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ABSTRACT 

Scope: The aim of the current study was to apply an untargeted metabolomics strategy to 

characterize a model of cocoa intake biomarkers in a free-living population. 

Methods and results: An untargeted HPLC-q-ToF-MS based metabolomics approach was 

applied to human urine from 32 consumers of cocoa or derived products (CC) and 32 matched 

control subjects with no consumption of cocoa products (NC). The multivariate statistical 

analysis (OSC-PLS-DA) showed clear differences between CC and NC groups. The 

discriminant biomarkers identified were mainly related to the metabolic pathways of 

theobromine and polyphenols, as well as to cocoa processing. Consumption of cocoa products 

was also associated with reduced urinary excretions of methylglutarylcarnitine, which could be 

related to effects of cocoa exposure on insulin resistance. To improve the prediction of cocoa 

consumption, a combined urinary metabolite model was constructed. ROC curves were 

performed to evaluate the model and individual metabolites. The AUC values (95% CI) for the 

mailto:candres@ub.edu
mailto:rafallorach@ub.edu


2 

model were 95.7% (89.8–100%) and 92.6% (81.9–100%) in training and validation sets, 

respectively, whereas the AUCs for individual metabolites were <90%. 

Conclusions: The metabolic signature of cocoa consumption in free-living subjects reveals that 

combining different metabolites as biomarker models improves prediction of dietary exposure 

to cocoa. 

 

Abbreviations: AUC, area under the curve; CC, cocoa consumers; FFQ, food-frequency 

questionnaire; MVA, multivariate analyses; NC, nonconsumers of cocoa; OSC-PLS-DA, 

partial least squares discriminant analysis with orthogonal signal correction; ROC, receiver 

operating curve; VIP, variable importance for projection 
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1. INTRODUCTION 

Due to the complexity and limitations of traditional dietary assessment tools, in addition to their 

inherited measurement biases, there is a growing interest in the implementation of dietary 

biomarkers in nutritional epidemiology as objective measures of dietary exposure [1]. Recently, 

the food metabolome has been proposed as a novel data-driven approach to improve dietary 

consumption measurements and uncover new food biomarkers [2]. Biomarkers of dietary 

consumption are defined as the compounds characteristic of a dietary constituent that 

discriminate consumers from nonconsumers [1]. However, most food constituents are broadly 

present in different foods, hence they are not unique to a specific food item. This fact adds 

complexity to the discovery of new food biomarkers and means that only a few compounds can 

be considered as biomarkers of a particular dietary constituent, such as proline betaine for the 

consumption of citrus fruits [3] or resveratrol for wine [4]. To overcome this issue, a 

combination of food-derived metabolites could provide a more accurate and precise 

measurement of consumption. However, this field has been practically unexplored for the 

discovery of dietary biomarkers [2]. 

There is a growing body of evidence on the beneficial health effects of cocoa consumption, 

especially in relation to cardiovascular diseases [5]. To better examine the link between cocoa 

consumption and health outcomes, an accurate and objective assessment of dietary exposure to 
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cocoa products is required. Various controlled dietary intervention studies have used both 

untargeted [6-8] and targeted approaches [9-11] on urinary excretion profiles associated with 

acute and chronic cocoa interventions and reported host and microbiota metabolites as 

conventional candidates for biomarkers of cocoa consumption. Nevertheless, not all of the 

proposed cocoa consumption biomarkers have been studied in populations under free-living 

conditions. Although some studies on dietary patterns [12] and food items [3, 13, 14] have 

already been conducted in free-living subjects, to our knowledge no study has evaluated the 

urinary metabolome of habitual cocoa consumers in a free-living population. This kind of study 

could provide more realistic data about differences in metabolome according to habitual cocoa 

consumption. 

In this context, the aim of the current study was to apply a metabolomics strategy to develop a 

potential model of cocoa intake biomarkers in a free-living population not submitted to dietary 

recommendations. 

 

2. MATERIALS AND METHODS 

The present report was designed and conducted as a cross-sectional study using baseline data 

and urine samples of 275 participants from the PREDIMED study. 

 

2.1. The PREDIMED study 

The PREDIMED study was a large, parallel-group, multicentre, randomized, and controlled 

clinical trial (ISRCTN 35739639; http://www.predimed.org). It was designed to assess the 

effects of the Mediterranean diet on the primary prevention of cardiovascular diseases in a high-

risk population. The details of the trial have been published elsewhere [15]. Briefly, participants 

were men (55–80 years) and women (60–80 years) with no cardiovascular disease at enrolment 

and fulfilling at least one of the two following criteria: presence of type 2 diabetes mellitus or 

at least three conventional cardiovascular risk factors [15]. The samples used in the present 

study were baseline spot urines collected and stored according to the PREDIMED study 

protocol. In parallel to these, dieticians administered to participants a validated semiquantitative 

137-item food-frequency questionnaire (FFQ) [15]. The PREDIMED trial protocol was 

conducted according to the Declaration of Helsinki and was approved by the institutional 

review boards of all the centres involved. All participants provided written informed consent. 



4 

2.2. Sample selection according to cocoa consumption 

In order to assess the biomarkers of cocoa exposure by a metabolomics approach, baseline urine 

samples from three PREDIMED trial centres (Barcelona, Valencia, and Navarra) were matched 

to corresponding individual FFQ data. Two cocoa consumer groups were formed: (i) 

nonconsumers (NC), i.e., individuals who never consumed any (0 g/day) of three FFQ-defined 

cocoa-containing food items: chocolate, cocoa powder or chocolate chip cookies; and (ii) cocoa 

consumers (CC), i.e., subjects with consumption of at least three servings/week of chocolate 

(serving size, 30 g) and/or cocoa powder (serving size, 5g), whereas chocolate cookie 

consumption was not taken into consideration in this second group due to the very low amount 

of cocoa per serving. There were 32 subjects defined as CC and 192 defined as NC (the other 

51 participants did not fulfil any criteria from both cocoa consumer groups). In order to reduce 

the potential sources of variability not related to cocoa exposure, one NC was selected for each 

CC. NC subjects were matched to CC subjects by sex (male or female), age (≤67 or >67 years), 

energy intake (≤2000 or >2000 kcal), and centre (Barcelona, Valencia or Navarra). 

Furthermore, the two groups had to be homogeneous regarding body mass index, leisure time 

physical activity, smoking habit, diabetes status, presence of hypertension and dyslipidaemia, 

and use of insulin, oral antidiabetics, lipid-lowering drugs and antihypertensive drugs. 

 

2.3. Sample preparation, HPLC-q-ToF-MS analysis, and data acquisition 

Sample preparation and data acquisition was based on methodology previously published by 

our group [6, 7]. HPLC-q-ToF-MS analyses were performed using an Agilent 1200 Series 

Rapid Resolution HPLC system coupled to a hybrid quadrupole TOF (QTOF) QSTAR Elite 

(AB Sciex). 

 

2.4. Data processing 

The HPLC-q-ToF-MS raw data were extracted and aligned using MarkerView TM 1.2.1. 

software (AB Sciex; Toronto, Ontario, Canada). Data from negative and positive ionization 

modes were included in two separate data sets in order to analyze them individually. Peak 

detection was performed as specified elsewhere [6, 7]. A 0.05 Da mass tolerance range was 

used for alignment. RT tolerance windows were 0.10 and 0.14 min for negative and positive 

ionization mode data sets, respectively. Mass features that were missing in at least 20% of 

samples from both groups were considered to be noise and excluded from further analyses [16]. 
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2.5. Data analyses and biomarker selection: Metabolic profiling differentiation 

Principal component analysis was applied to evaluate the quality of the data acquisition. 

Multivariate analyses (MVA) were performed using SIMCA-P+ 13.0 software (Umetrics, 

Umeå Sweden). Partial least squares discriminant analysis with orthogonal signal correction 

(OSC-PLS-DA) was used to examine between-group differences. As this study involved 

samples from free-living subjects, OSC filtration was applied to reduce the variability not 

associated with dietary classification, i.e., differences in lifestyle, dietary habits or drug 

prescriptions within the given population in the days before sample collection [13]. The data 

set was log-transformed and Pareto-scaled prior to MVA. The quality of the models was 

evaluated by R2Y(cum) and Q2(cum) parameters. Model validation was evaluated by a 

permutation test (n = 200). Those variables with the highest variable importance for projection 

(VIP) values (cut-off ≥1.5) were selected as the most relevant to explain the differences in 

metabolic profile. In parallel, Mann–Whitney analysis or independent sample t-test were 

performed on the OSC filtered dataset, according to their distribution. The Kolmogorov–

Smirnov test was used to check data distribution. 

 

2.6. Identification of metabolites 

A method combining computational-assisted metabolite identification and LC-MS profile 

analysis was applied [6, 7] on the basis of exact mass (±5 mDa), which was compared to those 

registered in HMDB, KEGG, and METLIN. In addition, an in-house database focused on 

cocoa-derived metabolites was employed [6, 7] using an automated identification algorithm 

implemented in an R package [17]. The biological interpretation was performed using 

information from relevant scientific bibliographies and online databases such as HMDB and 

KEGG. 

 

2.7. Venn diagram 

A Venn diagram was created [18] in order to plot which identified metabolites overlapped with 

previous studies from our group on biomarkers of cocoa exposure with different study designs 

[6, 7]. 
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2.8. Developing models of combined urinary markers 

We designed a prediction model and constructed receiver operating characteristic (ROC) curves 

to evaluate the accuracy of the model and of each discriminatory metabolite using filtered data 

from the OSC-PLS-DA analysis. 

First, the data set was randomly split into two-thirds for training (n = 42) and one-third for 

validation sets (n = 22). Then, a forward stepwise logistic regression model was constructed on 

the training sample set in order to design the best combination of metabolites for cocoa 

consumption prediction. This analysis was conducted using IBM SPSS Statistics 20 software 

(SPSS Inc., Chicago, IL, USA). The model was constructed employing the dichotomous 

variable of cocoa consumption (yes/no) as dependent variable and those metabolites which 

overlapped in the three studies according to the results of the Venn diagram as independent 

variables (continuous).The correlation between cocoa intake and the combined model was 

evaluated using Spearman's rank correlation coefficient. 

ROC curves were used to evaluate the accuracy of this model, in addition to separate evaluation 

of discriminatory metabolites individually [19]. ROC curve analyses for the designed model 

were performed in training and in validation sets to evaluate the combined model and in the 

whole population when assessing individual metabolites. The global performance of each 

metabolite and biomarker model was evaluated by the area under the ROC curve (AUC) and 

by the determination of sensitivity and specificity at the optimal cut-off point defined by the 

minimum distance to the top-left corner. 

 

3. RESULTS AND DISCUSSION 

The mean (±SD) cocoa consumption of the consumer group was 18.3 ± 13.4 g/day. The subjects 

included were 18 (28.1%) men and 46 (71.9%) women, with age 67.0 ± 6.3 years and BMI 29.8 

± 3.7 kg/m2. 

 

3.1. MVA of urinary metabolomic profiles 

The principal component analysis of urine samples revealed that they were not clustered 

according to the order of injection (Supporting Information Fig. 1). The OSC-PLS-DA analysis 

resulted in two one-component models with satisfactory modeling and prediction results, 

indicating that both models were able to discriminate the cocoa consumption group. The quality 
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parameters of both OSC-PLS-DA models are summarized in Table 1. The obtained models 

were well validated by a permutation test [13]. 

Table 1. Summary of parameters for assessing the OSC-PLS-DA modeling quality 

 OSC-PLS-DA Permutation test (n = 200) 

  R2Y (cum) Q2Y (cum) R intercept Q intercept 

Negative Mode 0.954 0.702 0.669 ‒0.140 

Positive Mode 0.947 0.723 0.627 ‒0.159 

 

3.2. Metabolic footprint of cocoa product exposure 

In order to select those markers with the largest contributions to the difference in urinary 

metabolome of each cocoa consumption group, VIP ≥1.5 was considered as the cut-off value. 

Based on this, we identified a total of 31 discriminating metabolites, as listed in Table 2. This 

table includes information about retention time, detected mass, and putative identifications of 

metabolites. Further information about statistical significance (p-value), VIP-values, mean of 

feature intensities from raw data, and the percentages of samples in which the feature was 

detected is provided by Supporting Information Table 1. 

Cocoa products such as chocolate are important sources of phytochemicals, mainly polyphenols 

(flavan-3-ols), and purine alkaloids (theobromine) [8]. Additionally, cocoa manufacturing 

procedures, such as roasting or fermentation, alter its composition by incorporating new 

compounds. In this context, the obtained results are in accordance with previous controlled 

dietary intervention studies, in which different compounds derived from theobromine and 

polyphenol metabolism, manufacturing processes, and acylcarnitine pathways were identified 

[6, 7]. In particular, in the CC group there were higher urinary excretions of xanthine, 5-

acetylamino-6-amino-3-methyluracil (AMMU), 3-methyluric acid, 7- and 3-methylxanthine, 

3,7-dimethyluric acid, and theobromine. With regard to polyphenols, both host (epicatechin and 

vanillin metabolites) and microbial (hydroxyphenylvalerolactones and hydroxyphenylvaleric 

acids) metabolites were tentatively identified. Additionally, processing-derived compounds 

were also characteristic of the CC group. Levels of aspartyl-phenylalanine and cyclo(aspartyl-

phenylalanil) were also elevated in the CC group. Cyclo(aspartyl-phenylalanil) is a constituent 

of roasted cocoa nibs (metabocard HMDB31360). Furthermore, both compounds are 

degradation products of aspartame. Furoylglycine is a derivative of furan, which is a compound 

detected in roasted cocoa [20]. 
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Table 2. Discriminating metabolites between nonconsumers and consumers of cocoa 

products 
CC 

versus 

NCa 

RT Metabolite Detected mass [Assignation] 

Theobromine metabolism 

↑ 0.63 Xanthine 151.0259 [M – H]– 

↑ 0.67 AMMU 199.0816 [M + H]+; 221.0637 [M + Na]+; 237.0376 [M + K]+; 171.0865 [M + 

H – CO]+; 172.0882 13C[M + H – CO]+; 156.0629 [M + H – C2H3O]+ 

↑ 0.87 AMMU isomer 199.0785 [M + H]+; 237.0375 [M + K]+; 171.0861 [M + H – CO]+; 156.0625 

[M + H – C2H3O]+ 

↑ 1.13 3-Methyluric acid 181.0328 [M – H]–; 363.0787 [2M – H]–; 364.0806 13C[2M – H]–; 166.0121 

[M – H – CH3]–; 183.0509 [M + H]+ 

↑ 1.37 7-Methylxanthine 167.0568 [M + H]+; 168.0574 13C[M + H]+; 189.0355 [M + Na]+; 333.1059 

[2M + H]+; 124.0499 [M + H – CHNO]+ 

↑ 1.62 3-Methylxanthine 165.0416 [M – H]–; 166.0422 13C[M – H]–; 122.0347 [M – H – CHNO]–; 

167.0597 [M + H]+; 168.0580 13C[M + H]+; 189.0371 [M + Na]+ 

↑ 1.85 3,7-Dimethyluric acid 195.0500 [M – H]–; 196.0527 13C[M – H]–; 180.0273 [M – H – CH3]–; 

197.0678 [M + H]+ 

↑ 2.75 Theobromine 181.0707 [M + H]+; 138.0660 [M + H – CHNO]+ 

Cocoa taste and flavor 

↑ 1.88 Furoylglycine 170.0449 [M + H]+; 95.0132 [M + H – glycine]+ 

↑ 4.72 Cyclo(aspartyl-

phenylalanyl) 

261.0872 [M – H]– 

↑ 4.73 Aspartyl-phenylalanine 279.0943 [M – H]–; 280.1001 13C[M – H]–; 281.1135 [M + H]+; 133.0629 [M 

+ H – C9H8O2]+ Host polyphenol metabolism 

↑ 4.38 Vanillin sulphate 230.9982 [M – H]–; 151.0385 [M – H – sulphate]– 

↑ 4.48 (Epi)catechinglucuronide 465.1013 [M – H]– 

↑ 4.85 Vanillic acid 167.0365 [M – H]– 

↑ 5.37 (Epi)catechin sulphate 369.0252 [M – H]– 

Microbial polyphenol metabolism 

↑ 3.73 HDHPVA glucuronide 401.1072 [M – H]– 

↑ 3.90 HHMPVA glucuronide 415.1237 [M – H]–; 416.1270 13C[M – H]– 

↑ 3.90 MHPV 223.0925 [M + H]+ 

↑ 4.15 DHPV sulfoglucuronide 287.0229 [M – H – glucuronide]– 

↑ 4.20 DHPV glucuronide 383.1005 [M – H]–; 384.1038 13C[M – H]–; 402.1398 [M + NH4]+; 209.0795 

[M + H – glucuronide]+ 

↑ 4.30 HDHPVA 225.0736 [M – H]–; 226.0788 13C[M – H]–; 101.0229 [M – H – C7H8O2]– 

↑ 4.37 HDHPVA sulphate 305.0291 [M – H]– 

↑ 4.42 DHPV glucuronide 383.0972 [M – H]–; 384.1004 13C[M – H]–; 385.1105 [M + H]+; 209.0785 [M 

+ H – glucuronide]+ 

↑ 4.60 HHMPVA sulphate 319.0495 [M – H]– 

↑ 4.60 MHPV glucuronide 397.1101 [M – H]–; 221.0776 [M – H – glucuronide]–; 416.1513 [M + NH4]+; 

223.0932 [M + H – glucuronide]+ 

↑ 4.70 HPV glucuronide 367.0990 [M – H]–; 368.1021 13C[M – H]– 

↑ 5.22 DHPV sulphate 207.0638 [M – H – sulphate]–; 289.0343 [M + H]+; 131.0446 [M + H – 

sulphate – 2(H2O) – C2H2O]+ 

↑ 5.62 HPV sulphate 191.0678 [M – H – sulphate]– 

↑ 6.54 HHPVA acid sulphate 289.0391 [M – H]–; 290.0425 13C[M – H]–; 209.0788 [M – H – sulphate]–; 

210.0852 13C[M – H – sulphate] – 

↑ 6.64 HPVA sulphate 273.0454 [M – H]–; 274.0489 13C[M – H]–; 193.0886 [M – H – sulphate]–; 

194.0911 13C[M – H – sulphate]– Acylcarnitine pathway 

↓ 1.87 Methylglutarylcarnitine 290.1590 [M + H]+; 291.1625 13C[M + H]+; 144.0982 [M + H – C6H10O4]+; 

129.0545 [M + H – carnitine]+; 101.0590 [M + H – carnitine – CO]+ 
AMMU, 6-Amino-5[N-methylformylamino]-1-methyluracil; DHPV, 5-(3′,4′-dihydroxyphenyl)-valerolactone; HDHPVA, 4-

Hydroxy-5-(dihydroxyphenyl)-valeric acid; HHMPVA, 4-Hydroxy-5-(hydroxy-methoxyphenyl)-valeric acid; HHPVA, 4-

Hydroxy-5-(hydroxyphenyl)-valeric; HPV, Hydroxyphenyl-valerolactone; HPVA, 4-Hydroxy-5-(phenyl)-valeric acid; 

MHPV, Methoxyhydroxyphenylvalerolactone; RT, retention time. 

aRows indicate levels in consumers of cocoa products versus nonconsumers: ↑ and ↓ means higher and lower levels, 

respectively, in cocoa consumers. 
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With respect to the endogenous metabolome, methylglutarylcarnitine showed reduced levels 

associated with habitual cocoa consumption. This metabolite belongs to the acylcarnitine class 

of compounds. Mass spectra of this metabolite is shown in Supporting Information Fig. 2. 

Fragments include the neutral loss of 77 and 161 amu corresponding to the loss of the 

trimethylamine moiety in addition to a loss of H2O and the loss of the carnitine backbone, 

respectively, as well as, the common fragments of the acylcarnitine family at m/z 85 and 144 

[21]. The protonated molecule of methylglutarylcarnitine was observed in all samples in both 

groups, but was significantly more abundant in the NC group (Supporting Information Table 

1). Zuniga and Li (2011) published the most comprehensive acylcarnitine profile in urine [21]. 

It was composed by a wide range of molecules with different chain lengths. Acylcarnitines are 

involved in mitochondrial lipid oxidation. They are originated from the conjugation of carnitine 

with fatty acids and promote fatty acid transport into the mitochondrial matrix for β-oxidation. 

The accumulation of these compounds has been related to insulin resistance through alterations 

in fatty acid β-oxidation in insulin-sensitive tissues, such as skeletal muscle [22]. In line with 

the present results, dark chocolate intake was previously associated with reduced levels of 

methylglutarylcarnitine together with other acylcarnitinies [8]. Indeed, this observation could 

reflect a potential mechanism of action for previously observed associations between chocolate 

or cocoa intake and improved insulin resistance [23]. 

 

3.3 Discriminant biomarkers of cocoa exposure replicated in studies with different designs 

A large proportion of all identified metabolites characteristic of habitual cocoa product 

exposure under free-living conditions matched with biomarkers of cocoa intake previously 

proposed by our research group using different study designs [6, 7]. Figure 1 illustrates a Venn 

diagram that shows that ten metabolites were characteristic of cocoa exposure independently of 

the study design. They were characteristic of theobromine metabolism (AMMU, 3-methyluric 

acid, 7- and 3-methylxanthine, 3,7-dimethyluric acid and theobromine) as well as polyphenol 

microbial metabolites (methoxyhydroxyphenylvalerolactone, and glucuronide and sulphate 

conjugates of 5-(3′,4′-dihydroxyphenyl)-valerolactone). All of these compounds can be 

considered as medium-term markers of cocoa intake: theobromine-derived metabolites have 

been detected over a 24 h period [6, 24] and polyphenol metabolites derived from microbial 

metabolism are excreted after those derived from metabolism by host tissues [6]. Thus, these 

results reinforce the concept that, in free-living populations, slowly excreted compounds could 

be better biomarkers than those that are rapidly excreted [13]. 
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Figure 1. Venn diagram showing overlapping and unique metabolites associated with 

cocoa consumption for the three types of study. 

 

 

With this study we have completed the pipeline recently proposed by Heinzmann et al. [3] and 

Pujos-Guillot et al. [13], in which three studies with different designs were developed in order 

to discover biomarkers of dietary exposure. First, we conducted an acute study in which urine 

samples from ten volunteers who randomly consumed either a single dose of cocoa powder 

with milk or water, or milk without cocoa, were collected before and at different times during 

a 24 h period after the ingestion of the test meal, and were analyzed through untargeted 

metabolomics. In this study, 27 compounds were linked to cocoa consumption [6]. 

Subsequently, we performed a 4 wk crossover dietary intervention study with 20 subjects who 

received cocoa powder with skimmed milk or milk alone. After the analysis of 24 h urine 

samples from baseline and at the end of the intervention by the same untargeted metabolomics 

approach, 42 metabolites were identified as the most discriminating of regular cocoa 

consumption [7]. Finally, in the present study we examined the differences in urinary 

metabolome between individuals who reported regular consumption of cocoa products and 

those who reported no consumption. After the untargeted metabolomics analysis, we identified 
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a total of 31 discriminating metabolites. Ten of them have been reported in both previous 

studies, thus they could be the best candidates for biomarkers of cocoa consumption (Fig. 1). 

The reason for some metabolites not being shared among the three types of studies could be a 

different level of control of the diet and other lifestyle variables, the heterogeneity of the study 

population, the type of biological sample used or the amount of cocoa products ingested. 

Interestingly, the ten overlapping compounds remained discriminative of cocoa exposure in 

both middle-aged and older adults, as well as in healthy and high-cardiovascular risk 

individuals. Additionally, in the dietary intervention studies, the other sources of polyphenols 

were avoided during the days prior to the intervention, but subjects included in this analysis 

followed their habitual dietary habits, that is, these metabolites remained characteristic of cocoa 

consumption despite the fact that no dietary restriction was enforced prior to sample collection. 

Regarding the type of biological samples used, they were different in each study. In the first 

acute study urine samples were obtained before consumption and 6, 12 and 24 h after cocoa 

intake [6]. In the second study, 24 h urine samples were used [7] since they have been described 

as the best method for monitoring daily intake [25]. However, the collection of 24 h urines 

samples is impractical in large-scale epidemiological studies [25]. For that reason, the 

replication of these metabolites using spot urines from free-living subjects, as those from the 

present study, reinforces their discriminatory power for exposure to cocoa products. Finally, 

different amounts of cocoa were consumed: in the acute study, subjects received 40 g of cocoa 

powder, while in the long-term intervention trial, volunteers consumed two sachets/day of 20 g 

of cocoa powder. However, in the present study we still observed differential urinary 

metabolomic profiles explained by the same classes of metabolites despite the fact that the study 

subjects had weekly exposure to cocoa products. Because the proposed biomarkers have 

remained differential with the habitual amount of cocoa consumption and morning spot urines 

have been used, our results support the application of this metabolomic approach to other 

nutritional epidemiologic studies. 
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3.4 Proposed model of combined urinary metabolites as a new biomarker of intake 

To improve the prediction of cocoa product exposure, a combination of more than one 

discriminatory metabolite was developed using the training set (Table 3). For this analysis, we 

considered those metabolites that were common to the three types of studies (Fig. 1). Because 

all overlapping metabolites were detected in positive ionization mode, the data set with this 

type of data was used. As a result, the model included 7-methylxanthine and 5-(3′,4′-

dihydroxyphenyl)-valerolactone glucuronide. Reported daily cocoa product consumption 

correlated [r (95% CI)] significantly with values of the combined model [r = 0.74 (0.61-0.83); 

p < 0.001]. The performance of the designed model was evaluated by the AUC in both training 

and validation sets (Fig. 2). We also constructed ROC curves for the ten overlapping 

metabolites independently. Table 4 shows that the combination of metabolites is a better 

discriminator (AUC > 90% in both training and validation sets) than each metabolite 

individually (AUC < 90% in all cases), reinforcing the improved capacity of biomarker patterns 

to distinguish between different dietary exposures. It is important to note that one component 

of theobromine metabolism together with another from polyphenol microbiota metabolism 

were present in the combined model. Any of the other eight metabolites did not enter the model, 

probably as a result of colinearity in the information provided by these compounds. We 

hypothesize that this could be because all of those from the same metabolic pathways give 

similar biological or dietary information and when one is introduced in the model the others do 

not provide more relevant information. Thus, the two metabolites contributed to the combined 

model, giving complementary information about habitual cocoa intake. 

 

Table 3. Metabolites selected by stepwise logistic regression model for the 

discrimination of cocoa product consumption using the training set 

Metabolite Coefficient Standard error p-value 

7-Methylxanthine 5.563 1.899 0.003 

DHPV glucuronide 4.081 1.559 0.009 
DHPV, 5-(3′,4′-dihydroxyphenyl)-valerolactone. 
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Figure 2. Receiver operating characteristic (ROC) curves of the combined urinary 

metabolite model in the training and validation sets. 

 

 

Table 4. Receiver operating characteristic (ROC) curve parameters of the combined 

urinary metabolite model in the training and validation sets and of overlapping 

discriminatory metabolites in the three types of study among all population 

   
Specificity 

(%) 

Sensitivity 

(%) 
AUC (95% CI) 

Combined model Training set 90.5 90.5 95.7 (89.8–100) 

  Validation set 81.8 90.9 92.6 (81.9–100) 

AMMU  81.3 87.5 88.2 (79.5–96.9) 

AMMU isomer  71.9 71.9 76.7 (65.1–88.3) 

3-Methyluric acid  78.1 78.1 82.2 (71.2–93.2) 

7-Methylxanthine  87.5 78.1 88.3 (80.1–96.5) 

3-Methylxanthine  81.3 81.3 85.2 (75.6–94.7) 

3,7-Dimethyluric acid  78.1 81.3 83.6 (73.3–93.9) 

Theobromine  68.7 78.1 69.8 (56.5–83.2) 

Methoxyhydroxyphenylvalerolactone 71.9 71.9 73.4 (60.6–86.2) 

DHPV glucuronide  59.4 78.1 68.3 (55.0–81.5) 

DHPV sulphate   75.0 62.5 71.1 (58.3–83.9) 
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4. CONCLUDING REMARKS 

In the current study we applied an untargeted metabolomics strategy to discriminate the urinary 

metabolome of regular cocoa product consumers in a free-living population. This approach 

revealed a number of metabolites, most of which have already been detected in other controlled 

cocoa dietary intervention studies. The fact that some of them are produced by the gut 

microbiota reinforces the hypothesis that the microbial food metabolome is an important source 

of dietary biomarkers. Interestingly, an acylcarnitine metabolite was inversely associated with 

cocoa intake. Because of the potential role of this class of compounds in insulin resistance, this 

observation could provide a mechanistic insight into the beneficial effects of cocoa 

consumption on insulin sensitivity previously described in epidemiological studies. 

Additionally, we developed a combined model of urinary metabolites that could be used as a 

more accurate tool for the discrimination of cocoa consumers in epidemiological studies. With 

this report, one more step has been taken in the research on dietary biomarkers. Until now, the 

study of food metabolome in the discovery of biomarkers of dietary consumption has focused 

mainly on changes and differences in individual metabolites. Here we show that combining 

different metabolites improves measurements of dietary exposure to cocoa products. These 

findings should be further validated in a wider cohort. We anticipate that this approach might 

also be successfully applied in the evaluation of complex dietary patterns, composed of distinct 

food items. Finally, the nature of this study adds complementary information about the 

metabolic footprint of a cocoa consumption closer to the real conditions encountered in 

epidemiological studies, which deal mostly with free-living subjects without any dietary 

restriction or specific supplementation. 
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