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Theab initio cluster model approach has been used to study the origin of the magnetic coupling in La2CuO4
and, also, its pressure dependence. Use of different cluster models and differentab initio wave functions
permits the identification of the three leading mechanisms of magnetic coupling. These are the delocalization
of the magnetic orbitals into the anion ‘‘p’’ band, the electronic correlation effects, and the collective effects
hidden in the two-body operator of the Heisenberg Hamiltonian. The first two mechanisms are almost equally
important and account for 80% of the experimental magnetic coupling constant value, the remaining 20%
being due to the third effect. For the pressure dependence we predictJ}r2n with n'8.4 in agreement with
experiment. Surprisingly enough these mechanisms are exactly the same previously found for KNiF3 but with
different contributions to the value of the magnetic coupling constant.

I. INTRODUCTION

The discovery of high-Tc cuprate superconductors has
largely stimulated the study of their stoichiometric parent
compounds. One of the main characteristics of these fasci-
nating compounds is their large antiferromagnetic coupling.
The experimental value for the magnetic coupling constant,
J, of La2CuO4 is of '130 meV,1–4 or about 14 times larger
than that reported for the isostructural K2NiF4 crystal.

5 The
pressure dependence ofJ for La2CuO4 follows a J}r2n

power law as in many other perovskite related compounds
but with n56.460.8 ~Ref. 6! whereasn'12 has been re-
ported for K2NiF4 and KNiF3.

7

In spite of the large body of literature dealing with the
electronic structure and magnetic order of La2CuO4, the ori-
gin of the largeJ value and of its dependence with the pres-
sure is still a matter of controversy. It is well known that the
widely used standard local-density approximation~LDA !
fails to reproduce the antiferromagnetic ground state of par-
ent undoped materials.8 In the LDA framework, it is neces-
sary to explicitly introduce some corrections to properly re-
produce the antiferromagnetic ordering of La2CuO4. Among
the several possibilities we mention the self-interaction cor-
rection ~SIC! either on cluster models9 or extended
systems,10 and the so-called on-site Coulomb interactionU
correction.11–13 However, even after considering these cor-
rections, the physical mechanism of antiferromagnetism is
unclear. In fact, LDA1SIC or LDA1U antiferromagnetic
ground states are obtained by forcing a spin-polarized, or
unrestricted Hartree-Fock, solution which is not an eigen-
function of the Ŝ2 spin operator. Moreover, the magnetic
coupling constantJ cannot be easily calculated and the com-
parison with experiment is done by considering the calcu-
lated magnetic moment which is, in turn, usually computed
in a very poor way; i.e., as the difference betweena andb d
populations9 as obtained from the Mulliken population
analysis. We must advert, however, that this population par-

tition is arbitrary and may lead to very unrealistic results.14

The difficulties encountered in the LDA approaches de-
scribed above prompted many authors to model the elec-
tronic structure of La2CuO4 and related materials using
model Hamiltonians. In these approaches the model Hamil-
tonian is usually written in second quantized form and only
some terms are explicitly introduced. Among these models
we can quote the well-known single-band Hubbard model or
the three-band one introduced by Emery15 to explain the
electronic structure of the high-Tc superconductors. These
models have been widely used in solid state physics and, in
particular, to describe the electronic structure of supercon-
ducting cuprates. A possible weak point of these models is
that the parameters entering into the definition of the model
Hamiltonian cannot be directly obtained from the model it-
self, and are usually estimated from experiment. In some
cases, special limiting situations are considered to obtain
analytical solutions for these model Hamiltonians. A detailed
study of the three-band model in the ‘‘realistic’’ region of the
parameters has been reported recently.16 In both, single-band
and three-band models, perturbation theory is often used to
obtain the magnetic coupling constant. In the first case, and
up to second order, one obtains theJ54t2/U expression
corresponding to the original Anderson superexchange
theory.17 Here t andU are the hopping integral and the on-
site interaction parameters of the Hubbard model Hamil-
tonian. For the Emery model Eskes and Jefferson have car-
ried perturbation theory up to fifth order.18 These authors
claim that fourth order is not enough and suggest that thetpp
~or oxygen-oxygen hopping! term, appearing precisely at the
fifth order, is responsible for a large part~;2

3! of the total
exchange interaction. As commented above, the values oft
andU ~or tpp! cannot be predicted by the Hamiltonian mod-
els approaches and their values constitute an external input to
the theoretical model.

In contrast with the LDA~LDA1SIC or LDA1U! or
model Hamiltonian based approaches the traditionalab initio

PHYSICAL REVIEW B 1 JANUARY 1996-IIVOLUME 53, NUMBER 2

530163-1829/96/53~2!/945~7!/$06.00 945 © 1996 The American Physical Society



methods of quantum chemistry~Hartree-Fock self-consistent
field, single- or multiconfigurational, wave functions fol-
lowed by a suitable configuration interaction expansion! are
of general applicability to either atoms, molecules, clusters,
or solids. The full electronic Hamiltonian is considered and
all electrons~or all valence electrons! are explicitly contem-
plated. The second quantized form of theab initio electronic
Hamiltonian is, of course, very similar to that of the current
model Hamiltonians. It contains a sum of one- and two-
electron operators with matrix elements which, contrary to
the model Hamiltonian approaches, are explicitly calculated
with the aid of a finite basis set describing the atomic orbit-
als. It might be claimed that the basis set is again an external
input. Notice that basis sets are also directly obtained from
ab initio atomic calculations and they can be systematically
improved with the only limitation being computer capability.
Once all the integrals are calculated the eigenfunctions of the
Hamiltonian are approximately obtained using variational or
perturbational methods or both~See for instance Refs. 19
and 20!. In other words, in theab initio approaches there are
no parameters external to the theoretical model and, more
importantly, for a given problem they allow the identification
of the leading physical terms and permit a theoretical esti-
mate of the parameters entering into a possible model Hamil-
tonian. The power of such an approach to the study of ex-
tended systems has been shown in a series of recent works
by Lepetitet al.21–25

In the case of superconductor cupratesab initio methods
properly predict that in La2CuO4 the antiferromagnetic spin
coupling is the lowest electronic state. Also, if a finite cluster
model is used, they permit the direct calculation ofJ as the
difference between calculated energies corresponding to dif-
ferent spin eigenstates. In fact, theab initio cluster model
approach was applied to La2CuO4 by Guoet al.

26 who used
a @Cu2O11#

182 cluster model surrounded by point charges and
a generalized valence bond~GVB! ab initio wave function.
The GVB calculations correctly predict La2CuO4 to be anti-
ferromagnetically coupled and aJ value of 36 meV. A simi-
lar approach and an identical cluster model has been used
recently by Martin.27–29The calculated value ofJ being 38
meV at the GVB level and 70 meV after explicit inclusion of
electron correlation through a configuration interaction in-
cluding all single and double excitations, i.e., a SDCI wave
function. These results show the capability of theab initio
cluster model approach to properly predict the antiferromag-
netic ground state of La2CuO4 and related materials. How-
ever, none of these works has explored the origin of the
calculatedJ value.

The aim of this work is, precisely, a detailed investigation
of the physical origin of antiferromagnetism in La2CuO4. We
will rely on theoretical techniques30 and specifically de-
signed first principles, orab initio, cluster model wave func-
tions, similar to those used in Refs. 30–33. These wave func-
tions are based on the well-known configuration interaction
~CI! approach. Our theoretical techniques permit us to sepa-
rately investigate the different contributions toJ and to iden-
tify the leading mechanisms of antiferromagnetic coupling.
In particular, we will show that there is nothing mysterious in
the antiferromagnetic coupling of La2CuO4. Our theoretical
analysis will univocally show that the leading terms are es-
sentially the same as those that have been recently shown to

originate antiferromagnetism in the much less fashioned
KNiF3 compound.

30–33Also, we will show that our approach
allows us to predict a rather accurate value for the magnetic
coupling constant and illustrate the quantitative importance
of each physical effect.

II. CLUSTER MODELS AND COMPUTATIONAL DETAILS

To investigate the different contributions to the antiferro-
magnetic coupling in La2CuO4 we use three different finite
cluster models andab initio wave functions which explicitly
include the instantaneous electron-electron interactions.
These clusters have two metal atoms and differ in the num-
ber of ligands. The first cluster is@Cu2O#21 and includes only
the oxygen bridging the two magnetic centers. Our second
model, @Cu2O7#

102, adds all the oxygen atoms in the CuO2
plane and finally, we consider the@Cu2O11#

182 model, which
also includes the apical oxygens. These clusters are further
surrounded by an appropriate set of'700 point charges to
account for the Madelung potential. A schematic representa-
tion of these models is given in Fig. 1.

The Cu and O atoms of the above described clusters are
explicitly included in theab initio calculations, each of the
four La31 cations surrounding the central oxygen are repre-
sented by a pseudopotential without basis set, and the num-
ber of electrons considered is that corresponding to the for-
mal Cu21 and O22 ions. The three cluster models share the
common characteristic of having two possible magnetic cen-
ters. In fact, for a fully ionic situation the electronic ground
state of each Cu21 cation corresponds to ad9 configuration.
Because of the crystal-field splitting, the hole is mainly lo-
cated in thedx22y2 atomic orbital. Therefore, each Cu

21 cat-

FIG. 1. Schematic representation of the~a! @Cu2O#21, ~b!
@Cu2O7#

102, and~c! @Cu2O11#
182 cluster models of La2CuO4.
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ion can be considered as a particle with spinS51
2.

In order to establish a link between theab initio cluster
model approach and the usual solid state physics approach
let us now assume that the interaction of these two1

2-spin
particles can be modeled by a Heisenberg Hamiltonian,

Ĥ5JŜ1Ŝ2 . ~1!

It is easy to show that for the states with zero totalSz spin
components there are two combinations that are eigenfunc-
tions of Ĥ and of theŜ2 spin operator. These two spin states
have spin eigenvalues of 2 and 0 a.u., respectively. In the
first case, the two12-spin states have been ferromagnetically
coupled throughĤ ~and/orŜ2! and the corresponding state,
uT&, has triplet multiplicity. In the second case, the coupling
is antiferromagnetic and the final state,uS&, is a singlet.
Moreover, one can readily show that

E~ uS&!2E~ uT&!5J. ~2!

If we now turn back to theab initio cluster model approach
we will realize that the magnetic coupling constantJ corre-
sponding to our cluster models is simply the energy differ-
ence between the cluster analogs of these two spin states
~See Refs. 30–33!. It must be adverted that covalence may
change the above description~vide infra!.

To computeJ we first constructab initio wave functions
for the singlet and triplet states. Following the strategy used
in our early study of antiferromagnetism in KNiF3 ~Refs.
30–33! we first obtain a set of one-electron functions, or
molecular orbitals. This is done by performing a restricted
open-shell Hartree-Fock~ROHF! calculation for the triplet
state. The self-consistent field~SCF! ROHF wave function is
obtained by using the LCAO approach in which the molecu-
lar orbitals are obtained as linear combinations of atomic
orbitals which, in turn, are represented by a set of fixed
Gaussian-type orbitals. Here, we use nonempirical pseudo-
potentials to describe the@Ar#, @He#, @Xe# cores of Cu, O,
and La atoms, respectively. The valence orbitals of Cu have
been described using a@3s,3p,5d/2s,2p,3d# basis set. For
the cluster central oxygen we use a@6s,6p,1d/3s,3p,1d# ba-
sis set. For the remaining oxygens we use two different basis
sets. The first one is a minimal basis set contraction of the
~6s,6p! primitive set; this@6s,6p/1s,1p# basis will be re-
ferred to as basis 1. In our previous study of magnetic inter-
actions in KNiF3 we have shown that increasing the basis set
of noncentral ligands had a very small effect. However, it is
well known that KNiF3 is a highly ionic compound33 while
in La2CuO4 the situation is less clear. This prompted us to
extend the ligands basis set to double-z quality in all the
noncentral cluster oxygen atoms; this augmented@6s,6p/
2s,2p# basis will be referred to as basis 2. From the set of
self-consistent one-electron functions corresponding to the
triplet state complete active space configuration interaction
wave functions~CASCI! are constructed for the triplet and
for the singlet using the two combinations of the open-shell
dx22y2 orbitals as active. We have to be precise in stressing
that by construction the CASCI wave function is invariant
with respect to any unitary transformation on the active or-
bitals, i.e., localized versus delocalized magnetic orbitals.
Also, notice that the CASCI wave function already includes

a part of the electronic correlation energy; the so-called non-
dynamical or internal correlation energy.34,35

In the present case the CAS only involves two electrons in
two active orbitals. Moreover, due to theD2h symmetry
point group exhibited by the different cluster models, the two
active orbitals are the symmetric~a1g! and antisymmetric
~b1u! combinations of thedx22y2 orbitals of each of the two
Cu cluster atoms. Therefore, the CASCI contains four Slater
determinants with totalSz50. These determinants may be
indicated as

u•••~a1ga!~b1ub!&, ~3!

u•••~a1gb!~b1ua!&, ~4!

u•••~a1ga!~a1gb!&, ~5!

u•••~b1ua!~b1ub!&. ~6!

Now, notice that determinants~5! and~6! are ofA1g symme-
try and can mix through configuration interaction~CI! lead-
ing to two singlet1A1g states. It is rather simple to show that
the lowest1A1g state corresponds precisely to the antiferro-
magnetic coupling of the unpaired electrons. In fact, if the
SCF a1g and b1u orbitals obtained for the triplet state are
localized to near atomicdx22y2 orbitals on each Cu

21 cation,
the lowest1A1g state appears largely dominated by the ‘‘neu-
tral’’ determinants with one unpaired electron on each cation
and antiferromagnetically coupled. However, because of the
configuration-interaction mixing it also contains the so-
called ‘‘ionic’’ situations with tend electrons in one Cu clus-
ter atom and eightd electrons in the other one. This non-
trivial CI mixing makes an important contribution to the
magnetic coupling constant and it is the only way to describe
the magnetic coupling in a delocalized, symmetry-adapted
description. This is why Guoet al.26 claim that restricted
~closed-shell! Hartree-Fock wave functions; i.e., determinant
~5! alone, is inadequate to study the magnetic coupling and
the simplest description requires a two-configuration wave
function @See also Ref. 29~b!#. Determinants~3! and~4! lead
to 1B1u and

3B1u electronic states. The
3B1u state represents

the ferromagnetic coupling of the two unpaired spins and, as
commented above, is the one used to obtain the molecular
orbitals. Therefore, the lowest1A1g and the3B1u states are
precisely those to be used in Eq.~2! to obtain the magnetic
coupling constant. Finally, notice that in a localized approach
the highest1A1g and the1B1u states correspond to physical
situations dominated by the ‘‘ionic’’ determinants.

Two different methods have been used to introduce elec-
tronic correlation effects not included in CASCI wave func-
tions. In both cases we consider single and double excita-
tions that contribute to the triplet-singlet energy difference
up to the second order. A list of all many-body diagrams
contributing to the energy difference up to second order may
be found in Ref. 36. In the first method, hereafter referred to
as CAS12nd, the terms entering into the second-order dia-
grammatic expansion of the triplet-singlet energy difference
are evaluated perturbatively up to second order. In the sec-
ond method, CAS1VAR, the contribution of these terms is
taken into account up to infinite order, i.e., by diagonaliza-
tion of the corresponding CI Hamiltonian matrix. It is impor-
tant to note that, for Cu2O11, the total number of Slater de-
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terminants generated by allowing all single and double
excitations out of the CASCI reference wave function is of
'83106. However, use of diagrammatic techniques permits
us to show that only'104 contributes to the triplet-singlet
energy difference. A detailed description of these theoretical
approaches is given in Refs. 30–38.

III. RESULTS AND DISCUSSION

It is interesting to note that the singlet antiferromagnetic
coupling is found to be the ground state for all cluster models
and at all theoretical levels. A summary of the calculatedJ
values obtained from theab initio singlet and triplet energies
and making use of Eq.~2! is reported in Table I. According
to these results all the theoretical approaches employed in the
present work are able to predict that La2CuO4 exhibits an
antiferromagnetic ordering. However, in the forthcoming dis-
cussion we will show that the extent of antiferromagnetic
coupling is very sensible to the level of computation.

First, let us consider the CASCI results. The fact that the
J value for the Cu2O7 and Cu2O11 is very similar indicates
that the main effect is due to the in-plane oxygen anions.
Moreover, the value for the larger clusters is really different
than that of the simplest Cu2O one. This is a clear indication
that at the CASCI level theJ value is dominated by the
delocalization of the active magnetic orbitals into the oxygen
2p band. To prove that this is the case we have computed the
CASCI value ofJ of Cu2O11 using three different sets of
orbitals~using basis 2!. These sets of orbitals are sequentially
obtained by using the constrained space orbital variation
~CSOV! method.39–41The CSOV method allows one to ob-
tain the restricted open-shell Hartree-Fock~ROHF! calcula-
tion for the triplet state but with some artificial constraints.
One may for instance prevent the covalent mixing or the
intraunit polarization by switching some interactions on or
off. To carry out a CSOV calculation one needs first the
orbitals of two separate fragments. Here we consider the
@Cu2#

41 and @O11#
222 units and carry out separate Hartree-

Fock calculations for each unit. For the Cu2O11 we then con-
struct a first set of orbitals by simply superimposing the
separately calculated Hartree-Fock electronic densities of the
@Cu2#

41 and@O11#
222 units. Notice that at this step there is no

variational freedom, the orbitals are simply those of the two
interacting units properly orthogonalized and are kept frozen.
The resulting wave function, for the triplet state, corresponds
to a fully ionic description where electrostatic attraction and
Pauli repulsion is accounted for, but where no intraunit po-
larization nor interunit donation has occurred. We will refer
to this wave function as the frozen orbital~FO! wave func-

tion. In the second set we start the variational process from
the FO wave function and now allow the closed-shell orbitals
of the two units to mix with each other and to the virtual
orbitals but maintaining the two open-shell orbitals fixed as
they are in the@Cu2#

41 unit. This variation introduces both
intraunit polarizations and interunit donations but, as men-
tioned above, does not allow the open-shell orbitals to vary.
Notice that in the two sets of orbitals just described, the
magnetic moment of each Cu21 cation is forced, by construc-
tion, to be 1mB . To obtain the third set of orbitals we remove
the remaining constraints of the variational process and the
resulting wave function is simply the unconstrained ROHF
one.

Using the three sets of orbitals described above we have
constructed the CASCI wave functions and obtained the en-
ergies for the singlet and triplet states. TheJ values obtained
from the different CASCI wave functions, corresponding to
each orbital set, are 4.03, 4.43, and 35.01 meV. This result
strongly suggests that one of the leading physical mecha-
nisms of the magnetic coupling in La2CuO4 is precisely the
delocalization of the magnetic orbitals. In terms of the Hub-
bard Hamiltonian this effect may be effectively included into
the t hopping integral. It is worth pointing out that this result
shows that the reduction of the magnetic moment from 1mB
to the experimentally measured value 0.4mB ~Ref. 42! is due
to covalent mixing. This reduction is precisely responsible
for the enhancement of theJ value. This is in agreement with
previous LDA1SIC calculations10 but here we can further
identify the origin of this reduction and show that the exist-
ence of a magnetic moment in the cations is not enough to
understand the magnitude of the magnetic coupling constant.
The importance of delocalization into the oxygenp band has
also been pointed out by several authors. For instance, ac-
cording to model Hamiltonian approaches the large value for
J is largely due to a large Cu-O hybridization.43,44Our con-
clusion is on the line of these previous investigations but
here it arises in a natural way; without any previous assump-
tion. Moreover, the present approach permits us to quantify
the importance of this Cu-O hybridization. If it is not taken
into account that the compound is predicted to be antiferro-
magnetic but withJ'5 meV whereas covalent mixing of the
magnetic orbitals with thep orbitals of the oxygen bridging
the two copper ions leads toJ'10 meV and covalent mixing
with all the oxygen neighbors leads toJ'35 meV. Also, we
can see that only the oxygen ions in the Cu-O2 planes are of
importance. This fact has been generally assumed; the
presentab initio cluster model calculations add further sup-
port to this interpretation.

The results discussed hitherto do not include the contribu-
tion of external electronic correlation to the magnetic cou-
pling constant. This is because the complete active space
does only include the two active orbitals and excitations ei-
ther from the active orbitals to the virtual external space,
from the inactive occupied to the external virtual space, or
from the inactive occupied to the active space are not con-
sidered. However, second-order many-body perturbation
theory shows that the excitations commented above contrib-
ute to the triplet-singlet energy difference and, hence, to the
magnetic coupling constant.45 These effects are explicitly
considered in the CAS12nd and CAS1VAR calculations.
Results on Table I show that both, CAS12nd and CAS

TABLE I. Calculated values of the magnetic coupling constantJ
~meV! for different cluster models and different levels of theory
~see text!.

Cluster model Basis set CASCI CAS12nd CAS1VAR

Cu2O 1 10.35 22.58 25.36
Cu2O7 1 35.12 83.09 86.99

2 33.87 88.73 91.21
Cu2O11 1 34.18 84.14 93.39

2 35.01 88.79 97.58
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1VAR, largely improve the CASCI calculatedJ. These cal-
culated values are about two times larger than those obtained
from the CASCI wave function. This clearly shows that elec-
tronic correlation is a second physical mechanism which
must be taken into account to properly describeJ. At this
level of theory the present values are in very good agreement
with those reported by Martin using a very similar computa-
tional approach.27–29Our best value is 97.6 meV to be com-
pared with the 83 meV as reported by Martin.27–29

The large effect of electronic correlation may also be un-
derstood in the framework of the Hubbard Hamiltonian. In
fact, since in the Hubbard approach one findsJ54t2/U, in-
troduction of the electronic correlation will decrease the on-
siteU interaction which is overestimated at the Hartree-Fock
level of theory, thus leading to a largerJ. Our analyses also
show that, if the CASCI is taken as a zero-order wave func-
tion, the second-order contributions are the leading terms.
Here, we must point out that the importance of correlation
has been pervading all the literature on the cuprate supercon-
ductors and one may wonder what is the novelty of the
present result. Again, we emphasize that our approach allows
us to quantify the importance of this physical mechanism
from anab initio point of view. In the study of the electronic
structure of cuprates, correlation effects have been almost
exclusively treated in the framework of model
Hamiltonians.16,46,47 Our estimation of the importance of
electronic correlation contribution toJ is obtained from the
exact nonrelativistic Hamiltonian and, therefore, without
making reference to the importance of any term entering into
the definition of the electronic Hamiltonian. In the present
work, the terms explicitly considered are, of course, those
already defined in Anderson’s original work.17 Here we
present a model to compute these terms from a first-
principles-parameter-free point of view. The terms entering
into the second-order energy difference may be represented
by the habitual many-body perturbation theory diagrams.
Use of diagrammatic techniques permits us to univocally
find the appropriate second-order contributions.36 The
presentab initio approach enabled us to conclude that'50%
of the value ofJ is precisely due to the electronic correlation
effects. This conclusion can hardly be obtained from a model
Hamiltonian approach. Moreover, our approach may help to
define the parameters entering into these Hamiltonians.

Using a computational model that explicitly includes the
best possible description of both physical effects, magnetic
orbital delocalization and electronic correlation, one obtains
a J calculated value of 97.6 meV or'80% of the experi-
mental quantity. We must mention that our calculated value
represents the best up-to-dateab initio estimation ofJ. Also,
we notice that using similar cluster models andab initio
wave functions, the level of accuracy reached for La2CuO4 is
much better than that reported for KNiF3. This is simply
because La2CuO4 is effectively a two-dimensional~2D! mag-
netic system48 whereas KNiF3 exhibits a 3D magnetic order-
ing. The difference between our value and the experimental
value can be assigned to the collective effects which are
hidden in the two-body effective operator of the Heisenberg
Hamiltonian. In fact, the Heisenberg picture contains only
two-body operators where the real systems contain many
body terms. Moreover, our model systems do not include the
non-nearest-neighbor exchange interactions. Therefore, there

are two effects that are missing in our models. These are
precisely collective effects due to the fact that each magnetic
center is interacting simultaneously with four in-plane mag-
netic centers and the next-nearest-neighbor exchange inter-
actions. Previous results concerning antiferromagnetism in
KNiF3 ~Refs. 30–32! and, also, semiempirical calculations
on La2CuO4 ~Ref. 49! suggest that two-center models are not
enough for a quantitative description ofJ. The presentab
initio results reinforce this idea.

The results presented so far indicate a close similarity
between the mechanism of magnetic coupling in KNiF3 and
La2CuO4. In order to further illustrate this point we will
consider the variation ofJ with the external pressure. In the
high-pressure Raman-scattering experiments of Aronson
et al.6 a J'r2n relationship between the magnetic coupling
constantJ and the Cu-O distancer is proposed. This pres-
sure dependence can also be simulated in theab initio cluster
model calculations by simply computingJ for the Cu2O11
cluster model at different values of the lattice parameters; in
a range similar to that used in the experimental work. Fol-
lowing the experimental work we have plotted logJ versus
logr ~Fig. 2!. For both computational approaches, CASCI
and CAS12nd, the resulting plot is linear and the slope is
n'9.7 ~CASCI! or 8.4 ~CAS12nd! whereas the experimen-
tal value is 5.6,n,7.2.6 The calculated value is somehow
larger but the important point is that theab initio cluster
model approach is able to predict a power law of the type
J}r2n in agreement with experiment. The pressure depen-
dence ofJ has been also briefly discussed by Eskes and
Jefferson.18 These authors justify the experimental pressure
dependence by using a fifth-order perturbation expansion of
the Emery three-band model, assuming that onlytpd vary
significantly withr , thattpp'tpd

2/3 and a given set of param-
eters. Once again, we must bring up the fact that the present
approach permits us to predict the pressure dependence from
anab initio approach. Our model calculations also permit us
to differentiate then values corresponding to KNiF3 and

FIG. 2. Representation of loguJu versus logr for the Cu2O11
cluster model as obtained from CASCI~* ! and CAS12nd ~1! cal-
culation.
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La2CuO4. In fact, the calculated value for KNiF3 was
n'11.4 ~Ref. 50! against an experimental value ofn'12.7

This is an extremely important point because it shows that
the same approach, with no empirical parameters and with-
out any other modification, can be used to explain the differ-
ent magnetic behavior of different compounds.

IV. CONCLUSIONS

The previous discussion has shown that theab initio clus-
ter model approach can be effectively used to gain under-
standing on the mechanism of magnetic coupling in ionic
solids. According to the present approach there are two im-
portant mechanisms contributing to the largeJ value of
La2CuO4. These are the covalent mixing of the magnetic
orbitals into the anion ‘‘p’’ band and the external correlation
effects involving simultaneous processes in the magnetic
centers and neighbor ions, i.e., double-spin polarization,
charge-transfer, or kinetic exchange polarization terms which
are only included when the wave function goes beyond the
CASCI approach. These two mechanisms have been found to
almost equally contribute to the final calculatedJ value. The
prominence of the two mechanisms has been recognized for
a long time but the quantitative importance of each one was
not previously known. Likewise, the pressure dependence of
J has been analyzed and we have been able to show that,
although many algebraic fits are possible, the experimental
behavior may be deduced fromab initio considerations only,

the J'r2n experimental law appearing as a natural conse-
quence of the electronic structure.

Also, we have shown that the physical origin of magne-
tism in KNiF3 and La2CuO4 is essentially the same. The only
important difference concerns the role of collective effects
which is larger for KNiF3 due to its three-dimensional mag-
netic behavior. In our opinion, the fact that the origin of
magnetic coupling in these two compounds is so similar is an
important conclusion which has not been recognized previ-
ously.

Finally, we would like to remark that the presentab initio
approach is of general applicability. It may be used for any
existing or hypothetical compound without any previous
knowledge of its electronic structure or related properties. It
permits the identification of the quantitative importance of
different contributions to the magnetic coupling constant and
may help to defineab initio parameters to be used in model
Hamiltonian based approaches.
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46H. -B. Schlüter and A. J. Fedro, Phys. Rev. B45, 7588~1992!.
47J. H. Jefferson, H. Eskes, and L. F. Feiner, Phys. Rev. B45, 7959

~1992!.
48G. Shirane, Y. Endoh, R. J. Birgeneau, M. A. Kastner, Y. Hidaka,

M. Oda, M. Suzuki, and T. Murukami, Phys. Rev. Lett.59, 1613
~1987!.

49Y. J. Wang, M. D. Newton, and J. W. Davenport, Phys. Rev. B46,
11 935~1992!.

50J. Casanovas and F. Illas, J. Chem. Phys.101, 7683~1994!.

53 951ORIGIN OF MAGNETIC COUPLING IN La2CuO4


