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Chaotic dynamics of electric-field domains in periodically driven superlattices
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Self-sustained time-dependent current oscillations under dc voltage bias have been observed in recent ex-
periments om-doped semiconductor superlattices with sequential resonant tunneling. The current oscillations
are caused by the motion and recycling of the domain wall separating low- and high-electric-field regions of
the superlattice, as the analysis of a discrete drift model shows and experimental evidence supports. Numerical
simulation shows that different nonlinear dynamical regimes of the domain wall appear when an external
microwave signal is superimposed on the dc bias and its driving frequency and driving amplitude vary. On the
frequency-amplitude parameter plane, there are regions of entrainment and quasiperiodicity forming Arnol'd
tongues. Chaos is demonstrated to appear at the boundaries of the tongues and in the regions where they
overlap. Coexistence of up to four electric-field domains randomly nucleated in space is detected under ac
+dc driving.

[. INTRODUCTION Gunn waves are generated close to the injecting contact
whereas the domain walls appear clearly inside the'%SL.
Negative differential conductivity(NDC) in weakly  Notice finally that the different transport mechanisms deter-
coupled narrow-miniband semiconductor superlatt{&iss) mining the velocity of waves and the characteristic fre-
results in the formation of electric-field domains, which havequency of the oscillations give rise to different limitations in
been studied both experimentdllgnd theoreticallj=® The  the performance of possible devices. While for the Gunn
domains are stable if the doping or photoexcitation are largeffect the oscillation frequency is limited by a parameter of
enough to form a stationary charge accumulation ldjlee  the materialthe intervalley scattering timefor the SLs it is
domain wal). The domain wall moves from well to well as determined by the tunneling time. Hence, the oscillation fre-
the bias increases and gives rise to the jurf@iscontinui-  quency can be varied by tuning the growing paramdiess
ties) of the current in the stationafyV characteristics. rier widths, etc. and/or the dc bias. The bias regions between
When the carrier density is not sufficiently large to form different resonance peaks give rise to quite different frequen-
stable domains, but it is large enough for the uniform fieldcies, ranging between hundreds of KHz and several GHz
distribution to be unstable, periodic time-dependent oscillaover wide temperature ranges including room temperature.
tions of the current under fixed dc bias are possible. These In our previous papéf we predicted the appearance of
oscillations have been observed in recent experiments ochaos by applying an additional small ac signal to the dc
GaAs/AlAs SL's; they are damped for undoped photoexcitedsoltage bias in the regime where the SL exhibits self-
sample§ and undamped for doped SL's without sustained oscillations. In particular, when the ratio between
photoexcitatior?:® According to a discrete drift modé&lthe  the natural and the driving frequencies is fixed at the golden
current oscillations are caused by a periodic motion of thenean, chaotic current oscillations and strange attractors with
domain wall over a few periods of the $f and this is a multifractal measure have been obtaifiéd.
confirmed by photoluminescence measurem&htsote that Here we present a detailed numerical study of nonlinear
damped oscillationgwith frequencies up to 20 GHzave current oscillations in SLl's over the whole driving
been observed experimentally by Le Persoml!!in a pho-  frequency—driving amplitude parameter plane. Based upon a
toexcited wide-miniband SL with strong interwell coupling. relatively simple(but otherwise self-consisterdiscrete drift
These oscillations have been interpreted in terms of dipolenodel® the shape of frequency-locked regionarnol’d
charge waves. We do not consider the miniband transpotongue$, chaotic and quasiperiodic regions is determined,
regime in the present paper. thereby providing a global bifurcation picture. The largest
This situation is reminiscent of that found in bulk GaAs Lyapunov exponents are calculated to identify chaotic solu-
with NDC caused by the intervalley transfer of electrons,tions and to characterize their fractal dimension. The critical
where the well-known Gunn oscillations mediated by high-line where the Arnol'd tongues begin to overlap and chaos
field domain dynamics may appear under dc voltage B5i&5.  appears is found at very low values of the amplitude of the
There are several important differences between the Gundriving force, unlike other periodically driven semiconductor
oscillations and those observed in the SL's. A significant dif-systems which also display complex nonlinear interaction
ference is that the space charge wave di@ole in the case between internally generated oscillations and an external ac
of the Gunn oscillationga domain of high electric field with  signal[e.g., GaAs Gunn diodé€s,p-Ge (Refs. 16 and 1.
two charge layers: accumulation and depletiand a charge An additional point worth noticing is that the physical
monopolein the SL current oscillationga wave ofone  mechanism of the NDC in the SL systefresponsible for
charge accumulation layer, or the domain wall, connectingchaog is based on a pure quantum-mechanical eftezto-
two electric-field domains Another difference is that the nant tunneling which is absent in the classical limit. Thus
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we may have a case of chaos without classical countéfpart 15 . .
which might be easier to detect experimentally than that pro-
posed by Jona-Lasinietall® In both cases the self-

consistent mean-field potential created by the charges is in-
strumental in inducing chaos, which is also the case when a

guantum system is coupled to purely classical subsystems 1.0 .
having a widely different time scalé All these phenomena
are different from the so-called quantum ché&dse., the o

behavior of quantum systems whose classical counterpartis ¥
chaotic.

Recently, chaotic dynamics in semiconductor superlattices 05
with miniband transport has also been considered within a
classical balance-equation approattn this case the cha-
otic dynamics is due to the negative effective mass of the
electrons in the minibands for the regime of the Bloch oscil-
lations under an external ac electric fieldield self- 00
consistency is also taken into accourh this completely 0.5 1.0 15
different physical situation, the field was assumed to be spa- E (in units E,_,)
tially homogeneoufé which precludes consideration of the
spatial structure of chaos, in contrast with our wiitk. FIG. 1. Dimensionless effective velocitfproportional to the

The paper is organized as follows. In Sec. Il we describdunneling probability as a function of the electric field:(E) is
the physical model and its governing dynamical equati0n§1ormalized by its value at the resonance maximum. The point indi-
for a dark doped SL. In Sec. Ill we recall the main qualitativecates the electric-field value corresponding to the dc bias1.2
features of the self-sustained oscillations in a dc-voltage biused in the calculations.
ased SL. The general behavior of the self-oscillating SL sub-
jected to external ac and dc biases is discussed in Sec. IV. N
Frequency-locked solutiongArnol’d tongue$ are analyzed 12 Z=V(). Q)
and compared with those for the Gunn diode. The chaotic =1
dynamics at the golden mean ratio between the natural arﬂ o
the driving frequencies is described in Sec. V. Different tech- eree, e, andNp are the average Pefm'“'v'ty’ th_e Electron
hiques to analyze chaotic behavigoincafemapping, bifur- charge, and the average doping density, respectively. The to-

cation diagram, Lyapunov exponents, phase plots, Fourietral current densityd(t) is the sum of the d_isplacement cur-
spectra, first return map, etcare discussed. Section VI rent and the electron flux due to sequential resonant tunnel-
draws the main conclusions of this work. In the Appendix welnd enuv(7). The effective electron velocityv(”)

present the algorithm to calculate the Lyapunov exponent§Proportional to the tunneling probabiliexhibits maxima
for our system and discuss the Lyapunov dimension calc2t the resonant fields for which the adjacent levels of neigh-
lated by the Kaplan-Yorke formula. bprlng QW’s are aligned (Fig. 1). Not|c.e that the_mecha-
nism of sequential resonant tunneling is responsible for the
NDC region in the velocity curve which in turn gives rise to

the current instabilities in the SL. The voltagét) in (3) is

We consider a set of weakly interacting quantum wellstheé sum of a dc voltag¥},, and an ac microwave signal of
(QW’s) under high voltage biases, so that the electron state€lative amplitude A and driving frequency fg:
are localized in the wells and the tunneling process is seV(t)=Vp{1+A sin(2ft)}.
quential. The relaxation from excited levels to the ground The boundary condition at the first contact
state within each QW1 p9 is considered to be much €(Z1—%o)/(el)=n;—Np=¢ allows for a small $<Np)
faster than the tunneling process between adjacent Qwm®egative charge accumulation in the first well. The physical
(~1 n9. Therefore, a single QW reaches a local equilibriumorigin of & is that then-doped SL is typically sandwiched
between two consecutive tunneling processes, and the stdd¢tween twon-doped layers with an excess of electrons,
of the system can be characterized by values of the electridereby forming an*-n-n* diode® Then some charge will
field Z;(t), and the electron density;(t), withi=1,... N be transferred from the contact to the first QW creating a
denoting the QW indeX. small dipole field that will cancel the electron flow caused by
The one-dimensional equations governing the dynamic#he different concentration of electrons at each side of the
of the doped SL are the Poisson equation averaged over oifiést barrier.
SL periodl, Ampeae’s equation for the balance of current ~ Note that the rate equation for the electron density for our

II. PHYSICAL MODEL

density, and the voltage bias condittdn model can be derived by differentiatirid) and using(2):
(= )=S0 —No) ® AT :
| V7 Zi—1 e D/» W"f‘ I—[niv((»fi)—ni_lv(ffi_l)]=0. (4)
fd—tl+eniv(?5i)=~], @) This is the equation of charge conservation under sequential

resonant tunneling between neighboring QW's.
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Finally, the current densityl(t) in the external circuit . ; . l

under voltage bias condjtion can be obtained from the time 0.20 | _Ovzo
derivative of(3) and Ampee’s law (2) in the form 0.19
0.18
dav e XN 0.17
It =cy g+ N,Zl N (%)), (5) 2 o1 0.16
where ¢y, = €/(IN) is the intrinsic SL capacitance per unit EE« o
cross-sectional area. g 0.12
To study our equations, it is convenient to render them g 0-10 0.10
dimensionless, using characteristic physical quantities. As 5 0.08
the unit of the electric fieldE=#/#,_,, we adopt K=
#1_,=Al(el), with A being the energy separation between . 0.0s 0.07
the first and the second electron subbafide maximum of 0.086
v(#£)]. This vyields the characteristic charge density
Nng=€%,_,/(el) used to normalize the doping=Np/ng 0.00 . . . .
and the electron density. The dimensionless velagfty) is o 2 4 6 8 10
obtained normalizing (£) by its value at“=#;_,, where time (in units t,,,N)

it has a local maximum due to resonance in tunnelisge
Fig. 1). The other dimensionless quantities are defined as FIG. 2. Temporal evolution of the curredt(under dc biasfor
follows: the time r=t/ty,,, wherety,=1/v(£1_,) is the different values of the doping concentratiorindicated at the right
characteristic tunneling time; the dc bias=V,/#;_,IN; margin with increasing order from the bottom to the top. The
the ac bias amplitudea=A7" the driving frequency boundary conditions=10"3.
w=27f4tyn-

Now substituting(1) and(5) into (2), we obtain a system For in-between values* <v<v** and appropriate dc

of N equations for the electric-field profiles, voltage bias, we find undamped oscillations with frequency
N slightly dependent on the doping. In Fig. 3 the frequency of
dgi 1 the natural oscillations versus doping concentration is shown

dr N;l v(E)[E—Ej-1+v] for different boundary paramete® One can estimate the

natural frequency to be approximately equal to the inverse
—v(E)[Ei—Ei_;+v]taw codwr), (6) total tunneling time 14,,N), which gives, after substitution

with the boundary conditiolE,=E;— v8 and initial condi-  ©f OUr value forty,;~2.7 ns andN =40, a frequency about 10
tions E;(0)= 7" Vi. MHz, in close agreement with the value observed in

As an example, we consider a GaAs/AlAs SLTat5 K experiment This estimation improves al increases. All
with N=40 1=13 nm Np~1.15< 101 cm 3, A~135 meV. the results presented below were obtained for the value of

— —3
for which undamped time-dependent oscillations of the cur—5__|_1r? : tial struct £ th lati b ¢
rent were first observetl. For these values one gets € Spatial structure of the osciflations can be seen from

#1_,~10° Vicm, v~0.1, andt ,,~ 2.7 ns, and we take
7"=1.2 (corresponding t&/,~7.8 V). ' ' ‘
The system(6) is solved numerically by the fourth-order
Runge-Kutta method using 4000 time steps per one oscilla-

tion period. We start with a uniform initial field profile and
solve the equations for dc bias. After a short transient, the
self-sustained oscillations set in and we switch on the ac part
of the bias. Every time step we calculate the electric-field
distribution over SLE;(t) and the total current densit(t) oco0s |
[from Eq.(5)]. The main features of our numerical results are -
as follows.

Ill. SELF-SUSTAINED OSCILLATIONS UNDER dc BIAS 06

For pure dc casea=0) the SL exhibits undamped time-
periodic current oscillations when the doping density is be-
tween some critical values* and v** . In Fig. 2 the tem- 0.4 . . .
poral behavior of the current starting framx0 is shown for 0.00 0.05 dopci)gg; v OF 020
different doping densities. Below* ~0.066 the electric-
field distribution over the SL remains almost uniform, so that |G, 3. Frequency of the natural oscillatiofig under dc bias
the current exhibits no oscillations. Abow&* ~0.175, after  (scaled on the total traveling time over the whole &kN) vs
some transient period of the ordertgfN, stable stationary doping concentration’ for N=40 and for different boundary pa-
electric-field domains are formed. This results in an increaseametersé. Out of the regions marked by dashed vertical lines
of the current and its saturation with time. oscillations disappear.
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where the sign of the velocity derivative over the fieldis
10 crucial. In the NDC region whereg<0 the last term in8)
gives rise to an exponential growth of the charge with the
0 time characteristic timer.~ e/(eNp|vg|). For vg>0 the same
term gives charge relaxation to quasineutrafity Ny . Tak-
n ing into account the characteristic transit time-IN/v from
the convection term of8) we can get significant growth of
charge ifr,> 7., that isNpN>ev/(el|lvg|). This condition
is similar to the criticah L product for the Gunn effec¢ The
treatment above is, of course, too rough, but it clarifies the
influence of different parameters on the instability. Rewritten
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0 time this inequality implies(i) for fixed number of the SL periods
N there should exist the critical value for the doping
FIG. 4. Spatiotemporal distributions of electric field) and ~ @bove which instabilities of the current may occur, diy
electron density(b) (both in dimensionless units explained in the for any fixed doping one can bring the system to instability
text) for self-sustained oscillations under dc bias. Quantum wellby increasing the length of the SN. Precise bounds for
index is denoted by. Time is in units oft,,N. v* and v** may be found elsewheré.
Notice the importance of the NDC region in the velocity
the electron density and the electric-field distributions of Fig.curvev (E) and the positive sign ofE/dx at the boundary,
4. Starting from uniform distribution at time=0, when the  which are both necessary for monopole recycling. Besides
dc bias is turned on, after a transient perioe 3, a charge the oscillations of the domain wall due to the traveling
accumulation wavémonopole is created and then it moves charge wave, the field in the low- and high-field domains
toward the correspondent contact. Depending on the applieglso oscillategsee Fig. 4a)]. The field behind the monopole
voltage, it may or may not reach the end of the SL before ifis uniform in space, up to a small correction of the order of
disappears and a new monopole is formed starting a newW near the boundary. When the current reaches its maximum
period of the oscillation. Simulations clearly show monopolethen the field behind the monopole takes values on the NDC
recycling with two monopoles coexisting during some partregion, and those corrections increase exponentially in time,
of one current oscillation periofsee Fig. 4b)]. The period nucleating a new monopofé.
of the oscillation is mainly determined by the total traveling  The condition(9) in the strong limityN>uv/|vg| implies a
time of the monopole across the $|,N, as was shown in large separation between the characteristic timesnd 7..
Fig. 3. This can be exploited to perform an asymptotic analysis of
The total current density(t) determines the average state the current oscillations, which gives a reasonable approxima-
of the systenisee Eq.(5)]; nevertheless the information on tion to the numerical simulations for long SL's with
the spatial dynamics is presented in the time dependences Nf>1002* A key ingredient of the analysis is that the domain
the current. In the curves of Fig. 2 small current spikes camwalls become shock wavege., discontinuities moving to-
be seen during the initial stage of the domain formationwards the right and separating quasineutral regions of low

which correspond to well-to-well jumping of the charge ac-and high electric fiel whose velocity obeys an equal-area
cumulation layer. The similar, but less clear, fine structurgrule®

can be resolved in the periodic part of the current oscillations
(become more pronounced after taking the derivative
dJ/dt). From the number of spikes per period § for our
curves it is possible to estimate the number of QW’s the  Self-oscillating systems that are forced by an external os-
monopole moves across. cillating signal represent an important class of coupled oscil-
The existence of the threshold value for the dopirfg  lators. An inherent feature of periodically forced nonlinear

above which current instabilities take place, can be undersystem is that the actual oscillation frequency depends on the
stood from the charge conservation |&8) rewritten in the amplitude of the forcing. Therefore both the frequerigy
continuum limit as and the amplitude of the driving can be used as control

IV. FREQUENCY-LOCKING UNDER dc AND ac BIAS
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fests itself in the bending of the locked regions. The last
phenomenon is also absent in the bulk Gunn effect. We have
a qualitative argument to understand why the overlapping of
Arnol'd tongues(and therefore the critical line for chgos
occurs at relatively low ac voltages. Notice that our system
has important voltage and time scales due to its discreteness:
recall that there are spikes superimposed to the oscillation of
the current tracking the jumps of the domain wall from one
QW to the next one. It is plausible that overlapping of
Arnol'd tongues occurs when the ac voltage amplitude is
equal to the time-averaged voltage drop per periggiN,
needed to balance the typical discrete scale of voltage. The
latter is equal to the energy separation between subbands
divided by the charge of the electrofi; _,l =A/e.?®~28Un-
like the ac-driven bulk semiconductors, one could thus ex-
3 4 pect overlapping of resonances for a SL driven with an ac
amplitudeV,A~A/e~V, /N, which is much smaller than
the dc biasv,. This value seems to give a reasonable esti-
FIG. 5. Phase diagram showing the distribution of frequency-mation of the lowest critical line for chaos as shown in Fig.
locked solutions over the driving frequency-driving amplitude pa-5.
rameter plane. Driving frequendy is in units of the natural oscil- Let us now further describe the Arnol'd tongue diagram
lation frequency fy~0.0235(1f,,,). Grey color corresponds to of Fig. 5. Between the main tongues correspondent:to
quasiperiodicity (QP), lighter color with different shades corre- |ocking, smallem:m intervals are found, representing more
sponds to periodical solutiorieumber of periods is shown by num-  complex entrainments. For instance, between the 3:1 and 4:1
bers, chaos is marked by blacks is the inverse golden mean.  tongues one can see 10:3, 7:2, and 11:3 ratios, between the
4:1 and 5:1 tongues there are 13:3, 9:2, and 14:3 ratios, and

parameters to study nonlinear dynamics of our system. SO on. Scanning over both parametemndf, to analyze the

For relatively low amplitudes we could expect two pos-System of 40 equations was very time-consuming, because
sible effects of the forcing according to the ratio between theve calculated the largest Lyapunov exponesgte below to
driving frequencyf4 and the natural frequencl,. If this  distinguish between quasiperiodic and chaotic solutions.
ratio is a rational number the regime of entrainment or modeThus we restricted ourselves to scanning with a frequency
locking will be observed, if it is irrational the regime of stepAfy=0.05f,, which allowed us to detect the tongues
quasiperiodicity will occur because the frequencies aré:m Wwith at mostm=3. Higher-order locking and much
incommensuraté smaller new chaotic regions at the boundaries of the tongues

The statement above is confirmed by our numerical calare expected to appear if a smaller step; is used. An
culations. The phase diagram of Fig. 5 shows the distributio@dditional important result in the mode-locking diagram of
of frequency-locked solutiongArnol'd tongue$ over the Fig. 5 is that the richest structure of different mode mixing
frequency-amplitude parameter plane. Within each tongueand chaos is concentrated between the 2:1 and 3:1 tongues.
the current is a periodic function of time whose actual fre-In the next section we consider in more detail the results
quencyfs does not coincide Wiﬂio nor with fd in generaL obtained when the driving frequency is fixed within that re-
Instead it is usually related to one of their harmonics.gion, namely, at the inverse golden mean ratio.
Frequency-locking can be considered as the trend of the
driven system to keep its frequency close to that of the un- V. CHAOTIC DYNAMICS AT THE GOLDEN MEAN
forced oscillationf, by taking the value of the harmonic of RATIO
f4 which is closest td,. The periods of the actual oscilla-
tions are shown by numbers in Fig. 5. Notice that the
frequency-locked solutions are interspersed with regions of Here we shall consider the driving amplitudeas the
quasiperiodicity where both frequencigsandf 4 coexist. At~ control parameter, fix the driving frequency &g=Gf,
a=0 the Arnol'd tongues arise in intervals around rational[whereG:(\/§+ 1)/2~1.618 03... is the inverse golden
ratios of f4/fy, and heref=f,. As a>0 increases, the mean ratié®], and calculate the curredt as a function of
tongues open up and eventually intersect. Then more comiime.

driving amplitude
(@)
o
00

V-9

driving frequency

A. Bifurcation diagram

plicated dynamical behavior®.g., chaosusually occur as To detect and visualize the chaotic regions in parameter
the solution jumps between the various overlapping modes ispace, we need to define a Poincarapping. The current is
an erratic way. a good measure of the amplitudeorm) of the solutions,

Frequency locking is a typical nonlinear phenomenon thatvhich is illustrated by the use of current versus voltage char-
can be found in different periodically driven systefidn acteristics as bifurcation diagrartisLet T4=1/f4 be the
our model the Arnol'd tongues begin to overlap already atdriving period. We adopt as our Poincarapping(for each
very low driving amplitudes £~0.01). This is quite differ- value ofa) the current at times,,,=mTy, m=0,1, ... (af-
ent of the case of the Gunn diode studied by Mosekildeter waiting enough time for the transients to have decplfed
et al® In addition, we observe “the red shift” in the depen- The result is the bifurcation diagram in Fig(ah which is
dence of the frequendi with the amplitudea, which mani-  constructed as follows. For eacta we compute
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0.14 , 1 . . , More insight into the transition between chaotic and non-
@ chaotic regions of the bifurcation diagram can be obtained by
@i‘\ sweeping up(or sweeping down through it, using the

N electric-field profile stored at the end of each simulatifam
] a=ay) as an initial condition for the next simulatioffor
a=ap+Aa). This approach is close to the process of experi-
mental sweeping-up measurements. By this technique we in-
vestigated some critical points in the bifurcation diagram and
found different pictures when sweep-up and sweep-down
runs were made, thus demonstrating hysteresis. For example,
T such hysteretic behavior we obtained for the transition point
between period-2 orbit and chaosaat 0.085, which points
0.08 L out the existence of a subcritical bifurcation.

JmTy)

B. Current-voltage phase plots and Fourier spectra

Figure 7 showd -V phase plots and the corresponding
Fourier spectrgFS) for some specific values ad. These
phase plots could be measured experimentally by depicting
the current in the external circuit as a function of the instan-
taneous value of the aalc voltage bias. We observe differ-
03 : . o ‘ : ‘ : ent types of solutions as shown in Fig. 7. Periodic orbits

000 002 0.0t Og,?f,ingoﬁpm?,;}: 30'12 014 018 appear as simple closed looEgs. 1c),(f)]; they have few
frequency peaks in the FS, corresponding to the driving fre-

FIG. 6. Bifurcation diagram of the current obtained by means ofduencyfy and its harmonics. The quasiperiodic orbits look
Poincafemapping each driving-force peridt (a) and the firsttwo ~ more complicated[Figs. 7a),(e)], but their FS are still
Lyapunov exponentgb), both versus the driving-force amplitude Simple. For the case of Fig.(é (strong driving the main
a for the golden-mean ratio between natural and driving frequenpeaks appear anfy (m=1,2, .. .).Additional small double
cies. Windows of chaotic solutions are marked by arrows.peaks aroundmi—3)fy (withm=1,2, ... ; theseparation be-
Lyapunov exponents are scaled on the driving pefligd tween the peaks of each pair is always the same for all
double peaKsare related to one of the harmonics of the

Jn=J(mTy) until the solution becomes periodic within a - .
10°5 éccudr)acy At that time, we stop the simulation and gen1atural frequencyfo, thereby providing coexistence of the
pict all theJ,, corresponding to one period of the solution. If two frequencied, andfy . For the quasiperiodic case of Fig.

the solution is not periodic, we eliminate the first 500 tran-7(a) (weak driving the main peaks are atfo with the same

. . : ; . type of the double peaks, which are already relatedjto
zﬁztsz?l:?i?\;” ?;: bdee\e::rtytZZsri]lsxgi szt?r?gﬁloslag‘j ]:[ S;Sbgﬁggi'ghus the natural and driving frequencies exchange their roles
ones in Fig. 6 by the large number of point@eriods depending on the strength of the forcing. Finally, for the

. . . .. chaotic solutiongFigs. 1b),(d)] the FS become very irregu-
corresponding to each value af Notice that period-2 orbits lar with a large furﬁbez(o% E);]aks which could be ():lonsigered
span the widest parameter region froa=0.01 up to '

; . . as an additional method to detect chaos. The FS for chaotic
a§0.085. Perlod—.doubllng cascades can b.e seen, wh|c olutions should not be necessarily continuous. In our system
points out the existence of chaos near their accumulatiog, sharp frequency components are also present in the FS as
points. in the case of the familiar Rsler attractot?

_The next im_port_anF cons_ideration is _to_disgriminate cha- The Poincarenapping used to obtain the bifurcation dia-
otic from quasiperiodic regions, both distinguished by hav-

) S . . : . gram of Fig. &a) can be understood from Fig. 7 as the suc-
ing a large r_1umber of points In the bifurcation diagram. Thlscessive crossing of the orbit through the lirie=1.2, where
can be achieved by computing the largest Lyapunov EXPO3c part of the voltage crosses zdai upper values of the
nent\,. For chaotic regiona >0, which indicates expo-

S . ) o current corresponding to the increasing voltag€sr aperi-
nential divergence of nearby trajectories. For periodic solu P g g a9 P

. ) odic solutions those crossing points are distributed over
tions of our nonautonomous system;<<0, while for some intervalor intervals of the current
quasiperiodic solutions ;=0. '

In Fig. 6(b) we present the first and the second Lyapunov
exponents calculated by the algorithm explained in the Ap-
pendix. We see that the system starts being quasiperiodic One of the main quantities observable in experiment is the
(A4=0) ata=0, as it should be for an irrational frequency current density in the external circul{t). By sampling the
ratio. Then ata~0.005 it locks to a period-5 orbit\(;<0) currentJ(t) each driving periody, one obtains the data set
terminated by some chaotic windows @t0.01 (\,>0). J,,. This set can be analyzed by means of the first return
Notice the first appearance of chaos at relatively small drivimap plottingJ,,.; as a function ofl,,. After some transient
ing amplitude 1% of V). After a>0.085 several chaotic time the resultant attractor for amperiod solution will be
windows can be seen, and then the solution becomes agajimst then separate pointé0-dimensional objeg¢t while for
quasiperiodiqas it was at=0) before locking to the driv- an aperiodic(chaotic or quasiperiodjcsolution it will be
ing frequencyfy ata~0.145. represented by a higher dimensional object.

M *Ty

C. First return map
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FIG. 7. Phase current-voltage pldteft) and the corresponding
Fourier spectra of the currefright) for different driving amplitudes
a: 0.005(a); 0.0102(b); 0.05(c); 0.09 (d); 0.144(e); 0.16(f).

points indicates quasiperiodiciffrig. 8@)]. The chaotic at-
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FIG. 8. First return map for current densily, at different driv-
A closed smooth loop with regular distribution of the ing amplitudesa: 0.14(a); 0.09(b); 0.101(c), indicating quasiperi-

tractor is a layeredsometimes foldingstructure with vary-

ing density of the points on different regioffsig. 8b)], and
it can be characterized by the multifractal dimensipg.%*

branches almost continuously filled as in Figc)8 In this

odicity (a) and chaogb),(c).

particular case the attractor has five branches, indicating that
the solution is close to period-5 locking for this value of the
Sometimes the chaotic attractor contains several separatentrol parametea. The chaotic solution has the same sym-
metry as the frequency-locked solution which lies nearby.
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FIG. 10. Nonuniform distribution of electric-field domains for a
16 50 200-period SL:(a) a=0 at the time moment=3.20 (one mono-
42 44 pole); (b) a=0 at 7=4.35 (two monopoles (c) a=0.112 at
40 time 7=18.05 (three monopoles Electron densityn and electric field
E (both in dimensionless unijtgre indicated by the full and dotted

FIG. 9. Chaotic propagation of the charge accumulation wavednes, respectively.
in a 40-period SL fora=0.09 (a) and in a 200-period SL for . - ]
a=0.12 (b). Electron density1 is in dimensionless units explained Pronounced at the instability threshold for the doping,

in the text. Time is in units of,,N. where the current oscillations appear. Then the electric field
) is almost uniform all the time.
D. Spatiotemporal aspects of chaos The second feature is the qualitative change of the travel-

So far we have only characterized the temporal aspects #fg wave picture for longer SL. For short SIN&80), at
our chaotic current oscillations leaving aside the spatial demost two domain wallg¢separating three domajnsan coex-
pendence of electric field and charge density. This deperist at a given timgsee Fig. €a)], whereas up to three coex-
dence is a very characteristic feature of our system becausgting domain walls(separating four domainscan be ob-
the oscillations of the current are due to the dynamics oferved for long SL's during certain short time intervifisr
nonlinear traveling charge waves. Thus we analyze here whiie case of Fig. @) at 7~41.1;46.9. In Figs. 1@a)-10(c)
are the field and charge density profiles in the dynamicawe show the presence of one, two, or three electric charge
regimes of interest described previously. monopoles at different times for a 200-well SL under ac and

Under pure dc voltage bias, the SL exhibits time-periodicdc voltage bias. It is important to note that in case one or two
current oscillations accompanied by a periodical recycling ofmonopoles coexist, as in Figs. @(b), the electric field on
the monopole charge wave@lomain wal) in space as de- the flat regions I, I, and Ill corresponds to the zeros of the
scribed in Sec. Ill. When an ac signal is superimposed on thequationenv (E) =J (thus the field follows adiabatically the
dc voltage bias, the current can become chaotic for particuldnstantaneous value of the current densitypstead for the
values of the control parameters. For that case the motion @fc-driven case of Fig. 10), very short transients occur dur-
the charge waves becomes chaotic too, as shown in E&g. 9 ing which three monopoleghus four domainscoexist. Of
The ac part of the voltage causes the electric field in differenthese domains, | and IV approximately correspond to zeros
parts of the SL to take on values in the NDC region at dif-of env(E)—J on the first and third branches af(E),
ferent instants of time. This results in irregular amplificationwhereas domain Il approximately corresponds to the zero of
or damping of the charge disturbance at different QW’s. env(E)—J on the NDC branch ot (E). Domain Ill does

There are two significant features for a SL under ac andhot correspond to any zero @nv(E)—J. This situation
dc voltage bias as compared to the pure dc case. The firkists for a short time only: domains Il and Il coalesce onto
distinctive feature is that the monopoles may be generatethe NDC zero oenv(E) —J. During the transitory situation,
closer to the beginning of the SL, thereby leaving more roonthe monopole separating domains | and Il keeps moving
to their motion towards the end of the SL; see Fi@)9Then  while the other two monopolgseparating domains Il and 11
the peak-to-valley ratio in the current oscillations increasesind domains Ill and 1Y remain approximately stationary.
as it can be appreciated in Fig. 7. Amplification of the ac The width of a domain wall4£6 wells for our particular
signal is not linked to chaos since it can also be observed iset of parametefss determined by the velocity profile and it
cases where there is frequency locking and a uniform electrits approximately independent of the SL lengtithen the
field profile inside the SI2 In fact, the amplification is most monopole has more room to move on a longer (Bhder
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pure dc bias, monopole recycling takes place on about 18tatic electric-field domairsin their current-voltage charac-
periods of a 40-well SL as compared to about 90 periods oferistics under dc voltage bias. Studying the response of
a 200-well Sh. The disturbance caused by the ac bias orthese samples to ac and dc voltage bias would also be of
monopole motion is thus much larger for a longer SL, whichinterest. Preliminary calculations show rich spatiotemporal
results in quite different spatiotemporal structures under abehavior including chaos.
and dc biagcompare the charge densities of Fig&)%nd
9(b)]. For a short SL the chaotic behavior can be associated ACKNOWLEDGMENTS
with a chaotic domain wall dynamics that resembles the dc
voltage bias case: most of the time there is only one domain We thank J. M. Vega, C. Martel, H. T. Grahn, and J.
wall which moves to the end of the SL and disappears, anéfastrup for valuable discussi’ons. 0O.M.B. has been supported
about that time another monopole is generated, sometimdy the Ministerio de Educacmy Ciencia of Spain. This
quite close to the beginning of the $tee Fig. 8a)]. On the  Work has been supported by the DGICYT Grants Nos. PB92-
other hand, for a long SL the graph of the electron density i$248 and PB94-0375, and by the EC Human Capital and
disjoint; In addition to long-living waves traveling over al- Mobility Programme Contract No. ERBCHRXCT930413.
most the whole SL, there are short-living waves existing
only at the beginning of the SL. The two types of waves are APPENDIX: LYAPUNOV EXPONENTS
distributed chaotically in space.

We have not found more than three monopoles by increasff
ing further the SL lengtiN. This may be due to the fact that iel

there is not enough charge in the 8letermined by dopi ) AT
9 g Gle y doping to know how trajectories infinitesimally close to the real tra-

to provide more than three jumps in the electric field. It. i . . )
might be possible to observe more complicated field struclectory of our system diverge from it, we can use a linearized

tures in parameter regions where the current instabilities exersion of the equation®):

ist at much higher electron densities.

Consider theN-dimensional phase space for the electric-
d vectorE;. The evolution of its trajectong;(7) is de-
scribed by the set of nonlinear equatidgs. Since we want

~ N
The spatially chaotic nature of the solutions can be illus- Ez EE [v (ENn7& +v(EN)(&—&_,)]
trated by picking two far-away QW's and depicting the si- 7 Nj=1 o e
multaneous values of the electric field at them after each . o
period of the driving forceT4. The resultant attractors will —v'(EN)njei—v(E)(e—€_1). (A1)

be very similar to those obtained for the first return map
Jm+1—Jm described in Sec. V Ccf. Fig. 2 in Ref. 14 with
Fig. 8 of the present paper

Hereg;, withi=1,... N, is the vector of the disturbances
of the electric field. The velocity(E), its derivative
v'(E[), and the electron density’=E—E/_;+ v are cal-
culated on the fiducial trajectorfy;( 7). The boundary con-
VI. CONCLUSIONS dition for the systen(Al) is e,=¢;.
To calculate the largest Lyapunov exponent is very
easy. We take an arbitrary initial vectey(0). Then both the
nlinear systeni6) and the linearized systeth\1) are ad-
vanced forward in time simultaneously.
Denoting by||&;(7)| the Euclidean norm of the vectey
time 7, the largest Lyapunov exponent is given by

Dynamic properties of the high-field transport in weakly
coupled superlattices under ac and dc biases have been st
ied numerically within the simple self-consistent discrete
drift model. A nonlinear interaction between an internally
generated periodical motion of the accumulated charge wave,
and an external microwave signal gives rise to a frequency-

locking, quasiperiodicity or chaos depending on the external 1 &)
driving parameters. The calculated phase diagram of the A= lim=In———. (A2)
frequency-locked solutiongrnol’d tongue$ shows the fol- =T [&(0)]

lowing features:(i) the first overlapping of tongues giving
transition to chaos occurs under very weak driving The linear system without nonlinearities will give an ex-
(a~0.01); (ii) there is a bending of tongues under Strongponential growth(relaxation of the solution for a positive
driving (red shift in frequencywhich we associate with the (negative X,. Therefore, the perturbations will need to be
delay in natural oscillation frequency, and that is a consefeénormalized from time to time to prevent overflgunder-
quence of our spatially extended system. flow), because they are only represented with a finite floating

Besides the chaotic dynamics, the microwave forcing wa$0int numbers in the computer. To avoid this we use the
found to give an amplification of the self-sustained currenttlgorithm of Benettinet al*® and renormalize our perturba-
oscillations, which is most pronounced at the instabilitytion vector after each half-perioh/2 of the ac voltage bias.
threshold for the doping*, where the oscillations appear. Then\; will be given by

It would be of interest to verify our predictions by making
measurements in currently availabledoped GaAs/AlAs
samples formingn*-n-n* diodes. These samples exhibit
self-sustained oscillations under pure dc voltage biasd
are thus suitable candidates for observing chaos when amhered; is the vector perturbation growth during théh
appropriate microwave signal is superimposed on the deenormalization period. Figure 11 shows the results for
voltage bias. More highly doped samples present multistabl& ;(t,) obtained after computing df renormalization inter-
stationary solution brancheg&orresponding to coexisting vals. In the limitk—o \; converges to its limiting value

K
) 2
A= I|mk—_|_dj21 In/|d;, (A3)

k—o0
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FIG. 11. Temporal convergence of the largest Lyapunov expo- FIG. 12. Temporal convergence of the first three Lyapunov ex-
nent\, for different driving amplitudes: 0.01 (periodig; 0.0102  ponents for chaotic solution &=0.09. Lyapunov exponents are
(chaotig; 0.05(periodig; 0.1395(quasiperiodig. Timet,=kT4/2 is scaled on the driving periody .
in units of the renormalization intervals. Lyapunov exponents are

scaled on the driving periotly . n initial perturbation vectoréi(“)(O), which are orthonormal,

so that they formn-dimensional sphere. As the system is
integrated forward in time, the sphere of trajectories will
become an ellipsoid since different directions in phase space
will expand or contract at different rates. The Lyapunov ex-
To look at our chaotic solutions from the point of view of ponents,; are de_ter_mined by the rate .Of expansion or-con-
\}ractlon of the principal axes of the ellipsoid averaged over

their dimensionality we have to compute the next Lyapuno . o ; X
numbers. Of course, we do not need all the Lyapunov specthe entire attractor. One additional problem arises here. Since

trum of 40 numbers to characterize our system. Kaplan an@'l e vector5{")(7) tend to line up in the direction of the
Yorke defined a quantity called the Lyapunov dimensiondr€atest growth we have to use the Gram-Schmidt orthonor-
D, , given by a formul&? malization procedure to separate the vectors into orthogonal

components. The Lyapunov exponehtsare then calculated

(positive, zero, or negatiyeaccording to the control param-
eter a. Notice a little difference betweem=0.01 and

a=0.0102 gives a drastic difference in values of the
Lyapunov exponents from negative to positive.

1 X by the same formuldA3) as for\,, with d{” being the
D =K+ mzl \i, (A4)  orthonormalized perturbation growth p&™]|| duringjth or-
K= thonormalization period.
whereK is the largest integer such thﬁf=l)\i>0 (all \; are Figure 12 shows the temporal convergence of the first

arranged in decreasing sequendgince different Lyapunov three Lyapunov exponents for the particular chaotic solution
exponents characterize the stretching and contracting @a=0.09. The estimated from those values Lyapunov di-
phase space in different directions, the Lyapunov dimensiomension D, ~2.208 indicates low-dimensional chaos for
is then the number of vectors in phase space needed to dehaotic dynamics in our SL. By further increasing the length
scribe an infinitesimal volume that remains constant on thef the SLN the characteristic Lyapunov dimension does not
averageD, is related to the information dimension of the grow. Since we did not see a transition from low- to high-
systemD; (Ref. 39 and can be used to characterize thedimensional chaos, it could be concluded that our system is
fractal dimension of the associated chaotic attractor. not extensively chaotic. We have not observed hyperchaos
To calculate the firsh exponents\q, ... \, we define either, where the second Lyapunov exponent is positive.
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