Interaction of oxygen with ZrC(001) and VC(001): Photoemission and first-principles studies

J. A. Rodriguez and P. Liu
Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA

J. Gomes and K. Nakamura
Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

F. Viñes, C. Sousa, and F. Illas
Department de Química Física & Centre Especial de Recerca en Química Teòrica, Universitat de Barcelona & Parc Científic de Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain

(Received 1 April 2005; revised manuscript received 17 June 2005; published 16 August 2005)

High-resolution photoemission and first-principles density-functional calculations were used to study the interaction of oxygen with ZrC(001) and VC(001) surfaces. Atomic oxygen is present on the carbide substrates after small doses of O2 at room temperature. At 500 K, the oxidation of the surfaces is fast and clear features for ZrO2 and VO2 are seen in the O(1s), Zr(3d), and V(2p3/2) core levels spectra, with an increase in the metal/carbon ratio of the samples. A big positive shift (1.3–1.6 eV) was detected for the C 1s core level in O/ZrC(001), indicating the existence of strong O ↔ C or C ↔ C interactions. A phenomenon corroborated by the results of first-principles calculations, which show a CZrZr hollow as the most stable site for the adsorption of O. Furthermore, the calculations also show that a C ↔ O exchange is exothermic on ZrC(001), and the displaced C atoms bond to CZrZr sites. In the O/ZrC(001) interface, the surface C atoms play a major role in determining the behavior of the system. In contrast, the adsorption of oxygen induces very minor changes in the C(1s) spectrum of VC(001). The O ↔ V interactions are stronger than the O ↔ Zr interactions, and O ↔ C interactions do not play a dominant role in the O/VC(001) interface. In this system, C ↔ O exchange is endothermic. VC(001) has a larger density of metal d states near the Fermi level than ZrC(001), but the rate of oxidation of VC(001) is slower. Therefore the O/ZrC(001) and O/VC(001) systems illustrate two different types of pathways for the oxidation of carbide surfaces.

DOI: 10.1103/PhysRevB.72.075427 PACS number(s): 68.43.-h, 81.05.Je, 82.45.Jn

I. INTRODUCTION

The early transition metals have a low cost and their compounds play a very important role in many areas of physics, chemistry, and materials science.1–8 Traditionally, the oxides have been the compounds with the largest number of technological applications,1,3,5,9–12 but in the last two decades carbides and nitrides are receiving a lot of attention.6–8,13–25 In broad terms, early transition metal carbides display a unique combination of the physical properties characteristic of noble metals and ceramics.6,7,25 Many early transition metal carbides are good electrical and thermal conductors while possessing ultrahardness and very high melting points.6,7 Furthermore, some of them are able to catalyze the transformation of hydrocarbons,8,26 the conversion of methane to synthesis gas,27,28 and desulfurization reactions.8,23,29

Typically, early transition metals are very reactive, are not stable under chemical environments containing light elements, and exhibit a tendency to form compounds (oxides, nitrides, sulfides, carbides, phosphides). The inclusion of C into the lattice of an early transition metal produces a substantial gain in stability and moderates the chemical reactivity of the system.14 Usually, the formation of metal-carbon bonds modifies the electronic properties of the metal, producing a decrease in its density of states near the Fermi level and a metal → carbon charge transfer.8,14,15,18,25 In these materials, the chemical bonding exhibits a mixed character.25,30–33 For example, the valence bands of VC show a strong hybridization of the V(3d) and C(2p) states as expected for a covalent compound,25,31 but there is, nevertheless, a rather large degree of ionicity in the V–C bonds with a positive Mulliken charge of ~1e on the V atoms.25 Among the carbides, the magnitude of the metal→carbon charge transfer increases following the VC<TiC<ZrC<TaC sequence, and there can be large variations in the relative density of the C(2p) and metal nd states near the Fermi level.25 These differences in the electronic properties can affect the chemical reactivity of these compounds.

The interaction of oxygen with surfaces of metal carbides is an important issue. The catalytic properties of metal-carbides can be drastically modified by adsorption of oxygen from the air or by reaction with O centers of oxide supports.8,26–29 In addition, oxygen also affects the performance of metal-carbide coatings used in the fabrication of mechanical and electronic devices.6,7,21,22 The generation of an oxide film on top of the carbide can lead to a degradation of the conductivity and hardness of the system.6,7 and oxo-carbides can have interesting physical properties on their own.7,8,22 Several experimental studies have investigated the interaction of oxygen with well-defined surfaces of metal carbides,21,22,34–36 but the microscopic or atomic details of the oxidation process are not fully understood. A key point is the relative importance of the oxygen→metal and oxygen→carbon interactions.21,22,36 Usually, it is assumed that the C sites of a metal carbide surface play a secondary or minor role in the chemical properties of the system,5,8,18
However, recent photoemission studies for O/TiC(001) point to the existence of strong oxygen-carbon interactions.21,36 A phenomenon corroborated by the results of first-principles density-functional (DF) calculations, which predict a CTiTi hollow as the most stable site for the adsorption of O.36 In contrast, data of high-resolution electron energy loss spectroscopy (HREELS) for O/VC(001) show the presence of V–O bonds and negligible oxygen-carbon interactions.21 The differences in the behavior of the O/TiC(001) and O/VC(001) systems could be a consequence of variations in the electronic properties of the metal carbides.21,25 In particular, one may wonder whether among the TM carbides, the behavior of O/TiC(001) is atypical or, on the contrary, it is to be expected. In this work, we use high-resolution photoemission and first-principles DF calculations to study the adsorption and reaction of oxygen with ZrC(001) and VC(001) surfaces. ZrC and VC are among the most extensively studied transition metal carbides.7,8,21,25,31 They adopt a cubic NaCl lattice,7,37 as TiC, and their (001) face contains the same number of metal and C atoms.

This paper is organized as follows. Section II gives a description of the technical details of the work, including the experimental and theoretical methods used. Section III presents synchrotron-based high-resolution photoemission spectra for a series of O/ZrC(001) and O/VC(001) systems, examining the effects of O adsorption on the carbon and metal surface atoms. In Sec. IV, density-functional calculations are used to examine the nature of the O–ZrC and O–VC bonds, and the energetics for the dissociation of O\textsubscript{2} and oxidation of the carbide surfaces is described in Sec. V. Finally, Sec. VI summarizes the main conclusions of the present work.

II. EXPERIMENTAL AND THEORETICAL METHODS

A. Photoemission and XPS experiments

The photoemission studies for the adsorption of oxygen on ZrC(001) and VC(001) were performed at the U7A beamline of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). This beamline is equipped with a conventional ultrahigh-vacuum (UHV) chamber (base pressure \(\sim 5 \times 10^{-10} \) Torr) that contains a hemispherical electron energy analyzer with multichannel detection, instrumentation for low-energy electron diffraction (LEED), a quadrupole mass spectrometer, and a dual anode Mg/Al K\(\alpha \) x-ray source.13,36 The photoemission spectra reported in Sec. III were recorded using photon energies of 380 eV for the Zr(3d) and C(1s) core levels or 625 eV for the O(1s) and V(2p) ones.13,36,38 At these photon energies the excited electrons had kinetic energies in the range of 85–200 eV and, therefore, photoemission probed only the composition of the first 2 to 3 layers of the sample. The overall instrumental energy resolution in the photoemission experiments was \(\sim 0.3 \) eV. The binding energy scale in the photoemission spectra was calibrated by the position of the Fermi edge in the valence region. Additional experiments of XPS were carried out at the Tokyo Institute of Technology (TTT) using an UHV chamber (base pressure \(\sim 1 \times 10^{-10} \) Torr) that has capabilities for this technique (Al K\(\alpha \) x-ray source, hemispherical electron energy analyzer) plus LEED and Auger electron spectroscopy (AES).13,36

The surfaces of the carbides were prepared at the TIT. Bulk crystals of ZrC and VC were aligned by x-ray diffraction, then cut to within 1\% of the desired crystallographic plane. The produced surfaces were polished with diamond paste down to a grit size of 0.15 \(\mu \)m. In the UHV chambers at BNL and the TIT, the ZrC(001) and VC(001) surfaces were mounted and cleaned following the methodology described in previous works.13,21,36 Surface impurities were removed by ion sputtering and the metal/carbon ratio was kept equal to one by exposing the sputtered surfaces to small amounts of C\textsubscript{2}H\textsubscript{2} or C\textsubscript{2}H\textsubscript{4} at 800–900 K. At these high temperatures the C from the hydrocarbons is incorporated into the lattice of the metal carbide and the hydrogen evolves into gas phase.8 The cleaning procedure led to a clear 1 \times 1 diffraction pattern in LEED and no surface impurities in photoemission or XPS. The crystal growers estimated stoichiometries of ZrC\textsubscript{0.96–0.99} and VC\textsubscript{0.97–0.99} for the bulk samples, and, after cleaning, our quantitative XPS results showed surfaces with essentially a Zr/C or V/C ratio of one.21,39 For surfaces prepared in this way, images of scanning tunneling microscopy (STM) give a square crystal lattice with terraces that are 480–710 \(\AA \) wide, separated by single and double step heights.39

Molecular oxygen (99.995\% purity) was dosed to the ZrC(001) and VC(001) surfaces at 300 or 500 K using dosing tubes with apertures located \(\sim 5 \) mm away from the sample. These dosing systems provided a large enhancement (>10 times) in the mass adsorbed with respect to dosing by backfilling the UHV chambers with O\textsubscript{2}. The reported exposures of O\textsubscript{2} are based on the direct ion gauge readings without correction for the enhancement factors of the dosers.

B. First-principles density functional calculations

In this work, periodic DF calculations were performed using three different computational packages—CASTEP, VASP, and DMOL3—to take advantage of special features of these codes. The level of theory used here has been quite useful in previous studies that deal with the electronic properties and structure of carbide surfaces,25,36 the dissociation of O\textsubscript{2} on TiC(001),36 and the bonding of small molecules to VC(001) and other carbide surfaces.13,23 With CASTEP,40,41 the valence electron densities were expanded in a plane wave basis set with \(k \)-vectors within a specified energy cutoff \((E_{\text{cut}}=400 \text{ eV in our case})\).13,23,36 Tightly bound core electrons were represented by nonlocal ultrasoft pseudopotentials of the Vanderbilt type.42 In the calculations with VASP,43 a plane-wave basis set was also used \((E_{\text{cut}}=415 \text{ eV})\) to expand the valence electronic states and the core electrons were represented by the projected augmented wave (PAW) method of Blöchl.44 Within the DMOL3 code, the wave functions were expanded in a basis set of localized atomic orbitals.45 In the DMOL3 calculations, all the electrons of C, O, Zr, and V were included and a numerical basis set of double-\(\zeta \) plus polarization quality was used to describe the valence orbitals of each element.23,45 The all-electron calculations with DMOL3
(DF-AE in our notation) required more computer time than the pseudopotential calculations with CASTEP (DF-PSP in our notation) or the frozen-core calculations with VASP (DF-PAW in our notation). Thus, DMOL calculations were used only to examine key systems, while a systematic theoretical study was carried out with CASTEP and VASP. By working with CASTEP, VASP, and DMOL, we were able to obtain a robust theoretical description for the O/ZrC(001) and O/VC(001) interfaces that was independent of the type of basis set used, of the approximation employed to treat the core electrons or the exchange-correlation potential used (see below).

Following previous works, we examined the bonding of O to the carbide surfaces using the generalized-gradient approximation (GGA) with the revised Perdew-Burke-Ernzerhof functional (RPBE), CASTEP and DMOL calculations, or the so-called Perdew-Wang functional (PW91), VASP calculations. Our main interest here is in bonding-energy variations when oxygen moves from one adsorption site to another on the ZrC(001) and VC(001) surfaces. DF calculations using the RPBE functional predicted an adsorption energy for CO on VC(001), 0.63 eV, which is within 0.15 eV of the experimental value, 0.49 eV, and gave a very good description of the bonding interactions of oxygen with TiC(001). Nevertheless, even if one expects the RPBE functional to provide adsorption energies closer to experiment than those obtained by the PW91 method, it has also been pointed out that it tends to lead to worse results for bulk properties like lattice parameters and bulk modulus.

Also, there are examples where the RPBE functional may even overcorrect adsorption energies, thus predicting incorrectly binding strengths. Therefore a comparison of results obtained using both PW91 and RPBE seems very convenient.

To model the ZrC(001) and VC(001) surfaces, we used the supercell approach, with a vacuum of 12 Å between the slabs. In test calculations with CASTEP, the adsorption of one monolayer of O on ZrC(001) was investigated employing eight-, six-, and four-layer slabs, obtaining almost identical results independently of the slab thickness. The CASTEP and VASP results reported in Sec. IV are for six- and four-layer slabs, respectively. A four-layer slab was also used in the all-electron calculations with the DMOL code. The adsorbed oxygen was set only on one side of the slabs. The geometry of the adsorbate and of the first two slab layers was completely relaxed in the DF calculations. The O coverage values are here reported with respect to the number of metal (M=Zr or V) atoms in the surface. Thus oxygen coverages of 1, 0.5, and 0.25 monolayer (ML) were modeled with the adlayer in \(p(1 \times 1) \), \(p(2 \times 1) \), and \(p(2 \times 2) \) arrays with respect to the lattice of Zr or V surface atoms. The adsorption energy of oxygen was defined as \(E_{\text{ad}} = E_{\text{MC}(001)} - E_{\text{MC}(001)} \), where \(E_{\text{O/VC}(001)} \) and \(E_{\text{O/ZrC}(001)} \) represent the total energies of the adsorbed system, the clean relaxed ZrC(001) or VC(001) surface, and that of a free O atom, respectively. Spin polarization was used for calculating atomic O or molecular \(O_2 \) in gas phase. After several tests, we found no need for spin polarization in calculations involving O/ZrC(001) and O/VC(001).

FIG. 1. Top panel: Variation of the intensity for the O(1s) signal for O/ZrC(001) and O/VC(001) as a function of the O2 dose at 500 K. Bottom panel: Effects of oxygen adsorption on the Zr(3d)/C(1s) and V(2p3/2)/C(1s) intensity ratios. The dosing of molecular oxygen was done at 500 K and all the data were acquired with the same electron energy analyzer. Error bars are also indicated.

III. OXYGEN ADSORPTION AND OXIDATION OF ZrC(001) AND VC(001): PHOTOEMISSION AND XPS STUDIES

The top panel in Fig. 1 shows the uptake of oxygen for ZrC(001) and VC(001) at 500 K. The data indicate that ZrC(001) is somewhat more reactive than VC(001). A similar trend was found when the dosing of \(O_2 \) was done at 300 K. The variation of the metal/carbon ratio as a function of \(O_2 \) exposure at 500 K is shown in the bottom panel of Fig. 1. The reported values were calculated using the total areas under the corresponding Zr(3d)/C(1s) and V(2p3/2)/C(1s) photoemission features, and essentially reflect changes that occur in the first 2 to 3 layers of the samples (see Sec. II A). As the amount of adsorbed oxygen rises, there is an increase in the metal/carbon ratio that can be interpreted as a loss of carbon from the surface due to the formation of gaseous COx species and the generation of oxide films.

Indeed, the photoemission results discussed below indicate that Zr–C or V–C bonds are being replaced by Zr–O or V–O bonds. We found that the loss of carbon was much larger at 500 K than at room temperature. Images of STM taken at the Tokyo Institute of Technology show that at room temperature the oxidation process is mainly localized at the step edges between
terraces of the surface. In contrast, at 500 K, there is also a substantial oxidation of regions within the wide terraces of the ZrC(001) and VC(001) samples. From the data in Fig. 1 we can conclude that the oxidation of ZrC(001) is faster than the oxidation of VC(001).

Figure 2 displays several O(1s) core-level spectra (hν =625 eV) taken after dosing molecular oxygen to ZrC(001) and VC(001) surfaces at room temperature and 500 K. The position observed for the O(1s) peak (531–528 eV) denotes the presence of atomic oxygen on/in the carbide surface/interface. In general, we found that at 300 or 500 K, O2 adsorbs dissociatively on both ZrC(001) and VC(001) surfaces. In Fig. 2, there is a shift toward lower binding energy in the centroid of the O(1s) features as the dosing temperature increases. This is clear for ZrC(001) and less evident for VC(001). Curve fitting,51 after a simple background subtraction, indicates that there were at least two types of oxygen species in the carbide samples. In the O/ZrC(001) systems, the O(1s) peak located at ~528.8 eV is close to the position observed in our instrument for ZrO2. Thus one could have ZrO2 species on the surface [O(1s) features toward lower binding energy] together with O atoms chemisorbed on ZrC [O(1s) features toward higher binding energy]. This is because, according to simple charge transfer arguments, O(1s) features in oxidelike species shift toward lower binding energy, although it is important to realize that other mechanisms do also affect core level shifts.52

In the case of O/VC(001), the O(1s) features toward lower binding energy probably correspond to VOx. This species has been detected in HREELS experiments for O/VC(001).21

The relative intensity of the O(1s) peaks in Fig. 2 clearly corroborates that the oxidation of the carbides proceeds faster at elevated temperatures and it is easier to oxidize ZrC(001). Again, this is also less apparent for VC(001).

The Zr(3d) core-level spectra (hν=380 eV) acquired before and after dosing O2 to ZrC(001) at 500 K are shown in the top panel of Fig. 3. The reaction with oxygen produced a line-shape change in the photoemission peaks and features appeared towards higher binding energy, consistent with the formation of ZrO2,38 even after dosing 100 L of O2 at 500 K. The V(2p3/2) core-level data (hν=625 eV) displayed in the bottom panel of Fig. 3 indicate the presence of VOx in the O/VC(001) system. The new O-induced V(2p3/2) features appear at 514.3 eV, well separated from the corresponding features of VC (513.1 eV), but not as deep in energy as the V(2p3/2) peaks reported for VO2 (515.8 eV) or V2O5 (517.0 eV).53,54

Previous XPS studies indicate that the C(1s) core level of TiC(001) is affected by the oxygen adsorption.21,36 This phe...
nomenon is easier to detect with synchrotron-based high-resolution photoemission than with standard XPS. In fact, at a photon energy of 380 eV, the emitted electrons have a kinetic energy of 90–95 eV and photoemission probes only the composition of the first 2 to 3 layers in the sample. Typically, results of high-resolution photoemission are shown in Fig. 4. The C(1s) spectrum for O/ZrC(001) exhibits a distinctive line shape with two strong peaks at 283.4 and 281.9 eV. The peak at 281.9 eV is close in binding energy to the single peak found for clean ZrC(001) at 281.7 eV. From the relative intensities of the two peaks it appears that, in O/ZrC(001), a very large fraction (~40%) of the C atoms near the surface has been perturbed by the presence of oxygen. In general, we found C(1s) shifts of 1.3–1.6 eV with respect to the main peak for the substrate. They point either to a strong interaction between O and C atoms (oxygen could be adsorbed directly on top of C sites) or to a O→C exchange which could take place in the surface (Zr→C bonds being replaced by Zr→O and C→C bonds). These two possibilities will be examined in Sec. IV using DF calculations. In Fig. 4, the C(1s) spectrum for O/VC(001) is characterized by essentially a single peak at 282.1 eV and a very small feature near 283.5 eV. For clean VC(001), the C(1s) peak shows up at 282.0 eV. Thus it appears that the O→C interactions are negligible in O/VC(001). The results of photoemission are consistent with data of HREELS for O/VC(001). The C(1s) spectra in Fig. 4 suggest a big difference in the mechanisms for the oxidation of ZrC(001) and VC(001). The first-principles calculations presented in the next section also corroborate this finding. The calculated ΔE’s for the oxidation processes indicate that two reaction paths are possible for the C→O exchange in O/ZrC(001), while only one is allowed in O/VC(001).

IV. OXYGEN ON ZrC(001) AND VC(001): DENSITY FUNCTIONAL STUDIES

A detailed theoretical study of the structural parameters for the clean ZrC(001) and VC(001) surfaces is presented elsewhere. Here, we only summarize the main features which are relevant to the present study. The DF results show some surface relaxation in the transition metal carbide surfaces: the topmost C atoms displace outward and the Zr or V atoms inward with respect to the truncated bulk atomic positions (see Fig. 5). Table I lists the calculated amplitudes for this rippling (R in Fig. 5). The three different methods used in this study, all electron (DF-AE) and pseudopotential (DF-PSP) or frozen-core (DF-PAW) calculations, indicate that the rippling is of ~0.07 Å in ZrC(001) and ~0.18 Å in VC(001). In general, these values are consistent with the results of other theoretical works. Rippling has been observed in several experimental and theoretical studies for metal carbide surfaces.

For the bulk carbides, recent DF calculations show a metal→carbon charge transfer (~1.3 e in ZrC and 1.0 e in VC). At the ZrC(001) and VC(001) surfaces, the metal atoms have a positive charge but the metal-carbon bonds still exhibit a strong covalent character with Zr and V atoms having a positive charge but the metal-carbon bonds still exhibit a strong covalent character with Zr and V atoms having a strong carbon character in the case of ZrC oxidation process. The highest occupied electronic states of the VC(001) surfaces suggests that they may play an important role in the oxidation process. The highest occupied electronic states have a strong carbon character in the case of ZrC(001), see top of Fig. 6, but in the case of VC(001) the extra electron in the valence band resides predominantly in a V(3d) level, bottom of the same figure. Thus on the basis of these structural analyses, the composition of the first 2 to 3 layers in the sample.

For a definition of the rippling (R) see Fig. 5.

<table>
<thead>
<tr>
<th></th>
<th>DF-PSP</th>
<th>DF-PAW</th>
<th>DF-AE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrC(001)</td>
<td>0.08</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td>VC(001)</td>
<td>0.19</td>
<td>0.17</td>
<td>0.17</td>
</tr>
</tbody>
</table>

aFor a definition of the rippling (R) see Fig. 5.
bCalculations using the RPBE functional, core pseudopotentials, and a plane wave basis set (DF-PSP).
cCalculations using the PW91 functional, core electrons represented by the projected augmented wave method, and a plane wave basis set (DF-PAW).
dCalculations using the RPBE functional, including all the electrons with a numerical basis set (DF-AE).

![FIG. 4. C(1s) photoemission data recorded after exposing ZrC(001) and VC(001) to O₂ at 500 K. A photon energy of 380 eV was used to excite the electrons.](image-url)

![FIG. 5. Side view of atomic displacements for the ZrC(001) and VC(001) surfaces (Ref. 25). The C atoms are represented as the darker gray spheres.](image-url)
adsorption sites of the ZrC/H₂O849 carbons and one metal atoms. The oxygen overlayer was in a low sites including either two metals and one carbon or two atoms, bridging metal and carbon atoms and threefold hol-

The results in Table II indicate that the oxygen coverage has a substantial effect on the oxygen adsorption energy. Such a phenomenon is more clearly seen in Fig. 8, which also includes the calculated Mulliken charges60 for O adsorbed on the carbide surfaces as a function of coverage (DF-PSP calculations). Due to its large electronegativity,61 oxygen withdraws electrons from the ZrC/H20849 and VC(001) surfaces.

TABLE II. Adsorption energy (eV) of O on ZrC(001) and VC(001): First-principles results.

<table>
<thead>
<tr>
<th></th>
<th>ZrC(001)</th>
<th></th>
<th>VC(001)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DF-PSP</td>
<td>DF-PAW</td>
<td>DF-AE</td>
</tr>
<tr>
<td>C/M/M hollow a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ₀=0.25 ML</td>
<td>−5.73</td>
<td>−6.45</td>
<td>−5.60</td>
</tr>
<tr>
<td>0.5 ML</td>
<td>−4.87</td>
<td>−6.36</td>
<td>−4.68</td>
</tr>
<tr>
<td>1.0 ML</td>
<td>−4.36</td>
<td>−6.30</td>
<td>−4.31</td>
</tr>
<tr>
<td>a-top M²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ₀=0.25 ML</td>
<td>−3.23</td>
<td>−3.48</td>
<td>−3.31</td>
</tr>
<tr>
<td>0.5 ML</td>
<td>−2.92</td>
<td>−3.27</td>
<td>−3.17</td>
</tr>
<tr>
<td>1.0 ML</td>
<td>−2.16</td>
<td>−2.49</td>
<td>−C/MM</td>
</tr>
</tbody>
</table>

aM is Zr or V.

Due to its large electronegativity, oxygen withdraws electrons from the ZrC/H20849 and VC(001) surfaces as a function of coverage (DF-PSP calculations). Due to its large electronegativity, oxygen withdraws electrons from the ZrC/H20849 and VC(001) surfaces as a function of coverage (DF-PSP calculations).
surfaces. This is consistent with experimental measurements that show an increase in the work function of the carbide surfaces upon the bonding of oxygen.39 There is a limit in the number of electrons that the carbide surfaces can provide to an adsorbate, and as the oxygen coverage increases there is a reduction in the negative charge on the individual O adatoms. Another effect that probably reduces the amount of charge transfer for higher coverages is the Coulomb repulsion among the adsorbates. The reduction of the carbide → oxygen charge transfer is accompanied by a weakening of the bonding interactions between the adsorbate and the surface, but there is not a linear relationship between the magnitude of the charge transfer and the strength of the adsorption bond. This reflects the strong covalent character in the O–ZrC and O–VC bonds.

V. OXIDATION OF ZrC(001) AND VC(001): DENSITY FUNCTIONAL STUDIES

The photoemission spectra described in Sec. III indicate that the adsorption of oxygen can lead to oxidation of the ZrC(001) and VC(001) systems. Using DF-PSP calculations we investigated the energetics of the reactions associated

| TABLE III. Bond distances of O (in Å) on ZrC(001) and VC(001): First-principles results. a |
|---------------------------------|-----------------|-----------------|
| | O–Zr | O–C |
| | O–V | O–C |
| CMM hollow b | | |
| θ_0 = 0.25 ML | 2.28 (2.24) | 1.40 (1.42) |
| 0.5 ML | 2.29 (2.26) | 1.42 (1.41) |
| 1.0 ML | 2.29 (2.28) | 1.43 (1.41) |
| a-top M b | | |
| θ_0 = 0.25 ML | 1.81 (1.87) | 1.63 (1.61) |
| 0.5 ML | 1.83 (1.87) | 1.64 (1.60) |
| 1.0 ML | 1.82 (1.86) | 1.65 (1.63) |

a Calculations using the RPBE functional, pseudopotentials, and a plane wave basis set (DF-PSP). Results obtained from the PW91 functional, PAW cores and a plane wave basis set (DF-PAW) are given in parenthesis.

b M is Zr or V.

FIG. 7. Most stable configuration for an O atom on the ZrC(001) surface. Black (red in the web) spheres represent the adsorbate, which is bonded to one C atom (represented as dark gray spheres) and two Zr atoms (represented as light gray spheres).

FIG. 8. Effect of oxygen coverage on the calculated DF-PSP adsorption energy and charge of oxygen in O/ZrC(001), solid lines with filled symbols, and O/VC(001), dashed lines with empty symbols.
with the oxidation process. In our analysis, only stable initial or final structures were considered and our conclusions will be purely based in thermodynamic arguments and not on kinetics. In a first step, O adatoms could replace the C atoms present in the carbide surfaces. Our DF-PSP calculations indicate that the relaxed geometry arising from this simple exchange of positions between O and C is an exothermic reaction on ZrC(001), $\Delta E = -0.68$ eV at $\theta_O = 0.25$ ML and -0.44 eV at 0.5 ML, with the displaced carbon moving to a CZrZr site and forming a C–C bond (see Fig. 9). In the case of O/VC(001), the DF-PSP calculations predict that a simple C\leftrightarrowO exchange is an endothermic process, $\Delta E = 0.57$ eV at $\theta_O = 0.25$ ML and 0.73 eV at 0.5 ML. This trend is fully confirmed by the DF-PAW calculations. On the basis of the DF calculations, it is clear that the adsorption of O should have a minor impact on the C(1s) spectrum of VC(001), as observed in the photoemission data of Fig. 4. On the other hand, the theoretical results indicate that O adsorption should induce extra features in the C(1s) spectrum of ZrC(001) as a consequence of O–C bonding or the C–C bonding produced by the C\leftrightarrowO exchange. A proper and detailed assignment of the C(1s) features observed in the experimental spectra requires a further analysis which exceeds the scope of the present work. Nevertheless, the experimental and theoretical studies show an important difference in the mechanism for the oxidation of ZrC(001) and VC(001).

The reaction shown in Fig. 9 leads to oxidation of the carbide without changing the relative concentration of oxygen and carbon in the O/ZrC(001) interface. In principle, the C atoms displaced from the surface could react with O adatoms to form gaseous CO$_x$ species. This is a convenient hypothesis to explain the increase in the Zr(3d)/C(1s) intensity ratio seen in photoemission (bottom panel in Fig. 1). Thus, in the system of Fig. 9(a), the O and C could combine to generate adsorbed CO, see Fig. 10. We found that this reaction pathway was highly endothermic on ZrC(001) and VC(001). For these surfaces, the removal of carbon by a single oxygen atom is essentially impossible. The system in Fig. 10 is unstable due to the presence of C vacancies in the carbide surface. These vacancies can be avoided if the oxygen coverage is large. In the reaction scheme of Fig. 11, two O atoms work in a cooperative way to remove one C atom from the surface. In the $p(2 \times 2)$ cell of Fig. 11(a), there are two O adatoms. One of the oxygen atoms can become embedded into the carbide surface and the displaced carbon reacts with the second oxygen to form adsorbed CO [Fig. 11(b), $\Delta E = -1.26$ eV for ZrC(001) and -0.98 eV for VC(001), DF-PSP]. In the final step [Fig. 11(c)], the CO molecule desorbs [$\Delta E = 0.4$ eV for ZrC(001) and 0.6 eV for VC(001), DF-PSP] leaving behind an oxidized system with a larger metal/carbon ratio than in stoichiometric ZrC(001) or VC(001). The adsorption energies of CO on the oxidized carbides are close to those calculated and measured experimentally for CO on pure VC(001), -0.6 and -0.5 eV,23,48 respectively. The CO molecule is not stable on the VC(001) surface at temperatures above 250 K and, thus, it could not be detected in the photoemission experiments of Figs. 2 and 4.

The results of the DF calculations indicate that the two pathways for the oxidation of the carbide surfaces

\[\text{O/MC}(001) \rightarrow \text{C/MC}_{1-x}\text{O}_x(001), \] \[\text{O/MC}(001) \rightarrow \text{MC}_{1-x}\text{O}_x(001) + \text{CO(gas)} \]

are more exothermic for ZrC than for VC, a fact consistent with the trends observed in the photoemission data. The C(1s) spectra and the calculated ΔE’s indicate that pathway (1) plays a minor role during the oxidation of VC(001). For this oxidation process the formation of CO is essential. In VC(001) the C atoms protrude from the surface more than the C atoms in ZrC(001), see Table I. This structural difference does not have a major effect on the chemical behavior of the carbide surfaces, which seems to be determined by their electronic properties, see Fig. 6.

By extrapolating from the behavior found for metal oxides,13,10 it is frequently assumed that the metal centers in carbide surfaces carry out “the chemistry” and the C centers are simple spectators.7,8,26 The type of interactions seen in the O/VC(001) interface are consistent with this assumption, since the C sites in the VC(001) substrate do not play a predominant role in the bonding of O and are not efficient for the bonding of the C adatoms produced by a C\leftrightarrowO exchange. Interestingly, a comparison of the electronic proper-
the metal centers
dicates that the carbide surface with the larger density-of-metal
ZrC
the structures of Figs. 7 and 9, the O or C adatoms are si-
overcome the chemical deficiencies of the metal centers. In
spheres denote Zr or V atoms.

FIG. 11. (Color online) Formation of CO in a O/ZrC(001) or
O/VC(001) interface. In the initial state (a), 0.5 ML of O atoms are
located on CMM hollow sites of the surface (M=Zr or V). Each
unit cell contains two oxygen atoms. Then, one of the oxygens
inserts into the surface and the other forms CO with the displaced
carbon (b). In the final step (c), the CO has desorbed from the
surface. The O atoms are shown as black (red on the web) spheres.
The C atoms are represented as dark gray spheres, while light gray
spheres denote Zr or V atoms.

ties and chemical behaviors of ZrC(001) and VC(001) indi-
cates that the carbide surface with the larger density-of-metal
d states near the Fermi level or the smaller positive charge on
the metal centers (VC) is not necessary the more reactive. In
ZrC(001), the C atoms are not simple spectators and help to
overcome the chemical deficiencies of the metal centers. In
the structures of Figs. 7 and 9, the O or C adatoms are si-
multaneously bonded to C and metal surface atoms. A similar
phenomenon was seen previously for the O/TiC(001) interface. In contrast, preliminary DF calculations for the
O/TaC(001) system show a behavior similar in many as-
pects to that described above for O/VC(001). Thus the
O/ZrC(001) and O/VC(001) interfaces illustrate different
types of phenomena that can occur during the oxidation of
carbide surfaces.

VI. SUMMARY AND CONCLUSIONS

High-resolution photoemission and first-principles
density-functional slab calculations were used to study the
interaction of oxygen with ZrC(001) and VC(001) surfaces.
Atomic oxygen is present on the carbide substrates after
small doses of O2 at room temperature. At 500 K, the oxida-
tion of the surfaces is fast and clear features for ZrO2, or VOx
are seen in the O(1s), Zr(3d), and V(2p3/2) spectra, with an
increase in the metal/carbon ratio of the samples. In spite of
the substantial oxidation of ZrC(001) and VC(001), no signal
was seen for the formation ZrO2, VO2, and V2O5.

A big positive shift (1.3–1.6 eV) was detected for the C
1s core level in O/ZrC(001), indicating the existence of
strong O ↔ C or C ↔ O interactions, a phenomenon corrobo-
rated by the results of first-principles calculations, which
show a CZrZr hollow as the most stable site for the adsorp-
tion of O. Furthermore, the calculations also show that a
C ↔ O exchange is exothermic on ZrC(001), and the dis-
placed C atoms bond to CZrZr sites. In the O/ZrC(001)
interface, the surface C atoms play a major role in determin-
ing the behavior of the system.

The adsorption of oxygen induces very minor changes in
the C(1s) spectrum of VC(001). The O ↔ V interactions are
stronger than the O ↔ Zr interactions, and O ↔ C interactions
do not play a dominant role in the O/VC(001) interface. In
this system a C ↔ O exchange is endothermic. VC(001) has a
larger density-of-metal d states near the Fermi level than
ZrC(001), but the rate of oxidation of VC(001) is slower. The
O/ZrC(001) and O/VC(001) systems show two different
kinds of mechanisms for the oxidation of carbide surfaces.
The mechanism for the removal of a C atom from
ZrC(001) or VC(001) as CO gas involves a minimum of two O
adatoms. One to take the place of the carbon in the sur-
f ace, and the other for the generation of CO. Due to the high
stability of ZrC(001) and VC(001), an O adatom alone can-
not induce the creation of a surface C vacancy through the
formation of CO.

ACKNOWLEDGMENTS

The research carried out at Brookhaven National Labora-
tory was supported by the U.S. Department of Energy
(Chemical Sciences Division, DE-AC02-98CH10886). The
National Synchrotron Light Source (NSLS) is supported by
the Divisions of Chemical and Materials Science of the U.S.
Department of Energy. J. Gomes and K. Nakamura thank the
Fundação para a Ciência e Tecnologia (Lisbon), the Euro-
pean Union, and the Nippon Foundation for Materials Sci-
ence for research grants that made possible travel to the
NSLS and part of the research carried out in Portugal and Japan. Financial support by the Spanish DGICYT (Grant BQU2002-04029-C02-01) and, in part, by Generalitat de Catalunya Grants 2001SGR-00043 and Distinció de la Generalitat de Catalunya per a la Promoció de la Recerca Universitària (F.I.) is also acknowledged. Computer time has been provided by CESCA, CEPBA, and CIRI supercomputer centers.
62 F. Viñes, C. Sousa, P. Liu, J. A. Rodriguez, and F. Illas (to be published).