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ABSTRACT 

The diffusion of tracer particles in 3D macromolecular crowded media has been studied 

using two methodologies, simulation and experimental, with the aim of comparing their 

results. Firstly, the diffusion of a tracer in an obstructed 3D lattice with mobile and big 

size obstacles has been analyzed through a Monte Carlo (MC) simulation procedure. 

Secondly, Fluorescence Recovery after Photobleaching (FRAP) experiments have been 

carried out to study the diffusion of a model protein (alpha-chymotrypsin) in in vitro 

crowded solution where two type of Dextran molecules are used as crowder agents. To 

facilitate the comparison the relative size between the tracer and the crowder is the same 

in both studies. The results indicate a qualitative agreement between the diffusional 

behaviors observed in the two studies. The dependence of the anomalous diffusion 

exponent and the limiting diffusion coefficient with the obstacle size and excluded 

volume shows, in both cases, a similar tendency. The introduction of a reduced mobility 

parameter in the simulation model accounting for the short range tracer-obstacle 

interactions allows to obtain a quantitative agreement between the limiting diffusion 

coefficient values yielded by both procedures. The simulation-experiment quantitative 

agreement for the anomalous diffusion exponent requires further improvements. As far 

as we know, this is the first reported work where both techniques are used in parallel to 

study the diffusion in macromolecular crowded media. 

 

Key words: anomalous diffusion; macromolecular crowding; Monte Carlo simulation,; 

obstructed diffusion; FRAP 
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INTRODUCTION  

Diffusion is a basic transport mechanism that is present in a wide range of complex 

systems including living cells and it has strong connections with a lot of phenomena of 

crucial importance for sustaining life. Studies of diffusion-controlled reaction of 

biological macromolecules are usually performed in dilute solutions (in vitro). 

However, the high concentration of macromolecules in intracellular environments (in 

vivo) results in non-specific interactions (macromolecular crowding), which have a 

great influence on the kinetics and thermodynamics of possible reactions that occur in 

these systems [1-8]. In fact, macromolecular crowding has been shown to alter 

molecular diffusion both quantitatively and qualitatively [1, 5, 7, 9-10]. Quantitatively, 

macromolecular crowding reduces the diffusion coefficient as compared to aqueous 

solutions and qualitatively, diffusional motion could be changed toward anomalous 

diffusion, this mean time dependent diffusion. 

A great deal of information about motion of molecules in living cells has been 

obtained from intracellular measurements using different experimental techniques [7, 

11-30] and from simulations [10, 31-49]. Experimental data are usually obtained by 

fluorescence recovery after photobleaching (FRAP) [12-14, 16, 18, 20, 28, 30], 

fluorescence correlation spectroscopy (FCS) [11-23, 26-27, 29] and single particle 

tracking (SPT) [15, 19, 24-25] techniques. Nowadays, from these studies there are still 

unclear explanations regarding transport processes in living systems. However, it is well 

known that the anomalous diffusion emerges on cytoplasmatic macromolecules and it 

depends on the size and conformation of the traced particle and on the total protein 

concentration of the solution [22]. There are even experimental studies which show 

anomalous protein diffusion in vitro, with the anomalous diffusion exponent decreasing 

continuously with increasing obstacle concentration and molecular weight [26, 30]. 
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Simulation methods could be useful to help understanding the molecular 

dynamics in such complex medium. In the literature there are Monte Carlo (MC) 

simulation studies of diffusion in 2D media [31-32, 34-35, 41, 45, 47, 49] showing that 

the lateral diffusion is anomalous for short times and normal for long times. This fact 

implies that the diffusion coefficients depend on time and this dependency is described 

by scale laws, whose exponents depend, in turn, on the size and mobility of the 

crowding molecules [31-32, 34, 41, 43, 46-47]. Such simulations have also been 

performed in 3D [10, 33, 37-38, 42-44, 48] leading to results that are in satisfactory 

agreement with experimental data. However, biological fluids are more complex than 

systems usually considered in simulation due to the nonspecific interactions (e.g. 

obstruction, trapping or hydrodynamic interactions) and it is necessary to obtain well-

defined model systems for the further theoretical, respective experimental 

investigations.  

 The aim of the present study is to develop a simple and well-defined model 

system to carry out Monte Carlo simulations of obstructed diffusion, whose results can 

be compared with those obtained by an experimental technique. With this objective, we 

have carried out a series of Monte Carlo simulations and FRAP experiments. On the one 

hand, we have quantified the effect of the volume excluded by mobile obstacles on the 

diffusion of a tracer particle in a 3D lattice using MC method. And on the other hand, 

we have quantified the effect of the volume excluded by Dextran molecules used as 

crowder agents (two different molecular weights were considered) on the diffusion of a 

model protein (alpha-chymotrypsin) using FRAP. The size ratio between the model 

protein and the crowding agents in FRAP experiments is similar to the size ratio 

between the tracer and the obstacles considered in the Monte Carlo simulations. Finally, 

the results obtained by both methods are directly compared. 
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The paper is organized as follows: Methods, Results and Discussion and 

Conclusions. “Methods” section contains three subsections: a theoretical background 

explaining the mathematical concepts of anomalous diffusion, a subsection presenting 

the simulation algorithm and another subsection presenting the FRAP experiment, 

explaining how we obtain the values of investigated parameters for the quantitative 

analysis. In the “Results and discussion” section the results obtained by both 

methodologies Monte Carlo simulation and FRAP experiments are explained, analyzed 

and compared. The main outcomes of the study are summarized in the “Conclusions” 

section. 

METHODS 

Theoretical background 

A diffusion process taken by a solute in dilute solutions can be described with the well-

known Einstein-Smoluchowski equation for Brownian motion:  

 

r2 t( ) = 2d( )Dt        (1) 

where d is the topological dimension of the medium where the process is embedded and 

D is its diffusion coefficient [50-52]. In crowded media, typically in vivo and in a great 

number of in vitro experiments, the existence of different macromolecular species, 

proteins, nucleic acids, organelles, etc., hinders the diffusion process. In these cases, Eq. 

1 must be generalized to a more complex process, known as anomalous diffusion [11, 

26, 51-52] which can be described by: 

  

 

r2 t( ) = 2d( )!t"       (2) 
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where α is defined as the anomalous exponent (0 < α < 1 is the case of subdiffusion and 

α > 1 holds for the case of superdiffusion) and Γ is a generalized transport coefficient, 

also known as anomalous diffusion coefficient, of units [length2/timeα] whose value 

depends on the degree of crowding in the medium. This definition allows us to 

introduce a generalized time-dependent diffusion coefficient function, 

 

D! t( )  as: 

  ( ) 1
2 )(

)2(
1 !"=# $

% t
t

tr

d
tD      (3) 

where 

 

!  represents the excluded volume given by the different macromolecular species 

present in the solution and determines its crowding degree. Then, Eq. 2 can be written 

as: 

  

 

r2 t( ) = 2d( )D! t( )t       (4) 

 In order to work with dimensionless magnitudes it is usual to introduce some 

characteristic length unit, 

 

! , which is related to the mean free path of the solute and it 

can be associated to the unit length of the simulation lattice, and some characteristic 

time unit, 

 

µ , which is the jump time and it can be associated to the unit time. Therefore, 

Eq. 4 becomes: 

  

 

˜ r 2 t( ) = ˜ D ! ˜ t        (5) 

where, 

 

˜ r ! r "  and 

 

˜ t ! t µ  are the dimensionless length and the dimensionless time, 

respectively, 

 

˜ D ! " D! D0 , is the dimensionless time-dependent diffusion coefficient 

function, and 

 

D0  is the diffusion coefficient of the solute in solution without crowding. 

This 

 

D0  value is related to the units of length and time by the Einstein-Smoluchowski 

Eq. 1 as 

 

D0 = 1 2d( ) !2 µ( ). 
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 From now, in order to simplify the notation, we drop the tilde in 

 

˜ r , 

 

˜ t  and 

 

˜ D ! . 

Then, Eq. 5 is now written as 

  

 

r2 t( ) = D! t        (6) 

which is the dimensionless form of Eq. 4. It must be taken into account that the 2d 

factor only appears in the dimensioned form of the generalized Einstein-Smoluchowski 

diffusion equation. 

 Experimental and theoretical data [10, 18, 20, 22-23, 26, 34-37, 48] reveal that, 

in crowded media, there is a succession of diffusion behaviors that can be identified 

with the three distinct regions observed in the log(<r2>/t) versus log(t) plots: 

i) For really short times log(<r2>/t) is almost time independent reflecting that the 

diffusion process is not yet affected by macromolecular crowding. We define this 

initial value as 

  

 

D0 !( ) = lim
t" 0

D! t( )      (7) 

and the dimensionless value of 

 

D0 ! = 0( ) = 1 is in accordance with the 

 

D0  value 

for the case without crowding. 

ii) Anomalous diffusion corresponds to an intermediate region where log(<r2>/t) 

linearly decreases with a slope α-1. 

iii) For long times, log(<r2>/t) tends to be constant again, reflecting a normal 

diffusion in a homogeneous dense medium with a diffusion coefficient (D*) lower 

than that corresponding to a dilute solution 
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D* !( ) = lim
t"#

D! t( )      (8) 

and the dimensionless value of 

 

D* ! = 0( ) = 1 is in accordance with the 

 

D0  value 

for the case without crowding. 

The shifting from the anomalous diffusion regime to the normal one is 

characterized by the crossover time, τ. These three parameters, α, τ and D*, are 

considered in our quantitative analysis of diffusion.  

Simulation algorithm 

Diffusion in 3D obstructed media has been modeled as a random walk process in which 

the randomly distributed diffusing particles, called tracers, move in an 80x80x80 cubic 

lattice with cyclic boundary conditions and containing randomly distributed obstacles 

such as their density is under the percolation threshold. We consider only excluded 

volume interactions (hard-sphere repulsions), so any site in the lattice may not be 

occupied by two particles at the same time. Our approach is based on the experimental 

results obtained by Kao and coworkers [33] and Wachsmuth and coworkers [20], which 

have shown that probe collisions with intracellular components were the principal 

diffusive barriers that slowed the translational diffusion of small solutes.  

Each tracer occupies a single site in the lattice. In contrast, to account for the 

usual greater size of the crowding molecules and to analyze the effect of this size in the 

diffusion, the obstacles were considered to occupy a greater number of sites. Two 

different sizes have been considered for obstacles (see Fig 1): obstacles occupying 27 

sites (a 3x3x3 site cube) and obstacles with 179 sites (a 7x7x7 site cube with the edge 

and vertex sites removed to obtain a quasi-spherical shape). As every obstacle occupies 
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several sites within the lattice, in our calculations we distinguish the density of sites 

occupied by obstacles from the concentration of obstacle particles. We will refer to the 

density of sites occupied by obstacles as the excluded volume due to the obstacle 

presence (φ). Four values for the obstacle excluded volume have been considered: 

0.031, 0.062, 0.124 and 0.187. We have chosen these densities in agreement with 

experimental data concerning to the range concentration of macromolecular crowding 

agents in cytoplasm, 0.05-0.4 [54-55]. We must underline that because of the repulsive 

interactions between the tracers, the total excluded volume of the system is the sum of φ 

plus the volume occupied by the tracers. However, as the tracer excluded volume is the 

same in all the performed simulations (0.01) and smaller than the obstacle one, all the 

study will we referred to the obstacle excluded volume, φ. 

In all the simulations the obstacles are allowed to move, in order to describe the 

mobility of the crowded agents in our FRAP experiments. This mobility is controlled by 

a probability factor M that determines whether an obstacle is tried to move after being 

randomly selected, being its value related to the obstacle size. The values of 0.75 for 27 

site obstacles (3x3x3) and 0.1 for 179 site obstacles (trunqued 7x7x7) were employed. 

At every time step a particle was selected at random to be moved (a tracer or an 

obstacle). For a tracer, the destination site is randomly chosen among the 6 nearest 

neighbors of the origin site. If the proposed site is empty the considered particle moves 

to it, otherwise it remains in its initial position and another particle is randomly chosen 

to move. For a big size obstacle, the central site is proposed to move randomly one 

position in one of the six spatial directions. The obstacle displacement is done if the 

new sites to be occupied are empty. For each Monte Carlo time step this sequence is 

repeated Ntot times (Ntot is the total number of mobile particles within the lattice) in 

order to assure that statistically each molecule moves once during a time step. Every 
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simulation run lasted 10000 time steps and it was repeated from 400 to 800 times with a 

different initial particle disposition. For each case, the mean squared displacements are 

averaged along these repetitions. This algorithm was implemented in a Fortran program.  

The time dependence of the diffusion coefficient is analyzed, according to Eq. 6, 

with the log(<r2>/t) versus log(t) curves obtained from the computer simulations. From 

each curve the three characteristic parameters of the diffusion can be extracted: the 

anomalous diffusion exponent (α), the crossover time (τ) and the long time diffusion 

coefficient (D*). In Fig 2 it is shown how these parameters are obtained.  

 We notice in Fig 2 that for an unobstructed lattice (φ =0, homogenous media) the 

plot is a horizontal line, indicating that diffusion coefficient is constant. The log(<r2>/t) 

value is not exactly zero because there is a small auto-crowding effect due to the hard 

sphere tracer repulsions. In contrast, the curve corresponding to the obstructed lattice 

(φ = 0.187) present two characteristic regions. There is a region with a linear decreasing 

of log(<r2>/t), which corresponds to an anomalous diffusion behavior, followed by a 

region with a smaller constant diffusion coefficient (D*) characteristic of normal 

diffusion. It should be noticed that, as a consequence of the spatial discretization of the 

model [11, 31, 36, 48], the initial region of normal diffusion (when the diffusing 

particles are not still affected by the crowding obstacles) is not observed in the present 

simulations. The initial value of log(<r2>/t) is conditioned by the degree of crowding of 

the system and its linear decreasing is attained after a few time steps. These initial 

points have been removed from the linear fitting to obtain the anomalous diffusion 

exponent [35].  

According to Eq. 6, the value of the anomalous diffusion exponent is calculated 

from the slope of the linear time decreasing region of the log(<r2>/t) versus log(t) plot. 

The long time diffusion coefficient is the long time asymptotic limit of the plot. Finally, 
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as it is illustrated in Fig 2, the crossover time is given by the intersection of the linear 

fitting of the anomalous diffusion region and the horizontal line corresponding to the 

limiting diffusion coefficient of the normal diffusion region [35].   

The <r2> versus t plots have also been analyzed. According to Eq. 2, for the 

normal diffusion regions this plot is a straight line with slop proportional to its 

corresponding normal diffusion coefficient. As, in the simulations, the crossover time 

from the anomalous to the final normal diffusion regions occurs very early (in the 28-

250 time step interval), most of the plot corresponds to the straight line of the final 

normal diffusion region (Fig 3). The initial normal and anomalous diffusion regions 

occupy a very short interval. This is the reason why a linear fitting in these plots usually 

yields the value of the limiting diffusion coefficient (D*). We have used these plots to 

confirm the value of the limiting diffusion coefficient (D*) obtained from Fig 2. As it 

will be discussed below, Fig 3 also shows that for a fixed obstacle excluded volume the 

slop of the <r2> versus t plot changes with the size of the obstacles.  

FRAP experiments 

To have comparable experimental results we have to choose an experimental 

technique which is able to study the properties of a tracer particle (e.g. protein) in a 

solution with a high concentration of other macromolecules. Among these techniques, 

those using fluorescent molecules, like Fluorescence Correlation Spectroscopy (FCS) 

[11-23, 26-27, 29, 53, 56-60] and Fluorescence Recovery after Photobleaching (FPR or 

FRAP) [12-14, 16, 18, 20, 28, 30, 41, 61-69] stand out. In this study we have used 

FRAP because of its special usefulness for studying molecular dynamics, mainly 

diffusion processes.  
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FRAP curves were acquired using a Leica TCS SP2 UV scanning confocal 

microscope equipped with a FRAP software package. The experiments were carried out 

with a ×63, 1.25 NA water-immersion objective, using a 488 nm Ar+ laser line at 25ºC 

and a 8 % of relative intensity. Fluorescence emission was collected using the 500-530 

nm band pass filter. Photobleaching illumination was performed using a 476, 488, 496 

and 514 nm Ar+ laser line at 25ºC and a 100 % of relative intensity to bleach a circular 

region-of interest (ROI) with a diameter of 4.1 µm. All images were acquired at 512 × 

512 pixel resolution, and using a 22.5 µm pinhole. The total ROI intensity was collected 

as a function of time, at increments of 0.28 ms during 70 s, and measurements were 

repeated 6 times for each sample. Our samples were composed of a low concentration 

(8.55 10-6 M) of the FITC-alpha-chymotrypsin complex (alpha-chymotrypsin was 

labeled with FITC using a manufacturer´s protocol) diffusing in an aqueous buffer 

(phosphate buffered pH = 7.4) in which crowding agents were dissolved. The 

concentration of Dextran in the samples is up to 300 mg / mL, in order to have the same 

excluded volume (from 0 to 0.2) as in our Monte Carlo simulations. The selected 

crowding agents were two Dextran with different sizes: a Dextran with Mw = 48600 Da 

(D1) and a Dextran with Mw = 409800 Da (D2). Samples of 30 µl were placed in a 

spherical cavity microscope slide and were equilibrated for 15 min on a temperature-

regulated microscope stage at 25°C. In these experimental conditions the contribution to 

the recovery from diffusion along axial direction is negligible [70], thus the diffusional 

medium was considered as 2D. This assumption is fulfilled when the bleached area 

forms a near cylindrical shape through the sample, as it occurs in a circular bleach spot 

of a reasonable diameter [71]. This assumption simplifies the curve analysis.  

FRAP data were fitted with a versatile expression for subdiffusion in bulk 

solution [30]: 
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F t( ) = F! " F0( ) exp "2 #D t( )$( ) I0 "2 #D t( )$( ) + I1 "2 #D t( )$( )%
&

'
({ } + F0  (10) 

where F(t) is the normalized mean fluorescence intensity in the bleached ROI at time t; 

F∞ is the recovered fluorescence at time t = ∞; F0 is the bleached fluorescence intensity 

at time t = 0; I0 and I1 are the modified Bessel Functions; τD is a characteristic residence 

time of the solute molecule in a volume of a characteristic length ω (beam area) and  α 

is the anomalous coefficient. 

 The parameter τD, obtained from FRAP experiments, can be related to the 

generalized transport coefficient Γ, introduced in  Eq. 2 

! =
" 2

2d( )#D$
       (11) 

This definition allows to obtain the generalized time-dependent diffusion 

coefficient function, D! t( ) , defined in Eq. 3, as: 

D! t( ) " #t$ %1 " Deff t
&D

'
()

*
+,

$ %1

     (12) 

which can be written in terms of an apparent/effective diffusion coefficient, Deff defined 

as [26]: 

Deff ! D" #D( ) = 1
2d( )

$ 2

#D
     (13) 

MATLAB (The Mathworks, Natck, MA) was used to develop the routine to fit 

experimental data and extract the time constant, τD, and the anomalous coefficient, α. 

The goodness of the fitting was judged in terms of χ2 value and weighted residuals. 
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RESULTS AND DISCUSSION 

Monte Carlo simulation results 

A group of simulations was carried out in order to analyze two different aspects of the 

crowding effect on the diffusion of a tracer particle: the effect of the obstacle excluded 

volume (different occupied volumes) and, for a fixed value of the excluded volume, the 

effect of the spatial distribution of the occupied sites (different obstacle sizes). It is 

important to emphasize that in all simulations, obstacles are allowed to move as it 

happens in FRAP experiments. As in experimental systems the mobility of crowding 

molecules is proportional to their size, we have analyzed the obstacle obstructive effect 

to diffusion by assigning a different mobility to each obstacle size. To obtain a 

qualitative indication of the different size-mobility effect, a value of M=0.1 have been 

given to the 179 site obstacles (7x7x7) and M=0.75 for obstacles having 27 sites 

(3x3x3). In a previous study [48] we have established that the mobility of obstacle 

chosen are appropriates. The diffusion characteristic parameters obtained from the 

simulation curves are shown in Fig 4.  

 First, Fig 4a shows the dependence of the anomalous coefficient, α , with the 

excluded volume by the two selected obstacle sizes. In both cases a consistent decrease 

of α for the tracer particle is observed when the concentration of both obstacles is 

increased. In addition, it can be seen that for each obstacle excluded volume, the 

anomalous diffusion exponent is greater for the small size obstacles and smaller for the 

big ones. Second, the limiting diffusion coefficient, D* (Fig. 4b), shows a similar 

behavior: a decrease of the value of D* is observed when the concentration of both 

obstacles is increased. Moreover, despite that the D* value differences are small, for a 

given obstacle excluded volume; the bigger obstacles (7x7x7) have a smaller diffusion 

coefficients.    
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FRAP results 

Figure 5 shows an example of the FRAP curves obtained in our experiments. We could 

use successfully the analysis model proposed in Eq. 10 to fit these experimental data 

and to characterize the diffusional behavior of the protein alpha-chymotrypsin in 

samples with the two considered Dextrans (D1 and D2). The values collected in Table 1 

show an increase of the diffusional time τD and a consistent decrease of the anomalous 

coefficient α for the protein when the excluded volume (i.e. concentration) of both 

Dextrans in solution is increased. Moreover, we can see a size-dependent emergence of 

anomalous subdiffusion, which also clearly depends on the fractional volume occupied 

by the crowding agent. These experiments confirm that the interaction via excluded 

volume can cause subdiffusion. In addition, in Fig. 6 we can see that α decays with 

increasing obstacle concentration and this decay becomes steeper with increasing the 

obstacle size (average molecular weight of Dextran). This behavior is similar than the 

obtained in Monte Carlo simulations.  

From the parameters obtained in FRAP experiments and using Eq. 13, it is 

possible to calculate an effective diffusion coefficient, Deff, for FITC-alpha-

chymotrypsin in Dextran solutions. The obtained values for the different Dextran 

concentrations are also shown in Table 1. As a reference, Deff for alpha-chymotrypsin in 

dilute solution has an approximate value of 114 µm2s-1 (calculated using Stokes-

Einstein equation). In these tables we can see that Deff has a similar behavior as the 

anomalous diffusion parameter α, this means that Deff decreases with increasing 

concentration and size (Mw) of obstacles. 

As the time scale of confocal FRAP experiments is very short, we could observe 

the time-dependence of the diffusion coefficient of alpha-chymotrypsin in crowded 

Dextran solutions (Fig. 7) using Eq. 4, and it was also possible to obtain its limiting 



16 
 

value corresponding to the long time normal diffusion, D* = Deff/D0. To calculate this 

limiting diffusion coefficient, D*, we had to consider the experimental initial diffusion 

parameter, D0, which is different from the diffusion coefficient of the protein in a dilute 

solution. At t → 0 the diffusion coefficient is not exactly the one corresponding to a 

dilute solution because the properties of water molecules confined in reduced spaces are 

not the same. It is known, for example, that the effective viscosity of water due to the 

presence of larges obstacles can increase up to 20 times [72-73]. This fact suggests that, 

according to Eq. 7, the value of D0 that we have to take into account in each sample is 

its corresponding initial diffusion coefficient value. The obtained values of D* are 

shown in Table 1 too. It is observed a decrease of D* when the concentration of both 

Dextrans is increased. In addition, for a given excluded volume, the bigger Dextran has 

a smaller diffusion coefficient. This behavior is also similar to that obtained in the 

Monte Carlo simulation.  

Comparison   

Table 2 shows the values of α and D* obtained through both methodologies, Monte 

Carlo simulations and FRAP experiments, in function of the excluded volume and the 

obstacle size. The results indicate that both techniques describe a similar diffusional 

behavior of the system. We observe a time dependent diffusion (anomalous 

subdiffusion) with the two methodologies. We can also see that α and D* decay with 

increasing obstacle concentration and that this decay becomes steeper with increasing 

the obstacle size. Both, simulation and experimental, studies indicate that the size and 

the volume excluded by obstacles play a very important role in the diffusion processes 

in macromolecular crowded media, concluding that they must be taken into account in 

future studies on diffusion-controlled processes, such as reactions in crowded media.  
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However, it should be noted that there are quantitative differences between the 

results obtained by Monte Carlo simulations and those obtained by FRAP experiments. 

Generally, for both parameters reported in the Table 2 the values obtained by FRAP are 

lower than those obtained through Monte Carlo simulations, indicating that this 

procedure yields a weaker excluded volume effect. In view of these results, it is not 

clear that the MC simulation algorithm introduced here can reproduce the anomalous 

diffusion mechanism associated with the experimental FRAP curves.  

Several mechanisms are proposed in the literature to describe the subdiffusion 

process of macromolecules in crowded media. They can be summarized in three 

different kinds [41, 52, 74-76]: (i) obstructed diffusion; (ii) Continuous Time Random 

Walk (CTRW); (iii) Fractional Brownian Motion (FBM). The Monte Carlo simulation 

model presented here belongs to the obstructed diffusion type. FBM considers a time-

dependent diffusion coefficient similar to that defined in Eq. 3 to interpret the mean-

squared displacement (MSD) for a diffusion process in an obstructed medium. On the 

other hand, CTRW considers a random walk process among energetic or structural traps 

with a random waiting time, which is consistent with the description of the MSD 

through Eq. 2 with a generalized transport coefficient. This generalized transport 

coefficient is, in CTRW, non local in time, a property intimately related to its non-

stationary nature, in contrast to the FBM where it is local in time. 

 Recently Weiss et al. has shown that FCS experiments are consistent with 

obstructed diffusion and FBM descriptions and differs from CTRW [75-76]. Moreover, 

Tejedor et al. [77] have proposed new estimates from trajectories of particles in order to 

discriminate the different mechanisms for describing subdiffusion, and they applied 

them to Single Particle Tracking (SPT) experiments, showing that FBM is the most 

consistent mechanism that explains the different observed experimental features. 
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 A FRAP experiment, as performed here, is not sensitive to the various types of 

individual particle motions, but rather measures ensemble properties. When obtaining 

FRAP curves, one sees only an average of the different individual behaviors and 

therefore an apparent diffusion behavior [68] is obtained. On the other hand, the MC 

simulation algorithm for obstructed diffusion introduced here makes a similar process 

because the mean-squared displacement (MSD) is obtained by averaging different 

particle trajectories at different times. Lubelski and Klafter [68] generalized the FRAP 

response with a Gaussian laser beam consistent with the CRTW mechanism following a 

subordination relationship between the solutions of the fractional (subdiffusion) and 

normal diffusion equations, in a similar manner as Feder et al. [11] did using a FBM 

description of the FRAP experiment with a Gaussian laser beam. Recently, Pastor et al. 

[30] have made a similar procedure for a FRAP experiment with a uniform laser beam. 

Although simulations give some discrepancies for cases where there is a fraction of 

immobile macromolecules between these two mechanisms, for cases when all the 

macromolecules are assumed mobile, the two procedures seem to give a similar 

description of the FRAP experiment with Gaussian laser beam [68]. Saxton [41] made 

simulations of FRAP experiments using the three different mechanisms, above 

mentioned, and showed that there are some discrepancies between them, especially if 

there is a fraction of immobile macromolecules/proteins, being FBM the one most 

consistent. 

 Moreover, it should be mentioned that all the MC simulations performed using 

the obstructed diffusion algorithm, are made in the percolation threshold. [41, 76] or 

with a exclude volume compatible with the α value obtained experimentally [75]. 

 According to these analyses, the obstructed diffusion MC model used here is a 

reliable mechanism to describe anomalous diffusion in crowded media and to interpret 
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the information yielded by experimental FRAP curves obtained with a uniform laser 

beam in a medium without an immobile fraction of macromolecules/proteins. Thus, the 

observed quantitative discrepancies between results from both the MC and FRAP 

descriptions can be corrected by introducing some improvements in the simulation 

model. In particular, the introduction of the different type of interactions 

(hydrodynamic, esteric, conformational, etc.) that the diffusing macromolecules 

undergo in their diffusion process can improve the model. 

 Although the volume excluded by obstacles in the MC simulations is the same as 

in the experiments, the fact that the tracer-obstacle interaction is described with a hard 

sphere potential causes its crowding effect being smaller. The consideration of short 

range tracer-obstacle interactions and the greater viscosity of the solution near an 

obstacle can improve the comparison of the MC results with the experiments. To do so 

we have modified the simulation algorithm by introducing a retention parameter for the 

tracers those are in contact to an obstacle. According to the simulation model, at each 

time step a number of tracer particles is proposed to move and each particle is moved if 

the destination position is empty. Until now the movement trial is done for all the 

selected particles. Now we introduce a probability factor (RedMob) that is 0.5 for the 

tracers in contact to an obstacle and 1 for the rest of tracers. When a tracer particle is 

selected at random, the trial movement is done according to this probability factor. So, 

the mobility of particles touching an obstacle will be reduced as it happens in a real 

system. The value of 0.5 was selected as a primary estimation of the relative mobility of 

tracers touching an obstacle with respect to tracers in the bulk. 

 The simulations with obstacles having a size of 27 sites (3x3x3) were repeated 

for the 4 obstacle concentrations using this reduced mobility factor (RedMob). The 

obtained results are shown in Table 2. There it we can see that, now, the crowding effect 
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is more important. The limiting diffusion coefficient (D*) values are much smaller, 

approaching to the experimental results and showing a similar variation interval. 

However, the anomalous diffusion coefficient (α) values are exactly the same as in the 

previous simulations. The reduced mobility factor, does not modify the slope of the 

log(<r2>/t) versus log(t) curves. There is a displacement of these curves to lower values. 

The limiting diffusion coefficient diminishes but the initial diffusion coefficient, D0(φ), 

also diminishes in the same proportion (data not shown). Thus, the anomalous diffusion 

region starts at a new position and the diffusion coefficient variation until reaching the 

limiting normal diffusion is the same.  

It should be noticed that this result indicates that the crowding effect on the 

diffusion needs the consideration of tracer-obstacle interactions to be interpreted since 

the exclusive consideration of an excluded volume effect (in the sense of a hard sphere 

potential) yields insufficient results. Additional improvements should be introduced to 

the model to obtain a more exact description of the anomalous diffusion exponent value. 

These improvements must be done in two different ways. On the one hand, by 

subdiving the cells of the MC simulation lattice into smaller size cells in order to 

minimize the effect of the spatial and temporal discretization in the final value of the 

estimated parameters, and, on the other hand, by developing either new off-lattice MC 

algorithms or adapting Brownian Dynamics (BD) algorithms [78-80], in order to take 

into account the different kind of interactions mentioned aboveHowever, it is 

noteworthy that a simple MC model as the one presented here is able to describe the 

crowding effect on the diffusion with a good level of approximation to reality. 

CONCLUSIONS  
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In this work we have shown the potentialities of Monte Carlo simulations in the study of 

diffusion phenomena in macromolecular crowding situations. The obtained results show 

the important role of the size and the concentration of crowded agents in the diffusion of 

a tracer molecule in crowded media, and the behavior reported by our simulations is 

qualitatively similar to that obtained by experimental FRAP measurements. Despite the 

quantitative discrepancies, the introduction of a reduced mobility factor, representing 

the tracer-obstacle short range interactions, notably improves the agreement between 

simulations and experiments. This results indicates that the pure consideration of the 

excluded volume is not enough to correctly describe the crowding effects on diffusion.  
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Table 1. Experimental parameters associated with the diffusion process of alpha-

chymotrypsin as a function of size and concentration of crowding agents assuming 

a uniform circular disc profile model 

 

Crowder C (mg/mL) τD (s) α Deff (µm2/s) D* 

D1 50 7.00 ± 0.31 0.94 ± 0.04 7.90 ± 0.41 0.82 ± 0.13 

100 8.23 ± 0.40 0.88 ± 0.04 6.71 ± 0.30 0.66 ± 0.08 

200 11.27 ± 0.35 0.90 ± 0.03 4.91 ± 0.12 0.68 ± 0.04 

300 15.98 ± 0.25 0.87 ± 0.03 3.46 ± 0.08 0.59 ± 0.03 

D2 50 9.45 ± 0.37 0.90 ± 0.04 5.85 ± 0.22 0.68 ± 0.07 

100 10.44 ± 0.27 0.82 ± 0.02 5.29 ± 0.08 0.51 ± 0.02 

200 13.45 ± 0.20 0.82 ± 0.03 4.11 ± 0.11 0.48 ± 0.03 
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Table 2. Values of α  and D* obtained through both methodologies Monte Carlo 

simulation and FRAP experiments in function of the excluded volume and the size 

of obstacles.  The numerical errors for all the simulation values are smaller than 

1x10-4. 

  MC simulations FRAP experiments 

 φ α D* α D* 

3x3x3  
M =0.75 or 

D1 
 

0.031 0.9977 0.9663  0.94 ± 0.04 0.82 ± 0.13 

0.062  0.9957  0.9438 0.88 ± 0.04 0.66 ± 0.08 

0.124  0.9915  0.8975 0.90 ± 0.03 0.68 ± 0.04 

0.187  0.9871  0.8521 0.87 ± 0.03 0.59 ± 0.03 

7x7x7  
M = 0.1 or 

D2 
 

0.031 0.9967 0.9650 0.90 ± 0.04 0.68 ± 0.07 

0.062 0.9933 0.9423 0.82 ± 0.02 0.51 ± 0.02 

0.124 0.9863 0.8951 0.82 ± 0.03 0.48 ± 0.03 

0.187 0.9786 0.8477 - - 

3x3x3  
M =0.75 

RedMob = 
0.5 or D1 

0.031  0.9976 0.9244 0.94 ± 0.04 0.82 ± 0.13 

0.062  0.9955  0.8607 0.88 ± 0.04 0.66 ± 0.08 

0.124  0.9913  0.7550 0.90 ± 0.03 0.68 ± 0.04 

0.187  0.9872  0.6577 0.87 ± 0.03 0.59 ± 0.03 
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CAPTIONS 

 

FIGURE 1. The two  obstacle sizes considered in the MC simulations: 27 sites (3x3x3) 

and 179 sites (7x7x7 R). 

FIGURE 2. log(<r2>/t) versus log(t) curve for diffusion in a 3D lattice with mobile 

obstacles having a size of 27 sites (3x3x3) and an excluded volume of φ = 0.187. The 

curve for a lattice without obstacles is also added. The regions corresponding to the 

different diffusion behaviors and the manner to determine the characteristic parameters 

are illustrated.  

FIGURE 3.  Plot of  <r2> versus time in two systems with a same obstacle excluded 

volume (0.187) but having different obstacle sizes: 27 sites (3x3x3) and 179 sites 

(7x7x7 R). The plot for the reduced mobility (RedMob) simulations in a lattice with 

3x3x3 obstacles is also included. The arrow indicates the crossover time position. 

FIGURE 4. Dependence of a) the anomalous diffusion exponent, α, and b) the long time 

diffusion coefficient, D*, on the obstacle excluded volume for two different size 

obstacles having different mobility: 27 site obstacles (M=0.75) and 179 site obstacles 

(M=0.1).  

FIGURE 5. FRAP curve obtained for the solution of alpha-chymotrypsin in a solution 

with a 50 mg/ mL of D1 (φ = 0.031).   

FIGURE 6. Anomalous diffusion exponent associated with the diffusion of alpha-

chymotrypsin as a function of obstacle concentration for Dextrans of various average 

molecular weights (●) for D1 and (▲) for D2.  
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FIGURE 7. Plots obtained using Eq. 13 that show the time dependence of the diffusion 

coefficient associated with the diffusion of alpha-chymotrypsin for different obstacle 

concentrations of both used Dextran: (■) 50 mg/mL, (○) 100 mg/mL, (▲) 200 mg/mL 

and (∇) 300 mg/mL.  
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 

 


