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Critical behavior in nonequilibrium phase transitions
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The nonequilibrium phase transitions occurring in a fast-ionic-conductor model and in a
reaction-diffusion Ising model are studied by Monte Carlo finite-size scaling to reveal nonclassical
critical behavior; our results are compared with those in related models.

Nonequilibrium states in macroscopic systems! are, al-

most by definition, more complex and consequently varied
than equilibrium states. This prevents, in practice, their
study within the simple and well-defined framework of
statistical mechanics. Actually, the study of nonequilibri-
um phenomena is based nowadays on a collection of
ad hoc methods, most of them approximate, for particu-
lar problems. The situation cannot be said to be much
better in the simplest case of stationary nonequilibrium
states, namely, when the system of interest is coupled to a
subsidiary system in such a way that both systems are not
in mutual equilibrium, but rather, there is a net steady
flow of some extensive quantity through them. The main
difficulty here again is that, excluding some trivial sys-
tems (with no interactions between their constituents),>>
there is no a priori knowledge of what the appropriate
Gibbs ensemble is; moreover, the number of relevant ex-
actly soluble models at hand is rather scarce.’~°

The increasing interest in stationary nonequilibrium
states comes partially from the fact that, as was made
clear recently, they may show instabilities;*° these pro-
duce a kind of phenomenon so similar in principle to the
corresponding ones in equilibrium statistical mechanics
that they may be termed as nonequilibrium phase transi-
tions. Initially, given that most familiar tools such as
canonical averages and fluctuation-dissipation theorems
are questionable here, most effort was directed towards
the study of the microscopic mechanisms of the various
instabilities in steady states. However, recent concern has
concentrated'®~!%* on the general properties of nonequili-
brium phase transitions.

Concerning this point of view, there is a rather com-
mon belief in the literature (see, for instance, Refs. 7, 9, 4,
5, and 11—15) that nonequilibrium phase transitions bear
basically a classical character, i.e., that they can be
described, even exactly for present-day experimental data,
on the basis of the classical Landau theory of phase tran-
sitions and critical phenomena. On the contrary, we
present in this article some clear evidence that the phase
transitions occurring in two models of stationary none-
quilibrium states are basically nonclassical. The first case
refers to a fast-ionic-conductor model, namely, to the
lattice-gas version of the Ising model, where the particles
are interpreted as ions under a strong uniform external
electric field;!° an extensive finite-size scaling analysis re-
veals that the corresponding critical exponents for the in-
finite system have neither equilibrium nor classical values.
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The second case refers to a reaction-diffusion Ising
model;’ this is shown to present a discontinuous phase
transition when the (infinite-temperature) diffusion
predominates over the reaction (spin-flip) dynamics, and a
continuous one with equilibrium critical exponents at
lower diffusion. Our results, when compared with the sit-
uation concerning some related models,*>!1!*15 syggest
some ‘“‘unexpected” diversity which is important to the
definition of universality classes in nonequilibrium phe-
nomena. They also indicate, in particular, that nonequili-
brium versions of the Ising model may provide a rich
ground for the study of these matters: probably the situa-
tion here is much richer, more varied and interesting than
in the familiar equilibrium counterpart. Further results
on the behavior of our models and details of the corre-
sponding analysis will be published elsewhere.

The first model of interest has been described extensive-
ly before.!”'>19 1t consists in the present case of a square
lattice with periodic boundary conditions whose sites can
be either empty (n; =0) or occupied by an ion (n;=1);
i=1,2,...N=L* The mean system density N '3 n;
equals % The evolution proceeds by hopping ions to NN
empty sites according to the transition probabilities per
unit time py =1 if 8H' <0 or exp(—8H'/kyT), other-
wise, which satisfy locally a detailed balance condition.!”
Here 8H'=0H + E, where 8H is the change in the config-
urational system energy produced by the jump and
E =+ «» for jumps in the directions *X, respectively, and
E =0 for jumps in the perpendicular directions +9. The
existence of the uniform electric field EX induces a pre-
ferential hopping along one of the principal directions of
the lattice, X, leading to a stationary nonequilibrium state
with a net steady current of particles. The jumps in the
direction of the field may also be enhanced, as compared
to those perpendicular to it, by performing the former
with a frequency I' times larger than the latter. The
model solved in Ref. 4 essentially corresponds to the
present one in the limit ' c. We shall mainly refer
here to the case I'=1, however. The natural order param-
eter for the two-dimensional phase transition is
m=({(M2)— (Mf))l/z, where

L1 > (2n,,—1)
x(y)

2
sz(y)EL~1 E

y(x)

and { ) denotes the “canonical” ensemble average at tem-
perature T produced by the transition probability p,, de-

3372 ©1987 The American Physical Society



35 CRITICAL BEHAVIOR IN NONEQUILIBRIUM PHASE TRANSITIONS 3373

fined above; m is a measure of the density difference be-
tween fluid and vapor phases.

That is, as it was reported before,!® the system segre-
gates below some critical temperature T.(E) [ > T,.(0), the
Onsager critical temperature] into a vapor, ion-poor phase
and a liquid, ion-rich phase, the latter being highly aniso-
tropic with striplike configurations along the field direc-
tion; that study, however, is prevented from quite definite
conclusions concerning critical behavior due to finite-size
effects. We report here on the results from an extensive
Monte Carlo finite-size scaling analysis for L <100 (in-
cluding also some ‘“‘confidence” runs for L =300). Most
data for m as a function of L and T are presented in Fig.
1. A conclusion from Fig. 1 is that, excluding small L,
one has linear behaviors of m with L~! for T < T.(E)
and with L"n~—0.2, for T > T,(E); this is confirmed
later on [e.g., after Eq. (1) where we give a physical signi-
ficance to n]. This allows the computation of m _, the
order parameter for the infinite system or limit of m; as
L— .

We first performed plots of m ./? versus T for different
values of f3; these definitely show that neither = % nor %
is able to produce linear behavior near the temperature
axis (m _,=0) and critical temperatures (intercepts with
the temperature axis) in agreement with the rest of the
data (e.g., with the behavior of the energy or the currents,
with the scaling behavior we report later on, etc.). In-
stead, we find by |using those criteria that
B=0.230+0.003 and T.(E)=(1.355+0.003)7.(0) for the
infinite system. These values also produce the best linear
fit in a log-log plot; cf. Fig. 2 and notice that small
changes in 3 and/or T,.(E) would not produce such clear
evidence at all.

The shift we observe in the critical temperature is
caused by the field-enhancing correlations (along X) and
thus producing phase segregation at a temperature which
is otherwise (in the absence of the electric field) only
characterized by short-ranged correlations; this also seems
the cause for the appearance of a (new) universality class
halfway between the Onsager and classical ones. Intui-
tively, one may argue that the effect should be less pro-
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FIG. 1. Dependence of the order parameter on temperature
and size for the fast-ionic-conductor model; T, =T.(0). Notice
the extrapolation as L — oo.
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FIG. 2. Logarithmic plot of the order parameter for the in-
finite system, as obtained from Fig. 1 (see also the text) versus
t=1-T/T.(E) showing B=0.230 and T.(E)=1.355T,(0).
The numbers identifying the lines are the corresponding slopes.

nounced in three dimensions; this is certainly confirmed
by the corresponding critical temperature which is
T.(E)=1.1T.(0).'*'® Were that the case, one should
probably expect 0.313 <3< 5, 8 perhaps being closer to
the lower limit. This is also consistent with some data on
the three-dimensional version of the above model'® which
seems to prefer B~0.4. While the above facts for d =2
seem consistent with some renormalization-group (RG)
computations'"!* 13 predicting a critical dimension of 2,
our suggestions for d =3 are apparently not. One should
notice, however, that the RG computations are approxi-
mate, and that they also reveal that the global behavior is
not quite described by the classical, mean-field theory ig-
noring all effects of the fluctuations; see also later on. We
are presently performing a similar finite-size analysis for
d =3 (the only available data in three dimensions refer to
30° simple cubic lattices'®) which might clear up some-
what this question.

The above conclusions for 8 and T,.(E) in two dimen-
sions are indeed confirmed by a global finite-size scaling
analysis. For instance, Fig. 3 is a definite evidence that

L~FYB:P4+B:%), T<T,E)

Bz,

myp =

()
T>T,(E)

with z=tL'"”, z'=¢'L'", v=0.55%0.2, B,=B—v, and
B; =nv. The result in Eq. (1) is also noticeable. It re-
veals that the surface contributions in the present prob-
lem, which are described by the exponents B, [for
T <T.(E)] and B; [for T > T.(E)], are much more im-
portant (cf. also Fig. 1) than in the usual Ising problem
with periodic boundary conditions (where, in particular,
B;=0). Actually, it seems that the existence of striplike
configurations produces surface effects which are, at least
approximately, similar to the ones in the case of the two-
dimensional Ising model with free edges.'® On the other
hand, we find no evidence that v has different values for
the X and ¥ directions; some crude Monte Carlo RG com-
putation is roughly consistent with this fact.! The
analysis of the specific heat by the same method (i.e.,
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FIG. 3. Order parameter m(L,T) vs F(x), where
F(x)=L~B(BxP+B,x"™) when T <T.(E) and

F(x)=B;(x")B; when T >T.(E) to demonstrate Eq. (1). [No-
tice the definitions x =tL!¥, x'=¢'L'", t'=1—T.(E)/T, and
the fact that it follows m =F(x) from the figure.] The values
used for the parameters are [$=0.23, v=0.55, B =1.186,
B,=—-0.77, B;=B—v,B;=0.52, B;y=nv, and n =—0.2. Dif-
ferent symbols correspond to different values of L, 10 <L < 100.

separating the bulk and surface contributions) is more in-
volved, e.g., due to the failure of the fluctuation-
dissipation theorem in this nonequilibrium case; we shall
report on it elsewhere.

One should probably expect, as suggested at the begin-
ning of this article, more variety concerning nonequilibri-
um phase transitions than in the equilibrium counterpart.
For instance, relevant or marginal parameters affecting
critical behavior, which are seldom present, in practice, in
the case of equilibrium phase transitions, might be more
frequent here; this is apparently the case for I' in the
above model, i.e., small values of I" (I'=1 and perhaps
also I' < 20) produce the above universality class while in-
creasing I’ may finally lead to classical critical
behavior.!®* That variety also makes the comparison be-
tween the behaviors of closely related models difficult.
For instance, it is not quite clear, the relation between the
fluid under shear model by Onuki and Kawasaki'! and
the fast ionic conductor model with E = «; actually, the
shear flow in the former tends to cut off the lifetime of
large fluctuations with small wave numbers, which is an
effect essentially different from that of the electric field
we mentioned before; there is a finite rate of shear flow
acting as a continuous parameter, etc. Even the models
by Leung and Cardy'* and by Janssen and Schmittmann'?
are difficult to compare with ours, e.g., they involve field
theoretic (i.e., continuous) approximate RG treatments.
Finally, in order to illustrate further that variety, we
describe the critical behavior in another interesting non-
equilibrium version of the Ising model.

The model is now an Ising lattice whose configurations
change with time according to a competition between two
familiar mechanisms: a “Kawasaki (conserved order pa-
rameter) dynamics” in which unequal spins at neighboring
sites exchange with a constant rate, as if the system were
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at an infinite temperature, and a “Metropolis (noncon-
served order parameter) dynamics” in which a spin flips
at a site according to the transition probabilities p,, de-
fined before, with 8H'=86H, however, at a finite tempera-
ture T, these two mechanisms are attempted in practice
with probabilities p* and 1—p*, respectively. This com-
petition attempts to model the “reaction-diffusion” situa-
tions characterizing chemical reacting systems, spin dif-
fusion in magnets, population genetics, etc.;?° in particu-
lar, it maintains the system far from equilibrium thus pro-
ducing nonlinear stationary nonequilibrium states under-
going phase transitions at low temperatures 7, even in one
dimension where essentially the same model was solved in
the limit p*—1 and for some observation time scale.’

The main interest here is on the nature of the expected
nonequilibrium phase transition as one varies p*; for sim-
plicity, we refer to d =2 and ferromagnetic interactions.
The case p*=0 corresponds to the familiar equilibrium
ferromagnet with critical temperature 7.(0). The solu-
tion for d =1 and p*—1, on the other hand, is reported’
to have a mean-field behavior in the sense that the mag-
netization below T,(p*—1)=2J/kgln3 has two sym-
metric stable solutions at both sides of an unstable solu-
tion. The situation for d =2 and p*=0.95 is not quite
consistent with the latter: We observe clear discontinui-
ties in the curves for the spontaneous magnetization and
energy as a function of T, the specific heat presents a
(lambda) finite discontinuity, and there are long-lived
metastable states. That is, there is a first-order phase
transition occurring around T,(p*=0.95)=0.90T,(0).
The other limit is also quite interesting because we find
that the behavior for p* <0.80 is practically the same as
for p*=0; that is, we observe then a typical continous
phase transition, with continuous magnetization and ener-
gy as a function of 7, the familiar Onsager divergence for
the specific heat as computed from the fluctuations of the
energy data, and (by considering lattice sizes L < 100)
we find B=+, independently of p*(<0.80). The
critical temperature, however, changes with p*; e.g.,
T.(p*=0.80)=0.93T,(0), T.(p*=0.60)=0.96T.(0), and
T.(p*=0.10)=0.99T,.(0). Figure 4 is clear enough evi-
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FIG. 4. Energy versus temperature in the case of the
reaction-diffusion Ising model for different values of the param-
eter p*: p*=0.10 (circles), 0.60 (asterisks), and 0.95 (squares);
the solid line is the Onsager equilibrium case (p * =0).



35 CRITICAL BEHAVIOR IN NONEQUILIBRIUM PHASE TRANSITIONS 3375

dence that there is a change in the order of the phase tran-
sition as one varies p*, i.e., some sort of tricritical point at
P * ~0.83.

Summing up, the finite-size Monte Carlo study of two
different versions of the Ising model, both characterized
by stationary nonequilibrium states, reveals nonclassical
critical behavior in nonequilibrium phase transitions. In
particular, one of the models seems to belong to a new
universality class, and the critical behavior of the other is
apparently characterized by a tricritical point and equili-

brium exponents. This, when compared with the situation
concerning some related models, strongly suggests a great
diversity concerning nonequilibrium critical phenomena.
It also indicates that stationary nonequilibrium versions
of the Ising model may provide a very rich and interesting
ground to analyze nonequilibrium phase transitions.
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