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Abstract 
Information on the Pb and Cd binding to a purified Aldrich Humic Acid (HA) is 

obtained from the influence of different fixed total metal concentrations on the acid-

base titrations of this ligand. NICA (Non-Ideal Competitive Adsorption) isotherm has 

been used for a global quantitative description of the binding, which has then been 

interpreted by plotting the Conditional Affinity Spectra of the H+ binding at fixed total 

metal concentrations (CAScTM). This new physicochemical tool, here introduced, 

allows the interpretation of binding results in terms of distributions of proton binding 

energies. A large increase in the acidity of the phenolic sites as the total metal 

concentration increases, especially in presence of Pb, is revealed from the shift of the 

CAScTM towards lower affinities. The variance of the CAScTM distribution, which 

can be used as a direct measure of the heterogeneity, also shows a significant 

dependence on the total metal concentration. A discussion of the factors that influence 
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the heterogeneity of the HA under the conditions of each experiment is provided, so that 

the smoothed pattern exhibited by the titration curves can be justified. 

 

Keywords: macromolecular complexation, affinity spectrum, trace metal speciation, 

NICA 

1. Introduction  
Natural organic matter (NOM) plays a key role in the circulation of trace metal ions in 

the environment (Buffle, 1988;Ruzic, 1996). Accordingly, methods to quantify the 

speciation and to reach a deeper understanding of the characteristics of such 

complexation are of great interest. A strategy widely used for the quantitative 

description of the binding data relies on fitting the data to competitive isotherms. In the 

context of environmental systems, two of such isotherms are NICA (Non-Ideal 

Competitive Adsorption) isotherm, developed by Koopal, van Riemsdijk and coworkers  

(Benedetti et al., 1995;Kinniburgh et al., 1999;Koopal et al., 1994;van Riemsdijk et al., 

1986) and Model V / VI,(Tipping, 2002;Tipping, 1998;Tipping and Hurley, 1992) 

which use a discrete set of binding affinities.  

The knowledge of the affinity distributions underlying the different isotherms can help 

in the understanding of the binding characteristics of the organic matter. In an early 

paper (Sips, 1948), Sips reported an analytical expression for the inversion of 

monocomponent isotherms. However, its use has been rather limited up to now, 

probably because the cation binding to environmental ligands is essentially competitive. 

The analysis of the multidimensional distributions underlying competitive isotherms is 

even scarcer. Numerical regularization or approximate semianalytical techniques have 

been applied to solve this problem (Rusch et al., 1997) and recently, a general analytical 

expression for the affinity spectrum underlying competitive isotherms has been reported 
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(Garcés et al., 2004). The practical success of this methodology is at the end limited by 

the restrictive conditions for the existence of the affinity spectrum. For instance, the 

concept of multidimensional affinity spectrum cannot be used when metal and proton 

do not share the same complexation sites (as in the case of chelate complexation). In the 

case of the NICA model, the existence of multidimensional spectrum requires a 

common ni value for all the competing ions, which is a hard restriction in most of the 

experimental data sets.  

A step to overcome this limitation was the introduction of the conditional affinity 

spectrum (CAS) (Garcés et al., 2006). The CAS, which can be seen as a generalization 

of the conditional stability constant, is a less restrictive formalism since it focuses only 

on monodimensional distributions. For instance, it is not necessary that all cations share 

common sites for the existence of the CAS. As it was introduced, the CAS characterizes 

the affinity distribution for a given ion at fixed free concentration of all other competing 

ions. Applications to simple competitive systems as well as to complex natural media 

have been reported (Companys et al., 2007b;Puy et al., 2009;Puy et al., 2008;Rey-

Castro et al., 2009). For the simplest case of only two kinds of ions (e.g., proton and a 

metal cation) as competitive binding agents, the experimental data obtained from metal 

titrations at fixed pH can be straightforwardly fitted to a competitive isotherm. Since a 

fixed pH reduces the competitive isotherm to a monocomponent one for the metal ion, 

the Sips inversion formula can then be applied for the computation of the CAS, which 

allows a relatively simple discussion of the metal-NOM binding properties.  

However, other experimental strategies can be of interest. Among them, let us discuss 

the arrangement of acid base titrations performed in the presence of a constant total 

metal concentration, which is varied over successive experiments (Ephraim et al., 

1986;Mathuthu and Ephraim, 1995;van Dijk, 1971). In addition to its experimental 
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simplicity, this procedure allows the indirect assessment of the binding characteristic of 

the competing cations by means of their effect on the proton binding. It can be shown 

that the constraint of constant total metal concentration reduces the competitive 

isotherm that describes the proton-NOM binding in the presence of metal ions to an 

effective monocomponent isotherm. Accordingly, the inversion formula of Sips can also 

be applied to the computation of the CAS of the NOM for the proton binding at 

different total metal concentrations, this allowing a simple discussion of the 

experimental results. The resulting conditional affinity spectra will be labeled simply as 

CAS or as CAScTM (when more specificity is needed). Obviously, the application of 

this procedure is not restricted to proton binding. Other cations can play the role of 

protons and be used to obtain indirect information about the binding characteristics of 

another metal whose total concentration is kept constant along the titration (Tipping et 

al., 2002). 

 

The aim of this work is to use proton titration data of a purified Aldrich Humic Acid 

obtained at different total Cd and Pb concentrations to quantify the complexation of 

these ions to HA by means of the NICA isotherm. After the fitting of the binding data to 

the isotherm equation, Section 3 is devoted to the calculation of the CAScTM for the 

different total metal concentrations used in the experiments. Section 4 is devoted to the 

discussion of the CAScTM results and their comparison with the CAS corresponding to 

fixed free metal concentration, previously reported (Puy et al., 2008). Finally, the 

distribution of occupied sites is reported. 

2. Materials and methods 
2.1. Reagents and instrumentation 
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Humic acid (H1, 675-2; Aldrich) was purified following the procedure outlined 

elsewhere (Companys et al., 2007b;Companys et al., 2007a). Potassium nitrate was used 

as inert supporting electrolyte and prepared from solid KNO3 (Fluka, Trace Select). 

Lead and cadmium solutions were prepared from the solid nitrate product (Merck, 

analytical grade). 0.1M standard aqueous solutions of HNO3 or KOH (Ridel-de-Haën, 

Standard solution) were used in the titrations. Ultrapure water (Milli-Q plus 185 

System, Millipore) was employed in all the experiments. Purified water-saturated 

nitrogen was used for deaeration.  

pH was monitored with a glass electrode (Metrohm 6.0133.100) attached to an Orion 

Research 720A ion analyzer. Free Pb2+ and Cd2+concentrations in solution were 

measured potentiometrically using the corresponding Ion Selective Electrodes (ISE) 

(namely, Metrohm 6.05020.170 Pb-ISE and Metrohm 6.05020.170 Cd-ISE, 

respectively). The same reference electrode Ag/AgCl/3 mol.L-1 KCl, with a 0.1 mol.L-1 

KNO3 jacket (Metrohm 6.0726.100) was used for the pH electrode and metal ISE. The 

pH electrode was previously calibrated in terms of proton concentration,    (rather than 

activity) following Gran’s method (Gran, 1952) at the same ionic strength used in the 

HA titrations. Routine calibrations of the metal ISE were performed with total metal 

concentrations ranging from 1x10

cH

-6M to 5x10-4M in 0.1M KNO3 at pH4. 

 

The potentiometric measurements were carried out coupling the Orion pH/ISE meter 

with a Metrohm Dosimat dispenser. The entire titration setup was controlled by a 

homemade program running on a personal computer. The samples were placed in a 

double-walled potentiometric glass cell thermostated at 25ºC. N2 bubbling and soda 

lime traps were used throughout to prevent CO2 contamination. The potential between 
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the work electrode (pH or ISE) and the reference electrode was measured and recorded 

after a drift criterion of <0.1mV/min has been achieved.  

All the proton titrations (in absence and in the presence of metal) were performed with a 

solution initially containing 0.45g·L-1 of HA in 0.1M KNO3 after pH was cycled up to 

7.0 and back to pH 3.5 to avoid hysteretic effects (Milne et al., 1995). Proton titrations 

in presence of metal were performed at fixed total metal concentration of 
  

10cT,M = -5M, 

10-4M, 3.16x10-4M, 5x10-4M, 7.5x10-4M and 10-3M in the lead experiments and 

10
  
cT,M = -5M, 10-4M, 5x10-4M, 10-3M and 3x10-3M in the cadmium experiments. 

The raw titration data consist of sets of E(mV) vs. v(KOH) data which were converted 

into -log   vs. v(KOH) data by means of the calibration curves (Nernst equation). cH

Let  and  denote, respectively, the current and maximum possible 

concentration of protonated sites (i.e. the current and maximum moles of protonated 

functional groups per kg of HA). In the absence of metal, there are no proton sites 

occupied by metals and -  stands for the free acid sites of the humic acid. 

Otherwise, -  stands for the proton sites (mol.kg

HQ max,HQ

max,HQ HQ

max,HQ HQ -1) not occupied by protons. 

Let  stand for the moles of M bound to a kg of humic acid. Assuming that all the 

free proton sites are negatively charged (since amino and other positively charged 

groups are usually minor sites in HA), then the absolute value of the macromolecular 

charge can be written as - -2 , which holds for any arbitrary stoichiometric 

relationship between metal M and proton groups. Thus, the charge balance reads 

MQ

max,HQ HQ MQ

( ) - -
3

max,H H M HA OH NO H K M
2Q Q Q c c c c c c+ +− − + + = 2++ +2   (1) 

where cHA is the concentration of humic acid in kg L-1, and the rest of the concentrations 

 are in mol L ci
-1. The charges of the ions will be omitted in the following, for clarity 

reasons. 
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Using , simple algebraic manipulation of Eqn. (
  
cNO 3

= cKNO3
+2cT,M 1) shows that -

 can be computed as: 

max,HQ

HQ

  
Qmax,H −QH =

cH+cKOH-
KW

cH

cHA

  (2) 

Expression (2) allows the conversion of the -log c  vs. v(KOH) (volume of added base) 

data into -  vs. -log   data.  

H

max,HQ HQ cH

 

2.2. Fitting of the binding data to the NICA Isotherm 

Using glass electrode measurements exclusively 

Proton titration data of the HA in absence of metal show a double wave shape (see Fig. 

1a). Accordingly, bimodal distributions have been used to describe the proton binding. 

Let  and  be the total moles of proton sites per kg of HA in the 

corresponding modal distribution. As -  represents the amount of humic 

functional groups that are not protonated, then 

max,H,1Q max,H,2Q

max,HQ HQ

( )max,H H max,H,1 max,H,2 H max,H,1 H,1 max,H,2 H,2(1 ) (1 )Q Q Q Q Q Q Qθ− = + − = − + −θ   (3) 
 

Here, NICA will be used to describe the binding. Although the binding energy can be 

split into an electrostatic component and a chemical or intrinsic one, we will analyze 

here the raw binding data (i.e. without performing any polyelectrolytic correction). The 

resulting NICA parameters will then be conditional to the ionic strength of the medium, 

i.e. 0.1M KNO3. 

According to NICA isotherm, H,iθ  in eqn. (3) (with i=1 for the carboxylic distribution 

and i=2 for the phenolic one) is given by 
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( )
( ) ( )

( ) ( )( )
( ) ( )( )

H, M,H,

H,1 M, H, M,

H, M,H MH, HH,
H,

max,H, H, M,H M H, M,H M1

ii ii

i ii i

pn nn
i iii

i n n n
i i i i i

k c k ck cQ
Q k c k c k c k c

θ
+

= =
+ + +

pn
  (4) 

indicating that the proton coverage of the sites of a given distribution depends also on 

the free metal concentration, , as resulting from the competitive binding between 

both cations. 

Mc

,j ik , ,j in , and ip  are parameters of the isotherm that characterize the 

proton and metal binding to the HA within the NICA model. They can be obtained from 

the fitting of the experimental values of -  vs. pH to the NICA isotherm by 

means of Eqns. (

max,HQ HQ

2)-(4).  

However, the use of eqn. (4) requires the knowledge of free metal concentration at each 

pH. In absence of specific metal ISE measurements, the concentration of the free 

species is calculated from the total concentration, through the mass balance: 

M T,M HAc c c Q= − M   (5) 
where  is given, within the NICA model, by MQ

( )
( ) ( )

( ) ( )( )
( ) ( )( )

( )
( ) ( )

( ) ( )( )
( ) ( )( )

1H,1 M,1M,1

H,1 M,1 1H,1 M,1

2H,2 M,2M,2

H,2 M,2 2H,2 M,2

H,1 M,1H MM,1 MM,1
M max,H,1

H,1 H,1 M,1H M H,1 M,1H M

H,2 M,2H MM,2 MM,2
max,H,2

H,2 H,2 M,2H M H,2 M,2H M

1

1

pn nn

n n n n

pn nn

n n n n

k c k ck cn
Q Q

n k c k c k c k c

k c k ck cn
Q

n k c k c k c k c

+
= +

+ + +

+
+

+ + +

p

p

  (6) 

 

Eqns. (5) and (6) can be used to obtain cM, which, replaced in (4), allows to compute θH 

and -  for a given pH,  and a given set of NICA parameters. The 

comparison of the calculated -  value with the experimental one given in (

max,HQ HQ T,Mc

max,HQ HQ 2) 

allows the fitting of the NICA parameters. 
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Due to the high number of unknown parameters included in the model, the particular 

procedure followed to obtain the best-fit values from experimental data deserves further 

comment. In a first stage, a least-squares fit of the six parameters , max,H,iQ H,ik , 

 and  was carried out using just the proton binding data in 

absence of metal. However, this titration curve is barely informative about the three 

parameters of the second distribution (See below, in section 4.1, for a more detailed 

discussion). Therefore, in a second stage, the fitted values of 

1 H,1m n p= × 1 22 H,2m n p= ×

H,1 H,1 1;k n p× ; and 
  

 

obtained in the first step were kept fixed while the rest of proton parameters as well as 

the whole set of metal parameters (e.g. 

Qmax,H,1

M,1k , , etc.) were fitted using all the 

experimental data together (including titrations in presence of Pb/Cd). In this way the 

reliability of the fitted parameters associated to the second modal distribution is 

improved and more robust values of the ion-independent parameters of the HA (such as 

 and 

M,2n

max,H,iQ ip ) are obtained. 

Using both glass electrode and metal ISE measurements 

The above fitting procedure does not require the use of experimental values of . In 

this way, the metal binding information is obtained indirectly from its influence on the 

proton titration curves using glass electrode data only. Therefore, this method can be 

used to study competition effects due to metals for which ISE are not commercially 

available. 

Mc

In order to check the accuracy of this methodology, an alternative fitting strategy is 

performed. In this case, we use the direct experimental  values measured with the 

metal ISE instead of estimating  by solving Eqns. (

Mc

Mc 5) and (6). The procedure is now 

straightforward: the values of θH, as given by Eqn. (4), are computed from the 
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experimental  and  values using a trial set of NICA parameters. Eqn. (Mc Hc 3) then 

allows the computation of -  which are compared with the experimental 

titration values leading to the fitting of the NICA parameters for proton and metal. 

Hence, this second procedure makes use of all the experimental information available. 

max,HQ HQ

3. Conditional affinity spectra at constant total metal 
concentration 
An interesting physicochemical tool for the interpretation of the binding data is based 

on the use of a distribution of independent sites with different intrinsic affinities and 

abundances. Using this strategy, the coverage can be thought as the superposition of 

coverages to the different kinds of sites.  

Recent work (Garcés et al., 2006) has developed the concept of conditional affinity 

spectrum (CAS). Indeed, by fixing cH, a two-component isotherm becomes 

monocomponent, with the subsequent monodimensional affinity spectrum indicating the 

effective affinity distribution seen by the metal at the pH considered. As these 

distributions are pH dependent, we call them conditional affinity spectra. Analytical 

expressions of the CAS underlying NICA isotherm have been reported as well as 

expressions for the dependence of the main parameters of this distribution (average and 

variance) with respect to pH (Puy et al., 2009;Rey-Castro et al., 2009). Notice that the 

use of the analytical expressions of the CAS underlying NICA overcomes the 

limitations due to the possible presence of artefacts in the CAS obtained by direct 

numerical inversion of experimental binding data  (Dzombak et al., 1986;Merz, 

1980;Vos and Koopal, 1985).    

 

Here, we aim at extending the CAS concept to another situation of experimental 

interest: the proton titration at fixed total metal concentration. By fixing the total metal 
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concentration, we will have an additional equation that can be used to eliminate the 

dependence of the proton coverage on the metal concentration, so that a competitive 

isotherm is transformed into a formally monocomponent one. The inversion formula for 

monocomponent isotherms can, then, be applied. The resulting conditional affinity 

spectrum, which will be labelled as CAScTM, will indicate the distribution of sites with 

a given affinity for the proton under the restriction of fixed total metal concentration. 

Notice that all the sites of the macromolecule (and not just the free ones) are available 

for the proton, but with a  reduced affinity (metals have to be extracted prior to proton 

binding). The existence of the CAScTM is not guaranteed, since there is no analytical 

inversion of the NICA isotherm under constant  conditions. There might arise 

concentrations and NICA parameters for which there was no CAScTM. Mathematical 

sufficient conditions for the existence of the affinity spectrum are the recovering of the 

binding curve from the CAS 

T,Mc

( )
'

' H H
H max,H H T,M '

H H

log , log
1

k cQ Q p k c cnt d k
k c

∞

−∞

= =
+∫ '

H  (7) 

and the normalization condition of the affinity distribution, which has to be semi-

definite positive. In all the cases shown below (Figs. 4-7) we have checked that from the 

resulting CAScTM, the binding curve is recovered and that the integration of the 

CAScTM reaches the expected value.   

Obviously, the use of the CAScTM is not restricted to protons in a system with only one 

metal, but it can be straightforwardly extended to any probed ion whose free (or bound) 

concentration was easily measured in a general system when fixing the total 

concentration of the rest (Tipping et al., 2002). 

The inversion formula that gives the affinity spectrum in monocomponent adsorption is 

(Koper and Borkovec, 1996a):  
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( ) ( )H T,M H T,M H H
ln(10)log ; cnt Im cnt, 1/p k c c c kθ
π

⎡′ = = = = −⎣ ⎤′ ⎦  (8) 

where Im means "take the imaginary part", the prime in Hk ′  labels a conditional affinity 

value and cnt is the abbreviation for constant. According to (8), for a given , the 

corresponding density of sites 

Hk ′

( )H T,Mlog ; cntp k c′ = , is obtained by using  in the 

calculation of the proton coverage. 

H 1/c ′= − Hk

The overall proton coverage is given by 

max,H,1 max,H,2
H H,1

max,H,1 max,H,2 max,H,1 max,H,2

Q Q
Q Q Q Q H,2θ θ= +

+ +
θ   (9) 

 

where H,iθ  is given by (4). However, Equation (9) cannot be used directly in (8) without 

introducing the restriction of fixed total metal concentration. Actually, H,iθ  as given by 

(4) depends on both cM and . Thus, we have to express cHc M in terms of  and  

before using . Eqns. (

Hc T,Mc

H 1/c ′= − Hk 5) and (6) allow, for a given  and , the 

computation of , which replaced in (

Hc T,Mc

Mc 9) and (8) yields ( )H T,Mlog ; cntp k c′ = . The 

software Octave (Eaton, 2010), which uses complex numbers in the solution of a system 

of equations, has been used for the numerical inversion of the monocomponent isotherm 

 

4. Results and discussion 
4.1. Binding results.  

NICA description using glass electrode data 

The proton binding data obtained in absence of added metal are depicted in Fig. 1. 

Results from several independent titration experiments performed over different sub-

samples of the same purified HA stock solution are plot together in order to give an idea 

of the repeatability achieved. Note the poor reliability of the data above pH 10. Figure 1 
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also depicts the results calculated using NICA isotherm with the fitted parameters 

reported in Table 1, which were obtained as described in Section 2.2. The agreement 

with experimental data is fairly good and deviations are usually within experimental 

error.  

Fig. 1 also displays the values calculated for every modal distribution separately, in 

order to assess the relative amount of charge associated with each distribution. Notice 

that the fitted value of  is 7.6 mol/kg, which goes beyond the region of 

-  were the data is well reproducible (i.e., up to ca. 5 mol/kg, see Fig 1). Fig. 1 

also shows that the 7.6-5=2.6 mol/kg of sites outside the experimental window of Fig. 1 

belong to the phenolic distribution, whose charge is increasing within the pH range 9-

11. It could, then, be expected that the parameters of the phenolic distribution would 

suffer an important uncertainty, if proton binding parameters were obtained from Fig. 1 

only. To mitigate this problem, the fit of the phenolic distribution has been carried out 

using data obtained in presence of metal ions (figures 2-4), as indicated in Section 2.2. 

Under these conditions, -  reaches values close to 7 in presence of lead at the 

highest concentration (see Fig. 2) and close to 6 for the case of Cd (See Fig. 3). These 

-  values are much closer to the fitted value of 

max,1 max,2Q Q+

max,HQ HQ

max,HQ HQ

max,HQ HQ max,1 max,2Q Q+  (i.e. 7.6 mol/g) 

giving confidence to this value as well as to the other proton distribution parameters. 

Metal ions release protons from acidic groups too weak to be ionized otherwise, as 

already reported by Ephraim et al.(Ephraim et al., 1986;Mathuthu et al., 1995) 

The distribution of affinities resulting from the fitted NICA parameters is depicted in 

Fig.1b. Since NICA reduces to a Langmuir-Freundlich isotherm when only one ion is 

present in the system, the distribution depicted in Fig. 1b is a bimodal Sips distribution 

(Puy et al., 2009). The first peak of this distribution is centered at log ( H,1k  / M-1)=4.59 
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and is usually associated with the “carboxylic” type of sites, whereas the second peak 

(the “phenolic” distribution) is centered at log ( H,1k  / M-1)=11.02, and has a smaller area 

(which reflects the relative values of Qmax,H,1 and Qmax,H,2). The width of every 

distribution indicates the binding heterogeneity of the corresponding sites, and it 

depends on . The global distribution characterizes the overall H binding to 

the HA. 

H,i im n p= × i

Figs. 2 and 3 depict the titration data in presence of metal. As can be seen, for a fixed 

pH, a larger amount of metal decreases  (via competition) and, consequently, -

 increases. The decrease of  indicates that the presence of metal (Pb or Cd) 

facilitates the deprotonation, i. e., increases the acidity of the HA by reducing the 

effective proton binding affinity since an increasing part of the binding energy has to be 

invested in extracting the metals. The influence of the metal concentration is higher in 

the case of Pb than in the case of Cd, especially below pH 7.  

HQ max,HQ

HQ HQ

Theoretical values of ( - ) for each modal distribution, as computed from the 

NICA parameters reported in Table 1, are also depicted in Figures 2 and 3. The 

agreement with experimental data is quite good, which supports the assumption that 

accurate information on Pb or Cd binding to HA can be obtained indirectly from the 

proton binding data. From the data displayed in Fig. 2, it can be observed that the 

deprotonation of the phenolic sites in the presence of Pb takes place at lower pH values 

(above 4.5, see dashed curves) than in the presence of Cd. In the latter case, the titration 

of “phenolic” sites does not start until pH 6.5 (see Fig. 3). Therefore, when Pb is 

present, both distributions (carboxylic and phenolic) compete for the binding with 

protons at most pH’s (notice, in Fig 2, that the phenolic sites represent eventually up to 

one third of the total amount of titrated groups). On the contrary, in the case of Cd, the 

max,HQ HQ
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protonation of the phenolic distribution takes place mainly at a higher range of pH than 

the carboxylic distribution (i.e. the deprotonation of carboxylic and phenolic groups is 

more sequential). Since the sites of the HA are the same in all the cases (Figs. 1, 2 or 3), 

the change of the acidity of these sites in every figure reflects how the conditional value 

of the acidity depends on the composition of the system. This dependence cannot be 

straightforwardly quantified in heterogeneous systems, since it depends on the binding 

affinity of the metals present, the stoichiometry of the H/M exchange and the correlation 

of the binding energies of the different competing ions (Puy et al., 2008;Puy et al., 

2009). However, the observed effect can be used to obtain information on these 

phenomena as discussed below. 

Notice that the effect of hydrolysis, that could be especially important for Pb, has not 

been taken into account in the fitting procedure. The precipitation of solid species under 

equilibrium conditions was excluded, since the product of ionic concentrations 

, calculated from experimental pH and Pb-ISE data throughout the 

titrations is not constant (See Fig. EA-1 in the Electronic Annex). On the other hand, a 

simple speciation calculation using VMINTEQ indicates a non-negligible concentration 

of aqueous species Pb(OH)

2
2

Pb OHspQ c c+= −

 + and Pb3(OH)4
2+ at 7.5 < pH < 9. In principle, these species 

could also bind to the HA (Milne et al., 2003), but, for the sake of simplicity, no 

specific set of NICA parameters have been considered for them. Therefore, the NICA 

parameters reported in Table 1 or 2 have to be considered as “effective” for the mixture 

of Pb aqueous species. 

 

NICA description using both glass and metal ISE data 

As indicated in section 2.2, a second NICA description of the binding data was 

performed using, in this case, the free metal concentrations recorded with the ISE along 

the proton titrations depicted in Figs. 2 and 3. The fitted parameters are reported in 
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Table 2, while the figures showing the experimental and predicted -  values are 

included in the Electronic Annex (Fig. EA-2 and EA-3). The agreement between 

calculated and measured values is similar to that shown in Fig. 2 and 3 and the 

differences between both sets of parameters (Table 1 and 2) are not significant. These 

results confirm the feasibility of using the glass electrode as an indirect probe for the 

quantitative description of the metal binding. 

max,HQ HQ

4.2. Conditional affinity spectra of H-HA at fixed total Pb or Cd 
concentrations 

The CAScTM of proton binding to HA in presence of different total amounts of Pb and 

Cd, computed as indicated in Section 2.2, are depicted in Figures 4 and 5, respectively. 

The plotted distributions offer a visual interpretation of the influence of the metal on the 

proton affinity of the ligand in experiments performed at constant cT,M. 

Let us first compare these spectra (Figs. 4 and 5) with the affinity distribution in 

absence of competing metal ion (Fig. 1b). It is clear that an increasing amount of metal 

induces a shift in the affinity of the proton sites towards progressively lower values. 

This shift reflects the decrease in the effective proton binding energy, due to the work 

that has to be expended in removing the metal bound to the proton sites. However, this 

shift is not constant along the affinity axis, and therefore the global shape of the spectra 

changes. Three main mechanisms are responsible for the changes in shape of the 

CAScTM: i) the distance between carboxylic and phenolic modes is affected by the 

different sensitivity of each modal distribution to an increase in ; ii) the value of the 

free concentration of the competing species, , is not constant throughout a proton 

titration carried out at a fixed ; and iii) the effect of a particular value of  

depends on the “correlation” (in a broad sense) between the binding energies of proton 

and metal ions. For a general case where both cations do not necessarily share common 

T,Mc

Mc

T,Mc Mc
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sites, a positive correlation (in a broad sense) means that sites with stronger affinity for 

protons are mainly involved in the sites with stronger affinity for the metal ions.  

The mechanisms above mentioned deserve further comments. The first noticeable 

feature in the evolution of the CAScTM shape is that the distance between the two 

modal distributions decreases as the Pb/Cd concentration increases (see Figs. 4 and 5). 

Therefore, the variance of the overall CAScTM tends to decrease, which means that the 

HA behaves globally as a less heterogeneous ligand (see, for instance, the larger slope 

of proton titrations at the highest Pb concentration in Fig 2). This is a result of the 

impact of the metal ion being larger on the phenolic distribution than on the carboxylic 

one. This effect is especially remarkable in the case of Pb, where the two peaks of the 

corresponding modal distributions are significantly overlapped. The stronger shift of the 

phenolic mode in the presence of Pb (compared to Cd) is due to the larger value of log 

( Pb,2k  / M-1) in comparison with log ( Cd,2k  / M-1). Recall that log ( ,2ik  / M-1) indicates 

the average binding energy when only ion i is present in the system, so that it indicates 

the energy expended by the proton to extract the metal in each case.  

On the other hand, it can be observed that the phenolic affinity distribution broadens in 

the presence of metal at relatively low concentrations (see e.g. figs. 4a, 4b, 5a and 5b). 

Accordingly, smoothed titration curves around the second equivalence point appear at 

low metal concentrations (compare the phenolic titration curves depicted in red in Figs. 

2 or 3 with Fig. 1a). It can also be observed that, as the phenolic peak broadens, a 

double peaked shape appears (see figs. 4a and 4b for the Pb case and 5a for the Cd 

case). 

The broadening of a modal distribution can be explained in terms of the last two 

mechanisms mentioned above. Let us first consider a case where proton and metal share 

the same sites, with affinities  and , respectively. In this case, the effective proton Hk Mk
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binding affinity of a site, , in the presence of a concentration  of the competing 

ion is given by (Puy et al., 2009) 

'
Hk Mc

( )'
H H Mlog log log 1k k k c= − + M

M

  (10) 

where  would represent the binding affinity in absence of metal. If the concentration 

of the free competing ion was kept fixed, then the conditional affinity  would also 

remain constant. But, under conditions of constant , this is no longer true. Instead, 

the value of  will vary along the titration within the range 

Hk

'
Hk

T,Mc

Mc M T,0 c c≤ ≤ , depending 

on the occupation of protons, the proton/metal exchange ratio and the concentration of 

ligand. Therefore, the total number of sites with intrinsic affinities ( , ) will be 

distributed (i.e. “split” or “scattered”), in the CAScTM, into different abundances of a 

certain range of effective affinities. For instance, when protons bind to a langmuirian 

site, they displace metals into the solution and consequently increase , which, 

according to Eqn. (

Hk Mk

Mc

10), modifies (decreases) the effective proton affinity of the site.  

In a general case, a given proton site (characterized by a value of ) may display a 

wide or narrow range of intrinsic binding affinities for the metal ion, , depending on 

the degree of correlation between the binding energies of both ions. Consequently, 

every kind of proton sites will “scatter” into a range of effective binding affinities in the 

presence of metal ions. As discussed previously (Puy et al., 2009) for spectra at constant 

, this correlation influences the width of the affinity distribution when  changes. 

In absence of correlation,  is independent of , which means that a given site may 

display many possible values of , and therefore the scattering is large. Conversely, in 

presence of strong correlation, this scattering is less significant, since sites with high  

Hk

Mk

  cM T,Mc

Mk Hk

Mk

Hk
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values tend to show only high  values (positive correlation) so the shift in the 

effective affinity has a precise value, given by Eqn. (

Mk

10).  

In summary, due to the variable contribution of  to the binding of protons, the shift 

in the effective binding affinity of each site in the presence of metal ions is not 

necessarily constant throughout the  axis. In practice, the spectra of a given 

modal distribution (most noticeably, the phenolic one) are relatively broad at low metal 

concentrations, due to the competition effects already mentioned, but become narrower 

at large metal concentrations. Indeed, as the metal concentration increases, the variation 

of the free metal concentration along the proton titration is less relevant, the 

heterogeneity associated to this phenomenon decreases and the correlation becomes 

more important. At very high , NICA becomes a Langmuir-Freundlich isotherm 

with exponent n

M Mk c

log kH
'

T,Mc

H: 

( )
( )

( )

H

M

H

H

M

H

H
H

M M
H M H

H
H

M M

,

1

n

n
n

n

n
n

k c
k c

c c

k c
k c

θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝→∞ =
⎛ ⎞
⎜ ⎟

+ ⎜ ⎟
⎜ ⎟
⎝ ⎠

⎠  (11) 

 

 

 and the phenolic distribution at high metal dosage becomes symmetric, centered at 

(M
H

H

log lognk k
n

− )M Mc  with variance given by (Puy et al., 2009) 

( )M

22
H,2'2

2 2
H,2

1
3ln10c

n
n

πσ →∞

−
=   (12) 

which is independent from the metal present. For the current case (Pb or Cd systems) 

, a small value determined by the high  obtained.  
M

'2 0.16cσ →∞ = H,2n



ACCEPTED MANUSCRIPT 
      20                       

The change of the variance of the phenolic distribution with increasing  is the 

responsible for the change of the slope of the titration curve of the phenolic distribution 

depicted in Figs. 2 and 3. A higher variance indicates elongated titration curves, while a 

lower variance indicates a sharper increase of the titration curve. 

T,Mc

Figures 4 and 5 also depict in shaded area the fraction of sites of each affinity value  

that are occupied (protonated) at pH = 8, calculated as 

'
Hk

( )
'

' H H
H T,M '

H H

log ,
1

k cp k c cnt
k c

=
+

. 

Notice that although pH=8 in all the figures, the increase of metal concentration reduces 

the shaded area, since the affinity for the protons decreases. 

The preceding discussion can be generalized to other cases including complex mixtures 

of metals. The shift of the phenolic and carboxylic proton affinity distributions, as well 

as the effective heterogeneity, will be dependent on the concentrations of all the metals 

and ligands present. The final spectrum of the HA can exhibit both distributions 

(carboxylic and phenolic) being overlapped or even inverted depending on the 

concentration of metals present and on the affinity parameters shown by each 

distribution (Rey-Castro et al., 2009) 

Since we used conditional NICA parameters obtained in 0.1M KNO3, the spectra 

displayed in this section include the electrostatic contribution to the binding energy. The 

extent of this contribution may not be constant during the titration, given that the 

electrostatic charge of the macromolecule varies as a function of the proton and metal 

coverage. Therefore, the conditional affinity spectra reported here correspond to an 

effective distribution of independent uncharged sites that gives rise to the same binding 

curve as the experimental system, although these sites do not necessarily correspond to 

actual sites, in a chemical sense. The electrostatic effect is not the only phenomenon that 

leads to such situation. For instance, a ligand having identical and independent sites 
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only (Langmuirian adsorption) behaves like a heterogeneous ligand for the competitive 

binding of protons and metal ions under the constraint of constant , since the free 

metal concentration, and consequently the effective site affinity, depends on the proton 

occupation, as was discussed above. A similar situation holds when the metal binding is 

multidentate, which can also be described through an equivalent heterogeneous 

distribution of independent sites (Garcés et al., 2006;Koper and Borkovec, 1996b). 

Notice also that, under the concentrations of metal and HA here used, larger than the 

usual in natural waters, some aggregation can occur so that the reported CAS include 

also this phenomenon.  

T,Mc

Finally, in order to assess the uncertainty of the computed CAScTM, we plot in Fig. 

EA-4 the CAS for a total Pb concentration obtained with NICA parameters of Table 1 

and Table 2. There is a clear qualitative agreement between both distributions although 

there are some quantitative differences due to the differences between the set of 

parameters used.  

 

4.3. Comparison of the CAScTM with the CAScM 

Further insight into the features of the CAScTM can be obtained by comparing these 

spectra with the CAS at constant free (instead of total) metal concentration, which we 

distinguish here with the label CAScM. In particular, it is interesting to compare with 

the CAScM obtained at the limiting cases where cM has the lower and greater value in 

the concentration “window” covered through the experiments performed at constant 

total metal concentration. 

An analytical expression for the CAScM underlying NICA isotherm and a discussion of 

the main characteristic of the binding in terms of the CAScM have been reported 

recently (Puy et al., 2009;Puy et al., 2008;Rey-Castro et al., 2009). For an easier 
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comparison, the CAScM (dashed-dotted line in Figs. 6 and 7) corresponding to a fixed 

 equal to the free metal concentration arising in the Pb or Cd systems at a very high 

pH (low free metal concentration) is plotted together with the CAScM corresponding to 

the  reached at the lowest pH value (highest free metal concentration) considered in 

the experimental titration (dashed line) and to the CAScTM (continuous line). Since 

both CAScM spectra at fixed  are well apart and correspond to situations covered by 

the fixed  case, one can rationalize the higher heterogeneity of the CAScTM which 

integrates (among others) the two depicted extreme  conditions. Notice also that the 

CAScM represented by the dashed line in Figs. 6 and 7, corresponding to the highest 

free metal concentration in the titration depicted in Figs. 2 or 3, resembles the CAScTM 

of the highest  value depicted in Fig. 4d or 5d as expected.  

Mc

Mc

Mc

T,Mc

Mc

T,Mc

 

 
Conclusions 
Proton titrations of HA have been conducted at fixed total metal concentrations. The 

binding parameters of NICA isotherm for both metal and proton ions, have been 

obtained from the impact of the metal on the proton titration curves.  

The conditional affinity spectrum of the proton at fixed total metal concentrations (and 

fixed HA concentration), CAScTM, has been developed as a physicochemical tool for 

the interpretation of the binding results. The CAScTM distributions allow a complete 

characterization of: i) the conditional affinity seen by the proton at each total metal 

concentration, ii) the effective heterogeneity of the binding and iii) the distribution of 

occupied proton sites at a given concentration.  
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The presence of Pb/Cd mainly influences the phenolic distribution of the HA, which 

shifts towards lower affinities as  increases. This shift justifies the increase of the 

acidity of the HA in presence of increasing metal concentrations. 

T,Mc

Acid base titration curves of the HA at different total metal concentrations were quite 

elongated, indicating a high heterogeneity of the system. The variance of the CAScTM 

can be used to rationalise the heterogeneous behaviour of the HA. On one hand, the two 

modal distributions approach each other due to the larger shift of the phenolic 

distribution. However, the variance of the phenolic distribution is influenced by 

different phenomena, e.g. it initially increases as  increases due to the range of  

values arising in the system along the proton titration. Additionally, the variance can 

decrease as the metal concentration keeps increasing, if there is a high correlation 

between the binding energies of metal and proton. At high  values, the variance is 

independent of the competing metal present and only dependent on the cation studied 

(in this case, protons) and the HA.  

T,Mc Mc

T,Mc
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Brief  
Cd and Pb-Humic Acid binding data from proton titrations at fixed total metal 

concentrations have been interpreted with the conditional affinity spectrum at total 

metal (and HA) concentration underlying NICA isotherm.  

 

 

 

 

 

 

Tables  
 
Table 1. NICA parameters retrieved by fitting proton titrations of Humic Acid in 0.1M 

KNO3 in the absence/presence of Pb/Cd at fixed total concentrations, using glass 

electrode data only. The uncertainty is expressed as 95% confidence intervals. The 

parameter values were not constrained in the analysis of uncertainty of the non-

linear regression. 

NICA Parameters of proton  
Qmax,1 / mol 

kg-1 log ( H,1k  / nH,1 p1
Qmax,2 / mol 

kg-1 log ( H,2k  / nH,2 p2
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M-1) M-1) 

4.6 ± 0.5 4.6 ± 0.3 0.48±
0.08 

0.64±
0.04 3.0 ± 0.9 11.1 ± 0.7 0.9 ± 

0.2 1
0.5 ± 
0.1 

 
NICA Parameters of Lead 

log ( Pb,1k / M-1) nPb,1 log ( Pb,2k / M-1) nPb,2

4.2 ± 0.1 0.40 ± 0.04 10.2 ± 0.7 0.7 ± 0.1 
 

NICA Parameters of Cadmium 

log ( Cd,1k / M-1) nCd,1 log ( Cd,2k / M-1) nCd,2

2.3 ± 0.1 0.43 ± 0.05 6.4 ± 0.7 0.7 ± 0.1 
 
 

 

 
Table 2: NICA parameters retrieved by fitting proton titrations of Humic Acid in 0.1M 

KNO3 in the absence/presence of Pb/Cd at fixed total concentrations, using both glass 

electrode and metal ISE data simultaneously. The uncertainty is expressed as 95% 

confidence intervals. The parameter values were not constrained for the analysis of 

uncertainty in the non-linear regression. 1 Confidence interval between 0 and 1. 

NICA Parameters of proton  
Qmax,1 / mol 

kg-1
log ( H,1k  / 

M-1) 
nH,1 p1

Qmax,2 / mol 
kg-1

log ( H,2k  / 
M-1) 

nH,2 p2

4.6 ± 0.5 4.6 ± 0.3 0.6 1 0.5 ± 
0.4 3.7 ± 0.3 11 ± 2 1 1 0.4 1

 
NICA Parameters of Lead 

log ( Pb,1k / M-1) nPb,1 log ( Pb,2k / M-1) nPb,2

4.0 ± 0.8 0.4 1 11 ± 3 0.7 1

 
NICA Parameters of Cadmium 

log ( Cd,1k / M-1) nCd,1 log ( Cd,2k / M-1) nCd,2

2.2 ± 1.6 0.5 1 7 ± 5 0.7 1

 
 

Figures  
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Fig. 1a. Concentration of non-protonated sites max,HQ - HQ  (mol·kg-1) of HA as a function of pH, in 

absence of added metal. All experiments throughout this work were performed in 0.1M KNO3 
background electrolyte. Symbols: experimental data corresponding to four titration replicates; black solid 
line: NICA model fit using parameters listed in Table 1; blue dashed line: sites of the “carboxylic” 
distribution; red dashed-dotted line: sites of the “phenolic” distribution. 
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Fig. 1b Affinity spectrum of the HA for protons in absence of metal. In these conditions (binding of H+ 
only) NICA model reduces to the Langmuir-Freundlich isotherm and the corresponding affinity spectrum 
(continuous line) is a bimodal Sips distribution with parameters given in Table 1. Dashed lines stand for 
the individual modal distributions. 
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Fig 2. Concentration of non-protonated sites max,HQ - HQ  (mol·kg-1) as a function of pH in the presence 

of a fixed total lead concentration, cT,Pb, of 0; 10-5; 10-4; 3.16×10-4; 5×10-4; 7.5×10-4; and 10-3 M (from 
bottom to top). Symbols and lines as in Fig 1a. Note that the curves corresponding to cT,Pb = 0 and 10-5 M 
overlap. The typical repeatability of the experiments is indicated by plotting two titration replicates for 
each metal concentration. 
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Fig. 3. Concentration of non-protonated sites max,HQ - HQ  (mol·kg-1) as a function of pH in the presence 

of a fixed total cadmium concentration, cT,Cd, of. 0; 10-5; 10-4; 5×10-4; 10-3; and 3×10-3 M (from bottom to 
top). Symbols and lines as in Fig 1a. Note that the curves corresponding to cT,Cd = 0 and 10-5 M overlap. 
The typical repeatability of the experiments is indicated by plotting two titration replicates for each metal 
concentration. 
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Fig 4. CAScTM of the HA for protons at different fixed total lead concentrations. Black solid line: global 
spectrum; blue dashed line: “carboxylic” distribution; red dashed-dotted line: “phenolic” distribution; 
grey shaded area: distribution of sites occupied by protons at pH = 8. cT,Pb = 7.5×10-4 M (a); 10-3M (b); 
1.5×10-3M (c); and. 5×10-3M (d) 
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Fig 5. CAScTM of the HA for protons at different fixed total cadmium concentrations. Conventions as in 
Fig 4. cT,Cd = 7.5×10-4 M (a); 10-3M (b); 1.5×10-3M (c); and. 5×10-3M (d) 
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Fig. 6. Solid line: CAScTM of the HA for protons at a fixed total lead concentration of cT,Pb = 7.5×10-4 

M; dashed line: CAScM at a constant free lead concentration cPb = 5.6×10-4M, corresponding to cT,Pb = 

7.5×10-4 M and pH=4; dashed-dotted line: CAScM at a constant free lead concentration cPb = 10-10 M, 

corresponding to cT,Pb = 7.5×10-4 M and pH=10. 
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Fig. 7. Solid line: CAScTM of the HA for protons at a fixed total cadmium concentration of cT,Cd = 

7.5×10-4 M; dashed line: CAScM at a constant free cadmium concentration cCd = 7.1×10-4M 

corresponding to cT,Cd = 7.5×10-4 M and pH=4 ; dashed-dotted line: CAScM at a constant free cadmium 

concentration cCd = 1.6×10-7 M, corresponding to cT,Cd = 7.5×10-4 M and pH=10. 
 
 
 




