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In non-coordinating solvents, borane was shown to be an 
efficient directing group for the stereoselective 1,2-addition of 
organolithium reagents to P-stereogenic N-phosphanylimines. 
Selectivity was reversed in coordinating solvents. This process 
can lead to novel ligand scaffolds for asymmetric catalysis.  

 The development of more efficient chiral ligands, especially those 

containing new chiral skeletons, is a key issue in the field of 

asymmetric catalysis.1 Our group has recently described the synthesis 

of optically pure borane-protected amino-phosphane 1 as a valuable 

P*-building block for ligand synthesis.2 In this regard, the tert-

butylmethylphosphane fragment is of particular interest because of 

the high steric bias provided by the alkyl groups attached to 

phosphorus.3 With the aim to selectively build novel carbon skeletons 

around aminophosphane 1, we focused on the stereoselective 

addition of organometallic reagents to type II N-phosphanylimines 

(Scheme 1). 

 In this context, Ellman and co-workers reported that the tert-

butanesulfinyl group provides excellent stereocontrol upon the 

addition of Grignard reagents to the corresponding aldimines.4 Also, 

Colobert showed that P-stereogenic N-phosphinoylaldimines 

undergo 1,2-addition with moderate selectivity (Scheme 2).5 In both 

cases, a six-membered transition state in which the oxygen atom acts 

as a directing group with coordination to magnesium is invoked to 

explain the selectivity. Unlike these examples, aldimine II does not 

bear a directing oxygen group but rather a borane-protecting group. 

The latter is a desirable feature when the resulting phosphane has to 

be further used as ligand in metal catalysis;6 however, its role as 

directing group in the 1,2-addition of organometallic reagents is 

unprecedented.7  

 Here we report that borane is in fact an efficient directing group in 

the stereoselective 1,2-addition of organolithium reagents to type II 
aldimines. In addition, we describe the solvent effect encountered in 

this process and how this reaction selectively leads to novel ligands for 

asymmetric metal-catalysis.  

 

 

 
Scheme  1  Borane  tert‐Butyl methyl  aminophosphane  1  and  its  corresponding 

aldimine. 

 

 
Scheme 2 Stereoselective 1,2‐additions to sulfinyl and phosphanoyl aldimines. 

 

 The synthesis of imines derived from (+)-1 was first attempted 

unsuccessfully by a condensation reaction with several aldehydes 

using Ti(OiPr)4, Ti(OEt)4 or TiCl4 as Lewis acid and water scavenger in 
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THF or toluene solvent. Finally, microwave-promoted condensation 

using neat Ti(OEt)4 produced the desired imines in a reproducible 

manner in moderate yields (Scheme 3). Aldimines 2, 3 and 4 were 

obtained as single E isomers, as shown by 1H NMR of the crude reaction 

mixture and X-ray analysis.8 In the 1H NMR spectra, the resulting 

aldimines showed a sharp H–C= resonance between 9.0 and 9.2 ppm, 

with a JP coupling constant of 26–27 Hz.  

 

 

 
Scheme 3. Stereoselective 1,2‐additions to sulfinyl and phosphanoyl aldimines. 

 

 With the optically pure imines in hand, we next studied their 

reaction with MeMgBr and MeLi. As a model substrate we took imine 

2 (Table 1). Reaction of 2 with methylmagnesium bromide in 

dichloromethane (DCM) did not provide a reaction product, even at 

room temperature, and starting material was recovered (Table 1, 

entries 1 and 2). In contrast, the reaction of 2 with methyllithium (3 

equiv.) in DCM at –78 ºC provided the desired 1,2-addition product in 

a 98:2 diastereomeric ratio (Table 1, Entry 3). The major diastereomer 

5a showed the relative SP,S configuration (vide infra). Increasing the 

amount of MeLi improved the yield, achieving 95% (Table 1, entry 4). 

The use of toluene as solvent slightly reduced the selectivity to 92:8 dr 

(Table 1, entry 5). Most remarkably, the use of a coordinating solvent 

like THF produced an inversion in selectivity (29:71 dr), and the major 

isomer was now 5b with the SP,R configuration (Table 1, entry 6). 

Reaction in 1,2-dimethoxyethane (DME) or diethylether provided 

almost a 1:1 mixture of diastereomers (Table 1, entries 7 and 8). Finally, 

the use of THF with lithium-cation scavengers like 18-crown-16 or 

TMEDA gave similar results to those achieved with THF alone (Table 1, 

entries 9 and 10). The present results contrast with those of Ellman and 

Colobert, who described that the best reagents for the stereoselective 

addition to sulfinyl and phosphanoyl aldimines were Grignard 

reagents and that alkyllithium reagents provided low 

stereoselectivity.4,5 The solvent effect observed in the stereochemical 

outcome of the present system is remarkable. A reversal of the facial 

selectivity has also been described for the addition of ArLi vs. ArMgX 

reagents to tert-Butanesulfinyl aldimines, however, the selectivities 

observed are generally lower.9 

 

 To assess the scope of the 1,2-addition process, imines 2-4 were 

treated with various alkyl and aryllithium reagents in DCM and THF 

solvents (Scheme 4). Addition of MeLi to thiophenyl and 

naphthylimines 3 and 4 in DCM took place with excellent yield and 

produced isomers 6a and 7a with 98:2 and 97:3 dr respectively. The 

opposite isomers 6b and 7b were obtained when the reaction was 

conducted in THF; however, with lower selectivity (37:67 and 25:75 dr). 

The solvent effect was even more marked when the imines were 

reacted with n-BuLi. Addition of n-BuLi to imine 2 in DCM yielded 98:2 

dr of 8a while in THF a notable 12:88 dr was obtained. In the case of 

thiophenylimine 3, the selectivity was reversed for compounds 9a and 

9b; 90:10 dr in DCM and 10:90 in THF. Finally, addition of phenyllithium 

was the most (SP,S)-selective of all the 1,2-additions studied. Thus, 

when the reaction was run in DCM, compounds 10a and 11a were 

obtained basically as pure diastereomers, as determined by 1H NMR 

spectroscopy. However, in THF, the selectivity was almost 1:1 and the 

inversion of selectivity was not observed.  

 

 

Table 1. Solvent-dependent 1,2-addition of organometallic reagents to 2. 

Entry  Reagent Solvent Yield 
(%)a 

drb

(5a/5b) 

1 MeMgBr (3eq.)c DCM NR - 
2 MeMgBr (3 eq.)d    DCM NR - 
3 MeLi (3 eq.)c DCM 88 98:2 
4 MeLi (5 eq.)c DCM 95 98:2 
5 MeLi (5 eq.)c Toluene 97 92:8 
6 MeLi (5 eq.)c THF 90 29:71 
7 MeLi (5 eq.)c 1,2-DME 82 41:59 
8 MeLi (5 eq.)c Et2O 63 43:57 
9 MeLi (5 eq.)c THF/18-crown-6 85 27:73 
10 MeLi (5 eq.)c THF/TMEDA 90 32:68 

a) Yields refer to an isolated mixture of diastereomers. b) Determined by 1H 
NMR of crude mixtures. c) Reaction run at –78 ºC. d) Reaction run at room 
temperature. 

 
Scheme  4.  1,2‐Addition  of  organometallic  reagents  to  imines  2,  3  and  4 with 

several R‐Li reagents. 

 

 To demonstrate the utility of this process for the synthesis of chiral 

ligands for coordination chemistry and catalysis, compound 10a was 

deprotected and coordinated to iridium (Scheme 5). For this purpose, 
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optically pure aminophosphane (RP,R)-10a was treated with 

diazabicyclo[2.2.2]octane (DABCO) in toluene at 100ºC and 

subsequently reacted with [Ir(cod)Cl]2 to produce the chloro-iridium 

complex 12 in 63% yield. Chloride abstraction of 12 with NaBArF led 

to the cationic Ir-complex 13 (61%), in which the thiophene sulfur 

atom is chelated to the metal center. Single crystals of 13 suitable for 

X-ray analysis were obtained by hexane/DCM layering. The solved 

crystal structure of 13 is depicted in Figure 1. The X-ray structure of 13 

allowed us to confirm that the relative stereochemistry obtained for 

the 1,2-addition of organolithium reagents to type II aldimines is 

(SP,S)/(RP,R) when DCM is used as solvent.  

 

 
Scheme 5. Synthesis of a cationic iridium complex from compound (R,R)‐9a. 

 

 
Figure 1. X‐ray  structure of  Ir‐complex 13.  Inclusion CH2Cl2 molecule and BArF 

counterion are omitted for clarity. Selected distances (Å) and angles: P–Ir 2.295, 

S–Ir 2.356, P–Ir–S 86.3º. 

 

 The stereochemical outcome of the 1,2-addition of organolithium 

reagents to P-stereogenic borane-aldimines in non-coordinated 

solvents like DCM is consistent with a cyclic transition state in which 

the BH3 group acts as directing group by coordination to lithium 

(Figure 2). This implies a distorted chair-like transition state in which 

the borane group is coordinated in a 2 binding mode to lithium. BH3-

Li interactions are known both in the solid state and in solution.10 The 

typical Li···B distance in 2-BHn-Li contacts is around 2.38-2.47Å,11 

which is considerably longer than that found in S=O···Li (1.83-1.93Å)12 

and P=O···Li (1.83-1.91Å)13 contacts. However, the longer distance 

between the directing group and the attacking organometallic 

reagent does not imply a reduction in selectivity.  

The reversed selectivity observed in coordinating solvents like THF 

may be explained by the disruption of the chelated transition state 

due to solvent coordination to Li and the attack of the R-Li reagent to 

the less hindered face of the E-imine (Figure 2). The lone pair of the 

imine will be positioned anti to the negatively charged BH3 group to 

avoid electronic repulsion.14 In this conformation, since the pro-S face 

of the imine is blocked by the bulky tert-butyl group, the attack of the 

organolithium reagent takes place preferably at the pro-R face, thus 

leading to the SP,R diastereomer.  

 

 
Figure 2. Mechanistic proposal. 

 

 In summary, we have shown that the 1,2-addition of 

organolithium reagents to borane P-stereogenic N-phosphanylimines 

is a highly stereoselective process. In non-coordinating solvents, the 

BH3 moiety proved to be an effective directing group that binds to the 

Li atom in a chair-like cyclic transition state, leading to selectivities up 

to >99:1 dr. In coordinating solvents like THF, a remarkable reversal of 

the selectivity was observed. Finally, we have demonstrated that the 

present methodology has the capacity to produce novel chiral ligands 

for coordination chemistry and catalysis. The results in this area will be 

reported in due time.  
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