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Multifractal dimension of chaotic attractors in a driven semiconductor superlattice
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The multifractal dimension of chaotic attractors has been studied in a weakly coupled superlattice driven by
an incommensurate sinusoidal voltage as a function of the driving voltage amplitude. The derived multifractal
dimension for the observed bifurcation sequence shows different characteristics for chaotic, quasiperiodic, and
frequency-locked attractors. In the chaotic regime, strange attractors are observed. Even in the quasiperiodic
regime, attractors with a certain degree of strangeness may exist. From the observed multifractal dimensions,
the deterministic nature of the chaotic oscillations is clearly identifi§6163-182@99)03032-5

I. INTRODUCTION voltage. When the system enters the chaotic regime, the
Poincaremap becomes more complex indicating that the at-
Dissipative dynamical systeni®.g., current oscillations tractor acquires a higher dimension. In order to prove the
in a solid-state system driven by an ac voltagee charac- increase of the attractor dimension and to obtain additional
terized by the attraction of all trajectories passing through anformation about the underlying chaos, it is necessary to
certain domain of phase space towards a geometrical objeguantitatively characterize the dimension of the attractors as
called an “attractor.™? The attractor can be a single point, a a function of the external driving voltage amplitude.
number of isolated points, or an extended object in phase In this paper we will report on the multifractal dimension
space. Therefore, the structure of the attractor is crucial fopf the attractors for a weakly coupled SL under an external
the understanding of the dynamical behavior of a systém. driving voltage. The obtained fractal dimensions unambigu-
In a physical experiment, one usually employs the so-calle@usly identify the presence of strange attractors and the de-
first return maps or Poincamaps to visualize and analyze terministic nature of the chaotic oscillations. We also find
the underlying attractors? For example, for frequency lock- that strange attractors may exist in the quasiperiodic region.
ing, which corresponds to periodic oscillations, the attractor The paper is organized as follows. In Sec. Il the experi-
consists of a set of discrete points so that the dimension ghental bifurcation route to chaos in a driven SL is briefly
the attractor is zero. For quasiperiodic oscillations, the Poinreviewed. In Sec. Il the dimension of the attractors in the
care map usually consists of a loop with a homogeneousbserved bifurcation sequence is derived from the experi-
point density so that the dimension of the attractor is one. Inmental Poincarenaps and discussed. Finally, a short sum-
the chaotic regime, the structure of the attractor is callednary is given in Sec. IV.
“strange.” The dimension of the attractor becomes now a
fractal instead of an integer number. Strange attractors are
usually characterized by a multifractal dimensg, which
is a measure of the strangeness of the attrac¢tor. In the experiments the dc bias is fixed and the sample is
Resonant tunneling in weakly coupled semiconductor sudriven by an incommensurate ac voltage. The detailed infor-
perlattices(SL’s) results in a negative differential velocity mation about the samples and the performed experiments can
(NDV) in the drift velocity vs electric-field characteristits.  be found in Ref. 13. In this paper we will discuss the bifur-
Due to the presence of the NDV, the vertical transport in thecation route at the dc bias of 6.574 V, where the current
SL’s exhibits nonlinear properties, which result in such phe-self-oscillations exhibit an intrinsic fundamental frequency
nomena as domain formatiénmultistability? and self- fo of 30.5 MHz. In the experiment, the driving frequency
sustained oscillations”*° In this nonlinear system, chaos (fg) is set to the golden mean {1,/5)/2~1.618 timesf,,
has also been studied theoretichlland experimentally?'®  i.e., 49.4 MHz, while the driving amplitud¥,, is varied.
Recently, an explosive bifurcation to chaos has been experifhe observed power spectra as a functioVgf is given in
mentally observed in the power spectra of a driven SL andrig. 1(a) in Ref. 13, which shows the following sequence:
unambiguously identified using Poincareps’® During the  quasiperiodicity— synchronized chaos» frequency locking
bifurcation sequence from frequency-locking to chaos, the» chaos— chaos with higher complexity. The Poincare
Poincaremap expands from isolated points to connectedmaps derived from real-time traces further verify this bifur-
branches, indicating that the dimension of the underlying ateation route to chaoS. At small V,., such as 9 and 34 mV
tractors increases with increasing amplitude of the drivingshown in Fig. 3 of Ref. 13, the Poincameap consists of a

Il. EXPERIMENTAL FACTS
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closed loop, corresponding to a quasiperiodic attractor. At 39 S
mV, the loop is split into three extended branches, indicating ;

the appearance of synchronized chaos. By increa¥igg '4;

from 39 to 40 mV, the system enters a frequency-locked § sk
state with a Poincarenap consisting of only three points S
(they are broadened due to nois&his frequency-locked : -6
state exists up to values df,. of about 50 mV, while at 52 = 4f

mV two of these three points expand into branches demon- I N T T
strating the onset of chaos. Within this chaotic regime, a 2
number of chaotic attractors with different complexity are
revealed. The Poincamaps between 50 and 56 mV show
that the bifurcation from frequency-locking to chaos is ex-
plosive, i.e., it is accompanied by an abrupt increase of the
attractor dimensiorifrom three points with zero dimension
to an object with finite dimensiohs

In Sec. Il we will estimate the multifractal dimension of
the attractors from the experimental Poincaraps in order

In [C2(r)]

to analyze the bifurcation process quantitatively. We will In(r)
report the results for some typical attractors fovgt of 9,
34, 40, 50, 52, 56, 63, and 79 mV. The Poincaraps for FIG. 1. ICy(r)] vs In() for q=0 and 2 a,,=40 and 63 mV,

these driving amplitudes are all shown in Fig. 3 of Ref. 13respectively. The solid lines are linear fits to the data points.
except for 50 mV. At 50 mV, the oscillation is frequency
locked, and the Poincaraap consists of three points, similar sion, D, as the information dimension, arfi®}, as the corre-

to that for 40 mV. lation dimension. In fact, the multifractal dimension in this
method is calculated through the generalized probability to
IIl. CHARACTERIZATION OF ATTRACTORS find any two points of the attractor within a distangevhich

. . _is easier to compute in practice and gives smooth curves as
As mentioned in Sec. |, an attractor can be characterizegdympared to the grid methd8.

quantitatively by a multifractal dimensidd,, whereq is a As q is varied, different regions of the attractor will de-
continuous index. If the attractor is a point, line, or tWo- termineD, . D.. corresponds to the region where the points
dimensional surface, theD is 0, 1, or 2, respectively, in- are mostly concentrated, while .. is determined by the
dependently of the parameter However, if the attractor yegjon where the points have the least probability to be
becomes more complicated, then its dimension can be a fragsyng3 If D, is a constant for aly, then the trajectory will
tal number, whose actual value varies wih In order to st different parts of the attractor with the same probability,
determine the fractal dimensions, the attractor is first coverede  the point density is uniform in the Poincareap. This
with a grid of cubes. Then the frequency, with which a ra-yype of attractor is a so-called “trivial” attractor. Whe,
jectory visits the various cubes covering the attractor, is calghanges withg reflecting a different point density among the
culated in the limit that the trajectory length goes 10 aractor, it is denoted a “nontrivial” attractor. Therefore,
|nf|n|ty._' This frequency is used _to d_efme various fractal g D curves can be used to determine the structure of the
dimensions such as the box-counting, information, or COleyractor, In the following, we will computB®, curves from
lation d|mgn5|on§.As shown previously(cf. Fig. 3 of Ref.  {he experimentally obtained Poincareps shown in Fig. 3
13), the point density varies considerably in different parts oft Ref, 13. We will then discuss the structure of the different
a chaotic attractor, indicating that some regions are muchyactors observed in the bifurcation route to chaos.
more frequently visited than others. Instead of using a grid of Figure 1 shows several[lg,(r)] vs In() curves for 40 and

berger and Procacciafor the case ofj=2 and Ialtser 9€Ner- 7 In these curves, a linear region is found for a certain range
alized for the whole spectrum of dimensiobg . In this ¢ 1 yajues. For smaller and largey the curves depart from

. . . . . 15 X . . .
method the multifractal dimensidD, is defined & a linear dependence due to the finite number of points in the
Poincaremap and the finite size of the attractor. Although
1  In[C4(r)] L ; . .
D.= im q (1) the limit r—0 is not very well fulfilled because in our ex-
4 a-1,_, In(r) periment the number of the points in the Poincarap is

limited to 1600, the dimension of the attractors can still be
with the generalized correlation functi@y(r) given by estimated according to E@l) by determining the slope of
N the linear region in Fig. 1. For 40 mV, the fractal dimensions
1 1 I D, and D, obtained in this way are approximately equal to
Co(r)= Ni; szl or=[x—=xh| (2 Zero, which is in agreement with a frequency-locked attrac-
tor. However, for the chaotic attractor at 63 mV, the dimen-
whereN is the number of points¥; is a point on the attrac- sionsDy=1.70 andD,=1.48 are fractal. They even vary
tor, and# is the Heaviside step function. In these equationswith g.
g can be any numbeD, is known as the capacity dimen- Figure 2a) shows theD vs g curves for the bifurcation

q-1
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FIG. 2. Multifractal dimension®, vs q for the driving ampli- Vac (mV)
tudesV,. from 9 to 40 mV(a) and from 50 to 79 m\{b) obtained
from the corresponding Poincaneaps. FIG. 3. Dimension®,, D;, andD, as a function of the driving

amplitudeV,.

sequence from quasiperiodicity» synchronized chaos»

frequency locking(1 to 40 m\). For the frequency-locked are periodic so that the dimension of the attractor is about
state at 40 mV, the multifractal dimensiddy,, is approxi-  zero. This is actually the case for all values\of; between
mately equal to zero for all values of in good agreement 40 and 50 mV. FolV,. larger than 50 mV, the Poincare
with the corresponding attractor of three isolated points. Thenaps expand into more complicated structures. At the same
attractor for frequency locking is therefore not strange. Fotime, theD curves become nontrivial exhibiting the typical
quasiperiodicity, the Poincarenap should be a smooth kneelike structure of strange attractors. With increading
loop}” Consequently, it is expected that a quasiperiodic atfrom 50 to 56 mV, the height of the kneelike structure in-
tractor is one dimensional, i.eD, is equal to one for all creases indicating that the attractor becomes more strange.
values ofg. However, theD,, curves for the quasiperiodic The System enters a chaotic regime with higher complexity.
attractors in our experimentbetweenV,.=1 and 37 my  Additionally, the strangeness for the chaotic attractors in this
do not exhibit a horizontal line as shown for 9 and 34 mV inregime is more pronounced than for synchronized chaos at
Fig. 2(a), althoughDy, is close to oneD _.. is about 1.6 and 39 mV and also for the quasiperiodic regime. This can be
D.. approaches a finite value below one. The “kneelike” €asily seen in Fig. ®), since the absolute values Bf; as
structure OfDq shown in F|g Za) is typ|ca| for chaotic at- well as the he|ght of the kneelike structure are Iarger than in
tractors with multifractal dimensions. We therefore concludeFig- 2@. A number of chaotic attractors with different mul-
that the quasiperiodic attractors are nontrivial in our systemtifractal dimensions are observed between 56 and 80 mV.
This can also be seen from the Poincaraps in Fig. 3 of Figure 2b) gives examples for 56, 63, and 79 mV.

Ref. 13, since there appears to be in some parts a double- Figure 3 shows the dependence®j, D;, andD; on
layer structure of the loop. Strange attractors are not alway¥ac- It is very clear from this graph that the multifractal
connected with chaos. The possibility of their emergence irlimension of the attractor is changing during the bifurcation
nonchaotic systems has been predicted theoretically by Gréequence to chaos. The dimensi@ns D;, andD, do not
bogi et al,'® and they have been experimentally observed irchange very much within the quasiperiodic regime. When
different physical systems, such as quasiperiodically forcedhe frequency-locked state is reached at 40 mV, all three
system&’ and an undriven gas-discharge plasthaic. Al-  fractal dimensions vanish. Between 50 and 63 mV, all three
though there is no complete theory of such a behavior, usuractal dimensions increase abruptly reaching slightly differ-
ally the appearance of nonchaotic strange attractors is relat@t maximum values of about 1.5 at 60 mV. The abrupt
to the intermittency induced by noidk A possible mecha- increase of the fractal dimensions dem_onstrates thgt the bi-
nism of their emergence at the boundaries of mode-locked/rcation sequence from frequency locking to chaos is explo-

tongues is discussed in Ref. 22. sive. Between 51 and 80 mV, a number of strange attractors
For synchronized chaos at 39 mV, tlii, curve also

is observed in the chaotic regime with varying fractal dimen-
shows a “kneelike” structure. In contrast to the quasiperi-Sions- Since for random noise the capacity dimen&igris
odic regime,D _, is less than 1, whil® ., approaches zero.

equal to 2(for the two-dimensional phase space considered
This dependence indicates that the synchronized chaos op€"®: We conclude that the observed dimensippbetween

served at 38—39 mV exhibits the characteristics of botpl @nd 80 mV with values of less than 2 clearly demonstrates

chaos and frequency locking. However, the attractor for syn'ghe existence of deterministic low-dimensional chaos in our

chronized chaos has a capacity dimendignof about 0.65, ~€XPeriments.

which is less than that of the quasiperiodic attractors.

_ WhenV,. increases beyond 50 mV, an gxplosive _bifurca- V. SUMMARY

tion sequence to chaos is observed as discussed in Sec. Il.

Figure 2b) gives several multifractal dimensions for the at- We have calculated the multifractal dimension of the at-
tractors in this bifurcation regime. At 50 mV, the oscillations tractors in an experimentally observed bifurcation sequence
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to chaos for a driven, weakly coupled semiconductor SLnally, the observed fractal dimensions unambiguously iden-
These dimensions are obtained from Poinamaps, which  tify the existence of strange attractors and thereby confirm

are constructed from real-time current traces and measure thiee deterministic nature of the observed chaotic oscillations.
strength of the multifractality of the corresponding attractor.

The dependence of the fractal dimension on the driving volt-
age amplitude demonstrates quantitatively that the bifurca-
tion sequence contains quasiperiodic, periodic, and chaotic The authors would like to thank A. Fischer for sample

attractors. Furthermore, the transition from frequency lock-growth. Partial support of the Deutsche Forschungsgemein-

ing to chaos is explosive. In the quasiperiodic regime, theschaft within the framework of Sfb 296 is gratefully ac-
attractors may exhibit a certain degree of strangeness. Fiknowledged.
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