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Multifractal dimension of chaotic attractors in a driven semiconductor superlattice
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The multifractal dimension of chaotic attractors has been studied in a weakly coupled superlattice driven by
an incommensurate sinusoidal voltage as a function of the driving voltage amplitude. The derived multifractal
dimension for the observed bifurcation sequence shows different characteristics for chaotic, quasiperiodic, and
frequency-locked attractors. In the chaotic regime, strange attractors are observed. Even in the quasiperiodic
regime, attractors with a certain degree of strangeness may exist. From the observed multifractal dimensions,
the deterministic nature of the chaotic oscillations is clearly identified.@S0163-1829~99!03032-5#
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I. INTRODUCTION

Dissipative dynamical systems~e.g., current oscillations
in a solid-state system driven by an ac voltage! are charac-
terized by the attraction of all trajectories passing throug
certain domain of phase space towards a geometrical ob
called an ‘‘attractor.’’1,2 The attractor can be a single point,
number of isolated points, or an extended object in ph
space. Therefore, the structure of the attractor is crucial
the understanding of the dynamical behavior of a system1,2

In a physical experiment, one usually employs the so-ca
first return maps or Poincare´ maps to visualize and analyz
the underlying attractors.1,2 For example, for frequency lock
ing, which corresponds to periodic oscillations, the attrac
consists of a set of discrete points so that the dimensio
the attractor is zero. For quasiperiodic oscillations, the Po
caré map usually consists of a loop with a homogeneo
point density so that the dimension of the attractor is one
the chaotic regime, the structure of the attractor is ca
‘‘strange.’’ The dimension of the attractor becomes now
fractal instead of an integer number. Strange attractors
usually characterized by a multifractal dimensionDq , which
is a measure of the strangeness of the attractor.3,4

Resonant tunneling in weakly coupled semiconductor
perlattices~SL’s! results in a negative differential velocit
~NDV! in the drift velocity vs electric-field characteristics.5–7

Due to the presence of the NDV, the vertical transport in
SL’s exhibits nonlinear properties, which result in such ph
nomena as domain formation,8 multistability,9 and self-
sustained oscillations.6,7,10 In this nonlinear system, chao
has also been studied theoretically11 and experimentally.12,13

Recently, an explosive bifurcation to chaos has been exp
mentally observed in the power spectra of a driven SL a
unambiguously identified using Poincare´ maps.13 During the
bifurcation sequence from frequency-locking to chaos,
Poincare´ map expands from isolated points to connec
branches, indicating that the dimension of the underlying
tractors increases with increasing amplitude of the driv
PRB 600163-1829/99/60~8!/5694~4!/$15.00
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voltage. When the system enters the chaotic regime,
Poincare´ map becomes more complex indicating that the
tractor acquires a higher dimension. In order to prove
increase of the attractor dimension and to obtain additio
information about the underlying chaos, it is necessary
quantitatively characterize the dimension of the attractors
a function of the external driving voltage amplitude.

In this paper we will report on the multifractal dimensio
of the attractors for a weakly coupled SL under an exter
driving voltage. The obtained fractal dimensions unambig
ously identify the presence of strange attractors and the
terministic nature of the chaotic oscillations. We also fi
that strange attractors may exist in the quasiperiodic reg

The paper is organized as follows. In Sec. II the expe
mental bifurcation route to chaos in a driven SL is brie
reviewed. In Sec. III the dimension of the attractors in t
observed bifurcation sequence is derived from the exp
mental Poincare´ maps and discussed. Finally, a short su
mary is given in Sec. IV.

II. EXPERIMENTAL FACTS

In the experiments the dc bias is fixed and the sampl
driven by an incommensurate ac voltage. The detailed in
mation about the samples and the performed experiments
be found in Ref. 13. In this paper we will discuss the bifu
cation route at the dc bias of 6.574 V, where the curr
self-oscillations exhibit an intrinsic fundamental frequen
f 0 of 30.5 MHz. In the experiment, the driving frequenc
( f d) is set to the golden mean (11A5)/2'1.618 timesf 0 ,
i.e., 49.4 MHz, while the driving amplitudeVac is varied.
The observed power spectra as a function ofVac is given in
Fig. 1~a! in Ref. 13, which shows the following sequenc
quasiperiodicitỹ synchronized chaos̃ frequency locking
˜ chaos˜ chaos with higher complexity. The Poinca´
maps derived from real-time traces further verify this bifu
cation route to chaos.13 At small Vac , such as 9 and 34 mV
shown in Fig. 3 of Ref. 13, the Poincare´ map consists of a
5694 ©1999 The American Physical Society
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closed loop, corresponding to a quasiperiodic attractor. A
mV, the loop is split into three extended branches, indicat
the appearance of synchronized chaos. By increasingVac
from 39 to 40 mV, the system enters a frequency-lock
state with a Poincare´ map consisting of only three point
~they are broadened due to noise!. This frequency-locked
state exists up to values ofVac of about 50 mV, while at 52
mV two of these three points expand into branches dem
strating the onset of chaos. Within this chaotic regime
number of chaotic attractors with different complexity a
revealed. The Poincare´ maps between 50 and 56 mV sho
that the bifurcation from frequency-locking to chaos is e
plosive, i.e., it is accompanied by an abrupt increase of
attractor dimension~from three points with zero dimensio
to an object with finite dimensions!.

In Sec. III we will estimate the multifractal dimension o
the attractors from the experimental Poincare´ maps in order
to analyze the bifurcation process quantitatively. We w
report the results for some typical attractors for atVac of 9,
34, 40, 50, 52, 56, 63, and 79 mV. The Poincare´ maps for
these driving amplitudes are all shown in Fig. 3 of Ref.
except for 50 mV. At 50 mV, the oscillation is frequenc
locked, and the Poincare´ map consists of three points, simila
to that for 40 mV.

III. CHARACTERIZATION OF ATTRACTORS

As mentioned in Sec. I, an attractor can be character
quantitatively by a multifractal dimensionDq , whereq is a
continuous index. If the attractor is a point, line, or tw
dimensional surface, thenDq is 0, 1, or 2, respectively, in
dependently of the parameterq. However, if the attractor
becomes more complicated, then its dimension can be a
tal number, whose actual value varies withq. In order to
determine the fractal dimensions, the attractor is first cove
with a grid of cubes. Then the frequency, with which a t
jectory visits the various cubes covering the attractor, is c
culated in the limit that the trajectory length goes
infinity.3,4 This frequency is used to define various frac
dimensions such as the box-counting, information, or co
lation dimensions.2 As shown previously~cf. Fig. 3 of Ref.
13!, the point density varies considerably in different parts
a chaotic attractor, indicating that some regions are m
more frequently visited than others. Instead of using a grid
cubes, another equivalent method is to calculate the corr
tion between different points, a method proposed by Gra
berger and Procaccia14 for the case ofq52 and later gener-
alized for the whole spectrum of dimensionsDq .15 In this
method the multifractal dimensionDq is defined as14,15

Dq5
1

q21
lim
r˜0

ln@Cq~r !#

ln~r !
, ~1!

with the generalized correlation functionCq(r ) given by

Cq~r !5
1

N (
i 51

N F 1

N (
j 51

N

u~r 2uxW i2xW j u!Gq21

, ~2!

whereN is the number of points,xW i is a point on the attrac
tor, andu is the Heaviside step function. In these equatio
q can be any number.D0 is known as the capacity dimen
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sion,D1 as the information dimension, andD2 as the corre-
lation dimension. In fact, the multifractal dimension in th
method is calculated through the generalized probability
find any two points of the attractor within a distancer , which
is easier to compute in practice and gives smooth curve
compared to the grid method.16

As q is varied, different regions of the attractor will de
termineDq . D` corresponds to the region where the poin
are mostly concentrated, whileD2` is determined by the
region where the points have the least probability to
found.3 If Dq is a constant for allq, then the trajectory will
visit different parts of the attractor with the same probabili
i.e., the point density is uniform in the Poincare´ map. This
type of attractor is a so-called ‘‘trivial’’ attractor. WhenDq
changes withq reflecting a different point density among th
attractor, it is denoted a ‘‘nontrivial’’ attractor. Therefore
the Dq curves can be used to determine the structure of
attractor. In the following, we will computeDq curves from
the experimentally obtained Poincare´ maps shown in Fig. 3
of Ref. 13. We will then discuss the structure of the differe
attractors observed in the bifurcation route to chaos.

Figure 1 shows several ln@Cq(r)# vs ln(r) curves for 40 and
63 mV, which are calculated from the corresponding Po
carémaps. In this figure we only give examples forq50 and
2. In these curves, a linear region is found for a certain ra
of r values. For smaller and largerr , the curves depart from
a linear dependence due to the finite number of points in
Poincare´ map and the finite size of the attractor. Althoug
the limit r˜0 is not very well fulfilled because in our ex
periment the number of the points in the Poincare´ map is
limited to 1600, the dimension of the attractors can still
estimated according to Eq.~1! by determining the slope o
the linear region in Fig. 1. For 40 mV, the fractal dimensio
D0 andD2 obtained in this way are approximately equal
zero, which is in agreement with a frequency-locked attr
tor. However, for the chaotic attractor at 63 mV, the dime
sions D051.70 andD251.48 are fractal. They even var
with q.

Figure 2~a! shows theDq vs q curves for the bifurcation

FIG. 1. ln@Cq(r)# vs ln(r) for q50 and 2 atVac540 and 63 mV,
respectively. The solid lines are linear fits to the data points.
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sequence from quasiperiodicitỹ synchronized chaos̃
frequency locking~1 to 40 mV!. For the frequency-locked
state at 40 mV, the multifractal dimensionDq is approxi-
mately equal to zero for all values ofq in good agreemen
with the corresponding attractor of three isolated points. T
attractor for frequency locking is therefore not strange. F
quasiperiodicity, the Poincare´ map should be a smoot
loop.17 Consequently, it is expected that a quasiperiodic
tractor is one dimensional, i.e.,Dq is equal to one for all
values ofq. However, theDq curves for the quasiperiodi
attractors in our experiments~betweenVac51 and 37 mV!
do not exhibit a horizontal line as shown for 9 and 34 mV
Fig. 2~a!, althoughD0 is close to one.D2` is about 1.6 and
D` approaches a finite value below one. The ‘‘kneelik
structure ofDq shown in Fig. 2~a! is typical for chaotic at-
tractors with multifractal dimensions. We therefore conclu
that the quasiperiodic attractors are nontrivial in our syste
This can also be seen from the Poincare´ maps in Fig. 3 of
Ref. 13, since there appears to be in some parts a dou
layer structure of the loop. Strange attractors are not alw
connected with chaos. The possibility of their emergence
nonchaotic systems has been predicted theoretically by
bogi et al.,18 and they have been experimentally observed
different physical systems, such as quasiperiodically for
systems19 and an undriven gas-discharge plasma,20 etc. Al-
though there is no complete theory of such a behavior, u
ally the appearance of nonchaotic strange attractors is re
to the intermittency induced by noise.21 A possible mecha-
nism of their emergence at the boundaries of mode-loc
tongues is discussed in Ref. 22.

For synchronized chaos at 39 mV, theDq curve also
shows a ‘‘kneelike’’ structure. In contrast to the quasipe
odic regime,D2` is less than 1, whileD` approaches zero
This dependence indicates that the synchronized chaos
served at 38–39 mV exhibits the characteristics of b
chaos and frequency locking. However, the attractor for s
chronized chaos has a capacity dimensionD0 of about 0.65,
which is less than that of the quasiperiodic attractors.

WhenVac increases beyond 50 mV, an explosive bifurc
tion sequence to chaos is observed as discussed in Se
Figure 2~b! gives several multifractal dimensions for the a
tractors in this bifurcation regime. At 50 mV, the oscillatio

FIG. 2. Multifractal dimensionsDq vs q for the driving ampli-
tudesVac from 9 to 40 mV~a! and from 50 to 79 mV~b! obtained
from the corresponding Poincare´ maps.
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are periodic so that the dimension of the attractor is ab
zero. This is actually the case for all values ofVac between
40 and 50 mV. ForVac larger than 50 mV, the Poincar´
maps expand into more complicated structures. At the sa
time, theDq curves become nontrivial exhibiting the typic
kneelike structure of strange attractors. With increasingVac
from 50 to 56 mV, the height of the kneelike structure i
creases indicating that the attractor becomes more stra
The system enters a chaotic regime with higher complex
Additionally, the strangeness for the chaotic attractors in t
regime is more pronounced than for synchronized chao
39 mV and also for the quasiperiodic regime. This can
easily seen in Fig. 2~b!, since the absolute values ofDq as
well as the height of the kneelike structure are larger than
Fig. 2~a!. A number of chaotic attractors with different mu
tifractal dimensions are observed between 56 and 80 m
Figure 2~b! gives examples for 56, 63, and 79 mV.

Figure 3 shows the dependence ofD0 , D1 , and D2 on
Vac . It is very clear from this graph that the multifracta
dimension of the attractor is changing during the bifurcat
sequence to chaos. The dimensionsD0 , D1 , andD2 do not
change very much within the quasiperiodic regime. Wh
the frequency-locked state is reached at 40 mV, all th
fractal dimensions vanish. Between 50 and 63 mV, all th
fractal dimensions increase abruptly reaching slightly diff
ent maximum values of about 1.5 at 60 mV. The abru
increase of the fractal dimensions demonstrates that the
furcation sequence from frequency locking to chaos is exp
sive. Between 51 and 80 mV, a number of strange attrac
is observed in the chaotic regime with varying fractal dime
sions. Since for random noise the capacity dimensionD0 is
equal to 2~for the two-dimensional phase space conside
here!, we conclude that the observed dimensionD0 between
51 and 80 mV with values of less than 2 clearly demonstra
the existence of deterministic low-dimensional chaos in
experiments.

IV. SUMMARY

We have calculated the multifractal dimension of the
tractors in an experimentally observed bifurcation seque

FIG. 3. DimensionsD0 , D1 , andD2 as a function of the driving
amplitudeVac .
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to chaos for a driven, weakly coupled semiconductor S
These dimensions are obtained from Poincare´ maps, which
are constructed from real-time current traces and measur
strength of the multifractality of the corresponding attract
The dependence of the fractal dimension on the driving v
age amplitude demonstrates quantitatively that the bifu
tion sequence contains quasiperiodic, periodic, and cha
attractors. Furthermore, the transition from frequency lo
ing to chaos is explosive. In the quasiperiodic regime,
attractors may exhibit a certain degree of strangeness
n
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nally, the observed fractal dimensions unambiguously id
tify the existence of strange attractors and thereby confi
the deterministic nature of the observed chaotic oscillatio
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