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We propose a short-range generalization of thep-spin interaction spin-glass model. The model is well suited
to test the idea that an entropy collapse is at the bottom line of the dynamical singularity encountered in
structural glasses. The model is studied in three dimensions through Monte Carlo simulations, which put in
evidence fragile glass behavior with stretched exponential relaxation and super-Arrhenius behavior of the
relaxation time. Our data are in favor of a Vogel-Fulcher behavior of the relaxation time, related to an entropy
collapse at the Kauzmann temperature. We, however, encounter difficulties analogous to those found in ex-
perimental systems when extrapolating thermodynamical data at low temperatures. We study the spin-glass
susceptibility, investigating the behavior of the correlation length in the system. We find that the increase of the
relaxation time is accompanied by a very slow growth of the correlation length. We discuss the scaling
properties of off-equilibrium dynamics in the glassy regime, finding qualitative agreement with the mean-field
theory.@S0163-1829~96!04137-9#

I. INTRODUCTION

The glassy state is very common in nature.1 When it is
reached from the liquid phase, lowering the temperature, one
finds a dramatic increase of the relaxation time, and off-
equilibrium phenomena cannot be avoided on experimental
time scales. This leads to a nonanalytic behavior of the ther-
modynamic quantities, with a ‘‘transition temperature’’ that
depends on the cooling rate. Despite its ubiquity, the basic
mechanisms underlying the common features, as well as the
peculiarities of the glassy behavior in different systems, are
yet to be clarified.

One of the most suggestive ideas in the glass theory, pro-
posed a long time ago by Gibbs and Di Marzio,2 relates the
increase of the relaxation time and the observed finite time
singularities to the existence of a thermodynamic transition
at the Kauzmann temperature where the configurational en-
tropy collapses to zero.3 Soon after, in a refinement of the
argument, Adams and Gibbs2 argued in favor of a Vogel-
Fulcher singularity in the relaxation time.

Disordered systems have been proposed as paradigmatic
models in which glassy phenomena can be studied in a nut-
shell and theoretical ideas tested on microscopic models.4

This is due to the fact that in disordered systems, the glassy
state already appears in mean-field theory. The natural sepa-
ration of the variables among ‘‘quenched’’ and ‘‘annealed’’
allows for the successful use of powerful techniques such as
the replica method for static dynamics5 and functional meth-
ods in dynamics.6 In fact, a satisfactory mean-field theory of
disordered systems for static5 as well as for equilibrium6 and
off-equilibrium dynamics exists.7,8 Recently, examples of
mean-field deterministic models with glassy behavior very
similar to the one of disordered systems have been

displayed.9 This points in the direction that common mecha-
nisms could lead to the glassy behavior of disordered and
nondisordered systems.

The simplest example in which the Gibbs–Di Marzio col-
lapse occurs is the random energy model of Derrida10 and is
a common feature to all systems with a ‘‘discontinuous
glassy transition’’ or, technically, ‘‘one-step replica symme-
try breaking,’’ where the Edwards-Anderson parameter11 un-
dergoes a discontinuity.4 Examples of such models are the
Potts glass model,12 the p-spin interaction model,13 and a
model of manifolds in a disordered media with short-range
correlated disorder.14 This class of systems has been pro-
posed by Kirkpatrick, Thirumalai, and Wolynes as simple
toy models for the structural glass transition.4 Notably, the
study of the Langevin dynamics of the spherical version of
these models shows that there the mode coupling theory15 is
exact, and displays a dynamical singularity of kind B in the
Götze classification.15 In fact, recent progress in the compre-
hension of the dynamics of mean-field disordered systems7,8

allowed for an extension of the mode coupling theory to the
broken ergodicity phase.16,17

Many studies4,18,19,7,20,21have pointed out the existence of
a temperatureTD where, despite the fact that no singularity
is observed in the free energy, there is a statical breaking of
ergodicity into an exponentially large number of metastable
states. A thermodynamic singularity is present at a tempera-
tureTC smaller thanTD . As a genuine mean-field theory, the
mode coupling theory neglects the activated~droplet! pro-
cesses that in finite-dimensional systems are responsible for
the decay of metastable states in a finite time. Kirkpatrick
and Wolynes have recently stressed how the inclusion of
these processes can restore ergodicity forTC,T,TD , and
give rise to a generalized Vogel-Fulcher singularity at the
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static transition temperatureTC .
4 The argument has been

confirmed and refined by Parisi with a theoretical calculation
based on the potential theory in spin glasses.22

The aim of this paper is to test this idea in a finite-
dimensional disordered model where metastable states
should be present, but destabilized by activated processes.
Multisite interaction models have been proposed as simple
examples where the glass transition scenario could be
observed.23 In particular Kisker, Rieger, and
Schreckenberg24 have studied a three-spin interaction model
in one dimension which displays glassy features in the ab-
sence of disorder. In Sec. II we study a finite-dimensional
model analogous to thep-spin interaction model in the case
p54 in a simple cubic lattice. A similarp-spin interaction
model, but with the spins located in a face-centered-cubic
lattice, has been already studied by Rieger.23 We believe
that, as usual, the mean-field limit is recovered for high di-
mensionality. In Sec. III we study the thermodynamics in the
high-temperature regime through Monte Carlo simulations,
which demonstrate that the model behaves as a fragile glass.

A second aspect of our work concerns the off-equilibrium
dynamics deep in the glassy phase. There, the properties of
the system depend on the thermal history, and time transla-
tion invariance does not hold.25 The off-equilibrium mode
coupling theory predicts scaling relations and a definite pat-
tern of violation of the Kubo fluctuation-dissipation relation.
In Sec. IV we study the dynamics in this regime, showing the
consistency of the aforementioned scenario. Finally, the con-
clusions are drawn.

II. THE MODEL

Thep-spin model10,13 is defined by the long-range Hamil-
tonian

H52 (
i1, i2,•••, i p

1,N

Ji1 ,i2 , . . . ,i ps i1
s i2

•••s i p
, ~1!

where the couplingsJi1 ,i2 , . . . ,i p are independent Gaussian
variables with zero mean and variance
Ji1 ,i2 , . . . ,i p
2 5p!/(2Np21). The spinss i , i51, . . . ,N can be

taken as Ising variables or as real variables subjected to the
spherical constraint( i51

N s i
25N.18 The casep52, which

corresponds to the Sherrington-Kirkpatrick model, has a
glassy transition with continuous order parameter5 and will
not be considered in this paper. Forp>3 both in the Ising
and in the spherical cases the transition is discontinuous, and
the properties of the model are the ones of interest in this
paper. As a finite-dimensional model analogous to the model
~1! in the casep54 we take a spin system with interacting
Ising spinss i arranged on the sites of aD-dimensional
square lattice with periodic boundary conditions. The Hamil-
tonian is defined as

H52(
h

Jh )
iPh

s i , ~2!

where the sums runs over all the plaquettesh of the lattice.
Each spin belongs to 4(2

D) plaquettes. Each plaquetteh
gives a contribution2Jh) iPhs i5Jhs1

hs2
hs3

hs4
h , where

the variablesJh are chosen as independent Gaussian vari-

ables with zero mean and unit variance. Note that, in generic
dimension, the model isnot invariant under aZ2 gauge trans-
formation as it would be if the spins were located on the
links ~instead of on the vertices! of the plaquettes. Thanks to
this, there is no Elitzur theorem preventing nonzero global
order parameters.26 In fact there are nolocal symmetry op-
erations, leavingH invariant.27 However, the Hamiltonian is
invariant under the contemporary inversion of all the spins
that belong to any hyperplane of dimensionD21 orthogonal
to one of the Cartesian axes. It is easy to check that these
operations do not change the sign of any of the plaquettes.
The degeneracy due to this symmetry~plane inversion sym-
metry in the following! is 2DL2(D21), and can be removed,
e.g., fixing the spins on the Cartesian axes to arbitrary val-
ues. This exponentially large degeneracy of the states is also
present in the ferromagnetic version of the model (Jh51).
We think that this could lead to a very interesting spinodal
dynamics, above the lower critical dimensionD52. We
concentrate here on the disordered model, leaving the study
of the dynamics of the ferromagnetic case for future work. A
ferromagnetic model with four-spin interactions at the verti-
ces of plaquettes was studied in connection with random
surfaces physics.28 In that case also pair interactions that
removed the plane inversion symmetry where present in the
Hamiltonian. The static properties of the pure case in cubic
Ising lattices with four-spin interactions has been also inves-
tigated by Mouritsen, Frank, and Mukamel.29 But in this last
case the plaquettes corresponded to different tetrahedra of
the three-dimensional lattice while in our case the plaquettes
are simply the faces of the cubic lattice.

In the limit of infinite dimension, where the number of
plaquettes to which a spin belongs tends to infinity, one can
expect that, modulo the symmetry, the model is equivalent to
the mean-fieldp-spin model forp54. Models with different
p’s could be easily constructed for other lattices; e.g., the
casep53 would correspond to a triangular lattice.30 Also
the equivalent of the Bethe lattice for pairwise interactions
has been generalized to the case of thep-spin interaction
model.31

It is worth at this point to present a brief qualitative re-
view of the results of the mean-field theory, based on the
Hamiltonian ~1!.4,19,20 The study of the thermodynamics of
this system leads to the following results. At high tempera-
tures the system is paramagnetic and ergodic. At a tempera-
ture TD the ergodicity breaks down, and an exponentially
large number„exp@NS(T)#… of pure states~ergodic compo-
nents! separated by barriers of orderN contribute to the par-
tition function of typical samples.4 This transition occurs
without singularities in the free energy, which is equal to the
free energy per state,F in , plus an entropic contribution
2TS(T) coming from the multiplicity. The quantityS, the
configurational entropy, is a decreasing function of the tem-
perature, and at a temperatureTC,TD vanishes. AtTC there
is a thermodynamic phase transition with singularities in the
free energy.

On the other hand, the study of the large-time dynamics
after a sudden quench from high temperature shows that the
large-time limit of various dynamical quantities is nonana-
lytic at TD . Below that temperature the system fails to
equilibrate, and relaxes to a value of the energy extensively
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equal to the ones of higher states present. This singularity is
related to the ergodicity breaking found in mode coupling
theory.

In finite dimension one can expect that the metastable
states that dominate the thermodynamics amongTD andTC
are destabilized by activated processes, and the singularity in
the dynamics atTD is suppressed. The characteristic time
scale t for these processes to restore ergodicity has been
recently estimated in Potts-glass models using heuristic ar-
guments by Kirkpatrick and Wolynes,4 and substantiated us-
ing a droplet argument in replica space by Parisi.22 They find
a generalized Adam-Gibbs relation of the kind

t;expS C

TS~T!gD , ~3!

whereC is a constant andg5D21. As the configurational
entropy vanishes linearly nearTC , Eq. ~3! results in a gen-
eralized Vogel-Fulcher lawt;exp@C/(T2TC)

g#. The value
g52 in D53 is at variance with the usual valueg51 used
to fit the experimental data. However, in the case of the
present model the value ofg5D21 in Eq. ~3! should be
lowered due to the plane inversion symmetry. We do not
know if this would result ing5D22, and we leave the
investigation of this point for future work. As a matter of
fact, simple~and trivial! results are obtained for the statics in
D52. In that case, one can show that in the high-
temperature expansion only diagrams involving a number of
spins proportional toL or higher, and hence irrelevant for
L→`, are present. Accordingly the free energy per spin is
found to be

F52TE dJ

A2p
exp~2J2/2!ln@2cosh~bJ!#.

We will see that the relaxation time follows a simple Arrhen-
ius law in this case. The lowest dimension at which one can
expect nontrivial thermodynamical results isD53, where
one can see that frustration is present. The study of the prop-
erties of the three-dimensional model through Monte Carlo
simulations and the comparison with the results of the theory
will be the subjects of the rest of this paper. Some results for
the two-dimensional case will also be mentioned.

III. THERMODYNAMICS

In order to investigate the questions posed in the previous
sections, we have performed Monte Carlo simulations of the
model in three dimensions, using a standard serial single
spin-flip heat-bath algorithm. The signature of glassy behav-
ior is easily seen in simulations of cooling experiments. In
Fig. 1 we plot the energy as a function of the temperature for
different cooling rates. We clearly see a change of behavior
corresponding to a jump of the specific heat aroundT.0.7,
where the system fails to reach equilibrium within the obser-
vation time. The inset shows that the ‘‘transition tempera-
ture’’ as well as the value of the energy at which the system
freezes is dependent on the cooling rate. Since we expect the
equilibrium entropy to be the relevant quantity for the tran-
sition, we integrated the high-temperature energy data inb
to get the entropy, taking into account data fromb50.01 up
to b51.

In Fig. 2 we present the results of this operation, together
with some rational function fits of the data points. The func-
tional form that we have chosen to fit that data are

s1~b!5
ln~2!1ab2

11bb2 , s2~b!5
ln~2!1ab2

11b2b
21b4b

4 . ~4!

FIG. 1. The energy as a function of the tem-
perature for different cooling ratesr . It is appar-
ent the calorimetric glass transition around
T'0.7. The region around the transition is mag-
nified in the inset.

FIG. 2. The high-temperature entropy~data were collected for
one sample with lattice sizeL510) vs the inverse temperature,
together with the rational fits mentioned in the test. The fitting
parameters are, respectively, for thes1 and s2 forms a520.302,
b51.866 anda520.039,b252.060,b451.550.
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Even functions ofb have been chosen coherently with the
fact that the high-temperature expansion ofS only contains
even powers ofb. The fits are roughly of the same quality at
high temperature and are both consistent with the entropy
collapse scenario. Extrapolating at low temperature, one can
estimate the point where the entropy vanishes to be in the
range 0.3<Tc<0.6. This range of temperatures should not
be considered as more than a mere indication of what could
happen. First of all, the extrapolation at low temperatures by
means of the functions~4! is highly arbitrary. Second, we
expect only theconfigurationalentropy, and not the total
entropy~which take an intrastate contribution!, to vanish at
the transition. The impossibility of disentangling the two
contributions adds incertitude to the critical temperature es-
timate. However, both the mean-field theory and the off-
equilibrium dynamics of Sec. IV suggest that in all the low-
temperature region the Edwards-Anderson parameter is close
to 1; correspondingly, the intrastate entropy is rather small,
and possibly much smaller than the configurational one not
too close toTc .

Coherent information is obtained from the study of the
equilibrium dynamics at high temperatures. The analysis of
the autocorrelation functionC(t)5^s(t)s(0)& shows how
the relaxation follows a stretched exponential law of the type

C~ t !5exp@2~ t/t!b#. ~5!

As shown in Fig. 3 our data are fairly well fitted by the
previous relaxation law all along the relaxation.

From that fit we are able to extract the temperature-
dependent relaxation timet(T) and the exponentb(T). The
behavior of these parameters as a function of the temperature
is depicted in Fig. 4. The relaxation time is consistent with a
Vogel-Fulcher law of the kindt5A exp@B/(T2T0)#, with
T0.0.63, A50.27, andB55.1 ~solid line in Fig. 4!. But,
analogously with what happens with experimental data, it is
also well fitted by a zero-temperature singularity of the type
t5A exp(B/T2), with A.0.67 and B.11.5. A four-
parameter fit of the formt5A exp@B/(T2T0)

g# fits the data
with g51.01, while putting by handg52 as in Eq.~3! leads
to T050.001. The indication of a thermodynamic transition
by the divergence of the relaxation time atT0 is supported by
the fact that it is in the range of temperatures where the
extrapolated entropy vanishes. The exponentb is also de-
picted in the inset of Fig. 4. It appears to be linear with the
temperature and of order 0.5 in the low-temperature phase.
Unfortunately we have no evidence stronger than this in fa-
vor of the finite-temperature singularity. The best we can say
is that our numerical data are consistent with the glass tran-
sition scenario as much as laboratory experiments on glasses
give support to this singularity~with the difference that labo-
ratory experiments can explore a larger window of time than
in the numerical experiments!. However, the picture we get
is coherent with the theoretical relation between the relax-
ation time and the configurational entropy. We have related
the two quantities as suggested by Eq.~3!. In Fig. 5 we plot
the logarithm of the relaxation time versus the inverse en-
tropy, and we see that the data fall quite well on a straight
line, indicating the validity of Eq.~3! with g51. This linear
relation is again consitent with a small value of the intrastate
entropy, which could be estimated of the order of
S`50.04, a value obtained from the extrapolation of the fit
in Fig. 5 to t→`.

It is worth at this point to mention the results of an analo-
gous analysis for the two-dimensional system, where the
thermodynamics is trivial. Simulations performed in that
case indicate that also inD52 there exists a low-

FIG. 3. The correlation function for various temperatures:
T52.8 (h), and T52.4 (3), T52.0 (nup), T51.6 (s), and
T51.2 (1). The lines are stretched exponential fits.

FIG. 4. The relaxation time as a function of
the temperature toghether with the Vogel-Fulcher
fit ~solid line! and the exp(b2) fit ~dashed line!.
The inset shows the temperature dependence of
the exponentb.
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temperature regime where the equilibrium correlation func-
tion behaves as a stretched exponential~we observe that
stretched exponential behavior is also observed in the one-
dimensional Ising model at low temperatures in the interme-
diate time regime32!. However, the relaxation time grows
much slower at low temperature than in the three-
dimensional case. In fact, very good fits are obtained by
simple Arrhenius formst;exp(B/T), i.e., the minimal in-
crease to be expected in any system with discrete spin vari-
ables.

We note that the two-step relaxation characteristic of
many structural glasses is not seen here.

To clarify further the picture about the thermodynamics of
the three-dimensional model, we have investigated the exist-
ence of a growing static correlation length. To measure this
we cannot use the overlap correlation function usually em-
ployed in spin glasses.36 The appropriate correlation function
should be invariant under the symmetries of Hamiltonian~1!.
A suitable correlation function is33

G~x!5^s is i1em
s i1xen

s i1xen1em
&2 ~6!

;expF2S xj D G , ~7!

where$em ,m51,2,3% stands for the three versors of the lat-
tice.

This function is measured using the equivalent correlation
function

^s it is i1em
t i1em

s i1xen
t i1xen

s i1xen1em
t i1xen1em

&

;expF2S xj D G
among two different replicass i andt i with sameJh’s, and
evolving with independent thermal noise. Theem indicate the
versors of the lattice wherem,n51,2,3 withmÞn.

Numerical simulations in the case ofL520 reveal a very
slow increase of the correlation length which always remains
smaller than two lattice spacings. The growing of the corre-
lation length can be well fitted with functional forms appro-
priate for the scenarios for transition. In case of a finite-
temperature phase transition we usej5C1A/(T2T0)

n,

finding C50.9, A.0.41, T0.0.65, andn.0.88. Probably
the best fit to our data of the correlation length is given
by the zero-temperature transition scenario where
j5A1B/T2, with A.1 andB.0.87. This suggests that the
correlation length diverges at zero temperature quite similar
to the statics of the two-dimensional Ising spin-glass model
studied by Young34 and more recently revisited by Rieger
and collaborators.35 Similarly to that case, in our model the
growth of the correlation length is quite small compared to
the growth of the correlation time with the temperature,
which is also super-Arrhenius. In fact, a fit of the relaxation
time t obtained in Eq.~5! as a function of thej yields
t5A exp(Bj/T), with A.0.18 andB.6.9. This gives sup-
port to the scenario of a divergent relaxation time accompa-
nied by a slowly divergent correlation length~logarithmi-
cally with the relaxation time!.

An alternative way to explore the existence of a divergent
correlation length is to compute directly the integral of the
correlation functionG(x), Eq. ~7!, over the whole space.
This quantity yields the susceptibility defined by

x5N@^q2&2^q&2#, ~8!

with the overlapq defined by

q5
1

N(
i51

N

s is i1em
t it i1em

, ~9!

whereN5L3 is the size of the system and$em ,m51,2,3%
stands for the three versors of the lattice. For vanishing cor-
relation length this quantity is equal to 1 and tends to in-
crease whenever there is spatial ordering and the correlation
length increases.36 We have simulated several system sizes
L54,5,6,7 fromT53.0 down toT50. Data are shown in
Fig. 6. As one can expect, there are serious thermalization
problems especially at low temperatures. Nevertheless, it
clearly emerges from these results that, in the region of tem-
peratures where we are in equilibrium~for instance, above
T51.2 where the equilibrium relaxation time is smaller than
the thermalization time we made the system evolve before
measuring the observables!, the spin-glass susceptibility
tends to grow as the size increases with the size of the

FIG. 5. The inverse of the logarithm of the relaxation time vs
the TS(T). The linear dependence is the one predicted by the
Adam-Gibbs form.

FIG. 6. Spin-glass susceptibilityx, Eq. ~8!, for different sizes
L54,5,6,7 averaged over 100 samples vs the temperature.
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system.37 The growing is quite slow, in agreement with the
smallness of the correlation length~which is smaller than
two lattice spacings in all the range of temperatures where
the system is in thermal equilibrium!.

IV. OFF-EQUILIBRIUM DYNAMICS

In the previous section we have seen that the relaxation
time increases very fast as the temperature is lowered, and it
is equally well fitted by a finite-time Vogel-Fulcher law and
by the lawt5A exp(B/T2). Even in this second hypothesis,
in the whole low-temperature rangeT,1, the time scales we
can computationally reach for reasonably large systems are
by far shorter than the equilibration time. History-dependent
effects and aging are then to be expected.25

Recent results in the study of the dynamics following a
quench in the low-temperature phase in spin glasses give a
prediction about the scaling of the correlation function and
the linear response function for large times in the off-
equilibrium regime, and on the dependence of these quanti-
ties on the time tw that the system has spent at low
temperature.7 These functions are defined, respectively, as

C~ t,tw!5
1

N(
i

^s i~ t1tw!s i~ tw!&,

R~ t,tw!5
1

N(
i

d^s i~ t1tw!&
dhi~ tw!

, ~10!

wherehi is a local magnetic field applied to the system.
For a complete exposition of the off-equilibrium theory of

the glassy dynamics we refer the reader to Refs. 7 and 8.
Here we limit ourselves to reassume briefly some features
relevant to the present discussion. For largetw the following
scenario is found: There is a first regime, for smallt
@t!t(tw); see below#, where the dynamics has features simi-
lar to those of an equilibrium system. The correlation func-
tion is independent oftw in this regime, and the response
function is related to the correlation function by the
fluctuation-dissipation theorem. In this regime the correlation
function monotonically decreases from 1 to a valueqEA ,
which defines an off-equilibrium parameter analogous to the
Edwards-Anderson parameter. In addition to this equilibri-
umlike regime, in the class of models of interest for this
paper, there is a regime in which the correlation decays from
qEA to zero, and the correlation has the scaling form

C~ t,tw!5C„t/t~ tw!…. ~11!

The ‘‘effective relaxation time’’t(tw) is an increasing~and
diverging! function of tw , which the theory is not able to
predict, and seems to be rather system dependent. In some
cases it is found to bet(tw)5tw ,

38–42 and we will see that
this is not the case for the present model.

As far as the behavior of the response function is con-
cerned, it is found that the function

x~ t,tw!5
TR~ t,tw!

]C~ t,tw!/]tw2]C~ t,tw!/]t
, ~12!

sometimes called the fluctuation-dissipation ratio, depends
on its time arguments in a quite special way: Through the
dependence ont and tw of the correlation function itself,

x~ t,tw!5x„C~ t,tw!…. ~13!

The valuex51 corresponds to the fluctuation-dissipation
theorem relation and it is valid forqEA,C(t,tw),1. A non-
zero value ofx(C) is found when aging effects are present in
the response function, and depends on the memory of the
system about its history. In the mean-fieldp-spin model it is
found thatx(C) is equal to a constantx smaller than 1 in the
whole interval 0,C,qEA . For a discussion of the behavior
of this quantity in the Edwards-Anderson model, as well as
for a qualitative discussion of its behavior in a different
glassy scenario, see Ref. 43.

The response function is measured from simulations of
‘‘zero-field-cooled experiments.’’44 Starting at time zero
from a random configuration, we let the system evolve at
constant temperature in zero field for a timetw . At tw we
switch on a small magnetic fieldh, and measure the relax-
ation of the magnetization as a function of time. In the linear
response regime, the magnetizationm(t,tw) is given by

m~ t,tw!5hE
tw

t1tw
ds R~ t,s!, ~14!

a relation that, assuming the validity of Eq.~13!, takes the
form

m~ t,tw!5
h

TEC~ t,tw!

1

dq x~q!5
h

T
x„C~ t,tw!…. ~15!

The mentioned behavior ofx(C) is reflected in

x~C!5H 12C, C>qEA ,

12qEA~12x!2Cx, C<qEA .
~16!

It has been noted in Ref. 45 that, while a scaling behavior
of the kind ~11! is common to a glassy behavior and phe-
nomena of domain growth in phase separation,46 the function
x(C) seems to be nonzero only in the aging regime of the
glassy systems. In order to discriminate glassy behavior from
domain-growth-like mechanisms another quantity has been
recently proposed.45 This is defined considering the evolu-
tion of two replicas of the system,$s i% and$t i%, which fol-
low identical evolution up to a timetw , and independent
evolutions afterwards. One then considers the correlation

Q~ t,tw!5^s i~ t1tw!t i~ t1tw!&, ~17!

which, by definition, is equal to 1 for2tw<t<0. Barrat,
Burioni, and Mezard45 have discussed in detail the meaning
of this variable, proving thatg5 limtw→`limt→`Q(t,tw) is
different from zero in some domain-growth models, while it
tends to zero in mean-field spin glasses. This shows that, in
the last case, the two typical trajectories explore different
regions of the phase space. In equilibrium, the relation
Q(t/2,tw)5C(t,tw) holds ~with both quantities independent
of tw). In has been also shown that the same relation holds in
a trap model even in the aging situation.
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We have investigated the behavior of the functionsC,
R, andx in numerical simulations for a large sizeL530 and
temperaturesT50.5,0.7. The two temperatures give qualita-
tively similar results. In Fig. 7 we plot our data forC(t,tw)
and Q(t,tw). As anticipated, the scalingt(tw)5tw is not
obeyed. A best fit of the formt(tw)5tw

a givesa50.77 and
produces a fairly good collapse of the data on the same mas-
ter curve. We did not investigate a possible dependence of
a on the temperature. The behavior ofQ(t,tw) indicates that
the parameterg is zero in this model as predicted by the
mean-field theory. We see that the relation
Q(t/2,tw)5C(t,tw) is obeyed at short times, and does not
work so badly even at large times. However, a rescaling of
the kindQ„t/(1.5),tw…5C(t,tw) fits the data better.

As far as the functionx(C) is concerned, we plot in Fig.
8 the rescaled magnetizationx5(T/h)m(t,tw) versus
C(t,tw) for different tw . The figure shows clearly that for
the waiting times considered here we are very far from an
asymptotic regime wherex is independent oftw . However,
the slope of the curve for smallC seems not to vary too
much with tw , and it is roughly equal tox50.4. The region
where x(C)512C terminates roughly at a value
qEA50.97. Assuming~as supported by mean-field theory!

that the Edwards-Anderson parameter defined in this way
and the one defined in statics take equal or comparable val-
ues, we argue that the quasistates dominating the thermody-
namics are quite ‘‘narrow’’ and, as announced, the intrastate
entropy is quite small. To our knowledge, the function
x(C), or equivalentlyx(C), has never been measured in
experiments. Its determination, which would involve inde-
pendent measures of a time correlation function and its as-
sociated response function, would be a good test of the spin-
glass scenario in glasses.

V. CONCLUSIONS

In this work we have investigated the glassy behavior of a
short-range disorderedp-spin interaction model. We have
focused on the casep54 in three dimensions, reporting for
comparison purposes some results for the two-dimensional
system. The mean-field version of this model displays a
static transition where the configurational entropy is nearly
zero and replica symmetry breaks. We have found that the
finite-dimensional model shows interesting features, arche-
typical of real laboratory glasses. Both in two and three di-
mensions the equilibrium autocorrelation function follows a
stretched exponential form at low enough temperature.
While in two dimensions the relaxation time increases ac-
cording to the Arrhenius law, in three dimensions our data
demonstrate a faster increase. This is compatible both with a
Vogel-Fulcher law and with an exp(A/T2) behavior. In favor
of the finite-temperature transition scenario, we can only of-
fer the extrapolations of the high-temperature data of the
entropy. A better support to the theory is furnished by the
relationt;exp@A/TS(T)# that we observe in the temperature
window we explored. The search in the correlation function
of a growing statical correlation length associated with the
growing relaxation time reveals the existence of a very small
but divergent correlation length compatible with the finite-
temperature transition scenario as well as with the zero-
temperature transition scenario. The behavior of the spin-
glass susceptibility as a function of temperature yields a slow
growing of this quantity with the size of the system. This is
compatible with a diverging correlation length at low tem-
peratures which nevertheless is small~of order two lattice
spacings! in all the range of temperatures where we have
been able to thermalize. The scenario of the absence of a
finite-temperature phase transition is quite compelling in this
model and suggests that 3 could be the lower critical dimen-
sion. In this direction, simulations in the four-dimensional
model would be welcome.

The study of the off-equilibrium dynamics of the system
confirmed the qualitative features predicted by mean-field
theory. The behavior of the autocorrelation function shows
aging. As time goes by, the dynamics becomes slower. The
effective relaxation time, defined as the characteristic time
for the correlation function to vanish, grows as a power of
the waiting time. The analysis of the functionQ(t,tw) shows
that typical trajectories which coincide at timetw explore
uncorrelated regions of the space at later times. The behavior
of the fluctuation-dissipation ratio displays the qualitative
features expected, showing long-range memory effects in the
aging regime. However, the residual dependence ontw indi-
cates that at the times we have reached the eventual asymp-

FIG. 7. The functionsC andQ at T50.5. We plot on the same
graph C(t,tw) and Q(t/2,tw). We see that the relation
C(t,tw)5Q(t/2,tw) is quite well obeyed even for small values of
C. The curves fortw510,100,1000,10 000 are depicted.

FIG. 8. The functionx(C) for T50.7 and waiting times
tw510,100,1000. The curves show a strong dependence ontw ,
indicating that we are far from the eventual asymptotic regime.
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totic behavior is still very far.47

The evolution of glassy systems is often described phe-
nomenologically as rare jumps in a landscape of ‘‘traps’’
~metastable states! inside which most of the time is
spent.39,40 This picture matches quite well with the theoreti-
cal idea of the metastable states destabilized by activated
processes. It has been pointed out in Ref. 45 that jumps
among uncorrelated traps imply the relation
Q(t,tw)5C(2t,tw). Our data show thatQ(t,tw) is indeed
close toC(2t,tw). If this would be confirmed by more pre-
cise and systematic studies, would be evidence in favor of
the trap models. In this respect the analysis of the self-
averaging properties of some local quantity would also be
useful.

We would like to conclude by mentioning some of the
problems left open by this work. For example it would be
interesting to study the behavior of the dynamic Edwards-
Anderson parameter as a function of temperature or the
large-time decay of the energy to its asymptotic value. We
have also seen that the equilibrium relaxation at high tem-
perature does not seem to proceed in two steps (b anda) as
commonly observed in the laboratory and as predicted by
mode coupling theory. As far as we know, theb-relaxation

process has never been observed in a spin system. We do not
know if this is just due to difficulties in disentangling the two
processes due the high value of the Edwards-Anderson pa-
rameter in the neighborhood of the transition or to the real
absence of theb process. We think, however, that the under-
standing of this point can shed some light on the nature of
theb-relaxation process. On the theoretical side, it would be
very interesting to understand if the observed value of the
exponentg51 in three dimensions, in contrast with the rep-
lica theory prediction for the Potts glassg52, has to be
imputed to the plane inversion symmetry, or if it is observed
even in absence of this. In that respect simulations of the
Potts glass48 could give important hints.
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