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We propose a short-range generalization ofgkspin interaction spin-glass model. The model is well suited

to test the idea that an entropy collapse is at the bottom line of the dynamical singularity encountered in
structural glasses. The model is studied in three dimensions through Monte Carlo simulations, which put in
evidence fragile glass behavior with stretched exponential relaxation and super-Arrhenius behavior of the
relaxation time. Our data are in favor of a Vogel-Fulcher behavior of the relaxation time, related to an entropy
collapse at the Kauzmann temperature. We, however, encounter difficulties analogous to those found in ex-
perimental systems when extrapolating thermodynamical data at low temperatures. We study the spin-glass
susceptibility, investigating the behavior of the correlation length in the system. We find that the increase of the
relaxation time is accompanied by a very slow growth of the correlation length. We discuss the scaling
properties of off-equilibrium dynamics in the glassy regime, finding qualitative agreement with the mean-field
theory.[S0163-182006)04137-9

I. INTRODUCTION displayed’ This points in the direction that common mecha-
nisms could lead to the glassy behavior of disordered and
The glassy state is very common in natlifdlhen it is  nondisordered systems.
reached from the liquid phase, lowering the temperature, one The simplest example in which the Gibbs—Di Marzio col-
finds a dramatic increase of the relaxation time, and offlapse occurs is the random energy model of Detfidad is
equilibrium phenomena cannot be avoided on experimentad common feature to all systems with a ‘“discontinuous
time scales. This leads to a nonanalytic behavior of the therglassy transition” or, technically, “one-step replica symme-
modynamic quantities, with a “transition temperature” that try breaking,” where the Edwards-Anderson param@éten-
depends on the cooling rate. Despite its ubiquity, the basidergoes a discontinuity Examples of such models are the
mechanisms underlying the common features, as well as tHeotts glass modéf. the p-spin interaction modef} and a
peculiarities of the glassy behavior in different systems, arénodel of manifolds in a disordered media with short-range
yet to be clarified. correlated disordef* This class of systems has been pro-
One of the most suggestive ideas in the glass theory, prggosed by Kirkpatrick, Thirumalai, and Wolynes as simple
posed a long time ago by Gibbs and Di MarZicelates the toy models for the structural glass transitfbhlotably, the
increase of the relaxation time and the observed finite timstudy of the Langevin dynamics of the spherical version of
singularities to the existence of a thermodynamic transitiorthese models shows that there the mode coupling theisry
at the Kauzmann temperature where the configurational erexact, and displays a dynamical singularity of kind B in the
tropy collapses to zerbSoon after, in a refinement of the Gotze classificatior® In fact, recent progress in the compre-
argument, Adams and Gibbsrgued in favor of a Vogel- hension of the dynamics of mean-field disordered systéms
Fulcher singularity in the relaxation time. allowed for an extension of the mode coupling theory to the
Disordered systems have been proposed as paradigmatitoken ergodicity phasé:*’
models in which glassy phenomena can be studied in a nut- Many studie$*®1°72%%have pointed out the existence of
shell and theoretical ideas tested on microscopic mddelsa temperaturd, where, despite the fact that no singularity
This is due to the fact that in disordered systems, the glasdg observed in the free energy, there is a statical breaking of
state already appears in mean-field theory. The natural separgodicity into an exponentially large number of metastable
ration of the variables among “quenched” and “annealed” states. A thermodynamic singularity is present at a tempera-
allows for the successful use of powerful techniques such asire Tc smaller tharl, . As a genuine mean-field theory, the
the replica method for static dynamiaand functional meth- mode coupling theory neglects the activatedople) pro-
ods in dynamicé.In fact, a satisfactory mean-field theory of cesses that in finite-dimensional systems are responsible for
disordered systems for statias well as for equilibriuthand  the decay of metastable states in a finite time. Kirkpatrick
off-equilibrium dynamics exist5® Recently, examples of and Wolynes have recently stressed how the inclusion of
mean-field deterministic models with glassy behavior verythese processes can restore ergodicityTigT<Tp, and
similar to the one of disordered systems have beemive rise to a generalized Vogel-Fulcher singularity at the
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static transition temperatur€..* The argument has been ables with zero mean and unit variance. Note that, in generic
confirmed and refined by Parisi with a theoretical calculationdimension, the model isotinvariant under &2 gauge trans-
based on the pot(_antial theo_ry in spin glas?g_es. _ - formation as it would be if the spins were located on the
~The aim of this paper is to test this idea in a finite- links (instead of on the verticg®f the plaguettes. Thanks to
dimensional disordered model where metastable statesis, there is no Elitzur theorem preventing nonzero global
Should be present, but destablllzed by aCt|Vated process%der paramete@_ In fact there are ndocal Symmetry Op_
Multisite interaction models have been proposed as simpl@rations, leavingd invariant?” However, the Hamiltonian is
example(;s where the glass transition scenario could bgariant under the contemporary inversion of all the spins
gbiervi .b fldnh partlcdgladr r§<|sker,_ _Rleger_, ang Ithat belong to any hyperplane of dimensbn-1 orthogonal
>C fecd‘?” ery avehgtﬁ é.e Iat retl—:--splnflntteracthn tngo €0 one of the Cartesian axes. It is easy to check that these
IN Oneé dimension which displays glassy features in the a operations do not change the sign of any of the plaquettes.
sence of disorder. In Sec. Il we study a flnlte-dlmensmnafF . . .
. ) . he degeneracy due to this symmefpjane inversion sym-
model analogous to the-spin interaction model in the case ; i oDL_(D-1)
metry in the following is 2 , and can be removed,

p=4 in a simple cubic lattice. A similap-spin interaction . : : :
model, but with the spins located in a face-centered-cubi€ 9" fixing the spins on the Cartesian axes to arbitrary val-

lattice, has been already studied by Riefete believe UES: Thi; exponentially Iarge dege_neracy of the states is also
that, as usual, the mean-field limit is recovered for high di-Present in the ferromagnetic version of the modei€1).
mensionality. In Sec. Il we study the thermodynamics in theWe think that this could lead to a very interesting spinodal
high-temperature regime through Monte Carlo simulationsdynamics, above the lower critical dimensi@h=2. We
which demonstrate that the model behaves as a fragile glaseoncentrate here on the disordered model, leaving the study
A second aspect of our work concerns the off-equilibriumof the dynamics of the ferromagnetic case for future work. A
dynamics deep in the glassy phase. There, the properties t#rromagnetic model with four-spin interactions at the verti-
the system depend on the thermal history, and time translaes of plaquettes was studied in connection with random
tion invariance does not hofd. The off-equilibrium mode surfaces physic€ In that case also pair interactions that
coupling theory predicts scaling relations and a definite patremoved the plane inversion symmetry where present in the
tern of violation of the Kubo fluctuation-dissipation relation. Hamiltonian. The static properties of the pure case in cubic
In Sec. IV we study the dynamics in this regime, showing theising lattices with four-spin interactions has been also inves-
consistency of the aforementioned scenario. Finally, the Contigated by Mouritsen, Frank, and Mukanf@IBut in this last
clusions are drawn. case the plaquettes corresponded to different tetrahedra of
the three-dimensional lattice while in our case the plaquettes
Il. THE MODEL are simply the faces of the cubic lattice.
In the limit of infinite dimension, where the number of

; 0,13; : ;
The p-spin model®*3is defined by the long-range Hamil- plaguettes to which a spin belongs tends to infinity, one can

tonian expect that, modulo the symmetry, the model is equivalent to
1N the mean-fielp-spin model forp=4. Models with different

H=— > iy 00O, O (1)  P’s could be easily constructed for other lattices; e.g., the
i1<ip<---<ip P casep=3 would correspond to a triangular latti€eAlso

where the couplings), , ; are independent Gaussian the equivalent of t_he Bethe lattice for pairv_visg intera_ctions
) . 12 p . has been generalized to the case of phspin interaction
variables  with zero mean and variance ., 5 qel3t
ST ip=p!/(2prl)- The spinso, i=1,... N can be It is worth at this point to present a brief qualitative re-
taken as Ising variables or as real variables subjected to thdéew of the results of the mean-field theory, based on the
spherical constrainE!\ ,o?=N.!® The casep=2, which  Hamiltonian(1).**** The study of the thermodynamics of
corresponds to the Sherrington-Kirkpatrick model, has &his system leads to the following results. At high tempera-
glassy transition with continuous order parametard will ~ tures the system is paramagnetic and ergodic. At a tempera-
not be considered in this paper. Foe3 both in the Ising ture Tp the ergodicity breaks down, and an exponentially
and in the spherical cases the transition is discontinuous, arldrge numberexgdN(T)]) of pure stategergodic compo-
the properties of the model are the ones of interest in thigients separated by barriers of ordércontribute to the par-
paper. As a finite-dimensional model analogous to the moddition function of typical sample$.This transition occurs
(1) in the casep=4 we take a spin system with interacting without singularities in the free energy, which is equal to the
Ising spinso; arranged on the sites of B-dimensional free energy per statef,, plus an entropic contribution
square lattice with periodic boundary conditions. The Hamil-— T2 (T) coming from the multiplicity. The quantit¥,, the
tonian is defined as configurational entropy, is a decreasing function of the tem-
perature, and at a temperatre<Tp vanishes. AfT: there
_ is a thermodynamic phase transition with singularities in the
H= _é ‘]Dile_[D i @ free energy.

On the other hand, the study of the large-time dynamics
where the sums runs over all the plaqueffésf the lattice.  after a sudden quench from high temperature shows that the
Each spin belongs to #] plaguettes. Each plaguetfé |arge-time limit of various dynamical quantities is nonana-
gives a contribution-JqIl; .noi=Jgo o5 050y, where  Iytic at Tp. Below that temperature the system fails to
the variables) are chosen as independent Gaussian variequilibrate, and relaxes to a value of the energy extensively
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B‘,..-'“""' ] FIG. 1. The energy as a function of the tem-
w w b perature for different cooling rates It is appar-
LB r 1 ent the calorimetric glass transition around
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equal to the ones of higher states present. This singularity is lll. THERMODYNAMICS
,:ﬁgf; to the ergodicity breaking found in mode coupling In order to investigate the questions posed in the previous

sections, we have performed Monte Carlo simulations of the

X i fnodel in three dimensions, using a standard serial single
states that dominate the thermodynamics amibp@ndTc  gpin-flip heat-bath algorithm. The signature of glassy behav-

are destabilized by activated processes, and the singularity {gy is easily seen in simulations of cooling experiments. In
the dynamics afl, is suppressed. The characteristic timeFig. 1 we plot the energy as a function of the temperature for
scale 7 for these processes to restore ergodicity has beegifferent cooling rates. We clearly see a change of behavior
recently estimated in Potts-glass models using heuristic acorresponding to a jump of the specific heat arolire0.7,

guments by Kirkpatrick and Wolynésand substantiated us- where the system fails to reach equilibrium within the obser-
ing a droplet argument in replica space by P&Adihey find  vation time. The inset shows that the “transition tempera-

a generalized Adam-Gibbs relation of the kind ture” as well as the value of the energy at which the system
freezes is dependent on the cooling rate. Since we expect the
T~exp( C ) 3) equilibrium entropy to be the relevant quantity for the tran-
T2(T)?)’ sition, we integrated the high-temperature energy daté in

) i ) to get the entropy, taking into account data fr@w 0.01 up
whereC is a constant ang=D —1. As the configurational . B=1.
entropy vanishes linearly nedi;, Eq. (3) results in a gen- In Fig. 2 we present the results of this operation, together
eralized Vogel-Fulcher law~exdC/(T—Tc)”]. The value  ith some rational function fits of the data points. The func-

y=2in D=3 is at variance with the usual valye=1 used  {jona| form that we have chosen to fit that data are
to fit the experimental data. However, in the case of the

present model the value of=D—1 in Eq. (3) should be In(2)+ap? In(2) +ap?
lowered due to the plane inversion symmetry. We do not  S1(B)= T p57 b SZ(ﬁ):—1+b2,82+b4ﬁ4' (4)
know if this would result iny=D—2, and we leave the

investigation of this point for future work. As a matter of 07

fact, simple(and trivia) results are obtained for the statics in
D=2. In that case, one can show that in the high-
temperature expansion only diagrams involving a number of 0.5
spins proportional td. or higher, and hence irrelevant for

L—, are present. Accordingly the free energy per spin is ¢ o4 ;
found to be 03 | 3
F=-T [ = o~ P12l 2cosiB) ol -
=-— —1exp(— n[2cos . ]

\/ZT 0.1

We will see that the relaxation time follows a simple Arrhen-
ius law in this case. The lowest dimension at which one can
expect nontrivial thermodynamical results is=3, where
one can see that frustration is present. The study of the prop- FiG. 2. The high-temperature entropgata were collected for
erties of the three-dimensional model through Monte Carlane sample with lattice size=10) vs the inverse temperature,
simulations and the comparison with the results of the theoryogether with the rational fits mentioned in the test. The fitting
will be the subjects of the rest of this paper. Some results foparameters are, respectively, for thgands, forms a= —0.302,
the two-dimensional case will also be mentioned. b=1.866 anda=—0.039,b,=2.060,b,=1.550.
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C(t)=exd — (t/7)°]. (5)

As shown in Fig. 3 our data are fairly well fitted by the
previous relaxation law all along the relaxation.

From that fit we are able to extract the temperature-
dependent relaxation timgT) and the exponerti(T). The
behavior of these parameters as a function of the temperature
is depicted in Fig. 4. The relaxation time is consistent with a
Vogel-Fulcher law of the kindr=AexdB/(T—Tgy)], with
To=0.63,A=0.27, andB=5.1 (solid line in Fig. 4. But,
analogously with what happens with experimental data, it is
also well fitted by a zero-temperature singularity of the type
r=AexpB/T?, with A=0.67 and B=11.5. A four-
parameter fit of the formr=AexdB/(T—Ty)”] fits the data

FIG. 3. The correlation function for various temperatures:with y=1.01, while putting by hang=2 as in Eq/(3) leads
T=2.8 (), andT=2.4 (X), T=2.0 (Aup), T=1.6 (O), and  to T,=0.001. The indication of a thermodynamic transition
T=1.2 (+). The lines are stretched exponential fits. by the divergence of the relaxation timeTatis supported by

the fact that it is in the range of temperatures where the
Even functions ofg have been chosen coherently with the extrapolated entropy vanishes. The exporieris also de-
fact that the high-temperature expansionSobnly contains  picted in the inset of Fig. 4. It appears to be linear with the
even powers of3. The fits are roughly of the same quality at temperature and of order 0.5 in the low-temperature phase.
high temperature and are both consistent with the entropynfortunately we have no evidence stronger than this in fa-
collapse scenario. Extrapolating at low temperature, one cavor of the finite-temperature singularity. The best we can say
estimate the point where the entropy vanishes to be in this that our numerical data are consistent with the glass tran-
range 0.%T.<0.6. This range of temperatures should notsition scenario as much as laboratory experiments on glasses
be considered as more than a mere indication of what couldive support to this singularitgwith the difference that labo-
happen. First of all, the extrapolation at low temperatures byatory experiments can explore a larger window of time than
means of the function§4) is highly arbitrary. Second, we in the numerical experimentsHowever, the picture we get
expect only theconfigurational entropy, and not the total is coherent with the theoretical relation between the relax-
entropy (which take an intrastate contributiprto vanish at ation time and the configurational entropy. We have related
the transition. The impossibility of disentangling the two the two quantities as suggested by E3). In Fig. 5 we plot
contributions adds incertitude to the critical temperature esthe logarithm of the relaxation time versus the inverse en-
timate. However, both the mean-field theory and the off-tropy, and we see that the data fall quite well on a straight
equilibrium dynamics of Sec. IV suggest that in all the low- line, indicating the validity of Eq(3) with y=1. This linear
temperature region the Edwards-Anderson parameter is closelation is again consitent with a small value of the intrastate
to 1; correspondingly, the intrastate entropy is rather smallentropy, which could be estimated of the order of
and possibly much smaller than the configurational one no§,=0.04, a value obtained from the extrapolation of the fit
too close toT,.. in Fig. 5 to7— .

Coherent information is obtained from the study of the It is worth at this point to mention the results of an analo-
equilibrium dynamics at high temperatures. The analysis ofjous analysis for the two-dimensional system, where the
the autocorrelation functio(t) =(o(t)o(0)) shows how thermodynamics is trivial. Simulations performed in that
the relaxation follows a stretched exponential law of the typecase indicate that also iD=2 there exists a low-

0.1

c)

0.001

10* —
1000
FIG. 4. The relaxation time as a function of
e 100 the temperature toghether with the Vogel-Fulcher
. fit (solid line and the expg?) fit (dashed ling
The inset shows the temperature dependence of
the exponenb.
10 F
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the TYT). The linear dependence is the one predicted by the
Adam-Gibbs form.
) o . FIG. 6. Spin-glass susceptibility, Eq. (8), for different sizes
temperature regime where the equilibrium correlation funcy -4 56,7 averaged over 100 samples vs the temperature.
tion behaves as a stretched exponentiaé observe that
stretched exponential behavior is also observed in the ongmding C=0.9, A~0.41, T,~0.65, andv=0.88. Probably
dimensional Ising model at low temperatures in the intermene pest fit to our data of the correlation length is given
diate time regim&). However, the relaxation time grows by the zero-temperature transiton scenario where
much slower at low temperature than in the three-s— A4 B/T2 with A~1 andB=0.87. This suggests that the
dimensional case. In fact, very good fits are obtained byorrelation length diverges at zero temperature quite similar
simple Arrhenius formsr~exp@®/T), i.e., the minimal in- {5 the statics of the two-dimensional Ising spin-glass model
crease to be expected in any system with discrete spin varky,died by Yound and more recently revisited by Rieger
ables. _ ~ and collaborator® Similarly to that case, in our model the
We note that the two-step relaxation characteristic Ofgrowth of the correlation length is quite small compared to
many structural glasses is not seen here. _ the growth of the correlation time with the temperature,
To clarify further the picture about the thermodynamics ofyhich is also super-Arrhenius. In fact, a fit of the relaxation
the three-dimensional model, we have investigated the existime - obtained in Eq.(5) as a function of the¢ vyields
ence of a growing static correlation length. To measure this.— A expB¢/T), with A=0.18 andB=6.9. This gives sup-

we cannot use the overlap correlation function usually empqt o the scenario of a divergent relaxation time accompa-
ployed in spin glasse’@.The appropriate correlatlor) fuqctlon nied by a slowly divergent correlation lengttogarithmi-
should be invariant under the symmetries of Hamiltor{iBin cally with the relaxation time

A suitable correlation function 13 An alternative way to explore the existence of a divergent

correlation length is to compute directly the integral of the

— 2
G(X)=(01Ti+e,Ti+xe,Ti+xe,e,) ) correlation functionG(x), Eq. (7), over the whole space.
This quantity yields the susceptibility defined by
X
wGX"HE) ’ @ x=NL(e?)—(a)?], ®
where{e, ,u=1,2,3 stands for the three versors of the lat- With the overlapq defined by
tice. N
This function is measured using the equivalent correlation 1 9
function q= N<& Ti0i+e,TiTite, 9

(G 70110 Tite Titxe Titxe Tiixe ro Tiixe ro) whereN=L? is the size of the system arfet, ,u=1,2,3
Bk v v ok ok stands for the three versors of the lattice. For vanishing cor-
X relation length this quantity is equal to 1 and tends to in-
~exp{ - (E crease whenever there is spatial ordering and the correlation
length increase¥ We have simulated several system sizes
among two different replicas; and r; with sameJy’s, and L=4,5,6,7 fromT=3.0 down toT=0. Data are shown in
evolving with independent thermal noise. Téeindicate the  Fig. 6. As one can expect, there are serious thermalization
versors of the lattice wherg,v=1,2,3 with u# v. problems especially at low temperatures. Nevertheless, it
Numerical simulations in the case bf=20 reveal a very clearly emerges from these results that, in the region of tem-
slow increase of the correlation length which always remaingeratures where we are in equilibriugfor instance, above
smaller than two lattice spacings. The growing of the corre-T=1.2 where the equilibrium relaxation time is smaller than
lation length can be well fitted with functional forms appro- the thermalization time we made the system evolve before
priate for the scenarios for transition. In case of a finite-measuring the observabjesthe spin-glass susceptibility
temperature phase transition we u§eC+A/(T—Ty)",  tends to grow as the size increases with the size of the
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systent’ The growing is quite slow, in agreement with the sometimes called the fluctuation-dissipation ratio, depends
smallness of the correlation lengtivhich is smaller than on its time arguments in a quite special way: Through the
two lattice spacings in all the range of temperatures whereéependence othandt,, of the correlation function itself,
the system is in thermal equilibrium

X(t,ty) =x(C(t,t,)). (13

IV. OFF-EQUILIBRIUM DYNAMICS The valuex=1 corresponds to the fluctuation-dissipation
Hweorem relation and it is valid fagga<C(t,t,,)<1. A non-

210 value ok (C) is found when aging effects are present in
the response function, and depends on the memory of the
system about its history. In the mean-figespin model it is

In the previous section we have seen that the relaxatio
time increases very fast as the temperature is lowered, and
is equally well fitted by a finite-time Vogel-Fulcher law and
by the law r=Aexp®/T?). Even in this second hypothesis, ; .
in the whole low-temperature rande<1, the time scales we found t_hatx(C) is equaltoa constgrxtsm_aller than 1 in th_e
can computationally reach for reasonably large systems al)@fh?hl_e mterv?tl K%ﬁq% FO(; aglls(;:ussmn of;hle behavlllor
by far shorter than the equilibration time. History-dependen IS quantity in the Edwards-Anderson model, as well as
effects and aging are then to be expedd. or a quahtanye discussion of its behavior in a different

Recent results in the study of the dynamics following agla_ls_ﬁy scenario, sfee R'ef. ‘.13' df imulati f
guench in the low-temperature phase in spin glasses give, ef_ rledspon?ed unction is rt'n(zdasgjtre " romt s;_mu ations o
prediction about the scaling of the correlation function and 2€0-1€/d-c00l€d EXperiments. arting at ime zero
the linear response function for large times in the Oﬁc_from a random configuration, we let the system evolve at

equilibrium regime, and on the dependence of these quantfs-or?stant temperature in zero field for a time. At t, we
ties on the timet, that the system has spent at low switch on a small magnetic field, and measure the relax-

temperaturé. These functions are defined, respectively, as ation of the magnetization as a function of time. In the linear
' ’ ’ response regime, the magnetizatioft,t,,) is given by

1 t+ty
Clt,tw) = g2 (oi(t+twai(tu), m(t,tw)=hf dsRt.s), (14)
tW
1o, &oy(t+t,)) a relation that, assuming the validity of EQ.3), takes the
=y AT w7 form
h (i h
whereh; is a local magnetic field applied to the system. m(t,ty) = chm )dq Xa)=Fx(Ctt). (19

For a complete exposition of the off-equilibrium theory of
the glassy dynamics we refer the reader to Refs. 7 and 8.
Here we limit ourselves to reassume briefly some features
relevant to the present discussion. For largehe following 1-C Cc=

. . i . . . y /qEA,
scenario is found: There is a first regime, for small X(C)Z[ (16)
[t<(t,); see below}, where the dynamics has features simi- 1-0gea(1-X)—CX, C<gga.
lar to those of an equilibrium system. The correlation func-
tion is independent Ofw in this regime, and the response It has been noted in Ref. 45 that, while a scaling behavior
function is related to the correlation function by the Of the kind (11) is common to a glassy behavior and phe-
fluctuation-dissipation theorem. In this regime the correlationomena of domain growth in phase separafftine function
function monotonically decreases from 1 to a valpg,, X(C) seems to be nonzero only in the aging regime of the
which defines an off-equilibrium parameter analogous to théllassy systems. In order to discriminate glassy behavior from
Edwards-Anderson parameter. In addition to this equilibri-domain-growth-like mechanisms another quantity has been
umlike regime, in the class of models of interest for thisrecently proposet This is defined considering the evolu-
paper, there is a regime in which the correlation decays fronion of two replicas of the systerig;} and{7;}, which fol-
Oea to zero, and the correlation has the scaling form low identical evolution up to a timé,,, and independent

evolutions afterwards. One then considers the correlation

The mentioned behavior of(C) is reflected in

Gty =Wt &y Qb= (a1 (E+ ) 7T +1,), a7

The “effective relaxation time”7(t,,) is an increasingand which, by definition, is equal to 1 for-t,<t<0. Barrat,

diverging function oft,,, which the theory is not able to gy joni, and Mezartf have discussed in detail the meaning
predict, and seems to be rather system dependent. In SOIRE this variable, proving thag=Ilim, _ lim,_..Q(t,t,) is

cases it is found to be(t,)=t,,>®*?and we will see that . ) . L
S different from zero in some domain-growth models, while it
this is not the case for the present model. : . . : .
X I tends to zero in mean-field spin glasses. This shows that, in
As far as the behavior of the response function is con; : ; ) :
o ; the last case, the two typical trajectories explore different
cerned, it is found that the function . o )
regions of the phase space. In equilibrium, the relation
Q(t/2,t,) =C(t,t,) holds(with both quantities independent
TR(t,ty) (12) oft,,). In has been also shown that the same relation holds in

X(ttw) = aC(t,t,)/at,—dC(t,t,)/at’ a trap model even in the aging situation.
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that the Edwards-Anderson parameter defined in this way
and the one defined in statics take equal or comparable val-
] ues, we argue that the quasistates dominating the thermody-
B namics are quite “narrow” and, as announced, the intrastate
o ] entropy is quite small. To our knowledge, the function
o x(C), or equivalently x(C), has never been measured in
= experiments. Its determination, which would involve inde-
§ pendent measures of a time correlation function and its as-
o sociated response function, would be a good test of the spin-
06 ] glass scenario in glasses.
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In this work we have investigated the glassy behavior of a
FIG. 7. The function< andQ at T=0.5. We plot on the same Short-range disordered-spin interaction model. We have
graph C(t,t,) and Q(t/2t,). We see that the relaton focused on the cage=4 in three dimensions, reporting for
C(t,t,)=Q(t/2.t,,) is quite well obeyed even for small values of comparison purposes some results for the two-dimensional
C. The curves fot,,=10,100,1000,10 000 are depicted. system. The mean-field version of this model displays a
static transition where the configurational entropy is nearly
zero and replica symmetry breaks. We have found that the
finite-dimensional model shows interesting features, arche-
typical of real laboratory glasses. Both in two and three di-
mensions the equilibrium autocorrelation function follows a
and Q(t,t,). As anticipated, the scaling(t,,) =t,, is not stre_tch_ed equnentigl form at lOW. eno_ugh_ temperature.
obeyed. A best fit of the form(t,)=t® gives a=0.77 and Wh||§a in two dlmensu_)ns the relaxauon_tlme increases ac-
w cording to the Arrhenius law, in three dimensions our data

produces a falrly good _collap_se of the dat_a gn the same ma. [emonstrate a faster increase. This is compatible both with a
ter curve. We did not investigate a possible dependence

. . Rogel-Fulcher law and with an e 2) behavior. In favor

e on the tempergture. The be_hawor(@(t,tw) |nd!cates that of t%le finite-temperature transitio)r(fggnario, we can only of-
the parameteg Is zero in this model as predicted by the fer the extrapolations of the high-temperature data of the
mean-field theory. We — see that the  relation entropy. A better support to the theory is furnished by the
Q(t/2.t,,) = C(t,t,) is obeyed at short times, and d°e$ Not oation T~ex A'TYT)] that we observe in the temperature
work'so badly even at large “”?es- However, a rescaling o indow we explored. The search in the correlation function
the Kind Q(t/(1.5) ’tW).:C(t’tW) fits the data better. .. of a growing statical correlation length associated with the

s functmrx((}) IS concerned, we plot in Fig. growing relaxation time reveals the existence of a very small
8 the fesc"?"ed magnetlzatl_op(z(T/h)m(t,tw) VErsus - pt divergent correlation length compatible with the finite-
C(t'tW). for d.|fferent b - The figure shows clearly that for temperature transition scenario as well as with the zero-
the waiting times considered here we are very far from aneherature transition scenario. The behavior of the spin-
asymptotic regime wherg is independent of, . However, 4 2q5 susceptibility as a function of temperature yields a slow
the slope of the curve for small seems not to vary 100  gy6wing of this quantity with the size of the system. This is
much witht,,, and it is roughly equal ta=0.4. The region  compatible with a diverging correlation length at low tem-
where x(C)=1-C terminates roughly at a value

, , peratures which nevertheless is sm@if order two lattice
Qea=0.97. Assuming(as supported by mean-field thepry gpacings in all the range of temperatures where we have

been able to thermalize. The scenario of the absence of a

We have investigated the behavior of the functidhs
R, andy in numerical simulations for a large size=30 and
temperature§ =0.5,0.7. The two temperatures give qualita-
tively similar results. In Fig. 7 we plot our data f@(t,t,,)

0.2

0.05 -

—

v tw=10

w0 tw=100

o tw=1000

finite-temperature phase transition is quite compelling in this
model and suggests that 3 could be the lower critical dimen-
sion. In this direction, simulations in the four-dimensional
model would be welcome.

The study of the off-equilibrium dynamics of the system
confirmed the qualitative features predicted by mean-field
theory. The behavior of the autocorrelation function shows
aging. As time goes by, the dynamics becomes slower. The
effective relaxation time, defined as the characteristic time
for the correlation function to vanish, grows as a power of
the waiting time. The analysis of the functi@ft,t,,) shows
that typical trajectories which coincide at timig explore
uncorrelated regions of the space at later times. The behavior
of the fluctuation-dissipation ratio displays the qualitative

features expected, showing long-range memory effects in the
aging regime. However, the residual dependencg,andi-
cates that at the times we have reached the eventual asymp-

FIG. 8. The functiony(C) for T=0.7 and waiting times
tw=10,100,1000. The curves show a strong dependencg,on
indicating that we are far from the eventual asymptotic regime.
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totic behavior is still very faf’ process has never been observed in a spin system. We do not
The evolution of glassy systems is often described pheknow if this is just due to difficulties in disentangling the two
nomenologically as rare jumps in a landscape of “traps”processes due the high value of the Edwards-Anderson pa-
(metastable statgsinside which most of the time is rameter in the neighborhood of the transition or to the real
spent®4 This picture matches quite well with the theoreti- absence of th@ process. We think, however, that the under-
cal idea of the metastable states destabilized by activatestanding of this point can shed some light on the nature of
processes. It has been pointed out in Ref. 45 that jumpthe B-relaxation process. On the theoretical side, it would be
among uncorrelated traps imply the relation very interesting to understand if the observed value of the
Q(t,ty) =C(2t,t,). Our data show thaQ(t,t,,) is indeed exponenty=1 in three dimensions, in contrast with the rep-
close toC(2t,t,,). If this would be confirmed by more pre- lica theory prediction for the Potts glags=2, has to be
cise and systematic studies, would be evidence in favor ainputed to the plane inversion symmetry, or if it is observed
the trap models. In this respect the analysis of the selfeven in absence of this. In that respect simulations of the
averaging properties of some local quantity would also bePotts glas® could give important hints.
useful.
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