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ABSTRACT 

 

The beneficial impact of walnuts on human health has been attributed to their unique chemical 

composition. In order to characterize the dietary walnut fingerprinting, spot urine samples from 
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two sets of 195 (training) and 186 (validation) individuals were analyzed by an HPLC-q-ToF-

MS untargeted metabolomics approach, selecting the most discriminating metabolites by 

multivariate data analysis (VIP ≥ 1.5). Stepwise logistic regression analysis was used to design 

a multimetabolite prediction biomarker model. The global performance of the model and each 

included metabolite in it was evaluated by receiver operating characteristic curves, using the 

area under the curve (AUC) values. Dietary exposure to walnuts was characterized by 18 

metabolites, including markers of fatty acid metabolism, ellagitannin-derived microbial 

compounds, and intermediate metabolites of the tryptophan/serotonin pathway. The predictive 

model of walnut exposure included at least one compound of each class. The AUC (95% CI) 

for the combined biomarker model was 93.4% (90.1–96.8%) in the training set and 90.2% 

(85.9–94.6%) in the validation set. The AUCs for individual metabolites were ≤85%. As far as 

we know, this is the first study proposing a combination of biomarkers of walnut exposure in a 

population under free-living conditions, as considered in epidemiological studies examining 

associations between diet and health outcomes. 

Keywords: biomarkers; HPLC-q-ToF-MS; metabolic fingerprinting; nutrimetabolomics; 

walnuts 

 

INTRODUCTION 

Nut consumption has been associated with a reduced risk of all-cause mortality in different 

populations.1-3 Observational studies and clinical trials have reported beneficial effects of nut 

consumption on chronic diseases and their mediators.4-6 These effects on human health have 

been attributed to their unique nutritional composition. They are considered nutrient-dense 

foods containing several bioactive compounds, such as unsaturated fatty acids (e.g., α-linolenic 

acid), different types of dietary fiber, plant protein (e.g., arginine), vitamins (e.g., folate, niacin, 

and vitamin E), minerals (e.g., calcium, magnesium and potassium), and numerous 

phytochemicals (e.g., phenolic compounds and phytosterols).4,7,8 Indeed, regular nut 

consumption is included in the main dietary guidelines worldwide, including the Mediterranean 

Diet,9 the Dietary Guidelines for Americans,10 the Nordic Diet,11 and the DASH eating plan,12 

among others. 

In the study of the associations between dietary exposure and health outcomes, the use of robust 

biomarkers of food exposure has been proposed as an accurate measurement to estimate real 

intake.13 Biomarkers cannot completely replace traditional methods of dietary assessment, but 
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there is a broad consensus that the application of metabolomics to identify new biomarkers of 

dietary intake can improve and complement traditional methods, while providing an insight into 

the underlying mechanisms of diet–health associations.14,15 In a field of increasing interest, 

untargeted metabolomic studies have reported a wide variety of new biomarkers of dietary 

exposure, leading to the discovery of bioactive compounds with potential applications in the 

design of novel functional foods or dietary supplements.15 As a result of these types of studies, 

the interest in using metabolomics for the discovery of new dietary biomarkers for application 

in nutritional epidemiology has risen remarkably. However, their replication in free-living 

populations has hardly been tested so far.14 In this context, replication allows the level of 

evidence from observed associations to be increased, as has been suggested for genomic 

studies.16 Recently a critical review highlighted the new prospects that untargeted 

metabolomics displays for providing added value in the current nutritional research field to 

enable us to go much further than we have been able to do using traditional approaches.15 

Given that walnuts are one of the most widely consumed nut varieties,17 the aim of the present 

study was to characterize dietary walnut fingerprinting in spot urine using an untargeted high-

performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry 

(HPLC-q-ToF-MS) metabolomic approach, in two differentiated free-living populations with 

various levels of walnut intake from the PREDIMED study before changes induced by 

interventions occurred. For this purpose, we mainly focused on urinary biomarkers of nut 

exposure proposed in a previous clinical trial analyzing the urinary metabolomic changes that 

occurred after long-term consumption of mixed nuts by subjects with metabolic syndrome 

under specific controlled dietary conditions.18 Therefore, the identified biomarkers need further 

research on their validity in an uncontrolled free-living population. This type of study could 

contribute to more realistic data on the differences in the urinary metabolome of habitual walnut 

consumers. 

 

MATERIALS AND METHODS 

The present study was designed and conducted on baseline dietary data and spot urine samples 

from two differentiated subsamples [subsample 1 (S1), n = 275 subjects; subsample 2 (S2), n = 

327 subjects] randomly selected from the cohort of the PREDIMED study 

(http://www.predimed.es), a clinical trial registered at http://www.controlled-trials.com as 

ISRCTN35739639. The PREDIMED study is a large randomized clinical trial carried out in 

Spain, aiming to assess the effects of the traditional Mediterranean diet on the primary 

http://www.predimed.es/
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prevention of cardiovascular disease in a high-risk population. Recruitment took place between 

October 2003 and January 2009. The trial protocol was in accordance with the Helsinki 

Declaration and was approved by the institutional review boards of all the centers involved. All 

participants provided written informed consent. Participants were men (55–80 years) and 

women (60–80 years) without cardiovascular disease at baseline and fulfilling at least one of 

the two following criteria: presence of type 2 diabetes mellitus or three or more major 

cardiovascular risk factors.19 

 

Sample Selection According to Walnut Consumption 

For the current study, baseline spot urine samples from three PREDIMED centers (Barcelona, 

Valencia, and Navarra) were used and matched to corresponding data obtained from validated 

semiquantitative food-frequency questionnaires (FFQ) with 9 categories for the frequency of 

consumption.20 For statistical analyses purposes, which aim was to identify biomarkers of 

habitual walnut exposure, subjects were selected from the lowest and highest quintiles of walnut 

consumption. Thus, two walnut consumer categories were defined as follows: (i) non-walnut 

consumers (NC), subjects who never consumed walnuts (0 g/day) and (ii) habitual walnut 

consumers (WN_C), subjects with an intake of at least three servings/week of walnuts (serving 

size, 30 g) during the preceding year. 

 

Urine Sample Analysis and Data Processing 

Spot urine samples used in the present study were collected in the morning in fasting conditions. 

They were aliquoted, encoded, and kept frozen at −80 °C until used. Sample preparation was 

based on methodology previously published.18,21 

HPLC-q-ToF-MS analysis was conducted using an Agilent 1200 Series Rapid Resolution 

HPLC system coupled to a hybrid quadrupole TOF QSTAR Elite mass spectrometer (Applied 

Biosystems/MDS Sciex, Framingham, MA, USA) following our protocols published 

elsewhere.18 The quality and reproducibility of acquired data were evaluated according to 

previously reported procedure.18 

All analyses were carried out in two separate and independent subsamples (S1 and S2). 

Considering the criteria for sample selection by walnut consumption category, a subgroup of 

195 subjects (128 NC and 67 WN_C) was included in the current study and considered as S1. 
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From the second subsample (S2) of analyzed samples, 186 other subjects were selected (104 

NC and 82 WN_C). S1 was used as the training set, while S2 was used as the validation set. 

The HPLC-q-ToF-MS raw data were extracted and aligned using MarkerView TM 1.2.1. 

software (Applied Biosystems, MDS Sciex, Toronto, Ontario, Canada). The parameters used 

for the processing of raw data are listed in Table S1 (Supporting Information). Data from 

positive and negative ionization modes were included in two separate data sets for each 

subsample in order to analyze them separately. Thus, a total of four data sets (two from S1 and 

two from S2) were used in the current study. 

 

Multivariate Data Analysis and Biomarker Selection 

Mass feature data sets were log-transformed and Pareto-scaled before their multivariate 

statistical analysis using SIMCA-P+13.0 software (Umetrics, Umeå, Sweden). Partial least-

squares discriminant analysis with orthogonal signal correction (OSC-PLS-DA) was used to 

explore differences between groups.22 As this study involved samples from free-living 

individuals, OSC filtration was used to reduce the variability not associated with dietary 

classification.23 The quality of the models was evaluated by R2Y(cum) and Q2(cum) parameters. 

Validation of the models was evaluated by a permutation test (n = 200).22 Those mass features 

with the highest variable importance for projection (VIP) values (cutoff ≥1.5) were selected as 

the most determinants of the differences in urinary metabolomic profiles. VIP value is defined 

as the influence that each variable has in the PLS-DA model.24 Thus, the higher the VIP value, 

the more relevant is the variable in the model. Bearing in mind that usually a threshold of VIP 

scores ≥1 is considered as appropriate for metabolomic studies,24 the cutoff applied in this study 

is more restrictive, reducing the possibility of obtaining false positive results. 

 

Identification of Metabolites 

Selected mass features were identified by a multistep procedure.18 First, clustering analysis with 

Pearson distance and Ward’s method to aggregate the observations (PermutMatrix 1.9.3.0 

software) was applied in order to identify the mass features corresponding to the same 

metabolite: (de)protonated molecules, 13C isotopes, adducts, and in-source fragments mainly 

derived from the loss of the corresponding glucuronide moiety (−176 Da) or sulfate moiety 

(−80 Da). Then, metabolites were tentatively identified on the basis of their exact mass (±5 

mDa of accepted mass difference) and fragmentation patterns using an in-house database 
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mainly focused on the metabolites expected from the intake of walnuts and the databases 

Human Metabolome Database (HMDB),25 LIPID MAPS Structure Database (LMSD),26 and 

MetFrag.27 Finally, the biological interpretation was carried out using information from 

published research reports and from HMDB.25 

 

Building Models of Combined Urinary Markers 

To design a multimetabolite prediction biomarker model of walnut exposure, a forward-

conditional stepwise logistic regression analysis was conducted with the results obtained from 

the OSC-PLS-DA analysis using S1 as the training set, while S2 was used as the validation set 

(IBM SPSS Statistics 20 software, SPSS Inc., Chicago, IL, USA). Metabolites identified as 

discriminant for walnut exposure in both subsamples were used as independent variables, with 

a p-value of <0.05 as a condition required for entering and remaining in the model. The 

dichotomous variable on walnut consumption was used as dependent variable. The correlation 

between walnut intake and the combined model was evaluated using Spearman’s rank-

correlation coefficient. 

The global performance of the model, as well as of each metabolite included in it, was evaluated 

by constructing receiver operating characteristic (ROC) curves and estimating the area under 

the curve (AUC) values.28 The optimal cutoff for calculating the sensitivity and specificity of 

biomarkers was determined as the minimum distance to the top-left corner.29 

 

RESULTS 

The mean (±SD) walnut consumption of the consumer group was 18.6 ± 7.5 and 21.2 ± 11.6 

g/day for S1 and S2, respectively. In S1 there were 68 (35%) men and 127 (65%) women with 

67.7 ± 6.2 years and BMI 29.6 ± 3.9 kg/m2, whereas the S2 group comprised 60 (32%) men 

and 126 (68%) women with 67.2 ± 5.5 years and BMI 30.3 ± 4.1 kg/m2. The OSC-PLS-DA 

analyses resulted in four models with one component. All models held robust modeling and 

prediction results,23 suggesting that they were able to classify each subject in the correct 

consumption group (NC or WN_C). The quality parameters of all OSC-PLS-DA models, as 

well as the corresponding permutation tests, are summarized in Supplementary Table S2. 
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Selection and Identification of Discriminatory Metabolites Related to Regular Walnut 

Exposure 

A total of 18 metabolites were identified or tentatively identified. All of them were higher in 

the WN_C group compared to the NC group. Twelve of the identified metabolites were 

discriminative for both subsamples (Table 1), whereas the other six were only characteristic of 

walnut exposure in one of the two analyzed subsamples (Supplementary Table S3). 

Supplementary Table S4 includes information about the MS pattern of identified metabolites 

(isotopes, adducts, and source-generated ion fragments). The identified metabolites related to 

walnut exposure were grouped in three differentiated classes as follows: (i) fatty acid 

metabolites: 10-hydroxy-decene-4,6-diynoic acid sulfate, tridecadienoic/tridecynoic acid 

glucuronide, and dodecanediodic acid; (ii) polyphenol microbial metabolites: three conjugates 

of urolithin A, urolithin B and its glucuronide, two conjugates of urolithin C, pyrogallol sulfate, 

methylpyrogallol sulfate, and enterolactone glucuronide; and (iii) compounds related to the 

tryptophan/serotonin (methoxyindoles) pathway: 3-indolecarboxylic acid glucuronide, 

hydroxyindoleacetic acid sulfate, N-acetylserotonin sulfate, and hydroxyindoleacetic acid. 

Table 1. Urinary Metabolites Tentatively Identified As Walnut Exposure Biomarkersa 

RT 

detected 

mass 

(m/z) 

assignation 
tentative metabolite 

identification 
biological source 

level of 

identify-

cationb 

3.23 336.0751 [M–H]− 3-indolecarboxylic acid 

glucuronidec 

tryptophan/serotonin metabolic 

pathwayf 

II 

  338.0854 [M+H]+ 
 

3.83 270.0081 [M–H]− hydroxyindoleacetic acid 

sulfated 

tryptophan/serotonin metabolic 

pathwayf 

II 

4.20 297.0561 [M–H]− N-acetylserotonin sulfated tryptophan/serotonin metabolic 

pathwayf 

II 

4.62 257.0149 [M–H]− 10-hydroxy-decene-4,6-

diynoic acid sulfated 

fatty acid metabolism II 

5.22 419.0618 [M–H]− urolithin C glucuronide polyphenol microbial metabolism III 

5.25 403.0662 [M–H]− urolithin A glucuronided polyphenol microbial metabolism I 

  405.0830 [M+H]+ 
 

5.35 483.0227 [M–H]− urolithin A 

sulfoglucuronided 

polyphenol microbial metabolism II 

6.20 385.1838 [M–H]− tridecadienoic/tridecynoic 

acid glucuronided 

fatty acid metabolism II 

  387.1995 [M+H]+ 
 

6.25 387.0770 [M–H]− urolithin B glucuronidee polyphenol microbial metabolism II 

  389.0864 [M+H]+ 
  

6.34 473.1491 [M–H]− enterolactone glucuronidee polyphenol microbial metabolism III 

6.67 243.0295 [M–H–

sulfate]− 

urolithin C sulfatee polyphenol microbial metabolism III 

6.72 306.9915 [M–H]− urolithin A sulfated polyphenol microbial metabolism II 
aAll features have VIP values ≥1.5 in the corresponding OSC-PLS-DA model in both subsamples. bLevel of 

identification has been assigned according to Sumner et al.30 cStructural identification agrees with Dong et al.31 
dStructural identification agrees with Tulipani et al.18 eStructural identification agrees with MetFrag27 (LC–MS 

pattern information in Supplementary Table S4). fEndogenous and/or exogenous origin. 



8 

Designed Model of Combined Urinary Metabolites As More Robust Biomarker of Walnut 

Exposure 

In order to improve the discrimination between groups (NC and WN_C), a combination of more 

than one of the identified metabolites was developed using S1 as the training set. For this 

purpose, all metabolites identified as sufficiently discriminative in both subsamples were 

subjected to a conditional stepwise variable selection method through a binary logistic 

regression analysis. Data from the negative ionization mode were considered for this analysis, 

since all metabolites were detected in this mode. The results of the designed model are shown 

in Supplementary Table S5. Five metabolites were included in the fitted model, which 

contained at least one metabolite of each class, namely, two markers of fatty acid metabolism 

(10-hydroxy-decene-4,6-diynoic acid sulfate and tridecadienoic/tridecynoic acid glucuronide), 

two metabolites from microbial-derived polyphenol metabolism (glucuronide and sulfate 

conjugates of urolithin A), and one compound related to the tryptophan metabolic pathway (3-

indolecarboxylic acid glucuronide). Reported daily walnut consumption correlated [r (95% CI)] 

significantly with values of the combined model [r = 0.71 (0.63–0.77) for training set and r = 

0.67 (0.58–0.74) for validation set]. The multimetabolite prediction biomarker model and the 

metabolites included in it were evaluated individually and compared through ROC analyses 

using both training and validation sets separately. Supplementary Table S6 shows the results of 

ROC analyses for each combined biomarker model and of the corresponding included 

metabolites individually. All sensitivity and specificity values from the combined model for 

both subsets were nearly higher or higher than 80%, while none of the analyzed individual 

metabolites displayed at the same time a sensitivity and specificity both ≥80%. Accordingly, 

the AUC for the combined biomarker model was >90% for both S1 and S2 sets, whereas this 

value for individual metabolites was ≤85%. Figure 1 also shows that the combination of 

metabolites significantly improved the discrimination of walnut consumers compared to the use 

of each metabolite individually (p < 0.05, Supplementary Table S6). We also assessed the AUC 

values according to gender and age in order to evaluate if these variables could affect the 

predictability of the multimetabolite biomarker panel. However, there were no statistically 

significant differences in the AUC values in either of the two subsamples between men and 

women or according to median age (≤67 or >67 years). 
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Figure 1. Receiver operating characteristic (ROC) curves of multimetabolite prediction 

biomarker model (broad line) and of included individual metabolites (narrow lines) in the 

training (A) and validation (B) sets. 

 

 

DISCUSSION 

In this study, a panel of different urinary metabolites related to walnut exposure in the habitual 

diet was confirmed as discriminatory biomarkers using an untargeted nutrimetabolomic 

approach in a free-living population. In addition, sufficiently high correlations were found when 

the exposure was assessed as a continuous variable (defined by the combined biomarker panel). 

Markers of fatty acid metabolism were identified, together with several ellagitannin-microbial 

metabolites and other microbial-derived compounds, as well as intermediate metabolites of the 

tryptophan/serotonin pathway (Table 1 and Supplementary Table S2), reinforcing our 

previously published results obtained using 24-h urine samples.18 While 24 h urine has been 

described as a more robust method to monitor daily intake than spot urine,32,33 collecting 24-h 

urine samples is extremely difficult and impractical, especially in large-scale epidemiological 

studies.33,34 Thus, the replication of this biomarker panel using spot urines from free-living 

subjects reinforces its discriminatory power of walnut exposure. 

 

Characterization of Dietary Walnut Fingerprinting in Urine 

The presence of different types of fatty acids as markers of walnut consumption has been 

explained by the substantial and specific content of polyunsaturated fatty acids in walnuts.18 
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Urolithins are gut microbiota products from ellagic acid and ellagitannins, which are 

characterized by low absorption rates. They usually reach the lower gastrointestinal tract, where 

they are converted to urolithins,35 which are absorbed and metabolized to finally circulate in 

blood reaching different tissues prior to excretion.36 Urolithins have been considered as 

bioactive compounds associated with relevant health effects.36 Tryptophan/serotonin-derived 

compounds have been related to both exogenous and endogenous sources.18 

Hydroxyindoleacetic acid and N-acetylserotonin are involved in the tryptophan methoxyindole 

pathway. This pathway comprises serotonin as an intermediate metabolite, which has also been 

detected in significant amounts in walnuts.37 3-Indolecarboxylic acid has also been related to 

tryptophan metabolism.38,39 In this sense, bacterial degradation of tryptophan generates 

different indole acid derivatives.40 Walnuts are one of the food products with relatively high 

amounts of tryptophan,40 and it has been demonstrated that indole-containing metabolite levels 

are highly impacted by gut microbiota.41 The presence of 3-indolecarboxylic acid glucuronide 

has also recently been reported in human urine by an untargeted metabolomics study.42 

 

Multimetabolite Prediction Biomarker Model of Walnut Exposure 

Among all identified significant metabolites, half of them matched proposed biomarkers of nut 

consumption that were observed in a controlled dietary clinical trial,18 allowing their replication 

in free-living subjects. One possible explanation may be that in the previous clinical trial mixed 

nuts were used, with half of the supplemented serving composed of walnuts. Thus, the matched 

compounds in both studies could be those characteristic of walnut exposure. These metabolites 

could be the strongest candidates as exposure biomarkers to be applied as routine measurements 

of walnut consumption,23 since they are characteristic of subjects from both highly and less 

controlled studies, i.e., consuming both walnuts on their own and in a controlled clinical trial. 

The presence of the same metabolites in two independent studies with different designs and 

dietary conditions further extends the robustness of their validity as biomarkers of walnut 

exposure. 

Our findings indicate that the use of the proposed biomarkers individually is not as specific for 

walnut exposure as the multimetabolite panel. One possible explanation may be that ellagic 

acid and ellagitannins (precursors of urolithins) are present in a variety of plant foods, such as 

walnuts (pedunculagins), berries (sanguiin H6, sanguiin H10, and lambertianin C), and 

pomegranates (punicalagins and punicalins), among others.35,36 Still, even though various foods 

contain ellagitanins,43 it must be underlined that walnuts are the most important source 
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throughout the year in our Mediterranean population. Accordingly, although the observed fatty 

acid compounds and metabolites of the tryptophan/serotonin pathway have great discriminatory 

power, their specificity as robust biomarkers of habitual walnut consumption seems to be 

suboptimal. For this reason, we proposed combining the most discriminating metabolites in a 

unique multimetabolite model using a stepwise logistic regression procedure to improve the 

ability of walnut exposure prediction using morning fasting spot urine samples. Additionally, 

this combined panel allows us to take into account the correlations between metabolites,44 as 

well as covering a wide range of characteristic compounds of walnuts, thus providing a precise 

walnut-exposure fingerprint. The discriminatory capacity of the designed model was 

significantly better than models using each metabolite individually (Supplementary Table S6). 

These results reinforce the improved ability of multimetabolite biomarker models to selectively 

define dietary exposure. Interestingly, proposed biomarkers have been applied using habitual 

and recommended walnut portion size consumption and morning fasting spot urines, which 

reflect real conditions of nutritional epidemiologic studies. 

Because it is a particular component of this food, plasma α-linolenic acid levels determined by 

gas chromatography have been previously proposed as markers of walnut intake.45 In this 

context, as has been commented previously, walnuts are characterized by a unique chemical 

composition. Thus, considering their whole composition could provide more accurate 

information about their consumption. Indeed in this study untargeted metabolomics has been 

used to obtain a broad picture of several bioactive constituents of walnuts in human urine, 

specifically a combination of polyphenols, fatty acids, and serotonin/tryptophan metabolites. 

For this reason, the approach presented here could be considered as complementary information 

to that offered by the other markers. 

Given the increasing interest of the food industry in developing new functional foods, there is 

a need for objective biomarkers of food exposure that enable accurate measurements of their 

bioavailability. One of the strategic plans of the international community, including both the 

U.S. Food and Drug Administration (FDA)46 and the European Commission,47 concerns the 

need for the development and validation of biomarkers of food intake using omics-based 

approaches such as food metabolomics. Therefore, the development of new biomarkers of food 

exposure and even the proposal of new strategies to obtain novel biomarker patterns such as 

that developed in the current study could contribute to the advancement in this important field 

in terms of both health and economics. 
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That data used to categorize walnut consumers was derived from a FFQ is a potential weakness 

of the study, as participants could have under- or over-reported their usually intakes. However, 

the results obtained from this FFQ can be considered reliable since it was previously validated20 

and was administrated by trained dieticians.19 Additionally, the participants of the present study 

were at high cardiovascular risk, from a Mediterranean region, and not representative of the 

general population, so the results should be extrapolated with some caution to other populations. 

Finally, widespread application of biomarkers in dietary studies could be limited by the cost of 

analytical technique used for their determination.48 However, everyday advances in technology 

should soon lead to improved efficiency and precision in biomarker determinations, making 

them more economical and, therefore, more accessible for application in dietary studies.14 An 

important strength of the study is that it included free-living volunteers following their 

customary diet and with varying walnut consumption levels, providing more reliable data than 

highly controlled studies. It is also important to note the use of a combination of multivariate 

and univariate analyses as complementary statistical techniques to better characterize 

discriminant metabolites. 

 

CONCLUSIONS 

Dietary walnut fingerprinting in urine is characterized by a combination of metabolites of 

different classes, including markers of fatty acid metabolism, ellagitannin-derived microbial 

compounds, and intermediate metabolites of the tryptophan/serotonin pathway. When merged 

in a multimetabolite prediction biomarker, a better prediction performance was obtained than 

from any metabolite individually. As far as we know, this is the first study to propose a 

combination of more than one biomarker of walnut exposure in an uncontrolled population 

under free-living conditions, which is characteristic of epidemiological studies examining 

dietary exposures in relation to health outcomes. This approach might also be of interest for the 

further discovery of dietary exposure biomarkers as determinants of compliance in long-term 

intervention trials conducted in free-living individuals. 
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orthogonal signal correction; VIP, variable importance for projection; ROC, receiver operating 

characteristic; WN_C, walnut consumers 
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