. A representative example of one of the teratomas generated from wt iPS positive for the endodermal marker FOXA2 and the

mesodermal marker SMA is shown as indicated. A representative example of engrafted cells from p53 iPS NS positive for the neuronal lineage markers Tuj1 and GFAP and

negative for endodermal or ectodermal markers is shown as indicated. (g) Quantification of the teratomas arising from wt iPS NS or p53 iPS NS under our experimental

conditions. Statistical analysis was performed as in c.
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engagement of the p53 and INK4a ⁄ ARF pathways in the p53 iPS- and

INK4a ⁄ ARF iPS-derived teratocarcinomas and agrees with the reduced

proliferation observed in these teratocarcinomas (Fig. 4c). Furthermore,

there was no significant difference in the induction of differentiation

markers or reduction in pluripotency markers between wt, p53, and

INK4a ⁄ ARF iPS cells upon differentiation, either in general nonlineage-

directed differentiation protocols or in specific differentiation to skeletal

muscle (Figs S12 and 4b). This supports a direct role of the differential

activation of p53 and INK4a ⁄ ARF in limiting teratocarcinoma formation

and proliferation in vivo.

To further study the effect of increased dosage of p53 in an additional

in vivo context relevant for cell therapy, we performed differentiation to

primary neurospheres (NS) (Fig. 4e) and injected the disaggregated NS

into the striatum of NOD-SCID mice, an assay previously used to quantify

tumorigenicity in iPS cells (Miura et al., 2009). In this assay, the engrafted

cells are still not terminally differentiated progenitor cells. Therefore, they

still retain some multipotency and can be differentiated into three differ-

ent cell types: astrocytes, oligodendrocytes, and neurons. In this context,

we observed a significant reduction in the formation of teratomas in p53

cells compared with wt cells with a similar engraftment level for both cell

types (Fig. 4f,g), while the p53 iPS cells retain an intact capacity to differ-

entiate into neuronal cells (as determined by positive Tuj1 staining,

Fig. 4f), highlighting in an additional in vivo differentiation context their

bona fide pluripotent nature. These results further indicate that the p53

(A) (B)

(C) (D)

(E) (F)

Fig. 5 Transgenic mice derived from p53 induced pluripotent stem (iPS) cells show reduced tumor formation and no aging phenotype. (a) wt, p53, and Ink4a ⁄ ARF iPS cells

were treated with the antitumoral drugs nutlin-3 (2 lM final concentration), R-roscovitine (2 lM), mitomycinC (1 lg ml)1), or leptomycin B (0.2 nM) for 48 h and then fixed,

stained, and quantified. A quantification of the cell number in the presence of each drug relative to the untreated control is shown. (b) The cell cycle profile of wt, p53, and

Ink4a ⁄ ARF iPS drugged overnight with nutlin-3 (N), roscovitine (R), and leptomycin B (LB) was analyzed by FACs. The percentage of cells in the G1, S, and G2 ⁄ M phases of cell

cycle for the treated and untreated control cells was quantified. (c) Cells derived from wt, p53, and Ink4a ⁄ ARF iPS teratomas were isolated and grown in culture. Embryonic

carcinoma (EC) cell colonies were identified by double staining with Ab against Nanog and Oct4, as indicated. (d) EC cells were treated with the antitumoral drugs nutlin-3,

roscovitine (Rosc, 2 lM), or two concentrations of leptomycin B (LB high, 0.4 nM and LB low, 0.2 nM) and quantified as in (a). (e) iPS cells were treated with the antitumoral drugs

roscovitine (low, 2 lM or high, 4 lM) or leptomycin B (LB high 0.4 nM; LB medium 0.2 nM; and LB low 0.1 nM) for 24 h. p53 levels were analyzed by western blot in wt, p53, or

INK4a ⁄ ARF iPS cells as indicated. Actin levels are shown as an internal control. (f) iPS cells were placed under normal growth conditions or under hypoxia (1% oxygen) and low

nutrients (1% FCS) conditions for 16 h. p53 levels were analyzed by western blot in wt, p53, or INK4a ⁄ ARF iPS cells as indicated. Actin levels are shown as an internal control.
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pathway is engaged in a wide range of cellular contexts during teratoma

formation and that the protective effect against tumor formation

obtained by increasing p53 copy number is valid for a range of differenti-

ation strategies for cell therapy.

Increased dosage of tumor suppressors offers an improved

therapeutic index

Because the p53 and pRB pathways are two of the main pathways

engaged during the antiproliferative response elicited by antitumoral

drugs (Vazquez et al., 2008; Brown et al., 2009), we next investigated

whether the extra copy of p53 or Ink4a ⁄ ARF confers an improved thera-

peutic index. We therefore treated wt, p53, and Ink4a ⁄ ARF iPS cells with

a panel of antitumoral drugs, including drugs currently used therapeuti-

cally or undergoing clinical trials. Using a lower concentration than nor-

mally administered, we observed a strong antiproliferative effect upon

treatment of p53 and, especially, Ink4a ⁄ ARF iPS cells, whereas little or no

reduction in proliferation was observed in wt iPS cells (Fig. 5a). As drugs

that have no effect on DNA integrity are more suitable candidates for

chemotherapy, we studied the effect of such drugs on the cell cycle pro-

file of our iPS cell lines. As expected, these drugs have a more profound

effect on the cell cycle profile of p53 and Ink4a ⁄ ARF iPS cells than on wt

control cells, inducing a significant arrest in G1 and G2 ⁄ M in short-term

assays (Fig. 5b), which correlates with the antiproliferative effect elicited

in colony formation assays (Fig. 5a). These results also demonstrate in an

in vitro context that a differential activation of the p53 pathway occurs in

iPS with increased tumor suppressor dosage under a wide range of stress

signaling conditions, ranging from DNA damage to nuclear export inhibi-

tion. This is in clear contrast to the behavior of p53 and Ink4a ⁄ ARF iPS

cells under nonstressed conditions, which is undistinguishable from the

wt control iPS cells (see Figs 1 and 2).

Furthermore, these results were recapitulated by treatment of EC cell

lines (characterized by Nanog and Oct4 double staining, Fig. 5c) derived

from the teratocarcinomas generated from injection of our iPS cell lines

(Fig. 5d). In agreement with this, we observed a differential induction of

the p53 protein and of p53 target genes (Figs 5e and S13) upon drug treat-

ment in p53 and INK4a ⁄ ARF iPS cells versus wt iPS cells, supporting that a

more effective engagement of the p53 pathway in p53 and INK4a ⁄ ARF iPS

cells is responsible for the improved therapeutic index observed in these

cells. In addition, treatment with low concentrations of these antitumoral

drugs could specifically target tumor cells arising from cell therapy using iPS

cells that contain an extra copy of the p53 and Ink4a ⁄ ARF genes. There-

fore, increased p53 and Ink4a ⁄ ARF dosage could offer a substantially

improved therapeutic index in this tumor type, potentially limiting side

effects of the chemotherapy and allowing for a more specific targeting of

the tumor cell population. Finally, we observed a differential induction of

the p53 protein upon low nutrient and hypoxia conditions in p53 and

INK4a ⁄ ARF iPS cells versus wt iPS cells in vitro (Fig. 5f), providing evidence

that low-nutrient and hypoxia-mediated stress pathways could drive the

differential activation of the p53 and INK4a pathways, decreased growth

rate and decreased EC cell compartment observed in p53 iPS- and

INK4a ⁄ ARF iPS-derived teratocarcinomas compared with wt iPS-derived

teratocarcinomas in all conditions studied (Figs 3 and 4).

Transgenic mice derived from p53 iPS cells show reduced

tumor formation and no aging phenotype

The tumorigenicity of iPS cells has also been studied in the context of clas-

sical tumor development in transgenic animals generated from iPS. In this

context, tumor formation is triggered by reactivation of the transgenes

used for reprogramming (Okita et al., 2007). These studies provide inter-

esting information regarding the stability of transgene silencing upon

germ-line transmission induced modifications and have been widely used

to score the tumorigenicity of iPS cells. In this line, we have generated a

significant number of transgenic mice (approximately 100 mice per condi-

tion, aged between 4 and 12 months) from our p53 and wt iPS cells lines

to study the effect of the increased tumor suppressor copy number on

tumor development in this context. According to previous reports (Okita

et al., 2007; Nakagawa et al., 2010), iPS-derived mice developed tumors

owing to c-myc reactivation within a time frame of 2–10 months from

birth. We observed tumors arising in wt iPS-derived mice with a 5% inci-

dence owing to c-Myc reactivation, whereas no tumors have arisen in the

p53 iPS-derived transgenic mice (Fig. S14 and data not shown). These

results suggest that transgenic mice containing an extra copy of the p53

locus are resistant to tumor development because of c-myc reactivation.

No other health changes or abnormal aging phenotypes were observed in

our p53 iPS-derived transgenic mouse colony compared with their wt

counterparts.

Discussion

Here, we have employed standard assays used to analyze tumorigenicity,

such as soft agar assays and teratoma formation assays, as well as assays

that analyze the tumorigenicity of our iPS cells in an in vivo context rele-

vant for cell therapy, mimicking the conditions that are encountered in

such applications, namely the engraftment of progenitors or terminally

differentiated cells in a relevant tissue. Importantly, we demonstrate a sig-

nificant reduction in tumorigenicity of p53 and INK4a ⁄ ARF iPS cells versus

wt iPS cells in all the different conditions studied, without affecting their

intrinsic properties under nonstressed growth conditions.

Interestingly, there were no adverse health effects in transgenic mice

derived from p53 iPS cells and no observation of phenotypes associated

with premature aging. This is in line with the lack of constitutive activa-

tion of the tumor suppressors in p53 compared with wt iPS cells, which

correlates with the fact that the increased tumor suppressor dosage

caused no effect on cell cycle proliferation under nonstressed conditions.

These data clearly indicate that an increased dosage of tumor suppressors

that are subject to endogenous regulatory mechanisms causes no adverse

effects under normal cellular conditions, despite being efficiently acti-

vated upon stress signaling.

The ability of pluripotent cells to generate teratomas does not depend

on genetic transformation, and thus, teratoma growth is driven by an

undifferentiated cell pool that retains a high proliferative rate and some

degree of pluripotency (Blum & Benvenisty, 2009). However, like other

tumors, their growth is still limited by oxygen and nutrient supply. Terato-

mas undergo an angiogenic switch that includes differentiation of plurip-

otent cells within the teratoma to form vessels (Li et al., 2009). However,

before this vascularization is achieved areas within the teratoma are

under hypoxia conditions. Given the profound effect that the increased

dosage of the p53 and Ink4a ⁄ ARF locus had on the capability of iPS cells

to form colonies in soft agar assays, it is likely that hypoxia- and low-nutri-

ent stress-mediated signaling activates the p53 pathway during teratoma

formation to limit growth. In agreement, hypoxia directly activates the

p53 pathway (Graeber et al., 1996), and a clear link between p53 and

metabolism in cancer cells has recently emerged (Maddocks & Vousden,

2011). We further provide preliminary evidence of p53 activation in iPS

cells upon hypoxia and low nutrient supply (Fig. 5f). However, other

stress signaling pathways may also be involved in the activation of p53

during teratoma formation. In this regard, it is worth noting that DNA

damage also effectively triggers the activation of p53 in ES (Menendez
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et al., 2011) and iPS cells (Fig. 5a). In agreement with this observation,

increased tumor suppressor dosage facilitates the elimination of EC cells

at suboptimal concentrations of genotoxic and nongenotoxic antitumoral

drugs, offering an improved therapeutic index allowing specific targeting

of tumor cells with fewer expected side effects (Fig. 5).

Genetic modification of ES or iPS cells is an attractive methodology

to limit their tumorigenicity, as manipulation of their genome can be

easily achieved (Ellis et al., 2010). Therefore, increasing the dosage of

tumor suppressors could potentially be a suitable approach to limit the

tumorigenicity of ES or iPS cells in a clinical context. This approach pre-

sents advantages over the elimination of tumor cells that may arise

post-therapy or the selection of completely pure differentiated popula-

tions of cells for use in cells therapy (Ben-David & Benvenisty, 2011). It

could be of particular interest when undifferentiated progenitor cells

must be used for cell therapy or for iPS generated for the treatment

for diseases that require genetic correction and, therefore, genetic

manipulation of the host genome prior to cell therapy, especially if

these diseases carry an intrinsic risk of genomic abnormalities (Raya

et al., 2009). Further optimization of the tumor suppressor transgenes

used in this study remains needed owing to their large size, which hin-

ders their use for effective gene targeting into ES and iPS cells. The

design and optimization of a ‘minimal tumor suppressor cassette’

would therefore be required before this technology could be applied in

a clinical context.

Importantly, our model provides insight into the pathways involved in

the formation of teratomas from pluripotent cell sources used therapeuti-

cally. It further provides validation of the usefulness of iPS as a tool for

studying tumor suppressor pathways during cell reprogramming, differ-

entiation, and cell therapy applications, which are relevant for many con-

texts including tumor biology, aging, stress-activated pathways, and

metabolism.

Experimental procedures

Induced pluripotent stem were generated using the four original Yama-

naka pMXs retroviral vectors as described elsewhere (Kawamura et al.,

2009). The same clones of wt, p53, and Ink4a ⁄ ARF iPS cells were used

in all experiments described in the manuscript unless otherwise stated.

Embryonic stem and iPS cells were used between passages 6–10. Im-

munostaining of iPS colonies, teratomas and quantification of staining

were performed as described elsewhere (Kawamura et al., 2009) and in

Data S1. Teratoma formation assays were performed following stan-

dard procedures, using a lower cell number for injection (1 · 105 iPS

cells per subcutaneous or intramuscular injection point unless otherwise

stated). Real-time PCR, RT-PCR, FACS analysis, soft agar assays, drug

treatments, cell quantification, and EC cell isolation from disaggregated

teratomas were also performed according to standard procedures; dif-

ferentiation to skeletal muscle (Mizuno et al., 2010), primary neuro-

spheres (Miura et al., 2009), and general differentiation protocols was

optimized from published protocols. For expression profile analysis, the

samples were hybridized to the Agilent SurePrint G3 Mouse Gene

Expression 8 · 60K Microarray, following standard procedures at the

Center Regulation Genomica Barcelona array facility. Microarray analy-

sis was performed following standard protocols, and detail information

can be found in the Data S1. Hierarchical clustering of qRT-PCR samples

was performed on log2-transformed ratio values using correlation met-

ric and the average linkage method with Cluster software and visual-

ized by TreeView software (Eisen et al., 1998). Mouse husbandry and

care followed standard procedures. Further details of all protocols can

be found in the Data S1.
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