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ABSTRACT 36 

The discovery of biomarkers of intake in nutritional epidemiological studies is essential 37 

in establishing an association between dietary intake (considering their bioavailability) 38 

and diet-related risk factors for diseases. The aim is to study urine and plasma phenolic 39 

and microbial profile by targeted metabolomics approach in a wine intervention clinical 40 

trial for discovering and evaluating food intake biomarkers.  41 

High-risk male volunteers (n=36) were included in a randomized, crossover intervention 42 

clinical trial. After a washout period, subjects received red wine or gin, or dealcoholized 43 

red wine over 4 weeks. Fasting plasma and 24-h urine were collected at baseline and 44 

after each intervention period. A targeted metabolomic analysis of 70 host and 45 

microbial phenolic metabolites was performed using UPLC-MS/MS. Metabolites were 46 

subjected to stepwise logistic regression to establish prediction models and received 47 

operation curves were performed to evaluate biomarkers.  48 

Prediction models based mainly on gallic acid metabolites, obtained sensitivity, 49 

specificity and area under the curve (AUC) for the training and validation sets of 50 

between 91% and 98% for urine and between 74% and 91% for plasma. Resveratrol, 51 

ethylgallate and gallic acid metabolite groups in urine samples also resulted in being 52 

good predictors of wine intake (AUC>87%). However, lower values for metabolites 53 

were obtained in plasma samples. The highest correlations between fasting plasma and 54 

urine were obtained for the prediction model score (r=0.6, P<0.001), followed by gallic 55 

acid metabolites (r=0.5-0.6, P<0.001). This study provides new insights into the 56 

discovery of food biomarkers in different biological samples.  57 

58 
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1 Introduction  59 

Biomarkers in epidemiological and clinical trials have to be indicators of exposure and 60 

must have several characteristics, including being robust, sensitive to changes, specific 61 

to the dietary source and biologically and physiologically understandable [1]. In the 62 

food research field, this means that biomarkers have to be an objective measure of 63 

intake and an evaluated indicator of food intervention [2]. There has been much in-64 

depth discussion concerning their ability to solve classical problems regarding 65 

estimating an index of quantitative exposure to individual food [1-3], and recently, 66 

identifying dietary patterns that may be related to major health benefits. Hence, there is 67 

an increased interest in biomarker research for the development of new functional 68 

foods, as well as for the validation of existing biomarkers [4]. Therefore, global 69 

metabolic approaches need to be carried out in order to evaluate the role of individual or 70 

groups of metabolites in the discrimination of selected food consumption. 71 

After consumption of polyphenols, beneficial health effects in the prevention of diseases 72 

have been widely analysed in in vivo and in vitro studies [5-7]. In particular, the 73 

consumption of grape-derived products such as red wine (RW) and dealcoholized RW 74 

(DRW) has been associated with a protective effect against cardiovascular diseases, 75 

possibly through their anti-inflammatory and antihypertensive activities [5, 8]. These 76 

associations were first linked to phytochemicals found in foods, which could exert their 77 

biological activity. However, in recent years there has been increasing attention paid to 78 

the metabolites formed in the organism, especially those formed by microbiota, due to 79 

their role in the prevention of some diseases such as obesity and diabetes [9, 10]. This 80 

supposes an increase in the variety of metabolites found in biofluids after consumption, 81 

and therefore an increased number of possible food biomarkers [11]. Moreover, new 82 

targeted and untargeted approaches have also increased the range of metabolites found 83 
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in biofluids, allowing the use of metabolomic tools for a new approach in biomarker 84 

research. In the case of RW, resveratrol metabolites have been described as being good 85 

biomarkers of wine intake [12, 13], and gallic acid has also been suggested as a marker, 86 

due to its increased excretion after wine consumption [14]. Both compounds were 87 

determined in 24-h urine. This sample has been suggested as being better for biomarker 88 

determination than others but since it is difficult to obtain in large epidemiological 89 

studies [1, 12-14], other samples such as fasting plasma need to be assessed for their 90 

potential to identify biomarkers. 91 

Here, we study the phenolic and microbial profile by a targeted metabolomics approach 92 

in a wine intervention clinical trial for the discovery and evaluation of biomarkers of 93 

wine intake considering both fasting plasma and 24-h urine samples. 94 

 95 

96 
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2 Materials and Methods 97 

2.1 Subjects and study design 98 

Thirty-six volunteers were included for the study of the targeted phenolic metabolite 99 

profile. The study was an open, randomized, crossover and controlled clinical 100 

intervention trial comprising three 4-week periods [5]. Baseline characteristics of 101 

participants and inclusion and exclusion criteria are given in detail in the Supporting 102 

Information and Supporting Information Table S1. After following a 15-day run-in 103 

period free of grape-derived products and alcoholic beverages, subjects were requested 104 

to consume 272 mL of RW (30 g ethanol/day), 272 mL of DRW and 100 mL of gin (30 105 

g ethanol/day) every day for 4 weeks, following the same background diet. Fasting 106 

blood samples (n=33) and 24-h urine samples (n=36) were collected after each 107 

intervention period and immediately stored at −80 °C until analysis. The Institutional 108 

Review Board of the hospital approved the study protocol. All participants gave written 109 

consent before participation in the study. This trial was registered in the Current 110 

Controlled Trials at the International Standard Randomized Controlled Trial Number 111 

Register, at controlled-trials.com, as ISRCTN88720134. 112 

 113 

2.2 Chemicals and reagents 114 

Chemical reagents and solvents used in this study are detailed in Supporting 115 

Information. 116 

 117 

2.3 Red wine, dealcoholized red wine and gin 118 

The RW and DRW used in this study were made with the Merlot grape variety, from the 119 

Penedès appellation (Catalonia, Spain). No differences in phenolic composition were 120 
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found between wines (Supporting Information Table S2) [15]. Xoriguer gin was used to 121 

ensure the same alcoholic consumption as the RW period. 122 

 123 

2.4 Sample extraction 124 

The targeted analyses of microbial-derived and conjugated metabolites were performed 125 

using solid-phase extraction. Oasis® MCX and HLB 96-well plates (Waters, Milford, 126 

Massachusetts) were used in hydrolyzed and non-hydrolyzed samples, respectively, as 127 

previously described [16-18]. Briefly, urine and plasma samples (1 mL) were loaded 128 

onto the conditioned cartridge plate. Then the cartridges were washed and analytes were 129 

eluted with methanol or acidified methanol (0.1% formic acid), respectively. Eluates 130 

from both extraction methods were evaporated to dryness under a gentle stream of 131 

nitrogen gas [17]. Residues were reconstituted with 100 µL of taxifolin (1.64 µmol/L) 132 

dissolved in mobile phase [16, 18].  133 

 134 

2.5 UPLC-MS/MS analysis  135 

The analysis of metabolites in urine and plasma was performed by UPLC-MS/MS 136 

equipped with a binary solvent manager and a refrigerated autosampler plate (Waters 137 

Acquity UPLC system, Milford, MA, USA), coupled to an AB Sciex API 3000 triple 138 

quadrupole mass spectrometer equipped with a turbo ion spray, in a negative 139 

electrospray ionization mode (PE Sciex). An Acquity UPLC BEH C18 (Milford, MA, 140 

USA) (1.7 µm, 2.1 mm × 5 mm), using a pre-filter, working at 40 °C with 0.5 mL/min 141 

with an injection volume of 5 μL, was used as described before [16]. Mobile phase A 142 

(0.1% formic acid) and B (0.1% formic acid in acetonitrile) were used at a flow rate of 143 

500 μL/min with the following proportions (v/v) of phase A [t(min),%A]: (0,92); 144 
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(2.5,50); (2.6,0); (3,0); (3.1,92); (3.5,92). The MS/MS parameters used were as 145 

previously described [16, 17]. 146 

 147 

2.6 Quantitative analysis 148 

For quantification purposes, data were collected using the multiple reaction monitoring 149 

(MRM) mode (Table 1 and Table 2) with a dwell time of 10 ms. When commercial 150 

standards were not available, concentrations were quantified using the most similar 151 

compound standard curve. Results were expressed as their equivalents [16]. The mean 152 

recovery of analytes ranged from 87% to 109%, and accuracy and precision of analytes 153 

at different concentrations were <15% [16, 17]. 154 

 155 

2.7 Statistical analysis  156 

Two statistical programs for data analysis were used: the MetaboAnalyst Web-based 157 

platform [19] and IBM SPSS Statistics software program for Windows version 20 158 

(Chicago, IL). The overall approach is described with the following steps: i) Data 159 

normalization of quantified phenolic metabolites was performed by a cube root 160 

transformation and a range scaling of the data; ii) This data retrieved an unsupervised 161 

segregation by principal component analysis (PCA) and hierarchical clustering analysis; 162 

iii) ANOVA for repeated measures was used to compare changes in phenolic 163 

metabolites in plasma and urine after intervention treatments (Bonferroni post hoc test); 164 

iv) Among the metabolites that displayed significantly different levels between wine 165 

interventions and baseline or gin period, a binary stepwise logistic regression analysis 166 

was performed to assess which metabolite combination predicted the wine intervention. 167 

For this purpose, 80% of random samples of wine interventions and baseline or gin 168 

periods were used as a training set, in which the logistic regression model was 169 
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calculated, and the remaining samples of each group (20%) were used as a validation 170 

set; v) The sensitivity, specificity and area under the curve (AUC) of the model were 171 

compared with parameters of phenolic metabolite groups in the whole population 172 

through a receiver operating characteristic (ROC) curve. The phenolic metabolite 173 

groups in urine and plasma are described in Supporting Information Table S3. In 174 

addition to the metabolites analysed in this study, resveratrol data from previous 175 

analysis [15] were  included to be evaluated and compared, since resveratrol has already 176 

been described as a wine intake biomarker [12, 13]. 177 

The optimal cut-off for the ROC curves was determined through the identification of the 178 

shortest distance to the optimal point (0,1) for which specificity and sensitivity was 179 

calculated. 180 

To estimate the association between fasting plasma and 24-h urine in the prediction 181 

models and within the phenolic metabolite groups, the Spearman correlation 182 

coefficients were calculated. Statistical significance was defined as P ≤ 0.05.183 
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3 Results 184 

3.1 Urine and plasma analysis of targeted polyphenol metabolomic pattern 185 

Nineteen individual metabolites and conjugates of (epi)catechin, methyl(epi)catechin 186 

and dihydroxyphenyl-γ-valerolactone (DHPV), and 10 phenolic acids including 187 

methylgallic sulfate and the group of total resveratrol metabolites significantly increased 188 

in urine after RW or DRW interventions compared to the baseline or gin periods (Table 189 

1). Only ethylgallate metabolites showed a statistically significant difference between 190 

both wine periods of intake. The plasma metabolites that increased after the wine 191 

interventions in relation to the baseline or gin periods included 10 phenolic acids, such 192 

as gallic acid and DHPV and their conjugates (Table 2).   193 

The PCA differentiated easily between urinary samples from RW and DRW 194 

interventions and samples from those in the baseline or gin period (Supporting 195 

Information Fig. S1A). PC1 explained 41.9% of the total variance while PC2 explained 196 

7.6% of the total variance, where the loading plot showed that gallic acid, ethylgallate 197 

and resveratrol metabolites were mainly responsible for this difference (data not 198 

shown). The clustering analysis executed by the heat map compared the metabolites of 199 

the participants in the four intervention periods. This was used as a first approach to 200 

assess the possible use of phenolic groups as biomarkers of wine consumption. A 201 

progression in the strongest discriminatory signals was observed in the heat map 202 

(Supporting Information Fig. S1B). The strongest discriminatory signals were observed 203 

for resveratrol, gallic acid and ethylgallate metabolites, followed by (epi)catechin and 204 

valerolactone metabolites, and the least discriminatory signals were those of phenolic 205 

acids.  206 

 207 

3.2 Evaluation of food intake biomarkers 208 
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The applicability of a logistic regression model involving multiple metabolites was 209 

examined to find the best markers of wine consumption in hydrolyzed and non-210 

hydrolyzed fasting plasma and 24-h urine samples from a clinical study in the training 211 

set. Metabolites that displayed significantly different levels between wine interventions 212 

and the baseline or gin period were subjected to a stepwise variable selection method. 213 

The results of the model for each type of sample are shown in Table 3. Metabolites 214 

included in the models did not display multicollinearity (data not shown). Both groups 215 

of resveratrol (resveratrol biomarker and microbial resveratrol metabolites) showed 216 

AUC over 96% and were analyzed only in non-hydrolyzed urine samples. Therefore, 217 

they were excluded from the logistic regression to be able to compare models with the 218 

same metabolites between different samples. The validity of the model was confirmed 219 

with the validation set and then applied to the whole population. The results of 220 

sensitivity, specificity and AUC for the model were higher than 92% and 74% for urine 221 

and fasting plasma samples, respectively, among training and validation sets, and for the 222 

whole population (Table 4). The global performance of the model for each kind of 223 

sample considering the whole population was depicted in the ROC curves (Supporting 224 

Information Fig. S2) and compared with the results obtained for the different phenolic 225 

groups (Table 4 and Supporting Information Fig. S2). In hydrolyzed urine, the best 226 

sensitivity, specificity and AUC were obtained for the model, followed by ethylgallate. 227 

In non-hydrolyzed urine samples, the groups of ethylgallate, methylgallic and 228 

resveratrol metabolites (AUC: 93–99%) resulted in being better discriminators of wine 229 

intake than (epi)catechin and DHPV metabolites (AUC: 76–86%). The best sensitivity 230 

and specificity were obtained for the model and for microbial resveratrol metabolites 231 

(cut-off value: 1424.19 µmol/24-h), and closely followed by the resveratrol biomarker. 232 

Plasma metabolites were weaker indicators of wine intake. Only the model in both 233 
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hydrolyzed and non-hydrolyzed samples and methylgallic sulfate in non-hydrolyzed 234 

samples had an AUC over 80%, which matched the results obtained in the prediction 235 

model.  236 

 237 

3.3 Correlations between fasting plasma and 24-h urine  238 

Correlations of individual metabolites, phenolic metabolite groups and the prediction 239 

model between 24-h urine and fasting plasma samples were performed (Table 5). The 240 

highest correlations were obtained for the prediction model score in both hydrolyzed 241 

and non-hydrolyzed samples (r=0.565 and 0.599, P<0.001, respectively) (Table 5 and 242 

Supporting Information Fig. S3), followed by the gallic acid metabolite group (r=0.451 243 

and 0.587, P<0.001, respectively). The group of flavan-3-ols and DHPV metabolites 244 

had lower but significant correlation values (r=0.4, P<0.001) in non-hydrolyzed 245 

samples. 246 

247 
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4 Discussion  248 

This is the first study in which phenolic metabolites from wine intake have been 249 

systematically evaluated and trialled in quantitative approach for the discovery and 250 

discrimination of food intake biomarkers.  251 

In this work, up to 70 and 30 phenolic metabolites have been identified and quantified 252 

in 24-h urine and fasting plasma samples, respectively, at baseline and after RW, DRW 253 

and gin interventions using a UPLC-MS/MS targeted analysis. Only 19 metabolites of 254 

(epi)catechin, methyl(epi)catechin and DHPV, 10 phenolic acids and resveratrol 255 

metabolites resulted in being higher in urine after RW and DRW compared with 256 

baseline or gin periods (Table 1). No differences were observed between RW and DRW 257 

metabolites in plasma and urine except for urinary concentrations of ethylgallate and its 258 

metabolites, whose concentration increased after the RW period (P<0.001). Ethylgallate 259 

is a wine compound derived from ethanol and gallic acid esterification [20], with similar 260 

concentration values in both wines (Supporting Information Table S1). The increment 261 

observed after RW intake may be due to the fact that ethylgallate could also be formed 262 

in the organism influenced by ethanol and gallate consumption through ethyl 263 

esterification by human esterases or by microbial metabolism [21, 22]. Up to this point, 264 

the results have shown individual statistical differences for metabolites between groups 265 

or the baseline time period. Previous targeted studies on the metabolism of polyphenols 266 

have also used these kind of approaches to evaluate statistical differences between 267 

groups in searching for polyphenol biomarkers [14, 17, 23] and sometimes they only 268 

focused on a few metabolites that could not represent the global fingerprint [14].  269 

In this study, the metabolites that displayed significant differences between both wine 270 

interventions and the baseline or gin period were selected as metabolite biomarker 271 

candidates to be evaluated in the stepwise logistic regression analysis. This approach, 272 
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traditionally used in clinical diagnosis [24], allows the identification of combinations of 273 

metabolites from several origins that increased their discriminate power regarding single 274 

metabolites. To our knowledge, this approach has been applied for the first time in 275 

targeted studies of polyphenol food research. Advantages over previous works were the 276 

high number of metabolites quantified that were added to this new step, which allowed 277 

the discrimination of those metabolites as better predictors of wine intake.  278 

All of the metabolites included in the model (Table 3) could come from the microbial 279 

degradation of several wine phenolics [11] and some of them are also present in wine 280 

composition, such as gallic acid, ethylgallate and 2,4-dihydroxybenzoic acid [16, 25, 281 

26]. Gallic acid could also be released from several compounds present in wine, such as 282 

gallates and anthocyanins [14, 27]. 2,4-Dihydroxybenzoic acid has also been described 283 

as coming from the degradation of anthocyanins [28] and 3-hydroxyphenylacetic and p-284 

coumaric acids, derived from procyanidins and anthocyanins, respectively [18, 29], 285 

which can be found in high content in wine [25]. Other analysed phenolic acids were 286 

not considered in the model since they were less discriminant as most arise from several 287 

food compounds. Thus, these metabolites could be misleading if they were considered 288 

as biomarkers, as has previously been suggested after the intake of berries [11, 30].  289 

Once the model for each kind of sample was obtained, the AUC, sensitivity and 290 

specificity and ROC curves evaluated their capacity to discriminate wine consumers. In 291 

addition, these values were compared with those corresponding to phenolic metabolite 292 

groups (Table 4 and Supporting Information Fig. S2). The resveratrol biomarker and 293 

microbial resveratrol metabolites had similar values to the model, with AUC values of 294 

96.5 and 98.8%, respectively. Until now, phase II metabolites of resveratrol have been 295 

proposed as good biomarkers of wine intake [12, 13], but microbial-derived metabolites 296 

have not been evaluated before. As was discussed above, one of the characteristics of a 297 
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good biomarker is being specific to food intake, thus resveratrol is well known for being 298 

almost exclusively distributed in grape products [31]. The fact to validate biomarkers is 299 

of great importance since there is the need for objective measures of food exposure that 300 

allow accurate measures taking into account their bioavailability [32]. Other phenolic 301 

groups with good but lower AUC values than the model were ethylgallate and gallic 302 

acid metabolites (Table 4). Thus, they could also be considered as biomarkers of wine 303 

intake. Previously, some authors positively associated gallic acid and methylgallic acid 304 

with the consumption of wine [33], but, to our knowledge, no associations have been 305 

published for ethylgallate. Gallic acid has even been described as the main metabolite of 306 

ethylgallate, with longer Tmax and t1/2 than its parent compound [34]. Both ethylgallate 307 

and gallic acid have been described in other foods, such as grape products, wine and 308 

vinegar, and tea, nuts and berries [25]. Other metabolites such as (epi)catechin and 309 

valerolactones were less discriminant than those described metabolites and the model. 310 

Although the concentrations of flavan-3-ols are high in wine, they are not exclusively of 311 

wine since metabolites have been described after cocoa, tea or nut consumption [18, 35, 312 

36]. As far as we know, previous studies have evaluated a single or groups of 313 

metabolites as biomarkers of specific food consumption. Therefore, as commented 314 

above, a same biomarker could be associated to different foods. Here, the application of 315 

this targeted metabolomic approach allows to define a specific biomarker imprinting of 316 

wine intake. 317 

The type of sample matrix in which biomarkers are measured also influences biomarker 318 

evaluation [37]. Twenty-four hour urine has been described as the gold standard sample 319 

for biomarker evaluation [38] and it provides a better measure of total polyphenol 320 

metabolites than fasting plasma as it provides a better index of intake [1]. However, for 321 

practical reasons, 24-h urine is not an easy sample to obtain in large-scale 322 



16 
 
 

epidemiological studies [1]. Consequently, we have assessed that fasting plasma should 323 

be considered for biomarker determination. In this study, individual and phenolic 324 

metabolite groups along with the score obtained from the prediction model (Supporting 325 

Information Fig. S3) were correlated between fasting plasma and 24-h urine (Table 5). 326 

The best correlations were observed among model scores from hydrolyzed and non-327 

hydrolyzed samples, indicating that those volunteers that were better classified as wine 328 

consumers were done so through both urine and plasma samples (r=0.565 and r=0.599, 329 

respectively P<0.001). Valerolactones and gallic acid microbial metabolites that also 330 

had significant correlations were selected for their important role as biomarkers in urine, 331 

and possible presence in fasting plasma due to their longer half-life [34, 36]. 332 

Ethylgallate could not be evaluated due to the low concentrations obtained in plasma 333 

since the Tmax and half-lives of ethylgallate were expected to be lower than its main 334 

metabolite gallic acid [34]. Although the coefficients of correlation were significant, the 335 

r values were clinically moderate (r < 0.750) [37], which was similar to previous studies 336 

that correlated urinary and plasma alkylresorcinol metabolites [37]. Correlations 337 

between 24-h urine and fasting plasma have been previously described for total 338 

flavonols in a crossover trial with a low flavonoid diet or with the same diet 339 

supplemented with flavonols (r=0.624) [39], as well as for isoflavones, using spot 340 

plasma (r=0.99) [40]. These correlations could open the possibility of finding those 341 

metabolites in plasma and establishing them as biomarkers of consumption and effect, 342 

but larger studies in a free-living population are needed to confirm and generalize this 343 

statement. In addition, a problem with the fasting plasma, as suggested previously [41], 344 

could be the substantial number of concentrations that are lower than the limit of 345 

quantification due to the short half-lives of polyphenol metabolites. 346 
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This study proposes the use of a quantitative targeted metabolomics approach that 347 

combines phenolic and microbial analysis, logistic regression joining with ROC curves 348 

in interventional studies to identify, evaluate and compare single, groups of biomarkers 349 

and the biomarker imprinting of wine intake. Correlations between fasting plasma and 350 

urine provide the opportunity to discriminate metabolites that could be good urinary 351 

biomarkers of consumption, both in urine and plasma. This approach is a promising tool 352 

that has great potential for identifying possible food biomarkers to evaluate compliance 353 

in clinical studies, identify eating patterns and make associations between polyphenol 354 

consumption and health benefits. 355 
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Table 1. Urinary concentrations of phenolic metabolites in 36 subjects at baseline and after the three intervention periods.a 

 

Metabolites MRM 
Urine samples (μmol, 24-h) 

b
 

BAS RW DRW GIN P 
c 
 

Hydroxybenzoic acids       

4-Hydroxybenzoic acid 137/93 25.79±2.21a 29.84±3.52a,b 34.30±2.81b 27.07±2.21a 0.006 

3-Hydroxybenzoic acid 137/93 3.77±1.27a,b 4.11±0.89a,b 5.67±1.57b 2.97±0.9a 0.001 

2,4-Dihydroxybenzoic acid 153/109 1.57±0.17
a
 2.47±0.35

b
 2.67±0.37

b
 1.62±0.22

a
 <0.001 

2,6-Dihydroxybenzoic acid 153/109 6.19±0.6a 8.35±0.91b 8.74±0.88b 6.08±0.59a <0.001 

2,5-Dihydroxybenzoic acid 153/109 16.23±1.65a 24.79±2.91b 27.29±2.9b 17.2±2.2a <0.001 

3,5-Dihydroxybenzoic acid 153/109 3.93±0.66a,c 6.41±1.01a,b 7.57±1.26b 3.97±0.72c 0.006 

Protocatechuic acid 153/109 12.10±1.15 13.07±1.27 14.45±1.66 11.29±1.19 0.09 

Syringic acid 197/121 0.73±0.15a 1.91±0.43b 2.03±0.32b 0.70±0.17a <0.001 

4-Hydroxyhippuric acid 194/100 54.05±5.42 58.83±4.47 72.13±9.02 53.63±5.69 0.09 

3-Hydroxyhippuric acid 194/150 192.30±39.81 204.09±38.07 237.58±54.21 169.25±34.57 0.19 

Gallic acid metabolites        

Gallic acid 169/125 0.85±0.18a 5.61±0.49b 4.76±0.53b 0.73±0.17a <0.001 

Methylgallic acid  e 167/108 2.97±0.42a 4.37±0.62b 4.76±0.68b 3.03±0.41a <0.001 

Methylgallic sulfated,e 263/183 2.97±0.74a 24.8±5.64b 19.94±3.08b 2.00±0.60a <0.001 

Ethylgallate metabolites 
 
       

Ethylgallate 197/169 1.06±0.37a 8.19±0.93b 4.97±0.73c 0.22±0.09a <0.001 

Ethylgallate sulfate
 d,e

 277/197 2.16±0.76
a
 24.18±2.73

b
 15.81±1.64

c
 0.36±0.14

a
 <0.001 

Ethylgallate glucuronide 1 d,e 373/197 36.73±6.01a 176.89±20.38b 114.52±10.77b 31.49±5.43a <0.001 

Ethylgallate glucuronide 2 
 d,e 

d,e 

373/197 101.74±22.4a 366.5±37.6b 240.9±24.23c 64.5±5.75a <0.001 

Hydroxyphenylacetic acids       

Phenylacetic acid 135/91 22.15±2.21a,b 25.49±2.40a,b 27.66±3.00a 21.31±2.17b 0.005 

3-Hydroxyphenylacetic acid 151/107 24.72±3.50a 52.27±6.76b 56.57±6.9b 19.74±2.51a <0.001 

2-Hydroxyphenylacetic acid 151/107 5.89±0.40a,b 6.48±0.55a,b 7.41±0.54b 5.76±0.49a 0.008 

3,4-Dihydroxyphenylacetic acid 167/123 1.61±0.17a 1.98±0.17a,b 2.37±0.24b 2.12±0.32a,b 0.026 

Homovanillic acid 181/137 164.35±13.99 185.49±21.12 215.13±25.55 166.92±23.28 0.09 

Hydroxycinnamic acids       

m-Coumaric acid 163/119 0.54±0.09a,b 0.86±0.20a 0.83±0.20a,b 0.40±0.06b 0.005 

p-Coumaric acid 163/119 0.64±0.07a 1.75±0.35b 1.48±0.15b 0.55±0.08a <0.001 
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a 
BAS, baseline; DRW, dealcoholized red wine; DHPV, dihydroxyphenyl-γ-valerolactone; MHPV, methoxyhydroxyphenyl-γ-valerolactone; MRM, Multiple Reaction Monitoring; RW, red wine. 

o-Coumaric acid 163/119 0.07±0.02 0.11±0.05 0.10±0.03 0.13±0.03 0.19 

Caffeic acid 179/135 5.42±0.34a 5.84±0.47a,b 7.05±0.55b 4.83±0.45a <0.001 

Ferulic acid 193/134 11.80±0.98a 15.7±1.79a,b 15.25±0.94b 11.16±0.83a 0.002 

Sinapic acid 223/164 0.99±0.18 1.25±0.19 1.43±0.2 1.18±0.26 0.091 

Hydroxyphenylpropionic acids       

3-(3-Hydroxyphenyl) propionic acid 165/121 6.22±1.09a 7.13±1.26a,b 10.07±2.05b 4.70±0.87a <0.001 

3-(4-Hydroxyphenyl)propionic acid 165/121 287.44±27.16 371.63±45.16 389.2±39.36 313.3±36.76 0.06 

Dihydrocaffeic acid 181/137 14.09±1.39a,b 16.22±1.75a,b 17.29±1.50b 12.87±1.51a 0.018 

Flavan-3-ols
 e
       

∑(Epi)catechin glucuronidesd 465/289 9.42±1.58a 24.15±3.20b 26.61±5.39b 6.72±1.87a <0.001 

∑ (Epi)catechin sulfatesd 369/289 3.04±0.49a 10.17±1.44b 10.69±1.66b 2.50±0.44a <0.001 

∑ Methyl(epi)catechin glucuronidesd 479/303 3.76±0.93a 15.95±2.41b 13.84±2.74b 3.32±0.84a <0.001 

∑ Methyl(epi)catechin sulfatesd 383/303 10.87±1.94a 25.27±2.92b 25.64±3.39b 7.33±1.9a <0.001 

Glycinates       

Vanilloylglycine 224/180 0.80±0.09a 1.41±0.26b 1.31±0.16a,b 0.80±0.13a 0.001 

Feruloylglycine 250/100 9.23±1.05 11.27±1.38 11.24±1.31 8.88±1.35 0.14 

Hydroxyphenylvalerolactones
e
       

DHPV 1 207/163 6.73±1.21a 13.80±2.78b 13.61±2.68b 3.67±0.77a <0.001 

DHPV 2 207/163 18.50±3.67a 34.20±5.59b 37.04±4.31b 7.80±1.97c <0.001 

∑ DHPV glucuronides d 383/207 70.62±14.54a 157.76±27.06b 177.49±24.62b 36.52±8.84a <0.001 

∑ DHPV sulfatesd 287/207 527.13±55.87a 876.9±101.81b 913.43±114.12b 418.39±71.73a <0.001 

MHPV 221/162 ND ND ND ND  

MHPV glucuronide
 d
 397/221 23.81±4.43

a,c
 37.36±6.57

a,b
 38.43±7.08

b
 20.24±4.19

c
 <0.001 

∑MHPV sulfates d 301/221 32.29±5.52a,b 38.42±6.12a,b 43.13±6.52b 24.9±4.26a 0.006 

Stilbenes
 d,f

       

Resveratrol Biomarker g
 - 692.21±208.33a 5352.45±661.99b 5824.25±722.19b 238.00±84.61a <0.001 

∑Resveratrol Microbial Metabolites - 506.39±107.97a 4208.95±430.76b 5230.62±508.44b 283.86±76.23a <0.001 

∑Total resveratrol metabolites - 811.54±211.27a 6282.25±770.39b 7090.29±822.66b 306.08±90.44a <0.001 

Other polyphenols       

Enterolactone 297/254 8.73±1.10a 11.4±2.19a,b 14.81±3.40b 7.82±0.94a 0.001 

Pyrogallol 125/69 1.96±0.43a 8.00±1.19b 8.08±1.78b 2.99±0.58a <0.001 
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b 
Results are expressed as mean ± SEM.  

c 
Changes in variables were determined by using the ANOVA analysis for repeated measures. Means in a row with different superscript letters are significantly different, P < 0.05 (Bonferroni 

post hoc test).  
d 

Metabolites determined in non-hydrolyzed samples. 
e 

Identification of metabolites described previously by Boto-Ordoñez et al.[16] 
f
 Data obtained from a previous study by Rotches-Ribalta et al.[15] 

g
 Resveratrol Biomarker described by Zamora-Ros et al.[12].  
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Table 2. Fasting plasma concentrations of metabolites in 33 subjects at baseline and after the three intervention periods.
a 
 

Metabolites MRM Plasma samples (μmol/L) 
b 
 

BAS RW DRW GIN P 
c
 

Hydroxybenzoic acids       

4-Hydroxybenzoic acid 137/93 3.26±0.14 3.47±0.12 3.44±0.09 3.02±0.17 0.22 

3-Hydroxybenzoic acid 137/93 ND ND ND ND  

2,4-Dihydroxybenzoic acid 153/109 ND ND ND ND  

2,6-Dihydroxybenzoic acid 153/109 0.08±0.01 0.10±0.01 0.10±0.01 0.08±0.01 0.38 

2,5-Dihydroxybenzoic acid 153/109 0.04±0.01 0.05±0.01 0.07±0.02 0.03±0.01 0.08 

3,5-Dihydroxybenzoic acid 153/109 ND ND ND ND  

Protocatechuic acid 153/109 1.74±0.06 1.74±0.08 1.86±0.08 1.69±0.07 0.73 

Syringic acid 197/121 ND ND ND ND  

4-Hydroxyhippuric acid 194/100 0.17±0.02 0.16±0.02 0.17±0.02 0.15±0.01 0.85 

3-Hydroxyhippuric acid 194/150 0.85±0.53 1.03±0.45 1.21±0.62 0.69±0.32 0.89 

Gallic acid metabolites       

Gallic acid 169/125 0.02±0.001a 0.04±0.005b 0.03±0.002a,b 0.02±0.002a <0.001 

Methylgallic acid e 167/108 0.04±0.004a 0.07±0.02b 0.06±0.01a,b 0.04±0.01a 0.037 

Methylgallic sulfate d,e 263/183 0.002±0.0004a 0.02±0.004b 0.01±0.002b 0.001±0.0003a <0.001 

Ethylgallate metabolites       

Ethylgallate  197/169 0.03±0.01 0.04±0.01 0.09±0.06 0.03±0.02 0.93 
Ethylgallate sulfate d,e 277/197 ND ND ND ND  

Ethylgallate glucuronide 1 d,e 373/197 0.10±0.018.9 0.36±0.21 0.12±0.03 0.17±0.07 0.16 

Ethylgallate glucuronide 2 d,e 373/197 0.09±0.011.63 0.11±0.02 0.10±0.01 0.09±0.02 0.45 

Hydroxyphenylacetic acids       

Phenylacetic acid 135/91 0.37±0.03 0.38±0.03 0.38±0.03 0.36±0.04 0.76 

3-Hydroxyphenylacetic acid 151/107 0.22±0.03a 0.38±0.06b,c 0.40±0.04b 0.24±0.04a,c 0.002 

2-Hydroxyphenylacetic acid 151/107 0.08±0.01 0.10±0.01 0.10±0.01 0.08±0.01 0.33 

3,4-Dihydroxyphenylacetic acid 167/123 0.03±0.01 0.03±0.01 0.03±0.01 0.02±0.01 0.80 

Homovanillic acid 181/137 ND ND ND ND  

Hydroxycinnamic acids       

p-Coumaric acid 163/119 0.005±0.002a 0.02±0.003b 0.02±0.003b 0.02±0.003b <0.001 
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m-Coumaric acid 163/119 ND ND ND ND  

o-Coumaric acid 163/119 ND ND ND ND  

Caffeic acid 179/135 0.09±0.01 0.09±0.01 0.11±0.01 0.08±0.01 0.19 

Ferulic acid 193/134 1.63±0.06 1.65±0.06 1.69±0.06 1.55±0.04 0.56 

Sinapic acid 223/164 ND ND ND ND  

Hydroxyphenylpropanoic acids       

3-(4-Hydroxyphenyl)propionic acid 165/121 3.34±0.17 3.44±0.23 3.54±0.17 3.05±0.24 0.30 

3-(3-Hydroxyphenyl)propionic acid 165/121 0.21±0.05 0.21±0.05 0.29±0.06 0.15±0.04 0.14 

Dihydrocaffeic acid 181/137 ND ND ND ND  

Flavan-3-ols 
e       

(Epi)catechin glucuronide
4
 465/289 0.02±0.01

a
 0.05±0.01

b
 0.04±0.01

b
 0.02±0.01

 a
 <0.001 

Methyl(epi)catechin glucuronide4 479/303 0.01±0.001a,c 0.03±0.01b 0.02±0.01a,b 0.01±0.001c 0.004 

Glycynates       

Vanilloylglycine 224/180 0.03±0.001 0.03±0.001 0.03±0.001 0.03±0.001 0.24 

Feruloylglycine 250/100 0.08±0.002 0.09±0.003 0.09±0.003 0.08±0.003 0.44 

Hydroxyphenylvalerolactones 
e
       

DHPV 1 207/163 0.07±0.02a,c 0.16±0.03b 0.10±0.02a,b 0.04±0.02c <0.001 

DHPV 2 207/163 0.17±0.04a,c 0.45±0.1b 0.29±0.06a,b 0.10±0.03c <0.001 

∑ DHPV glucuronidesd
 383/207 0.18±0.05a,b 0.46±0.13b 0.29±0.06a,b 0.14±0.08a <0.001 

∑ DHPV sulfates d 287/207 ND ND ND ND  

MPHV 221/162 ND ND ND ND  

MHPV glucuronide d 397/221 ND ND ND ND  

∑ MPHV sulfates d 301/221 ND ND ND ND  

Other polyphenols       

Enterolactone 297/254 0.01±0.002 0.01±0.002 0.02±0.01 0.01±0.002 0.18 

Pyrogallol 125/69 ND ND ND ND  
a 

BAS, baseline; DRW, dealcoholized red wine; DHPV, dihydroxyphenyl-c-valerolactone; MHPV, Methoxy-hydroxyphenyl-valerolactone; MRM, Multiple Reaction Monitoring; ND, no 

detected; RW, red wine. 
b 

Results are expressed as mean ± SEM. 
c 

Changes in variables were determined by using the ANOVA analysis for repeated measures. Means in a row with different 

superscript letters are significantly different, P < 0.05 (Bonferroni post hoc test). 
d 

Metabolites determined in non-hydrolyzed samples. 
e 

Identification of metabolites described previously by 

Boto-Ordoñez et al. [16] 
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Table 3. Urine and plasma metabolites in hydrolyzed and non-hydrolyzed samples 

selected by the stepwise logistic regression model for discriminating wine consumers 

obtained from the training set  

 

 
Coefficient Standard error p value 

Coefficient  

CI 95% 

URINE      

Hydrolyzed samples     

2,4-Dihydroxybenzoic Acid 0.60 0.23 0.007 0.16, 1.05 

Gallic Acid 0.84 0.24 <0.001 0.38, 1.31 

Ethylgallate 0.48 0.18 0.009 0.12, 0.83 

Constant -4.47 0.94 <0.001 -6.31, -2.63 

Non-Hydrolyzed samples     

Methylgallic Acid Sulfate 0.17 0.06 0.005 0.05, 0.29 

Ethylgallate Sulfate 0.41 0.10 <0.001 0.21, 0.62 

Constant -4.19 0.91 <0.001 -5.98, -2.41 

PLASMA     

Hydrolyzed samples     

3-Hydroxyphenylacetic Acid 2.38 1.02 0.020 0.39, 4.38 

Gallic Acid 62.21 22.41 0.006 18.29, 106.12 

p-Coumaric Acid 40.91 15.43 0.008 10.67, 71.14 

Constant -3.09 0.79 <0.001 -4.64, -1.54 

Non-Hydrolyzed samples     

Methylgallic Acid Sulfate 525.00 118.68 <0.001 292.39, 757.61 

Constant -1.63 0.35 <0.001 -2.32, -0.94 
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Table 4. Threshold (cut-off), sensitivity, specificity, AUC and confidence interval of 

phenolic metabolite group biomarkers and the prediction model  

 
  

Threshold 
a
 

 

Sensitivity 

(%) 

Specificity 

(%) 

AUC 

 (%) 

AUC 95% 

CI  

 (%) 

URINE      

Hydrolyzed samples      

Gallic Acid Metabolites 4.89 88.89 77.80 87.75 81.97, 93.53 

DHPV Metabolites 18.17 83.33 66.70 81.15 74.14, 88.17 

Phenolic Acid Metabolites 207.2 69.44 62.50 71.95 64.03, 80.34 

Ethylgallate 0.69 93.06 84.72 92.35 87.73, 96.97 

Training Set   94.74 91.23 96.24 92.73, 99.76 

Validation Set   93.33 93.33 96.00 89.24, 100.0 

All population    91.66 91.66 96.14 93.12, 99.16 

Non-hydrolyzed samples 

 

     

(Epi)catechin Metabolites 39.84 75.00 83.33 86.32 80.38, 92.27 

DHPV Metabolites 695.53 66.70 73.60 76.33 68.70, 83.96 

Ethylgallate Metabolites 152.31 98.60 84.70 93.67 89.49, 97.86 

Methylgallic Sulfate 5.49 87.50 86.11 93.23 89.31, 97.15 

Resveratrol Biomarker  1966.05 91.67 95.83 96.45 93.38, 99.52 

Resveratrol Microbial Metabolites 1424.19 95.83 93.06 98.77 97.46, 100.0 

Training Set   94.74 96.49 98.68 97.13, 100.0 

Validation Set   100.0 93.33 96.44 89.32, 100.0 

All population    95.83 94.44 98.40 96.80, 100.0 

PLASMA      

Hydrolyzed samples      

Gallic Acid Metabolites 0.06 68.18 57.58 64.10 54.66, 73.53 

DHPV Metabolites 0.14 68.18 62.12 68.37 59.31, 77.42 

Phenolic Acid Metabolites 0.24 72.73 65.15 68.02 58.88, 77.16 

Training Set   74.07 76.92 80.13 71.75, 88.51 

Validation Set   75.00 100.0 88.10 74.20, 100.0 

All population    75.76 74.24 81.18 73.86, 88.49 

Non-hydrolyzed samples      

(Epi)catechin Metabolites 0.03 69.70 75.76 76.92 68.76, 85.07 

DHPV Metabolites 0.06 72.73 62.12 71.12 62.37, 79.87 

Methylgallic Sulfate 0.002 84.85 77.27 87.50 81.65, 93.35 

Training Set   85.19 76.92 86.89 80.13, 93.66 

Validation Set   91.67 78.57 91.07 80.22, 100.0 

All population    84.85 77.27 87.50 81.65, 93.35 
 

DHPV, dihydroxyphenyl-γ-valerolactone; ROC, receiver operating characteristic. 
a 
Urine (µmol/24-h) or plasma (µmol/L). 
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Table 5. Spearman’s correlations between fasting plasma and 24-h urine samples for 

individual, phenolic metabolite groups and the prediction model 
 

  

 

 R P 

Hydrolyzed samples   
Gallic acid 0.338 <0.001 

3-Methylgallic acid 0.441 <0.001 

Gallic acid group 0.451 <0.001 

   

2,5-Dihydroxybenzoic acid 0.411 <0.001 

Protocatechuic acid 0.174 0.046 

3-(3-Hydroxyphenyl)propionic acid 0.402 <0.001 

Ferulic acid 0.253 0.003 

4-Hydroxyhippuric acid 0.310 <0.001 

3-Hydroxyphenylacetic acid 0.444 <0.001 

2-Hydroxyphenylacetic acid 0.204 0.019 

Enterolactone 0.503 <0.001 

p-Coumaric acid 0.370 <0.001 

Phenolic acid group 0.442 <0.001 

   

DHPV1 0.321 <0.001 

DHPV2 0.336 <0.001 

DHPV group 0.348 <0.001 

   

Prediction model score 0.565 <0.001 

   

Non-hydrolyzed samples   

Methylgallic acid sulfate 0.587 <0.001 
   

(Epi)catechin glucuronide 3 0.342 <0.001 

Methyl (epi)catechin glucuronide 2 0.294 0.001 

Flavan-3-ol group 0.382 <0.001 
   

DHPV1 Glucuronide 0.321 <0.001 

DHPV2 Glucuronide 0.342 <0.001 

DHPV Group 0.356 <0.001 

   

Prediction model score 0.599 <0.001 


