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ABSTRACT 

 

We present a methodology to forecast mortality rates and estimate longevity and mortality 

risks. The methodology uses generalized dynamic factor models fitted to the differences in 

the log-mortality rates. We compare their prediction performance with that of models 

previously described in the literature, including the traditional static factor model fitted to 

log-mortality rates. We also construct risk measures using vine-copula simulations, which 

take into account the dependence between the idiosyncratic components of the mortality 

rates. The methodology is applied to forecast mortality rates for a population portfolio for 

the United Kingdom and to estimate longevity and mortality risks.  
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1. INTRODUCTION AND BACKGROUND 

Longevity risk (LR), understood as the downward deviation in population mortality rates 

from the mortality trend forecast, has become a topic of great academic interest in recent 

times, especially in the actuarial literature. This interest is completely justified, given the 

fact that LR affects different products and contracts involving public and private sector 

agents alike. For instance, LR has an impact on immediate and deferred annuities, enhanced 

and impaired annuities, guaranteed annuity options, lifetime mortgages and, more 

importantly, defined benefit pension schemes (Richards and Jones, 2004). 

Among these pension schemes, LR is relevant not only for insurance companies or 

private employers, who promise a pension on retirement based on the employee’s final 

salary, but also for institutions within the public sector, which typically offer generous final 

salary benefits, albeit largely unfunded. MacMinn et al. (2006) and Dushi et al. (2010) 

provide further insights into the question of LR in the context of defined benefit pension 

schemes. LR is of particular importance in Europe where marked reductions in mortality 

rates have been recorded over the last century, much of these trends affecting age groups 

above 65 years.  

The study of LR has been undertaken from various perspectives. On the one hand, many 

authors have documented the importance of the risk in terms of its expected impact on the 

solvency of those insurance companies particularly vulnerable to it (Hanewald et al., 2011; 

Hári et al., 2008; Olivieri, 2011). On the other hand, many others have developed analytical 

frameworks aimed at developing hedging strategies for use by practitioners at insurance 

companies and pension funds facing LR. These strategies are based on the use of various 

financial instruments ranging from longevity bonds to survivor swaps (Blake et al., 2014; 
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Cairns, 2011; Dahl et al., 2008; Lorson and Wagner, 2014; Ngai and Sherris, 2011; Wong 

et al., 2014; among others). 

The key to understanding LR lies in the stochastic nature of mortality rates, which 

means their forecast is subject to uncertainty and judgments concerning statistical 

confidence. The stochastic modeling of mortality rates has been well documented in the 

literature (Cairns et al., 2011; Continuous Mortality Investigation, 2004, 2005, 2013) and is 

recommended by the regulators (Hollmann et al., 2000).  

Among the alternatives available, factor models are an attractive approach, due to the 

low frequency (i.e. annual) of the mortality data and the high relative number of specific 

mortality rates to be forecast. Specific mortality rates, which discriminate between age and 

sex, are thought to be more appropriate for dealing with mortality projections than 

aggregate rates, due to the heterogeneity of a population’s mortality. Factor models allow 

the researcher to reduce the dimensionality problem and to construct more accurate 

forecasts. The strategy consists in making the mortality rates dependent on just a few 

unobserved stochastic factors, for example, stochastic trends. By so doing, the number of 

estimated parameters in the model is significantly reduced and optimal first-efficient 

forecasts are possible. 

More recently, the literature has begun to recognize the importance of dependence 

relationships in different spectral frequencies of mortality rates, in order to make in- and 

out-of-sample estimations more accurately. For instance, some studies highlight the 

importance of cointegration among the variables and the need to pre-test for unit roots and 

multivariate cointegration before using traditional factor models or vector autoregression 

(VAR) models (Njenga and Sherris, 2011; Torri, 2011). These relations can be thought of 

as arising in the low frequency domain of the multivariate spectral density of the specific 

mortality rates. 

However, the dependence patterns that emerge in the high and medium frequency 

domains of the spectra have been largely unexplored, although some studies have 

documented the importance of the dependence relationships between contiguous categories 

of mortality rates or their improvements (D’Amato et al., 2012; Denton et al., 2005; Wills 

and Sherris, 2008; Lin et al., 2015). 

In this article we propose a methodology that makes advances on two different fronts: 

point estimation and forecasts based on generalized dynamic factor models, and the 

construction of alternative confidence scenarios for these forecasts. The task we report in 

the second part of this article involves the estimation of the multivariate probability density 

function of the forecasted mortality rates and not only their first moment. By so doing, we 

are able to calculate risk measures that take into account linear and non-linear dependences 

among mortality rate variations by means of vine-copulae. In this way, we provide a robust 

alternative for measuring longevity (and mortality) risk using distorted risk measures, such 

as value-at-risk (VaR), or tail value-at-risk (TVaR). 

The main novelty in the approach we report lies in the fact that we outline the necessary 

steps for blending generalized dynamic factor models (hitherto unknown in the field of 

actuarial sciences) with vine-copula models (used here for the first time in addressing this 

specific task), so that the construction of risk measures is fully intuitive and rigorous, in the 

sense that the dependence of the contiguous categories of the mortality rates is fully 

incorporated into the construction of an insurance companies’ performance scenarios.  

The methodology is applied to forecast mortality rates and to estimate risk measures for 

the United Kingdom, using data for 1950 to 2011 drawn from the Human Mortality 
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Database. We expand the current literature in several directions. First, we compare the 

performance of four factor models in forecasting mortality rates: the first is a traditional 

(static) factor model that assumes the presence of one common stochastic trend in the data 

(better known in the actuarial literature as the Lee-Carter model); the second works with 

non-common trends but with stationary and common dynamic factors fitted to the 

differences of the log-mortality rates; the third is a mix of these first two and is a dynamic 

factor model (DFM) of the log-mortality rates, and, finally, a generalized dynamic factor 

model (GDFM) is constructed of the differences of the log-mortality rates. GDFMs are 

widely employed in the econometrics literature, but are largely unknown in the actuarial 

literature, in spite of their good properties for estimating unobservable factors (Forni et al., 

2000, 2004) and for forecasting (Forni et al., 2005).  

Second, we incorporate the explicit modeling of the dependence structure in the 

construction of scenarios for mortality rate projections. We also propose VaRs and TVaRs 

as a way to measure LR, and we describe how they should be estimated in this context. 

They should prove useful when assessing suitable capital requirements for the operation of 

firms exposed to such risk. 

Finally, we seek to link the econometrics literature studying DFM, unit roots and 

cointegration with the actuarial literature examining mortality forecasting. Thus, we 

reference crucial findings in this branch of econometrics that should enrich the ongoing 

analysis of LR within actuarial science.  

Our study is related to Plat (2011), in which the author estimates the VaR of a portfolio 

comprising 45,000 male and 36,000 female policyholders aged 65 and older. His approach 

relies on a two-step algorithm: first, he estimates the common trends on a dynamic basis 

(using blocks of 30 years’ length); and, second, he estimates the stochastic variation around 

the trend projection. In this way he is able to simulate different scenarios of operation for 

the insurance company and to calculate the net asset value (NAV) of the company in each 

case. This allows him to estimate the VaR of the company at different levels of confidence. 

However, here, unlike Plat (2011), we do not assume a cointegration relationship operating 

on the 220 mortality rates of our empirical estimations. Therefore, our forecasting exercise 

only includes the modeling of the stochastic volatility around the trend by way of an 

alternative to the second step in Plat’s algorithm. 

The rest of this article is organized as follows. First we present the main theoretical 

points regarding our methodological approach and we discuss the models and the 

estimation strategy. In section 3 we explore the relationship between the models explained 

in section 2 and some of the most popular factor models for the forecasting of mortality 

rates in the actuarial literature. In section 4 we describe our data in terms of their stochastic 

time-series properties, such as the presence of unit roots and variability explained by the 

first principal components. In section 5 we present our main results and discuss our 

principal findings. Lastly, we conclude.  

 

 

2. METHODOLOGY 

 

In this section we present the forecasting methodologies employed in the empirical section. 

We also explain how to estimate LR so as to incorporate the information about dependence 
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in mortality series in the estimations. In most of subsections 2.1 and 2.2 below we follow 

the notation and presentation in Bai and Ng (2008). 

2.1.  Factor models 

Let 𝑁  be the number of cross-sectional units and 𝑇 be the number of time series 

observations. In our case, we have 220 cross-sectional units (mortality rates for ages from 0 

to 109+ years, for males and females). If we consider males and females separately then 

𝑁 = 110. For 𝑖 = 1, … , 𝑁 and 𝑡 = 1, … , 𝑇. The static factor model (SFM) is defined as: 

 

𝑥𝑖𝑡 =  𝜆𝑖𝐹𝑡 + 𝑒𝑖𝑡 

𝑥𝑖𝑡 =  𝐶𝑖𝑡 + 𝑒𝑖𝑡,           (2.1) 

 

where 𝑒𝑖𝑡 is referred to as the idiosyncratic error and 𝜆𝑖 is referred to as the factor loading. 

This is a vector of weights that unit 𝑖 places on the corresponding 𝑟 static common factors 

𝐹𝑡 . 𝐶𝑖𝑡 = 𝜆𝑖𝐹𝑡  refers to the common component of the model. If we define 𝑋𝑡 =
(𝑥1𝑡, 𝑥2𝑡, … , 𝑥𝑁𝑡)′ and Λ = (𝜆1, … , 𝜆𝑁)′, , in vector form, for each period, we have: 

 
𝑋𝑡

(𝑁 × 1)
=

Λ     𝐹𝑡

(𝑁 × 𝑟)(𝑟 × 1)
+

𝑒𝑡,
(𝑁 × 1)      (2.2) 

 

where 𝑒𝑡 = (𝑒1𝑡, 𝑒2𝑡, … , 𝑒𝑁𝑡)′. Notice that although the model specifies a static relationship 

between 𝑥𝑖𝑡 and 𝐹𝑡, 𝐹𝑡 itself can be a dynamic vector process. In the case that 𝐹𝑡 and 𝑋𝑡 are 

jointly stationary (i.e. either each series is stationary or all of them are cointegrated), 𝐹𝑡 can 

be thought to evolve according to a vector autoregressive (VAR) process: 

 

𝐴(𝐿)𝐹𝑡 = 𝑢𝑡,          (2.3) 

 

where 𝐴(𝐿) is a polynomial of the lag operator. The static factor model has been 

implemented in several studies to forecast mortality rates (see, for example, Alonso (, 

2008). Note that if we set 𝐿 = 1 and 𝐴(1) = 𝐼𝑟 , where 𝐼𝑟  is the identity of order 𝑟, the 

model in (2.3) becomes a multivariate random walk (MRW). Should we also require that 

𝑟 = 1 , then we are in the presence of the model proposed by Lee and Carter (1992). 

In the general case 𝐹𝑡, could contain stationary and non-stationary factors, as in Peña and 

Poncela (2006) and Bai and Ng (2004). However, for empirical applications it is convenient 

to restrict our attention to cases in which all the factors in 𝐹𝑡 are stationary or that in which 

all of them evolve following the same stochastic trends (by assumption). This is especially 

true for models with very large 𝑁, in which the implementation of traditional cointegration 

tests based on VAR representations of the original variables are not suitable. 

The static model can be compared with the dynamic factor model (DFM), defined as: 

 

𝑥𝑖𝑡 =  𝜆𝑖(𝐿)𝑓𝑡 + 𝑒𝑖𝑡,    (2.4) 

 

where 𝜆𝑖(𝐿) = (1 −  𝜆𝑖1𝐿 − ⋯ −𝜆𝑖𝑠𝐿𝑆) is a vector of dynamic factor loadings of order 𝑠. In 

the case when 𝑠 is finite, we refer to it as a dynamic factor model, whereas a generalized 
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dynamic factor model allows 𝑠 to be infinite. Stock and Watson (2010) provide examples 

of the former and Forni et al. (2000) introduce the latter. In either case, the (dynamic) 

factors 𝑓𝑡 evolve according to:  

𝑓𝑡 =  𝐶(𝐿)𝜀𝑡 ,        (2.5) 

 

where 𝜀𝑡 are 𝑖𝑖𝑑 errors. The dimension of 𝑓𝑡, denoted 𝑞, is the same as the dimension of 𝜀𝑡. 

An additional classification of the models in equations (2.2)-(2.3) and (2.3)-(2.4) 

concerns the fact as to whether the idiosyncratic disturbances in (2.2) or (2.4) are allowed 

to be weakly correlated. When they are not, it becomes an exact factor model; when they 

are, the model is an approximate factor model. 

2.2. Identification 

We can rewrite the model in (2.4) in static form, simply by redefining the vector of factors 

to contain the dynamic factors and their lags, and the matrix of loads accordingly. In this 

case both, SFM and DFM can be presented in matrix form as: 

 
𝑋

(𝑁 × 𝑇)
=

  Λ 𝐹
(𝑁 × 𝑟)(𝑟 × 𝑇)

+
𝑒

(𝑁 × 𝑇),          (2.6) 

 

where 𝑋 = (𝑋1, … , 𝑋𝑁)  and 𝐹 = (𝐹1, … . , 𝐹𝑇) . Clearly 𝐹 and 𝛬  are not separately 

identifiable. For any arbitrary (𝑟 × 𝑟) invertible matrix 𝐻, 𝐹Λ′ = 𝐹𝐻𝐻−1Λ′ = 𝐹∗Λ′∗, where 

𝐹∗ = 𝐹Λand 𝛬∗ = 𝛬𝐻−1, the factor model is observationally equivalent to 𝑋 = 𝐹∗Λ′∗ + 𝑒. 

Therefore 𝑟2  restrictions are required to uniquely fix 𝐹  and Λ (Bai and Wang, 2012). 

Many alternatives are available in the literature to achieve this goal. For example, Harvey 

(1990), Zuur et al. (2003) and Holmes et al. (2014) propose the following procedure:  In the 

first N-1 rows of Λ, the λ-value in the j-th column and i-th row is set to zero if j>i. The 

intercept is constrained so that each of the time series in 𝐹𝑡 has a mean equal to zero over 

time (from 𝑡 = 0 to 𝑡 = 𝑇). The matrix of second moments [𝑒′𝑒], is set equal to the identity 

matrix of order 𝑁, 𝐼𝑁. 

Notice that the estimation of the factors using principal components (PC) or singular 

value decomposition (SVD), by construction, imposes the normalization that 
Λ′Λ

𝑁
= 𝐼𝑟 and 

that 𝐹′𝐹 is diagonal, which are enough to guarantee identification (up to a column sign 

rotation). 

2.3. Factor estimation 

There are a number of alternatives for estimating the models in equations (2.1)-(2.3) and 

(2.2)-(2.4). One of them involves using PC or equivalently SVD to estimate the factors and 

their loadings.  

An alternative for estimating (2.2)-(2.3), under the assumption of Gaussian errors and 

possibly a MRW structure, arises from noticing that (2.2) and (2.3) can be thought of as a 

state-space representation, where the transition equation is a first order Markov process.  In 

this case equation (2.3) is the hidden state vector, unobservable by definition, and (2.1) is 

the output, or measurement equation. Therefore, the model can be estimated by maximum 

likelihood, either, by using an expectation maximization algorithm, or other numeric-
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optimization algorithms (Hamilton, 1994; Holmes et al., 2014). As is well known, in this 

context the Kalman filter is an optimal estimator of the parameters in the model, and the 

Kalman smoother can be used to estimate the unobservable factors. Here, we prefer to 

estimate the factors using PC, in the interests of parsimony and because of the documented 

advantages of this method in terms of model specification (Stock and Watson, 2002; Bates 

et al., 2013). 

The GDFM uses a two-step estimation strategy. First, the variance-covariance matrices 

of the common and the idiosyncratic components in equation (2.1) are estimated, by using 

the first 𝑞  dynamic PC operating on the spectral density of 𝑥𝑖𝑡 . Then, the information 

coming from the first step is used to extract linear combinations of the 𝑥′s that are more 

efficient than standard PC. Particularly:  

 

�̂�𝑡 =  [𝛤0
𝐶�̂�′(�̂��̂�0�̂�′)

−1
] (�̂�𝑋𝑡),   (2.7) 

 

where �̂�𝑡 is the estimation of the common component, 𝛤0
𝐶  and �̂�0 are contemporaneous- 

covariance  matrices of the common components and the 𝑥′s, respectively. The first matrix 

is estimated based on spectral density methods. �̂�   are generalized eigenvectors and 

therefore �̂�𝑋𝑡 are the generalized principal components (GPC).  

2.4.  Point forecasts 

With the factors at hand, the forecasting of the mortality rates by linear regression 

techniques is straightforward. The factors estimated in a first regression stage by SVD, PC 

or GPC can be employed in a second regression. Consider forecasting 𝑥𝑖𝑡+1 using all the 

data in 𝑋𝑡  and treat 𝐹𝑡  as observed. If 𝑒𝑖𝑡  follows an autoregression and the errors are 

Gaussian, then:  

 

𝐸[𝑥𝑖𝑡+1|𝑋𝑡, 𝑓𝑡 , 𝑋𝑡−1, 𝑓𝑡−1, … ] = 𝐸[𝜆𝑖(𝐿)𝑓𝑡+1 + 𝑒𝑖𝑡+1|𝑋𝑡, 𝑓𝑡, 𝑋𝑡−1, 𝑓𝑡−1, … ] 
= 𝐸[𝜆𝑖(𝐿)𝑓𝑡+1|𝑋𝑡, 𝑓𝑡, 𝑋𝑡−1, 𝑓𝑡−1, … ] + [𝑒𝑖𝑡+1|𝑋𝑡, 𝑓𝑡 , 𝑋𝑡−1, 𝑓𝑡−1, … ] 

= 𝛼(𝐿)𝑓𝑡+1 + 𝛿(𝐿)𝑥𝑖𝑡     (2.8) 

 

In the SFM case 𝐿 disappears. In the forecasting equation (2.8) we could include some 

other covariates. It would also be possible to index in time the matrix 𝛬, such that 𝛬𝑡 

contains the time-varying loads of the system. However, as noted by Bates et al. (2013), the 

original DFM or SFM seem to behave very well in the presence of parameter instability 

and, therefore, time-varying extensions do not provide further insights into the model’s 

structure, but rather they consume degrees of freedom and demand additional restrictions 

be imposed on it. 

Following Stock and Watson (2006), the h-step ahead forecast can be performed directly 

by projecting 𝑥𝑖𝑡+ℎ onto the estimated factors lagged ℎ periods, that is, by estimating 𝛽 in 

the equation: 

𝑋𝑡+ℎ = 𝛽𝐹𝑡 + 𝑒𝑡+ℎ.    (2.9) 

 

Unknown factors can be replaced by their (consistent) estimations F̂t following Stock 

and Watson (2006). A direct forecast can be potentially less efficient than an iterated 

forecast (solving the full DFM or SFM forward using the KF), but it is also more robust to 
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model misspecification. The importance of model misspecification in the particular context 

of the estimation and forecasting of mortality rates has been documented by Stallard 

(2006). Notice that 𝛽 equals Λ when ℎ = 0 in equation (2.9).  

The GDFM was originally proposed by Forni and Reichlin (1998) and Forni et al. 

(2000). But it was not until Forni et al. (2005) that it could be used for forecasting 

purposes. It is a generalization of the DFM because it allows for a richer dynamic structure 

of the factors and it does not assume mutual orthogonality of the idiosyncratic components  

𝑒𝑖𝑡. In this context:  

 

𝑋𝑡+ℎ =  [𝛤ℎ
𝐶�̂�′(�̂��̂�0�̂�′)

−1
] (�̂�𝑋𝑡) + 𝑒𝑡+ℎ.   (2.10) 

 

In the empirical application we opt to ignore the forecasting of the idiosyncratic 

component in equation (2.8), given that it would appear to be a white noise process. Thus, 

we concentrate on the estimation of equations (2.9) and (2.10), based entirely on the 

information provided by the common factors, leaving the dependence relationship to affect 

only the ‘simulated scenarios’ of the risk measures (as explained in section 2.6.). The two-

step strategy described, as we will see, allows a better forecasting performance in the 

majority of cases, but it makes the model weaker in the face of outliers or extreme 

variations in mortality rates. We discuss this point further in section 5. 

2.5. Dependence between the idiosyncratic components 

In spite of the preferred forecasting method, up to this juncture, we have only considered 

the dependence in the common factors and have said nothing about the possible 

dependence between the idiosyncratic components. The dependence arising in the noisy 

high frequency of the spectra is key to the estimation of ‘unexpected’ movements in the 

time series and, as such, is crucial for the estimation of risk. In this paper we approach this 

dependence by means of copula functions, and so we are able to construct confidence 

intervals for our point forecasts, that is, as risk measures based on the percentiles of the 

simulated density (i.e. VaR and Tail-VaR).  

2.5.1. Copula functions 

Formally, a copula is a multivariate probability distribution such that C: [0,1]N → [0,1] 
where 𝐶  is the copula and 𝑁 is the number of mortality rates in our application. Sklar’s 

Theorem (Sklar, 1959) can be used to construct the copula function. The theorem 

establishes that if 𝐹 is a joint distribution function with marginals 𝐹1, … , 𝐹𝑁 , there exists a 

copula, such that: 𝐹(𝑒1, … , 𝑒𝑁) = 𝐶 (𝐹1(𝑒1), … , 𝐹𝑁(𝑒𝑁)) , for 𝑒𝑖 ∈ ℝ. If the marginals are 

continuous, 𝐶is unique. Otherwise, it is uniquely determined by 𝑟𝑎𝑛𝑘(𝐹1) × 𝑟𝑎𝑛𝑘(𝐹2) ×

… × 𝑟𝑎𝑛𝑘(𝐹𝑁), where 𝑟𝑎𝑛𝑘(𝐹𝑖) = 𝐹𝑖(𝑒𝑖) denotes the rank operator (McNeil et al., 2005). 

Before proceeding to the parameter estimation, we need to construct a pseudo-sample 

defined as: 

𝐹𝑖(𝑒𝑖)  = 𝑢𝑖   ∀i = 1, . . , N,    (2.11) 
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where 𝑒𝑖 = (𝑒1, … , 𝑒𝑇)  is a (𝑇 × 1) vector that contains the estimated idiosyncratic 

components for each individual 𝑖. We make use of the empirical cumulative distribution 

function (cdf) of the idiosyncratic terms, estimated as the residuals of the GDFM, as an 

approximation to 𝐹𝑖(∙) in (2.11). Once the pseudo-sample has been constructed, we need to 

check its accuracy in describing the data using the Kolmogorov-Smirnov (KS) statistic. 

One additional consideration must be highlighted at this stage. When there are several 

dimensions involved, as in our case, in which we have 110 mortality rates for each sex, the 

direct estimation of a 𝑁-dimensional copula is not recommended. Instead, the literature has 

developed an alternative estimation and simulation procedure, based on bivariate 

conditional copulae (i.e. pair copulae) as described by Aas et al. (2009). 

2.5.2. Pair copulae 

Building on the work of Joe (1996) and Bedford and Cooke (2001, 2002), Aas et al. (2009) 

show that multivariate data, which exhibit complex patterns of dependence in the tails, can 

be modeled using a cascade of pair-copulae, acting on two variables at a time. This 

approach is particularly attractive in the present context, in which a very large cross-

sectional dimension makes traditional high-dimensional copula methods unfeasible. The 

model construction is hierarchical and the various levels in the model correspond to the 

incorporation of more variables in the conditioning sets, using pair-copulae as simple 

building blocks.  

Following Aas et al. (2009), consider a vector 𝑒 = (𝑒1, … , 𝑒𝑁)′ of random variables with 

a joint density function 𝑓(𝑒1, … , 𝑒𝑁). This density can be factorized as:  

 

𝑓(𝑒1, … , 𝑒𝑁) = 𝑓𝑛(𝑒𝑁) ∙ 𝑓(𝑒𝑁−1|𝑒𝑁) ∙ 𝑓(𝑒𝑁−2|𝑒𝑁−1, 𝑒𝑁) ⋯ 𝑓(𝑒1|𝑒2, … , 𝑒𝑁), (2.12) 

 

and each term in (2.12) can be decomposed into the appropriate pair-copula times a 

conditional marginal density, using the general formula:  

 

𝑓(𝑒|𝒗) = 𝑐𝑒𝑣𝑗|𝒗−𝑗
{𝐹(𝑒|𝒗−𝑗), 𝐹(𝑣𝑗|𝒗−𝑗)} ∙ 𝑓(𝑒|𝒗−𝑗), (2.13) 

 

for an 𝑁-dimensional vector v. Here each 𝑣𝑗  is an arbitrarily chosen component of 𝑣 and 

𝑣−𝑗  denotes the vector 𝑣 excluding the j-th component. Then, 𝑐𝑒𝑣𝑗
 denotes a pair-copula 

between 𝑒 and 𝑣𝑗 . As noted by Aas et al. (2009), under appropriate regularity conditions a 

multivariate density can be expressed as the product of pair-copulae, acting on several 

different conditional probability distributions. From their work it is also clear that the 

construction is iterative, and that given a specific factorization, there are still many different 

re-parameterizations, which in principle could be used to perform the estimation. 

The different constructs of pair-copulae available in the literature can be described, 

following Bedford and Cooke (2001, 2002), by a graphical model known as regular vines. 

The vine class is very large and it houses the graphical model used in this study, known as 

d-vine (Kurowicka and Cooke, 2005). A d-vine is a specific way to factorize the 

multivariate density and it implies the estimation of 𝑁(𝑁 − 1)/2  bivariate copulae in 

ascending hierarchical order as shown in Figure 1.  
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FIGURE 1: d-vine copula tree, taken from Aas et al. (2009), p. 184 

 

Figure 1 shows the specification corresponding to a five-dimensional d-vine. It consists 

of four trees 𝑇𝑗 , 𝑗 = 1, … ,4 . Tree 𝑇𝑗  has 6 − 𝑗 nodes and 5 − 𝑗  edges. Each edge 

corresponds to a pair-copula density and the edge label corresponds to the subscript of the 

pair-copula density, e.g. edge 25|34 corresponds to the copula 𝑐25|34(∙). In a d-vine, no 

node in any tree 𝑇𝑗   is connected to more than two edges. This graphical model is well 

suited for the case in which no particular variable is known to be a key variable governing 

all the interactions in the data set, as is the case of the idiosyncratic components of 

mortality rates.  

Bedford and Cooke (2001) provide the density of an 𝑁 -dimensional distribution in 

terms of a regular vine, which Aas et al. (2009) further specialize to a d-vine. The density 

becomes in this case: 

∏ 𝑓(𝑒𝑘) ∏ ∏ 𝑐𝑖,𝑖+𝑗|𝑖+1,⋯,𝑖+𝑗−1

𝑁−𝑗

𝑖=1

𝑁−1

𝑗=1

𝑁

𝑘=1

 

{𝐹(𝑒𝑖|𝑒𝑖+1, … , 𝑒𝑖+𝑗−1), 𝐹(𝑒𝑖+𝑗|𝑒𝑖+1, … , 𝑒𝑖+𝑗−1)}.  (2.14) 

 

Here the index j identifies the trees, while 𝑖  runs over the edges in each tree. Given the 

specific d-vine decomposition it is possible to approach the problem of estimation and 

posterior simulation by a maximum pseudo-likelihood approach. 

Aas et al. (2009) provide the necessary steps to perform simulations using the estimated 

cascade of copulae in the d-vine construct. This method allows us to estimate percentiles of 

the multivariate density of the idiosyncratic components in the model, and therefore, to 

construct risk measures based on specific percentiles of the forecasted error. 

 

2.6. Risk measures  

Thanks to the copula simulation of different scenarios for the idiosyncratic terms and the 

point forecasts, we are able to choose a distorted risk measure from the family of measures 

that can estimate LR. Several alternatives are available within this family and include VaR 

an  d TVaR. VaR at a level 𝛼 is the 𝛼-quantile of a random variable 𝑥, that is, 𝑉𝑎𝑅𝛼(𝑥) =
𝑖𝑛𝑓{𝑥|𝐹𝑥(𝑥) ≥ 𝛼}, where 𝐹𝑥  is the distribution function of 𝑥 and 𝛼 is the tolerance level 

𝛼 ∈ (0,1) . A complementary measure, the Tail-VaR, or TVaR, corresponds to the 
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mathematical expectation beyond VaR, and it is defined as 

𝑇𝑉𝑎𝑅𝛼(𝑥) =
1

1−𝛼
∫ 𝑉𝑎𝑅𝜆(𝑥)𝑑𝜆

1

𝛼
. Additionally, GlueVaR measures, as proposed by Belles-

Sampera et al. (2014), which are a combination of VaR and TVaR, may also be 

implemented.  

We propose to estimate longevity (or conversely mortality) risk as: 

 

𝐿𝑅 = 𝑇𝑉𝑎𝑅𝛼(�̂�𝑡+ℎ),    (2.15) 

 

where 𝛼 is associated with a suitable confidence level and �̂�𝑡+ℎ  is the h-step ahead forecast 

of the death events.  After projecting 𝑁  mortality rates, we need to aggregate these 

projections in order to obtain the total number of ‘expected deaths’ in a given portfolio. The 

number of expected deaths is a function of the exposed population by age and sex in the 

portfolio and the projection associated with each of the mortality rates. In this case 𝛼 is a 

very low percentile (i.e. 0.5%) if we want to measure LR, and a very high percentile (i.e. 

99.5%) if we want to measure mortality risk. We provide both quantities in our empirical 

implementation. 

Given that we are interested in constructing a methodology that might prove useful for 

any firm exposed to longevity risk, we provide estimations of 𝐿𝑅  for different 

configurations of the exposed population, as explained in section 4.    

3. RELATED LITERATURE 

Factor models have been used extensively for forecasting mortality rates, after first being 

proposed for this purpose by Lee and Carter (1992). By the time these authors introduced 

the model to the actuarial and demographic literature, factor models were well established 

in the fields of psychology and econometrics. The Lee-Carter model is a single-factor 

model, where the factor is a stochastic trend shared by all the specific mortality rates. The 

model has been subject to much criticism (see, for example, Dushi et al., 2010, and 

Mitchell et al., 2013), but it remains a plausible alternative within academia (see Bisetti and 

Favero, 2014, for a recent implementation of the model). Indeed, it has become something 

of a ‘workhorse’ within the actuarial field, as has its extension to Poisson log-bilinear 

projections proposed by Brouhns and Denuit (2002) (See for example the works by 

Delwarde et al., 2006,  or Lemoine, 2014, who adds a switching component to the model). 

The model is criticized primarily on the grounds that one single factor is deemed 

incapable of capturing all the common components underpinning the dynamics of the 

mortality rates. As a result, the model has been expanded to include more factors. These are 

generally additional stochastic trends, as in Yang et al. (2010), Alai and Sherris (2014), 

Jevtic, Luciano and Vigna (2013) and Alonso (2008); but they might also be stationary 

factors subjacent to the differences (or the derivatives) of the log mortality rates, as 

opposed to the log-level mortality rates (Cossette et al., 2007; Haberman and Renshaw, 

2012, 2013; Mitchell et al., 2013). 

This last extension is particularly interesting from both a practical and theoretical 

perspective. In pragmatic terms, Mitchell et al. (2013) show that a stationary factor model 

can outperform a non-stationary model (containing possibly more factors). Thus, working 

with the log-mortality rate differences, as opposed to working with the rates in log-levels 

(as in the Lee-Carter model), may well increase the forecaster’s ability. From a theoretical 
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perspective this is important, especially since the econometrics literature shows that linear 

regressions between integrated series of order greater than zero (for example I(1) series) 

can easily derive in spurious estimations (Granger and Newbold, 1974). To avoid such 

spurious regressions, the series must be differentiated as many times as needed to ensure 

that all become stationary. After differentiation, traditional regressions can be performed. 

Indeed, this is the intuition behind Mitchell et al’s (2013) main findings; namely, that using 

the series in differences appears to be a better empirical strategy than using the series in 

levels.  

In other words, if log-mortality rates could be described by independent random walk 

trends and the Lee-Carter model imposes a common trend, this could lead to the imposition 

of a spurious cointegration relationship between all the log-mortality rates.  

A potentially better alternative is available when the series at hand are indeed 

cointegrated and they all share the same stochastic trend or trends. In this case, performing 

a regression analysis in levels (for example, when forecasting mortality rates using their 

non-stationary first singular values) is fully justified and it might even be necessary so as to 

preserve the correct specification of the model. A more efficient alternative, in this case, 

would be to use an error correction model (ECM) (Engle and Granger, 1987) or its 

multivariate version, the vector error correction (VEC) model. In both cases, the estimation 

is super-consistent, as shown, for example, in Stock and Watson (1988). In other words, 

under cointegration, the differentiation of the series is not recommended because such a  

strategy might lead to biases in the estimated parameters and the forecasted quantities.  

Thus, it is clear why pre-testing for unit roots and cointegration is a necessity of the first-

order in order to avoid under- or over-differentiation of the series. Cointegration in multiple 

times series is generally based on tests constructed on the VAR representation of the system 

(Johansen, 1988; Stock and Watson, 1988). Indeed, this econometric machinery of unit 

roots pretesting procedures, cointegration tests, VAR and VEC models has recently been 

put to use in the actuarial literature, specifically to perform the task of estimating and 

forecasting mortality rates (D’Amato et al., 2014; Gaille and Sherris, 2011; Njenga and 

Sherris, 2011; Torri, 2011). The aforementioned studies present evidence in favor of 

cointegration, using few variables. This finding seems to justify the use of factor models 

fitted to the levels of log-mortality rates (without differentiating the series). Indeed, the  

relationship between factor models and cointegration was explored more than two decades 

ago in Escribano and Peña (1994). 

Unfortunately, the extension of this toolbox to the forecasting of mortality rates by age 

cohorts and sex is not straightforward. For example, when 𝑁 = 110, which is easily the 

case for mortality rates discriminated by age and sex, traditional cointegration tests based 

on the VAR representation of the system are not well suited, given the extremely large 

number of parameters to be estimated in the reduced-form VAR. For example, in a VAR 

comprising four lags and 110 mortality rates, (101 ∧ 2)4 = 48,400 coefficients must be 

estimated, plus 110 variances and 5,995 covariances. 

At this point researchers are faced with a dichotomy: either they assume the 

cointegration of the mortality rates and estimate a factor model in levels, or they 

differentiate the series and fit a stationary factor model on the differences. We explore the 

empirical consequences of these two alternatives and perform several comparisons, 

particularly in terms of the mean-squared forecasting error, for different horizons and 

different modeling strategies. 
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3.1. Models M1-M8 

In this section we undertake a theoretical comparison of the GDFM and DFM using the 

mortality models studied by Cairns et al. (2009) and we expand their typology to include a 

number of recently proposed models. We also switch our notation in this section to mimic 

that employed in Cairns et al. (2009) with the aim of providing greater clarification to the 

experienced reader.  

In broad terms, the main models used in the actuarial sciences to forecast mortality rates 

can be summed up in Table 1. As is evident, the models proposed here (M9, M11 and M12) 

belong to the family of log-mortality rate models, and they differ from the logit-models in 

that the latter use logit transformations of the mortality rates in the estimation. However, in 

line with Mitchell et al. (2013), the logit-models do not seem to perform any better or any 

worse than the log models, so we concentrate our attention here on factor models of the 

log-rates or the differentiated log-rates. 

Notice that M1 is a special case of M9, when 𝐿 = 0 and 𝑟 = 1. Likewise, M10 is a 

special case of M11, when 𝐿 = 0 and 𝑟 = 1, so M1 and M10 can be regarded as static 

factor models. The GDFM fitted over the differences of log-mortality rates (M12) differs 

from all the other models in that it does not use principal components to estimate the 

factors, but rather it uses generalized principal components.  

In our empirical section we do not consider any model with cohort effects, but Mitchell 

et al. (2013) provide comparisons of their model with M2 and it seems to perform better in 

most cases. The extension of M11 or M12 to incorporate cohort effects is straightforward 

and could be explored in future research, in keeping with the proposals in Haberman and 

Renshaw (2012, 2013). 

Here, we have opted instead to model contemporaneous dependence through copula 

functions. The copula approach to the estimation of longevity or mortality risks is novel 

(see, for example, Lin et al., 2015, for a related implementation) and is concerned with the 

dependence structure of the idiosyncratic components of the model (which we obviated in 

Table 1). This modeling strategy only makes sense within the context of an approximate 

factor model, such as M11 and M12. Otherwise, identification issues might arise in the 

estimation process given that a static factor model, such as M1 or M10, generally uses the 

orthogonality condition between the idiosyncratic models to identify the factors.  

Our empirical illustration for the United Kingdom compares M1, M9, M11 and M12. 

And M10 is included as a special case of M11.  

 

 

TABLE 1 

MORTALITY MODELS 

Model Formula 

M1: Lee and Carter (1992) log 𝑚(𝑡, 𝑥) = 𝛽𝑥
(1)

+ 𝛽𝑥
(2)

𝑘𝑡 

M2: Renshaw and Haberman (2006) log 𝑚(𝑡, 𝑥) = 𝛽𝑥
(1)

+ 𝛽𝑥
(2)

𝑘𝑡 + 𝛽(3)𝛾𝑡−𝑥
(3)

 

M3: Currie (2006) log 𝑚(𝑡, 𝑥) = 𝛽𝑥
(1)

+ 𝑘𝑡 + 𝛾𝑡−𝑥
(3)

 

M4: Currie et al. (2004) ∑ 𝜃𝑖𝑗𝐵𝑖𝑗
𝑎𝑦(𝑥, 𝑡)

𝑖,𝑗
 

M5: Cairns et al. (2006) logit 𝑞(𝑡, 𝑥) = 𝑘𝑡
(1)

+ 𝑘𝑡
(2)(𝑥 − �̅�) 
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M6: Cairns et al. (2009) logit 𝑞(𝑡, 𝑥) = 𝑘𝑡
(1)

+ 𝑘𝑡
(2)(𝑥 − �̅�) + 𝛾𝑡−𝑥

(3)
 

M7: Cairns et al. (2009) logit 𝑞(𝑡, 𝑥) = 𝑘𝑡
(1)

+ 𝑘𝑡
(2)(𝑥 − �̅�)

+ 𝑘𝑡
(3)((𝑥 − �̅�)2 − �̂�𝑥

2) + 𝛾𝑡−𝑥
(4)

 

 

M8: Cairns et al. (2009) 
logit 𝑞(𝑡, 𝑥) = 𝑘𝑡

(1)
+ 𝑘𝑡

(2)(𝑥 − �̅�) + 𝛾𝑡−𝑥
(3) (𝑥𝑐 − 𝑥) 

M9: Dynamic Factor Model in Levels, DFM 

log 𝑚(𝑡, 𝑥) = 𝛽𝑥
(1)

+ ∑ 𝛽𝑥
(𝑖)(𝐿)𝑘𝑡

(𝑖−1)

𝑟+1

𝑖=2

 

M10: Mitchell et al. (2013) ∆ log 𝑚(𝑡, 𝑥) = 𝛼𝑥
(1)

+ 𝛽𝑥
(2)

∆𝑘𝑡 

M11: Dynamic Factor Model in Differences, 

DDFM ∆ log 𝑚(𝑡, 𝑥) = 𝛼𝑥
(1)

+ ∑ 𝛽𝑥
(𝑖)(𝐿)∆𝑘𝑡

(𝑖−1)

𝑟+1

𝑖=2

 

M12: Generalized Dynamic Factor Model in 

Differences, DGDFM ∆ log 𝑚(𝑡, 𝑥) = 𝛼𝑥
(1)

+ ∑ 𝛽𝑥
(𝑖)(𝐿)∆𝑞𝑡

(𝑖−1)

𝑟+1

𝑖=2

 

NOTE: Mortality Models: from M1 to M8 are taken from Cairns et al. (2009). Following these authors 𝛽𝑥
(𝑖)

, 

𝑘𝑡
(𝑖)

, and 𝛾𝑡−𝑥
(𝑖)

 are age, period and cohort effects respectively. The 𝐵𝑖𝑗
𝑎𝑦(𝑥, 𝑡) are B-spline basis functions and 

the 𝜃𝑖𝑗 are weights attached to each basis function. �̅� is the mean age over the range of ages being used in the 

analysis.  �̂�𝑥
2  is the mean value of (𝑥 − �̅�)2 . 𝐿  is the  lag-operator and 𝑞𝑡

(𝑖)
 are generalized principal 

components. 

4. DATA AND PRELIMINARY ANALYSIS 

 

Our data consist of annual mortality rates for males and females in the UK from 1950 to 

2011. The data for 0 to 101 years were taken as they appear on the webpage of the Human 

Mortality Database. The data for 102 to 109+ years were extrapolated to produce a 

mortality rate equal to 1 at 110 years. By so doing, we are able to prevent implausible 

variability being registered at older ages. We pretest for unit roots in the log-mortality rates 

and for the differences of the log-mortality rates. The series show evidence of unit root 

behavior in the great majority of cases in logs, and they seem stationary when we 

differentiate them. 

In order to determine the number of static and dynamic factors, (i.e. the number of 

principal components and their lags), we follow two statistics proposed by Bai and Ng 

(2002). Specifically, to determine the number of static factors we use the IC information 

criterion given by:  

𝐼𝐶(𝑘) = ln(𝑆(𝑘)) + 𝑘𝑔(𝑁, 𝑇),        (4.1) 

 

where 𝑆(𝑘) = (𝑁𝑇)−1 ∑ ∑ (𝑥𝑖𝑡 − �̂�𝑖
𝑘′

�̂�𝑡
𝑘)

2
𝑇
𝑡=1

𝑁
𝑖=1  is the mean-squared error divided by 𝑁𝑇. 

𝑘.  is the number of static factors and 𝑔(𝑁, 𝑇) is a penalty function, such that: 𝑔(𝑁, 𝑇) =
𝑁+𝑇

𝑁𝑇
𝑙𝑛 (

𝑁𝑇

𝑁+𝑇
). The number of static factors, �̂�𝐼𝐶 is such that:  

 

�̂�𝐼𝐶 =
argmin

0 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥
𝐼𝐶(𝑘),       (4.2) 

 

where 𝑘𝑚𝑎𝑥 is then the maximum possible number of factors, 𝑘𝑚𝑎𝑥 = 15 in our case. Once 

the number of static factors is selected, the number of dynamic factors is determined using 
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the methodology proposed by Bai and Ng (2007). Broadly speaking, this methodology 

deals with the rank of the vector space spanned by the original dynamic factors, which is 

expressed in the vectors containing the static factors. In general 𝑞 ≤ 𝑟, where 𝑞 are the 

original, primitive, dynamic factors, and 𝑟 the number of static factors spanned by 𝑞.  

We estimate the number of static and dynamic factors following equations (4.1) and 

(4.2) for different portfolio populations. We consider six cases: An exposed population of 

0-109+ years of males and females; another product designed for people aged between 18 

and 64 years (male and females) and an exposed population ranging from 65 to 109+ years. 

The population was set at 30,000 people (either males or females), which is approximately 

0.1% of the total population of the United Kingdom for the year 2011. The participation of 

each age cohort in the total was set according to its participation in the population of the 

UK for 2011.  

We also present the variability explained by the first 15 principal components for the 

series in differences in Table 2. The percentage explained by the principal components 

selected for modeling is higher in the case of males, ranging from 72.63% to 93.77% and 

lower for females between 18 and 64 years, for which the first principal component only 

explains 11.46% of the total variation. In this case, the copula function plays a central role 

in determining the risk profile of the portfolio.  

 
TABLE 2 

PERCENTAGE OF THE VARIABILITY EXPLAINED BY THE FIRST TEN PRINCIPAL COMPONENTS IN 

THE UNITED KINGDOM’S MORTALITY RATES AND OPTIMAL NUMBER OF FACTORS 

  r 1 2 3 4 5 

Males  

0-109+ 63,99% 69,34% 72,63% 75,03% 77,06% 

18-64 63,78% 69,75% 73,51% 76,34% 79,07% 

65-109+ 75,91% 86,31% 88,92% 90,45% 91,77% 

  6 7 8 9 10 

0-109+ 79,01% 80,84% 82,38% 83,73% 84,98% 

18-64 81,45% 83,48% 85,25% 86,97% 88,49% 

65-109+ 92,84% 93,77% 94,43% 95,00% 95,52% 

              

  r 1 2 3 4 5 

Females 

0-109+ 23,50% 30,88% 35,97% 40,47% 44,71% 

18-64 11,47% 19,83% 26,94% 33,54% 39,40% 

65-109+ 48,79% 64,62% 67,91% 71,09% 73,97% 

  6 7 8 9 10 

0-109+ 48,72% 52,38% 55,60% 58,69% 61,56% 

18-64 44,77% 49,50% 53,89% 58,02% 61,92% 

65-109+ 76,32% 78,45% 80,51% 82,28% 84,00% 

NOTE: series of the differences of log-mortality rates. Data for the United Kingdom from 1950 to 2011, taken 

from the Human Mortality Database. They correspond to males and females in different age populations. The 

highlighted numbers correspond to the number of factors, r, identified following the optimality criterion 

proposed by Bai and Ng (2002). 

 

Notice that in all the cases, we identify one dynamic factor but, by contrast, several 

static factors (as many as seven in the case of males aged between 65 and 109+ years old). 

This indicates the presence of high dynamics in the system, which traditional static factor 
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models ignore. Thus, the assumption implicit in the literature, initiated by Lee and Carter, 

that one single ‘mortality course’ explains the dynamic of the system as a whole seems 

plausible, but it seems convenient to incorporate dynamics in modeling and forecasting by 

including ‘lags’ of that single factor. In all circumstances, this strategy appears to be more 

appropriate in the case of males, as we only identify up to two static factors for the female 

populations.  

 

5. RESULTS AND DISCUSSION 

Our empirical section uses data for the United Kingdom. It compares M1, M9, M11 and 

M12 from Table 1 (M10 is included as a special case of M11). All factor models presented 

here were estimated using MATLAB. In the estimations we used some routines available 

on the webpage of Serena Ng (http://www.columbia.edu/~sn2294/) to estimate the DFM, 

and to select the optimal number of static and dynamic factors. To estimate the GDFM, for 

both one- and two-sided filters, we used codes available on webpage of Mario Forni. 

(http://morgana.unimore.it/forni_mario/matlab.htm). To estimate the copula-functions we 

used R, specifically employing the package CDVine.  

5.1. Forecasting 

We define the ℎ-step ahead forecast for mortality rate 𝑖, and its associated mean-squared 

forecasting error as: 

 

�̂�𝑖 𝑇+ℎ|𝑇 = 𝑥𝑖𝑇 + Δ�̂�𝑖𝑇+1|𝑇 + ⋯ + Δ�̂�𝑖𝑇+ℎ|𝑇 ,    (5.1) 

 

𝑀𝑆𝐹𝐸𝑖
ℎ =

1

𝑇1−𝑇0−ℎ+1
∑ (�̂�𝑖𝑇+ℎ|𝑇 − 𝑥𝑇+ℎ)

𝑇1−ℎ
𝑇=𝑇0

,    (5.2) 

 

   

 

where 𝑇0 is the last year within the sample (in our case 2001), 𝑇1 is the last year outside the 

sample (in our case 2011). Thus we use years from 1950 to 2001 to estimate the models and 

the last ten years to measure their relative performance. The MSFE for several forecasting 

horizons is presented for males and females in Figure 2.  

Given that we are primarily concerned with risk measures calculated in short periods of 

time (for example one year ahead, when a firm has to set a new capital buffer), we confined 

our forecasting analysis from 1 to 10 years. The MSFE, presented for each model, is a 

weighted average of the individual forecasting errors, for the individual changes in log-

motility rates, the weights being the population in each category for the cases considered in 

the exercise.   

In general, the GDFM performs better than the other models in forecasting, especially 

for medium- and long-term horizons. The worst model is, in general, the Lee-Carter model, 

followed by the dynamic model in log-rates. We confirmed the finding reported by Mitchell 

et al. (2013) that the models ‘in differences’ outperform the models in ‘levels’. Our 

intuition for this finding is that the log-rate models impose a cointegration relationship 

between the mortality rates that can be false for the 110 rates as a whole.  This is the case, 

even if some subsets of the variables are effectively cointegrated; i.e., while they shared the 



 

 
 

16 

same common trend, some others certainly did not and, therefore, imposing a common 

trend can result in spurious estimations of the factor loads and forecasting projections. This 

in turn could deteriorate the forecasting estimation, especially for medium- and long-term 

horizons.  
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FIGURE 2: Mean-squared forecasting error (MSFE) by forecasting horizon. The models were estimated using 

the United Kingdom mortality data from 0 to 109+ years. The estimation period runs from 1950 to 2001, and 

the forecasting period comprises 10 years, from 2002 to 2011. The participation in populations of 30,000 

individuals was set according to the UK population discriminated by ages in the year 2011. 
 

Additionally and as expected, we find that the adjustment, through the spectral density 

matrices applied in the GDFM, improves the forecast over the standard DFM, but that the 

improvement is small in magnitude.  

The above findings are confirmed when we use the AIC criterion to compare the models. 

In Table 4 of the Appendix, we present the AIC criterion for different portfolio populations 

and for models M1 (LC), M9 (DFM), M11 (DDFM) and M12 (DGDFM). Once again, the 

performance of the models in differences is clearly superior to that of the models in levels. 

The worst performance in each case is given by the Lee-Carter model, followed by the 

dynamic factor model in levels. Nevertheless, the two models in differences provide 

remarkably similar performances. Hence, the previously reported gains in terms of out-of-

sample forecasting of the generalized version of the model could, to a certain extent, be due 

to over-fitting issues related to model M11. The strategy performed by the GDFM, which 

uses an interactive weighting scheme, seems particularly appropriate for forecasting periods 

of more than two years, and to some degree prevents over-fitting. 

We also analyzed information about the models’ forecasting performance by age ranges. 

We find that all the models perform better for ages between 0 and 95 than for ages above 

95. This poor performance is natural, given that higher ages are associated with greater 

year-on-year variability. Interestingly, the models in log levels seem to perform better than 

the models in differences at these ages. This could be related to the information loss in the 

process of differentiation and issues concerning the over-fitting of the models in differences 

at higher ages, which in turn makes them particularly weak when dealing with outliers or 

considerable variability. Thus, for the last ranges we conclude that the loss of information 

generated from the differentiation of the series, and because of possible over-fitting, is 

greater than the gain derived from avoiding the imposition of a cointegration relationship, 

at least for short-term horizons. However, this ‘outperformance’ disappears as the forecast 

is forwarded in time. For 10 years ahead, the models in differences outperform the models 

in log-levels again, even at ages above 95. This last result can be explained in line with 

section 2, because the models in differences do not impose an implausible cointegration 

relation among all the series in the system.  

5.2. Longevity and mortality risks 

We calculate TVaR and VaR measures one year ahead using copulae. The procedure is as 

follows: 

 In order to estimate the copula functions, we first transformed the original data (i.e. 

the idiosyncratic components of the GDFM) using the empirical distribution 

function. This step provides us with a pseudo-sample as described in (2.11), which 

must be distributed as a standard uniform random variable, if the empirical 

distribution is a good approximation of the marginal density. In order to check the 

accuracy of the procedure we simulated a uniform random variable in the interval 

[0,1] and then we compared the simulated variable with each series in the pseudo-
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sample, by means of a Kolmogorov-Smirnov statistic. In each case the null 

hypothesis is not rejected and, therefore, the empirical distribution provides a good 

approximation of the marginal, as is required for this empirical exercise. 

 The selection of each conditional copula in the estimation is an empirical concern. 

Therefore, we considered different alternatives, which summarized different 

possible dependence structures in the data in a flexible way. We specifically 

compared the following copulae: Gaussian, Clayton, BB6, Survival-Joe, and 

Rotated-Clayton (180 degrees and 270 degrees). We tested more than 40 copulae in 

a preliminary exercise and these six copulae invariably performed much better, so 

we concentrated our search for the best copula on these six functions. We selected 

the best copula among the candidates, using the AIC criterion, and used this to 

construct the ‘multivariate dependence tree’ shown in Figure 1. 

 Before calculating the risk measures, we constructed the AIC criteria for the models 

fitted to each population portfolio. We did so in order to compare the fitted model 

with that of the independence assumption among the idiosyncratic components of 

the data. In each case, using the vine-copula model, we obtained a reduction in the 

AIC criterion compared to the independence assumption. For instance, for a 

portfolio of males aged 0-109+ years, the reduction in the AIC was -4,013.72; for 

those aged 18-64 years the reduction was -808.23; and, for those aged 65-109+ 

years it was -1,864.65. In the case of females the reduction was -3,184.57, -732.55 

and -1,138.18, respectively. We found very similar results when using the in-sample 

residuals between 1992 and 2001 and between 2002 and 2011, instead of the AIC 

criteria. These are not shown for reasons of space. 

 Finally, we report the TVaR and VaR at 0.5% (left tail) and the same statistics for 

the 99.5 percentiles (right tail) in Table 3. This level of confidence is standard 

practice in the insurance market. Recall, 0.5% of VaR or TVaR is concerned with 

longevity risk, while the right tail illustrates mortality risk. In both cases, risk 

should be understood as a significant dispersion from the expected number of 

deaths, forecasted with the GDFM.  

 Confidence intervals for the measures proposed in Table 3 can be constructed using 

bootstrapping techniques. Given that these statistics are estimated using the 

simulated observations at very high and very low percentiles (99.5 and 0.5) of the 

10,000 scenarios, it is possible to simulate these 10,000 scenarios 100 times and to 

calculate the statistics in each case.  

TABLE 3 

 LONGEVITY AND MORTALITY RISKS FOR THREE PORTFOLIOS OF SIZE 30,000  

(ONE-YEAR AHEAD FORECAST) 

 
 TVaR  VaR 

Expected 

Deaths 
VaR  TVaR  

 Level 0.5 0.5  99.5 99.5 

 0-109+ 238 239 252 261 262 

Males 18-64 78 78 80 82 82 

 65-109+ 1283 1288 1346 1394 1399 

       

 0-109+ 254 255 259 263 263 

Females 18-64 52 52 54 56 56 
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 65-109+ 1242 1244 1257 1269 1270 

 

NOTE: The statistics were calculated using data for the United Kingdom from 1950 to 2011, as taken from the 

Human Mortality Database. The forecasting horizon was set at one year. The second column shows the 

different population portfolios considered in the exercise. The hypothetical populations mimic the age 

composition of the United Kingdom in 2011. 

 

The results of the forecasting exercise in Table 3 can be read as the expected number of 

events (deaths) in one year. In the case of the 30,000 males aged between 0-109+ years (in 

a portfolio that mimics the population structure of UK males in 2011), we can expect to see 

252 deaths, while we would expect 259 events in a portfolio composed solely by woman 

(again preserving the female population structure in the UK for these ages).  

In contrast, in a population of 30,000 males aged between 18 and 64 years, we can 

expect 80 deaths in one year, and 54 in the case of females of the same ages. Finally, and 

more importantly, if we were to construct a population portfolio comprising males aged 

between 65 and 109+ years, we would expect to observe 1,346 deaths in one year; while for 

women between these same ages we would expect to observe 1,257 events.  

In terms of LR, as expected, we found that this risk increases with advancing age. 

Logically, not only is it the oldest part of the population that presents the highest mortality 

rates, it also presents greater variability and, therefore, forecasting at ages above 65 years is 

subject to considerably greater uncertainty, which can be understood as greater risk. For 

example, the VaR (99.5%) for males between 0 and 109+ years is 261 and the VaR (0.5%) 

is 239. For woman these values are 263 and 255, respectively. These estimations provide 

useful insights for any insurance or pension company. Specifically, they tell us that it is 

possible to assert with a 99.5% level of statistical confidence that no more than 261 persons 

will die in one year, or conversely that no fewer than 239 will die, even when the expected 

number of deaths is 252.  

The calculations increase significantly for the upper ages, for males and females, but in a 

larger proportion for the former. In a portfolio of males aged between 65 and 109+ years 

(the portfolio with the greatest longevity (and mortality) risk), we can expect with a 99.5% 

level of confidence to observe 1,346-1,288=58 persons surviving in one year above the 

projections provided by the best available model (the GDFM) or 1,394-1,346=48 people 

dying above this projection. Alternatively, if we use the TVaR to make the same 

calculations, we find that 63 people will survive above our expectations and 53 will die 

above our expectations.  

These results highlight an empirically important finding of our exercise: the asymmetric 

nature of mortality and longevity risks. By using the VaR at 99.5%, the longevity risk is 

20.8% higher than the mortality risk for the portfolio of males (8% in the case of females). 

Using the TVaR these numbers are 15.8 and 15.3%, respectively. In both cases the 

longevity risk is higher. Moreover, the longevity risk of the older population (let’s say the 

portfolio comprising males aged between 65 and 109+ years) is considerably higher than 

the mortality risk of a younger population aged between 18 and 64 years. In fact, in order to 

make these risks equivalent, you would have to affiliate 29 times more people aged 

between 18 and 64 than those aged between 65 and 109+, in the expectation of some kind 

of ‘cancellation’ between the longevity and mortality risks of the different population 

portfolios.  

Finally, we compare the longevity risk of males and females of the same ages (but with 
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different population structures). We observe that the risk is higher for males than it is for 

females, which does not contradict the well documented fact that woman tend to live longer 

than men. Indeed, it is precisely because of greater female longevity that the variability of 

mortality rates in males is greater in the upper ages and, therefore, more difficult to 

forecast. 

6. CONCLUSIONS 

The incorporation of dynamics by means of adding lags (new factors) when forecasting 

mortality rates generates a better fit of the models to the data, especially when modeling 

male populations; however, it is the differentiation of the series that increases the 

forecasting capability of the factor models. We provide some intuition for these findings 

and show that the gains in terms of forecasting increase as the forecasting horizon expands. 

The intuition for this finding is based on the fact that traditional factor models of the log-

mortality rates, such as the Lee-Carter model, impose, by assumption, a cointegration 

relationship between all the series in the system that is very unlikely to be observed in the 

data, due to the great number of series in an exercise of this kind (more than 200 for males 

and females in our example).  

Further improvements can be achieved by using (one-sided) generalized principal 

components in the estimation stage. Generalized factor models allow for a richer dynamics 

in the data and use the information contained in the spectral density matrix to improve the 

model fit. 

It should be noted, however, that models in differences perform worse than models in 

levels for short forecasting horizons at ages above 95 years. This finding is related to the 

fact that the better fit of the models in differences is achieved at the expense of some degree 

of over-fitting for the older population, especially for males. This over-performance of the 

models in levels disappears as the forecast horizon expands and, indeed, for 10 years ahead 

it is fully reversed. The intuition is that the imposition of the shared stochastic trend 

deteriorates forecasting capabilities in a cumulative fashion, and that this is worse than the 

over-fitting disadvantage suffered by the models in differences for ages above 95 in 

medium- and long-term forecasting horizons. 

Finally, we found that longevity risk is higher among older portfolios and markedly 

higher among men than among women. There is also an asymmetric relation between the 

longevity and mortality risks, which hinders any attempt at compensating one of the risks in 

one population with the other risk in a different exposed population.  
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APPENDIX 
 

TABLE 4 

AIC CRITERION FOR MODEL COMPARISONS FOR DIFFERENT POPULATIONS 

            

    DGDFM DDFM DFM LC 

 0-109+ -6.5249 -6.6173 -5.0002 -4.3895 

Males 18-64 -2.7058 -2.7622 -2.0039 -1.6170 

 65-109+ -2.9117 -3.0171 -2.4105 -1.9965 

      

 0-109+ -6.2723 -6.2706 -5.0471 -4.8098 

Females 18-64 -2.5560 -2.5600 -1.7946 -1.7946 

  65-109+ -2.9900 -2.9973 -2.0796 -1.9105 

NOTE: The statistics were calculated using data for the United Kingdom from 1950 to 2011, taken from the 

Human Mortality Database. The shadowed numbers correspond to the best model. 
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