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Shot-noise spectroscopy of energy-resolved ballistic currents
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We investigate the shot noise of nonequilibrium carriers injected into a ballistic conductor and interacting via
long-range Coulomb forces. Coulomb interactions are shown to act as an energy analyzer of the profile of
injected electrons by means of the fluctuations of the potential barrier at the emitter contact. We show that
the details in the energy profile can be extracted from shot-noise measurements in the Coulomb interaction
regime, but cannot be obtained from time-averaged quantities or shot-noise measurements in the absence of

interactions.
DOI: 10.1103/PhysRevB.68.155321 PACS nunt®er73.50.Td
I. INTRODUCTION range Coulomb correlations between the transmitted elec-

trons that leads to the significant suppression of shot noise

The phenomenon of shot noise, associated with the rarfegistered at the collector contact. The level of suppression

domness and discreteness in charge transmission has becoﬂ?@?ndlsz drastically on the energy profile of the injected
a fundamental issue in the study of mesoscopic systems {f11€rs,” while the time-averaged quantitiéthe mean cur-

the nanoscale regidh® Since shot noise contains temporal "€"G conductance, ejcdo not. Therefore, one can use the

information on the transmitted carriers, it can be used tof)?;tiigmse measurements to reveal the details in the energy

deduce, for example, an effective quasiparticle charge, ki* The paper is organized as follows. In Sec. Il we introduce

netic parameters, or other parameters for the interactiop,q yagic equations describing the space-charge-limited bal-
among carriers—information that usually cannot be obtainegi;- transport and noise in a two-terminal conductor. As a
from time-averaged measurements of the mean current Qf,rticylar example, we address the situation when in addition
conductance. In particular, shot noise is currently used as g, the Fermi-Dirac injection from each lead, there is an extra
tool to_probe fractional chardeeffective superconducting injection of monoenergetic electrons represented Bypaak
charge?sﬁ quantum transmission _modes in atomic-Sizej, energy spectrum at the emitter lead. The self-consistent
contacts, mechanisms of tunnelingetc. (see also recent gony.state solutions for this case are found in Sec. Ill. The

review in Ref. 2. _ , o formulas for the mean current and noise are obtained in Sec.
A matter of particular interest is the significance of Cou-\\;  gaction v shows the results of the calculations for a

lomb interactions in scattering-free or ballistic conductors.5,ag pallistic structure. Finally, Sec. VI summarizes the
As was recently shown, Coulomb interactions may suppress,ain contributions of the paper.,

the shot noise down to several orders of magnitude in space-
charge-limited ballistic conductofs. In this paper, we focus II. BASIC EQUATIONS
mainly on the question of how the effect of Coulomb inter-
actions on the shot noise can be emp|0yed to reveal impor- We consider a two-terminal multimode ballistic conductor
tant information on the energy profile of nonequilibrium car-in @ planar lead geometi§Fig. 1). In a semiclassical frame-
riers injected from an emitter contact. work, the electron occupation numbefréx,k,t) are deter-
Using ballistic electrons to study nanoscale structures hasined by the electron flows from the left and right ledds.
recently been a very active research area. In the standard
technique called “hot-electron spectroscop:t! carriers E
injected from an emitter contact are analyzed in a collector
contact by means of a barrier that is transparent only for
carriers having energy greater than the barrier height. By
changing the bias on the collector barrier, the electron energy
profile can be analyzed. This technique requires the design of
a special collector filter for obtaining information on the
electron energies. Here, we discuss an alternative method R
that does not require a design of the filter, rather it employs a ;.
“natural” filter: the potential barrier that appears due to an ‘ '
injected space charge. This space charge limits the current
producing the resistance effect by means of a barrier, which giG_ 1. Energy diagram determining the potential barrier shape
reflects a part of the injected carriers back to the emitter. They a ballistic two-terminal conductor under applied bldsElec-
height of the barrier depends on the screening parameter @bns with energie€>0 pass over the barrier, while those with
the material, and it varies with the external bias. The essen<0 are reflected back to the leads. At the left lead, electrons addi-
tial difference with the case of a fixed barrier is that thetional to the Fermi-Dirac distribution are injected at eneigy
space-charge barrier fluctuates in time and produces longbove the barrier.

I n (e ~qU)

x, !
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The inhomogeneity of the space charge disturbs the electrdunneling from a resonant levélouble barrier resonant tun-
static potential in such a way that the self-consistent built-imeling emittey, a narrow minibandsuperlattice emittes
field determines the potential barrier, at which electrons ar@nd cold cathode¥. We also assume that the overall injec-
either reflected or transmitted depending on their energ§ion current is mostly carried by the background electrons,
(Fig. 1). Assuming that the barrier is much wider than thewhile the contribution from the delta peak electrons is rela-
wavelength of electrons, one can neglect tunneling and quarively small. Thus for the time-averaged occupation factors
tum reflection, i.e., the transmission probability is 1 if thein the leads, we write

electron energy is higher than the barrier height, and itis 0 in _

the opposite gcyase. ?n this framework, the 9tlransport is de- NL(2)=nep(e) +anckeTo(e —25), ©)
scribed Dby the collisionless Boltzmann equation self- Nr(e)=nep(e—qU), 7
consistently coupled with the Poisson equation supplemented

by the stochastic boundary conditions for the occupatiorf'here

number$:? Nep(e)=noIn{1+exd (er—e)/(kgT)]}, (8

J hky d de . is the FD occupation number integrated over the transverse
<ﬁ+ m ox  9dx hok, f(x.k,t)=0, @D modesng=A(¢A), N=(kZAl4w) is the number of trans-
verse modes in the degenerate lingits e /kgT, ¢ is the
d2¢ q dk R Fermi energy at the left lead, is the temperatureA is the
— == 3 f(x,k,t), (2) cross-sectional area is the longitudinal energy of the extra
dx= €J (2m) electrons, and is the dimensionless peak “amplitude.”
. . . Concerning the boundary conditions for the fluctuations
fOK, D[k =0=TFL(K)+ F (K1), (3)  of the occupation numbers, we assume that the peak elec-
trons are Poissonian, i.e., they are not correlated. The back-
f(€,|2,t)|kx<o:fR(|2)+ Sta(k,t), (4y  9round FD electrons are correlated among themselves ac-

cording to the Pauli exclusion for the Fermi statistics. Thus
for the energy-resolved injection current fluctuations we
e(£,)= (0 =U(1), 6 ¥ :

wherem is the electron effective masg, is the electronic
2 I(e) 8l (s")=Ky(2)(Af)d(e—e'

charge, k=(ky,k,), d is the dimension of a momentum (dl(2)8 '_‘(8 ))=Ki(e)(AD (e 8 ),

space(the spin components are neglediedis the dielectric ~ Wherek=L,R; Af is the frequency bandwidttwe assume

permittivity of the mediag(x,t) is the self-consistent elec- the low-frequency limit and

tric potential, andU is the applied biagbelow we assume _ -~
that U is fixed by an external circuit In the absence of Ki(e)=Keo(2) +aKoksTole e y), ©
scattering, the noise originates from the stochastic sources Kr(e)=Kgp(e—qU), (10)

of_r at the left () and right R) leads, which gives rise to h
the fluctuations of the occupation numbers and electric po\-"’It
ential along the concuctor and, as a consequence, the fluc- Kep(e) =Kof1+exfl (s —er)/ (ke I} (11
Assuming that the number of the occupied transversa\(ozzzeslgi Gs=GoNis the Sharvin conductance, af
modes is large, one can integrate the occupation numbergsq /(27771()]I is the I“”'rt] of cr:]ond%c';]anfc‘iirheélzqncnons in
f(x,IZ,t) over the transverse momentuE@ and obtain for 9s.(6) and(9) imply that the width of the peak is narrow on

each longitudinal energy the (fluctuating occupation factor the scale of the temperafufl The addition of extra peak
at a crosg'ls sectior: &% P electrons bring the injection away from equilibrium. There-

fore one cannot use the thermal-equilibrium Nyquist

i relationshif for the injected electrons.

n(x,e,t)= f f(x,e,e, ,t)v, de,,
0 IIl. SELF-CONSISTENT STEADY-STATE SPATIAL

where &= #2K2/(2m), &, =42K2/(2m), and v, =m/2mh? PROFILES

is the density of transverse modes. It is convenient to introduce the mean total longitudinal

It is seen that under ballistic transport conditions, the ocenergyE=¢— ®(x), where the potential energy is counted
cupation factors in the bulk are determined by the occupatiowff from the barrier top® (x)=q¢(X) —qe(Xp). Then at the
factorsn_g(e,t) in the leads. Our aim is to describe how the leads we obtain® =®(0)=qU, and Og=d(£)=D
details of the injection energy profile can be revealed in thetqU, whereqU, is the barrier heightFig. 1). The solution
shot noise. To this end, we consider the situation when irof Eq. (1) for the stationary case gives, after integration over
addition to the equilibrium Fermi-Dira@=D) injection from  the energy, the electron density at any section of the conduc-
each leadwhich we call the background injectiprthere is  tor in terms of the potentiab. For the boundary conditions
an extra injection from the lefemittep lead with a monoen-  (6)— (8), we find two additive contributions to the electron
ergetic distribution described by a Dira@cfunction (Fig. 1).  density: from the background FD electrons and from éhe
The origin of this additional injection may be related, e.g., topeak,N=Ny4+ N;. The former is given by
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* IV. CURRENT AND NOISE
Npo(P =J Nep(E+® ) +nep(E+DR) ] v(E+ P
og(P) 0 [neo L+ Neo RI ) The mean ballistic current is found as an integral over the
0 occupation numbers for the transmitteel 0) carriers from
+2 [6_ Nep(E+ D)) both leads. It can also be decomposed into two terims,
o X P - =l,qt+1s, Where for each contribution we find
bg 51

+0,Nep(E+Pg)]W(E+d)dE, (12)

where v(E)=1/[27hv(E)] is the density of states with lhg=5 hf [Nep(E+® ) —nep(E+ D) ]dE, (18)
=v2E/m, and 6, =6(x) is the Heaviside function witty
=X—Xp. The first integral in Eq(12) corresponds to the
electrons transmitted over the barri&>0), while the sec-
ond integral is referred to the reflected carriers®@<E
<0).° The contribution from the peak electrons is obtained

as Under a fixed bias condition, the fluctuations at frequen-

cies below the inverse transit time can be described by a
Ns(P)=anr(Es+ P)[6(E;)+260_,6(—E,) white current-noise spectruf . By applying the analytical
X O(E 5+ )], (13) method described in detail in Ref. 9, anq taking into account

both the background and the peak contributions to the noise,

whereE;=e;—®_ is the peak location with respect to the we obtain:S,= Sb9+ 35 where

barrier top. In Eq(13), the term with6(E;) gives the con-

tribution at biases when the peak energy is above the barrier

qA
| 5= o ﬁano O0(Ey). (19

(Es>0), while the term withd(—E;) contributes in the SP9= F Y2(E)Kgp(E+®|)dE
opposite casé& ;<0 (in the regiony<0 and ford>—E; oL
only). w
The electron density given by Eq4d.2) and(13) can now + J Y&(E)Kgp(E+®R)dE, (20
be substituted into the Poisson equatiot’d/dx? ~Pr

=(g%/e)N(®) to find the self-consistent potential barrier

position. We obtain SP=aKokgTy2(Ey). (21)
q¢ \[ f‘bL f‘DRd_CD (14) Here the noise sourcéds-p(E) andaK, are determined by
h1/2(q)) o hY%®)’ the boundary conditions at the ledds. (11)], and the func-

~ tions vy, r(E) (energy-resolved shot-noise suppression
whereh(d)= [&Nd®D, h_=h(x<0), andh,=h(x>0).  factord? are obtained as
Integrating Eqs(12) and (13) over ®, we obtain

—2C,Qu(E), —® <E<O

h=hs+hpg, (15 YL(E):[]__CA Q(E), 0<E<wx,

(<D)— {9(E )v(Es+®)—v(Es)] —2C,QrdE), —®r<E<O

7R(E):{ —1-C, Q(E), 0<E<,

+26_, 0(—Ey0(Es+D)v(E;+ D)}, (16)

where we have denoted,=c/A, c=mn,/(27h), ny

m o _ B
hbg(q)):m[ fo [Nep(E+ D)) =Nep(PL) —Nep(Pr),
+nFD(E+(DR)][U(E+CD)_U(E)]dE QLr(E): fq) U(E+(D)h 312 dq) (22)
. _
+2f [6-, Nep(E+ D)
7(1) (I)
Q)= [ TuEranan, @3
+6,Nep(E+ PR)Jo(E+®)dE] . (17) F
Equation (14) relates three important parameters: the self- Q(E)= J'q)L[v(EﬂLCD)—u(E)]h*?”chI)
consistent barrier height),,, the applied biadJ, and the N

length of the conductof. Given any two of them, the third o
one can be calculated from Ed44)— (17) by making use of i J R[U(E+<I>)—U(E)]h*3’2d(13, (24)
the boundary conditionés)— (8). 0 *
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A=2 [h-Yq @) +h; YA dg)] 10°

[0}
+f "[Hpy+H;1h=%2 da
0

[0}
+ fo "[Hi +H; 1732 do, (25)

whereH*=H(y>0), H =H(x<0), and

Hpg(P)=Npg(P) —Npg(0) +[0,— 0_,] co(P),

Hs(®)=NyP)—Ny0).

As can be easily verified for the noise power given by Eg.
(20), there is an entanglement between the background anc
the § peak contributiongthis is the meaning of a tilde we

! : . 10° 10' 10° 10° 10
have introduced in the notationg he entanglement appears qU I kT
due to the functiong/(E), in particular, due to their depen- B
dence on the steady-state functidr{®), which are the sum FIG. 2. Current-noise powes, vs applied biadJ for the com-

of both the FD and thé peak contributiongsee Eqs(15)—  bined (5 peak and background Fermi-Dijainjection. The results
(17)]. This is the principal difference with the time-averagedare shown for theS peak ate 5= 9kgT and different amplitudea.
quantities, such as the currefqgs. (18) and (19)] or the S is normalized to the equilibrium valug® of the background
electron density{Egs. (12) and (13)], for which the total noise. The ballistic lengtif =2 wm.

value is a sum of two contributions without entanglement.

We would like to emphasize that for the current noise with-at |ow biases, when the barrier is higth (~16), the peak

out Coulomb interactions, the function4E) are constants electrons do not influence the noise since they are all re-
(step functions” and hence the total noise is again an addi-flected back to the emittere<®,). In this regime,S,

tive quantity as for the time-averaged values. ~SP9. With increasing biasU, the potential barrier de-

The important question is: To what extent do the CroSS¢reases. Then there will be a point where the energy of the

correlations between the peak and the background electrons,ay meets the potential barrier top. Above this point the
affect the current noise? As will be seen in the next sectlonpeak electrons are no longer reflected back: all of them now
the cross-correlation contribution is of major importance alyass gver the barrier and contribute to the current and noise
biases when thé peak is in the vicinity of the potential ot the collector. But their effect on the mean current and

barrier top. Precisely this nonlinearity leads to the possibility,yise is drastically different. If the extra current provided by
of identifying the details in the energy profile of electrons

from the shot-noise measurements. 10"

V. RESULTS
£=9 —

For quantitative estimations and in order to illustrate the 107
implementation of the results, consider the GaAs ballistic
sample alf =4 K. With the assumption that the contact dop-
ing 1.6x 10 cm 3, the reduced Fermi energy~10, and 10
the contact electrons are degenerate, the Debye screenirz.
length associated with the contact electron concentration i
Lp~14 nm? The calculations have been carried out for the “107
lengths of the ballistic gag=0.1 and 0.5um, implying ¢
>Lp, which is necessary to expect the importance of the
space-charge and Coulomb correlation effects. 107

The calculation of the current noise pow$r given by
Egs.(20) and(21) requires the knowledge of the steady-state
potential barrier heigh®, and the stationary profiles(®).

To this end we solve by numerical iterations Ed4) for
each given biat) and length¢. Then we compute the noise.

The results are presented in Figs. 2— 4. FIG. 3. Current-noise powe; vs applied biasJ for the peak of
First, our aim is to understand the effect of the additionalamplitudea= 0.2 at different energies, (indicated by numbejssS,
peak electrons on the current-noise spectral density. Figure g normalized to the full shot noiseq2,, in the saturation regime,
shows the results for the case obgeak fixed at the energy wherel ., is the saturatiofemission current from the emitter. The

e5=9kgT and having different amplitudes It is seen that results are plotted for two ballistic lengttis=0.5 and 2um.

107 10° 10
qU I k,T

155321-4



SHOT-NOISE SPECTROSCOPY OF ENERGY-RESOLVED.. .. PHYSICAL REVIEV8® 155321 (2003

10* : 10°
(a) (b) i

I / S;q

10° 10° 10° 10’ 10
qU kT qU I kT

FIG. 4. Current noise powe®, and the background contributid® compared with their asymptotic high-bias valug¥ and SP%a"
calculated from Eq(26). All the curves are normalized to the equilibrium vagf¢! of the background noise. The parameters of dheeak
arees;=9,a=0.2 (a); e5=11,a=0.5 (b). The ballistic lengtht =2 pm.

the peak electrons is small with respect to the backgroundhifted towards higher biases wharincreases. This can be
current(as in our example the current-voltage characteris- explained by the fact that for higher intensities of the peak,
tics do not change essentially. In contrast, the noise powesne should apply higher biases to “open up” more back-
changes significantly: at the bias whdn ~c5, a sharp ground electrons in order to exceed the contribution from the
spike inS, is observedFig. 2). This spike is not due to the peak electrons to the barrier top fluctuations.
noise of the peak electrons, as one would think. It originates An interesting question is why the delta peak injection
from the fluctuations of the barrier top, which are induced byincreases noise and does not suppress it. At the bias when the
the peak electrons. This influence is very pronounced preroise spike appears, the delta peak electrons almost stop at
cisely when the conditiod| ~¢ ;5 holds. Although the frac- the barrier top and, therefore, effectively contribute to the
tion of the peak electrons in the total current is small, theynegative charge at the barrier top location. This additional
dominate(within a narrow interval of biases &, ~¢4) in  negative charge increases the reflection of the incoming elec-
the contribution to the electron density,=N(®=0) at the trons, which means the increase of the barrier height. The
barrier position, thereby change the strength of the barriegurrent fluctuation produced by the barrier increase is of the
top fluctuations. The latter follows from the fact that the opposite sign in respect to the injection fluctuation. More-
largest contribution to the electron densMy, at the barrier over, in a small energy range, the compensation fluctuation is
top comes from electrons that virtually stop thénave zero much larger in absolute value with respect to the injection
velocity) and spend more time aroumd=x,,. These are the one (overcompensation effectThis is seen in the fact that
electrons from a narrow energy interval arouyd ®| . At the functiony(E) — —« as the energy approaches the barrier
higher biasesg s>®, , the & peak is shifted above the bar- top E— 0.2 Since the noise is calculated as a square of
rier towards higher energies, and the main contributioNgo ~ fluctuation, the result is the increase of noise, although it is
comes again from the background electrons. Thus the noigéue to the suppression effect of current fluctuations.
power become§,~s,b9 as seen from Fig. 2. So, what we  Figure 3 illustrates the shot-noise spectroscopy effect. It is
really observe in Fig. 2 is the spike of the potential barrierseen that when the energy of the peak electrons changes, the
noise, which is sharply increased when thpeak coincides noise spike shifts along the background noise curve, since
with the top of the potential barrier. In this sense the spacethe bias at which the condition;~®, is met changes. This
charge potential barrier helps to visualize the details in théllows one, in principle, to identify the peak energy if one
injection currents by means of the noise. Note that if theknows the correspondence between the bias and the barrier
potential barrier is frozen at its time-averaged value, i.e.height for the background noise.
when the long-range Coulomb correlations are ignored, we Finally, we have also verified the validity of our numeri-
obtain from the calculations that the noise spectral density i§al algorithm by comparing, calculated from the full set of
almost the same in both cases: with and withoutdheeak ~ Eds.(20) and(21) with the analytical results obtained in the
injection. This indicates the importance of the long-rangeaSymptotic high-bias limit>
Coulomb correlations in shot-noise spectroscopy.

Another important feature one can observe in Fig. 2 is okT
how the noise spike is modified with increasing density of n_ N 24 1% w2
the 6 peak electrons. It is seen that the left side of the spike ™ =20ln qu [1 \/;wg1+w gz+a(\/e_5 W)L,
does not change significantly witly while the right side is (26)
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wherew= (\/7g,+al\es)/(29,), a=alFi(a) is the ratio  tional (to the thermal equilibriums peak injection from one
between the current of the peak and the current of the baclef the contacts. Coulomb interactions are shown to act as an
ground, g, = Fy( @)/ Fi(a) andg,=Fy(a)/Fi(a) are the energy analyzer of the profile of injected electrons, and help
constants dependent on the degeneracy of the injected eleio-visualize the energy peak in the injection current by means
trons @,=9g,=1 for nondegenerate electronsF; are the of the shot noise. The injection peak is not seen in the time-
Fermi-Dirac integrals of index, and a=¢—® /kgT and averaged measurements or shot-noise measurements under
es=Es/kgT are the dimensionless positions of the Fermithe conditions when interactions are ineffective.
energy and theS peak with respect to the potential barrier, By measuring the current-noise spectral density as a func-
respectively. tion of bias, one can observe a sharp spike in the noise at a
The results of the comparison are in good agreement, asertain bias, at which the energy peak coincides with the
Figs. 4a) and 4b) shows. For moderate peak amplitudes, thepotential barrier top. This spike is a signature of electron-
exact solutions follow closely the asymptotic curves to theglectron interactions. It gives a direct link between the peak
right of the noise spike. Moreover,.for this case the.result%nd the barrier positions, and can reveal one position when
for qU>E; are almost the same in both cases: with andne other is known. For instance, if one knows the injection
without the 6 peak[Fig. 4@)]. For high peak amplitudes onergyE ; of the 5 peak electrons, one can obtain the bias at
[Fig. 4], .the asymptotic curves d!ffer by a small value which the barrier heightdb,~E;, thereby revealing the
corresponding to the noise contribution from the peak elec'space-charge-limited conduction and the amount of the space

trons, non-negligible in this case. : ; i
It is remarkable that the asymptotic theory describes quité: harge. Vice versa, if one knows the space-charge parameters

well not only the regiomUs-E ;> , where thed peal is o U1 barier position as a funciion of bias, one can analyze
much higher than the barrier, but also the right side of thé 9y ved inject u '

spike atE ,~®, , where the peak is close to the barrier po- Thus, Coulomb interactions in ballistic structures are of
sition (slightly above it. The left side of the peak is, how- interest from several points of view: On one hand, they lead

ever, beyond the asymptotic theory, since in this bias rang® the shot-noise suppression that may be important for ap-

the & peak electrons are reflected from the barrier, and n@lipations. On the. other hand, they offer the possibility Qf
asymptotic theory exists for this case. using the shot-noise measurements as a tool to deduce im-

Another important feature is that for the case of a highPortant information about the properties of nonequilibrium
amplitude peak, there exists a small range of biases fogarriers in nanoscale structures with hot-electron emitters,
which § <S4 [Fig. 4(b)]. This means that the current noise resonant-tunneling-diode emitters, superlattice emitters, etc.,
may be reduced by an additional injecti@uditional noisg not otherwise available from time-averaged measurements.
We relate this noise suppression phenomenon to the exide validity of our theory can be tested experimentally in
tence of a specific “noiseless” enerdy* lying above the currently accessible semiconductor ballistic structures, in
barrieP for which y(E*)~0. At the bias wherE 5 crosses  which the current is limited by the space charge.

E*, the noise of theS peak vanishess)~0, while the back-

ground noise is reduced by the peak electrons by virtue of
the barrier fluctuations. ACKNOWLEDGMENTS
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