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Self-sustained time-dependent current oscillations under dc voltage bias have been observed in recent ex-
periments onn-doped semiconductor superlattices with sequential resonant tunneling. The current oscillations
are caused by the motion and recycling of the domain wall separating low- and high-electric-field regions of
the superlattice, as the analysis of a discrete drift model shows and experimental evidence supports. Numerical
simulation shows that different nonlinear dynamical regimes of the domain wall appear when an external
microwave signal is superimposed on the dc bias and its driving frequency and driving amplitude vary. On the
frequency-amplitude parameter plane, there are regions of entrainment and quasiperiodicity forming Arnol’d
tongues. Chaos is demonstrated to appear at the boundaries of the tongues and in the regions where they
overlap. Coexistence of up to four electric-field domains randomly nucleated in space is detected under ac
1dc driving.

I. INTRODUCTION

Negative differential conductivity~NDC! in weakly
coupled narrow-miniband semiconductor superlattices~SL’s!
results in the formation of electric-field domains, which have
been studied both experimentally1 and theoretically.2–6 The
domains are stable if the doping or photoexcitation are large
enough to form a stationary charge accumulation layer~the
domain wall!. The domain wall moves from well to well as
the bias increases and gives rise to the jumps~discontinui-
ties! of the current in the stationaryI -V characteristics.

When the carrier density is not sufficiently large to form
stable domains, but it is large enough for the uniform field
distribution to be unstable, periodic time-dependent oscilla-
tions of the current under fixed dc bias are possible. These
oscillations have been observed in recent experiments on
GaAs/AlAs SL’s; they are damped for undoped photoexcited
samples7 and undamped for doped SL’s without
photoexcitation.8,9 According to a discrete drift model,5 the
current oscillations are caused by a periodic motion of the
domain wall over a few periods of the SL,10 and this is
confirmed by photoluminescence measurements.8,9 Note that
damped oscillations~with frequencies up to 20 GHz! have
been observed experimentally by Le Personet al.11 in a pho-
toexcited wide-miniband SL with strong interwell coupling.
These oscillations have been interpreted in terms of dipole
charge waves. We do not consider the miniband transport
regime in the present paper.

This situation is reminiscent of that found in bulk GaAs
with NDC caused by the intervalley transfer of electrons,
where the well-known Gunn oscillations mediated by high-
field domain dynamics may appear under dc voltage bias.12,13

There are several important differences between the Gunn
oscillations and those observed in the SL’s. A significant dif-
ference is that the space charge wave is adipole in the case
of the Gunn oscillations~a domain of high electric field with
two charge layers: accumulation and depletion! and a charge
monopole in the SL current oscillations~a wave ofone
charge accumulation layer, or the domain wall, connecting
two electric-field domains!. Another difference is that the

Gunn waves are generated close to the injecting contact
whereas the domain walls appear clearly inside the SL.10

Notice finally that the different transport mechanisms deter-
mining the velocity of waves and the characteristic fre-
quency of the oscillations give rise to different limitations in
the performance of possible devices. While for the Gunn
effect the oscillation frequency is limited by a parameter of
the material~the intervalley scattering time!, for the SL’s it is
determined by the tunneling time. Hence, the oscillation fre-
quency can be varied by tuning the growing parameters~bar-
rier widths, etc.! and/or the dc bias. The bias regions between
different resonance peaks give rise to quite different frequen-
cies, ranging between hundreds of KHz and several GHz
over wide temperature ranges including room temperature.9

In our previous paper14 we predicted the appearance of
chaos by applying an additional small ac signal to the dc
voltage bias in the regime where the SL exhibits self-
sustained oscillations. In particular, when the ratio between
the natural and the driving frequencies is fixed at the golden
mean, chaotic current oscillations and strange attractors with
a multifractal measure have been obtained.14

Here we present a detailed numerical study of nonlinear
current oscillations in SL’s over the whole driving
frequency–driving amplitude parameter plane. Based upon a
relatively simple~but otherwise self-consistent! discrete drift
model,5 the shape of frequency-locked regions~Arnol’d
tongues!, chaotic and quasiperiodic regions is determined,
thereby providing a global bifurcation picture. The largest
Lyapunov exponents are calculated to identify chaotic solu-
tions and to characterize their fractal dimension. The critical
line where the Arnol’d tongues begin to overlap and chaos
appears is found at very low values of the amplitude of the
driving force, unlike other periodically driven semiconductor
systems which also display complex nonlinear interaction
between internally generated oscillations and an external ac
signal @e.g., GaAs Gunn diodes,15 p-Ge ~Refs. 16 and 17!#.

An additional point worth noticing is that the physical
mechanism of the NDC in the SL system~responsible for
chaos! is based on a pure quantum-mechanical effect~reso-
nant tunneling! which is absent in the classical limit. Thus
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we may have a case of chaos without classical counterpart18

which might be easier to detect experimentally than that pro-
posed by Jona-Lasinioet al.18 In both cases the self-
consistent mean-field potential created by the charges is in-
strumental in inducing chaos, which is also the case when a
quantum system is coupled to purely classical subsystems
having a widely different time scale.19 All these phenomena
are different from the so-called quantum chaos,20 i.e., the
behavior of quantum systems whose classical counterpart is
chaotic.

Recently, chaotic dynamics in semiconductor superlattices
with miniband transport has also been considered within a
classical balance-equation approach.21 In this case the cha-
otic dynamics is due to the negative effective mass of the
electrons in the minibands for the regime of the Bloch oscil-
lations under an external ac electric field~field self-
consistency is also taken into account!. In this completely
different physical situation, the field was assumed to be spa-
tially homogeneous21 which precludes consideration of the
spatial structure of chaos, in contrast with our work.14

The paper is organized as follows. In Sec. II we describe
the physical model and its governing dynamical equations
for a dark doped SL. In Sec. III we recall the main qualitative
features of the self-sustained oscillations in a dc-voltage bi-
ased SL. The general behavior of the self-oscillating SL sub-
jected to external ac and dc biases is discussed in Sec. IV.
Frequency-locked solutions~Arnol’d tongues! are analyzed
and compared with those for the Gunn diode. The chaotic
dynamics at the golden mean ratio between the natural and
the driving frequencies is described in Sec. V. Different tech-
niques to analyze chaotic behavior~Poincare´ mapping, bifur-
cation diagram, Lyapunov exponents, phase plots, Fourier
spectra, first return map, etc.! are discussed. Section VI
draws the main conclusions of this work. In the Appendix we
present the algorithm to calculate the Lyapunov exponents
for our system and discuss the Lyapunov dimension calcu-
lated by the Kaplan-Yorke formula.

II. PHYSICAL MODEL

We consider a set of weakly interacting quantum wells
~QW’s! under high voltage biases, so that the electron states
are localized in the wells and the tunneling process is se-
quential. The relaxation from excited levels to the ground
state within each QW (;1 ps! is considered to be much
faster than the tunneling process between adjacent QW’s
(;1 ns!. Therefore, a single QW reaches a local equilibrium
between two consecutive tunneling processes, and the state
of the system can be characterized by values of the electric
field E i(t), and the electron densityni(t), with i51, . . . ,N
denoting the QW index.5

The one-dimensional equations governing the dynamics
of the doped SL are the Poisson equation averaged over one
SL period l , Ampère’s equation for the balance of current
density, and the voltage bias condition14
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Heree, e, andND are the average permittivity, the electron
charge, and the average doping density, respectively. The to-
tal current densityJ(t) is the sum of the displacement cur-
rent and the electron flux due to sequential resonant tunnel-
ing eniv(E i). The effective electron velocityv(E)
~proportional to the tunneling probability! exhibits maxima
at the resonant fields for which the adjacent levels of neigh-
boring QW’s are aligned22 ~Fig. 1!. Notice that the mecha-
nism of sequential resonant tunneling is responsible for the
NDC region in the velocity curve which in turn gives rise to
the current instabilities in the SL. The voltageV(t) in ~3! is
the sum of a dc voltageVb and an ac microwave signal of
relative amplitude A and driving frequency f d :
V(t)5Vb$11A sin(2pfdt)%.

The boundary condition at the first contact
e(E12E0)/(el)5n12ND5d allows for a small (d!ND)
negative charge accumulation in the first well. The physical
origin of d is that then-doped SL is typically sandwiched
between twon-doped layers with an excess of electrons,
thereby forming an1-n-n1 diode.8 Then some charge will
be transferred from the contact to the first QW creating a
small dipole field that will cancel the electron flow caused by
the different concentration of electrons at each side of the
first barrier.

Note that the rate equation for the electron density for our
model can be derived by differentiating~1! and using~2!:

]ni
]t

1
1

l
@niv~E i !2ni21v~E i21!#50. ~4!

This is the equation of charge conservation under sequential
resonant tunneling between neighboring QW’s.

FIG. 1. Dimensionless effective velocity~proportional to the
tunneling probability! as a function of the electric field.v(E) is
normalized by its value at the resonance maximum. The point indi-
cates the electric-field value corresponding to the dc biasV 51.2
used in the calculations.
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Finally, the current densityJ(t) in the external circuit
under voltage bias condition can be obtained from the time
derivative of~3! and Ampère’s law ~2! in the form

J~ t !5cV
dV

dt
1

e

N(
j51

N

njv~E j !, ~5!

where cV5e/( lN) is the intrinsic SL capacitance per unit
cross-sectional area.

To study our equations, it is convenient to render them
dimensionless, using characteristic physical quantities. As
the unit of the electric fieldE5E /E122 , we adopt
E1225D/(el), with D being the energy separation between
the first and the second electron subbands@the maximum of
v(E)#. This yields the characteristic charge density
n05eE122 /(el) used to normalize the dopingn5ND /n0
and the electron density. The dimensionless velocityv(E) is
obtained normalizingv(E) by its value atE5E122 , where
it has a local maximum due to resonance in tunneling~see
Fig. 1!. The other dimensionless quantities are defined as
follows: the time t5t/t tun, where t tun5 l /v(E122) is the
characteristic tunneling time; the dc biasV 5Vb /E122lN;
the ac bias amplitudea5AV ; the driving frequency
v52p f dt tun.

Now substituting~1! and~5! into ~2!, we obtain a system
of N equations for the electric-field profiles,

dEi
dt

5
1

N(
j51

N

v~Ej !@Ej2Ej211n#

2v~Ei !@Ei2Ei211n#1av cos~vt!, ~6!

with the boundary conditionE05E12nd and initial condi-
tionsEi(0)5V ,; i .

As an example, we consider a GaAs/AlAs SL atT55 K
with N540, l513 nm,ND'1.1531017 cm23, D'135 meV,
for which undamped time-dependent oscillations of the cur-
rent were first observed.8 For these values one gets
E122'105 V/cm, n'0.1, andt tun' 2.7 ns, and we take
V 51.2 ~corresponding toVb'7.8 V!.

The system~6! is solved numerically by the fourth-order
Runge-Kutta method using 4000 time steps per one oscilla-
tion period. We start with a uniform initial field profile and
solve the equations for dc bias. After a short transient, the
self-sustained oscillations set in and we switch on the ac part
of the bias. Every time step we calculate the electric-field
distribution over SLEi(t) and the total current densityJ(t)
@from Eq.~5!#. The main features of our numerical results are
as follows.

III. SELF-SUSTAINED OSCILLATIONS UNDER dc BIAS

For pure dc case (a50! the SL exhibits undamped time-
periodic current oscillations when the doping density is be-
tween some critical valuesn* and n** . In Fig. 2 the tem-
poral behavior of the current starting fromt50 is shown for
different doping densities. Belown*'0.066 the electric-
field distribution over the SL remains almost uniform, so that
the current exhibits no oscillations. Aboven** '0.175, after
some transient period of the order oft tunN, stable stationary
electric-field domains are formed. This results in an increase
of the current and its saturation with time.

For in-between valuesn*,n,n** and appropriate dc
voltage bias, we find undamped oscillations with frequency
slightly dependent on the doping. In Fig. 3 the frequency of
the natural oscillations versus doping concentration is shown
for different boundary parametersd. One can estimate the
natural frequency to be approximately equal to the inverse
total tunneling time 1/(t tunN), which gives, after substitution
of our value fort tun'2.7 ns andN540, a frequency about 10
MHz, in close agreement with the value observed in
experiment.8 This estimation improves asN increases. All
the results presented below were obtained for the value of
d51023.

The spatial structure of the oscillations can be seen from

FIG. 2. Temporal evolution of the currentJ ~under dc bias! for
different values of the doping concentrationn indicated at the right
margin with increasing order from the bottom to the top. The
boundary conditiond51023.

FIG. 3. Frequency of the natural oscillationsf 0 under dc bias
~scaled on the total traveling time over the whole SLt tunN) vs
doping concentrationn for N540 and for different boundary pa-
rametersd. Out of the regions marked by dashed vertical lines
oscillations disappear.
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the electron density and the electric-field distributions of Fig.
4. Starting from uniform distribution at timet50, when the
dc bias is turned on, after a transient periodt'3, a charge
accumulation wave~monopole! is created and then it moves
toward the correspondent contact. Depending on the applied
voltage, it may or may not reach the end of the SL before it
disappears and a new monopole is formed starting a new
period of the oscillation. Simulations clearly show monopole
recycling with two monopoles coexisting during some part
of one current oscillation period@see Fig. 4~b!#. The period
of the oscillation is mainly determined by the total traveling
time of the monopole across the SLt tunN, as was shown in
Fig. 3.

The total current densityJ(t) determines the average state
of the system@see Eq.~5!#; nevertheless the information on
the spatial dynamics is presented in the time dependences of
the current. In the curves of Fig. 2 small current spikes can
be seen during the initial stage of the domain formation,
which correspond to well-to-well jumping of the charge ac-
cumulation layer. The similar, but less clear, fine structure
can be resolved in the periodic part of the current oscillations
~become more pronounced after taking the derivative
dJ/dt). From the number of spikes per period (;6 for our
curves! it is possible to estimate the number of QW’s the
monopole moves across.

The existence of the threshold value for the dopingn* ,
above which current instabilities take place, can be under-
stood from the charge conservation law~4! rewritten in the
continuum limit as

]n

]t
1

]

]x
@nv~E!#50. ~7!

Taking spatial derivative and using the Poisson law for
]E/]x one gets

]n

]t
1v

]n

]x
1
e

e
nvE8 ~n2ND!50, ~8!

where the sign of the velocity derivative over the fieldvE8 is
crucial. In the NDC region wherevE8,0 the last term in~8!
gives rise to an exponential growth of the charge with the
characteristic timete;e/(eNDuvE8 u). For vE8.0 the same
term gives charge relaxation to quasineutralityn'ND . Tak-
ing into account the characteristic transit timet t; lN/v from
the convection term of~8! we can get significant growth of
charge ift t.te , that isNDN.ev/(eluvE8 u). This condition
is similar to the criticalnL product for the Gunn effect.12 The
treatment above is, of course, too rough, but it clarifies the
influence of different parameters on the instability. Rewritten
in our dimensionless units as

nN.
v

uvE8 u
, ~9!

this inequality implies,~i! for fixed number of the SL periods
N there should exist the critical value for the dopingn*
above which instabilities of the current may occur, and~ii !
for any fixed dopingn one can bring the system to instability
by increasing the length of the SLN. Precise bounds for
n* andn** may be found elsewhere.23

Notice the importance of the NDC region in the velocity
curvev(E) and the positive sign of]E/]x at the boundary,
which are both necessary for monopole recycling. Besides
the oscillations of the domain wall due to the traveling
charge wave, the field in the low- and high-field domains
also oscillates@see Fig. 4~a!#. The field behind the monopole
is uniform in space, up to a small correction of the order of
d near the boundary. When the current reaches its maximum
then the field behind the monopole takes values on the NDC
region, and those corrections increase exponentially in time,
nucleating a new monopole.24

The condition~9! in the strong limitnN@v/uvE8 u implies a
large separation between the characteristic timest t and te .
This can be exploited to perform an asymptotic analysis of
the current oscillations, which gives a reasonable approxima-
tion to the numerical simulations for long SL’s with
N.100.24A key ingredient of the analysis is that the domain
walls become shock waves~i.e., discontinuities moving to-
wards the right and separating quasineutral regions of low
and high electric field!, whose velocity obeys an equal-area
rule.10

IV. FREQUENCY-LOCKING UNDER dc AND ac BIAS

Self-oscillating systems that are forced by an external os-
cillating signal represent an important class of coupled oscil-
lators. An inherent feature of periodically forced nonlinear
system is that the actual oscillation frequency depends on the
amplitude of the forcing. Therefore both the frequencyf d
and the amplitude of the drivinga can be used as control

FIG. 4. Spatiotemporal distributions of electric field~a! and
electron density~b! ~both in dimensionless units explained in the
text! for self-sustained oscillations under dc bias. Quantum well
index is denoted byi . Time is in units oft tunN.
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parameters to study nonlinear dynamics of our system.
For relatively low amplitudes we could expect two pos-

sible effects of the forcing according to the ratio between the
driving frequencyf d and the natural frequencyf 0 . If this
ratio is a rational number the regime of entrainment or mode-
locking will be observed, if it is irrational the regime of
quasiperiodicity will occur because the frequencies are
incommensurate.25

The statement above is confirmed by our numerical cal-
culations. The phase diagram of Fig. 5 shows the distribution
of frequency-locked solutions~Arnol’d tongues! over the
frequency-amplitude parameter plane. Within each tongue,
the current is a periodic function of time whose actual fre-
quencyf s does not coincide withf 0 nor with f d in general.
Instead it is usually related to one of their harmonics.
Frequency-locking can be considered as the trend of the
driven system to keep its frequency close to that of the un-
forced oscillation,f 0 , by taking the value of the harmonic of
f d which is closest tof 0 . The periods of the actual oscilla-
tions are shown by numbers in Fig. 5. Notice that the
frequency-locked solutions are interspersed with regions of
quasiperiodicity where both frequenciesf 0 and f d coexist. At
a50 the Arnol’d tongues arise in intervals around rational
ratios of f d / f 0 , and heref s5 f 0 . As a.0 increases, the
tongues open up and eventually intersect. Then more com-
plicated dynamical behaviors~e.g., chaos! usually occur as
the solution jumps between the various overlapping modes in
an erratic way.

Frequency locking is a typical nonlinear phenomenon that
can be found in different periodically driven systems.25 In
our model the Arnol’d tongues begin to overlap already at
very low driving amplitudes (a;0.01). This is quite differ-
ent of the case of the Gunn diode studied by Mosekilde
et al.15 In addition, we observe ‘‘the red shift’’ in the depen-
dence of the frequencyf s with the amplitudea, which mani-

fests itself in the bending of the locked regions. The last
phenomenon is also absent in the bulk Gunn effect. We have
a qualitative argument to understand why the overlapping of
Arnol’d tongues~and therefore the critical line for chaos!
occurs at relatively low ac voltages. Notice that our system
has important voltage and time scales due to its discreteness:
recall that there are spikes superimposed to the oscillation of
the current tracking the jumps of the domain wall from one
QW to the next one. It is plausible that overlapping of
Arnol’d tongues occurs when the ac voltage amplitude is
equal to the time-averaged voltage drop per period,Vb /N,
needed to balance the typical discrete scale of voltage. The
latter is equal to the energy separation between subbands
divided by the charge of the electron,E122l5D/e.26–28Un-
like the ac-driven bulk semiconductors, one could thus ex-
pect overlapping of resonances for a SL driven with an ac
amplitudeVbA;D/e;Vb /N, which is much smaller than
the dc biasVb . This value seems to give a reasonable esti-
mation of the lowest critical line for chaos as shown in Fig.
5.

Let us now further describe the Arnol’d tongue diagram
of Fig. 5. Between the main tongues correspondent ton:1
locking, smallern:m intervals are found, representing more
complex entrainments. For instance, between the 3:1 and 4:1
tongues one can see 10:3, 7:2, and 11:3 ratios, between the
4:1 and 5:1 tongues there are 13:3, 9:2, and 14:3 ratios, and
so on. Scanning over both parametersa and f d to analyze the
system of 40 equations was very time-consuming, because
we calculated the largest Lyapunov exponent~see below! to
distinguish between quasiperiodic and chaotic solutions.
Thus we restricted ourselves to scanning with a frequency
stepD f d50.05f 0 , which allowed us to detect the tongues
n:m with at mostm53. Higher-order locking and much
smaller new chaotic regions at the boundaries of the tongues
are expected to appear if a smaller stepD f d is used. An
additional important result in the mode-locking diagram of
Fig. 5 is that the richest structure of different mode mixing
and chaos is concentrated between the 2:1 and 3:1 tongues.
In the next section we consider in more detail the results
obtained when the driving frequency is fixed within that re-
gion, namely, at the inverse golden mean ratio.

V. CHAOTIC DYNAMICS AT THE GOLDEN MEAN
RATIO

A. Bifurcation diagram

Here we shall consider the driving amplitudea as the
control parameter, fix the driving frequency asf d5Gf0
@whereG5(A511)/2'1.618 03 . . . is the inverse golden
mean ratio29#, and calculate the currentJ as a function of
time.

To detect and visualize the chaotic regions in parameter
space, we need to define a Poincare´ mapping. The current is
a good measure of the amplitude~norm! of the solutions,
which is illustrated by the use of current versus voltage char-
acteristics as bifurcation diagrams.13 Let Td51/f d be the
driving period. We adopt as our Poincare´ mapping~for each
value ofa) the current at timestm5mTd , m50,1, . . . ~af-
ter waiting enough time for the transients to have decayed!.14

The result is the bifurcation diagram in Fig. 6~a! which is
constructed as follows. For eacha we compute

FIG. 5. Phase diagram showing the distribution of frequency-
locked solutions over the driving frequency-driving amplitude pa-
rameter plane. Driving frequencyf d is in units of the natural oscil-
lation frequency f 0'0.0235(1/t tun). Grey color corresponds to
quasiperiodicity~QP!, lighter color with different shades corre-
sponds to periodical solutions~number of periods is shown by num-
bers!, chaos is marked by black.G is the inverse golden mean.
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Jm5J(mTd) until the solution becomes periodic within a
1025 accuracy. At that time, we stop the simulation and de-
pict all theJm corresponding to one period of the solution. If
the solution is not periodic, we eliminate the first 500 tran-
sient pointsJm and depict the next 200 points. Thus, aperi-
odic solutions can be very easily distinguished from periodic
ones in Fig. 6~a! by the large number of points~periods!
corresponding to each value ofa. Notice that period-2 orbits
span the widest parameter region froma'0.01 up to
a'0.085. Period-doubling cascades can be seen, which
points out the existence of chaos near their accumulation
points.

The next important consideration is to discriminate cha-
otic from quasiperiodic regions, both distinguished by hav-
ing a large number of points in the bifurcation diagram. This
can be achieved by computing the largest Lyapunov expo-
nent l1 . For chaotic regionsl1.0, which indicates expo-
nential divergence of nearby trajectories. For periodic solu-
tions of our nonautonomous systeml1,0, while for
quasiperiodic solutionsl150.

In Fig. 6~b! we present the first and the second Lyapunov
exponents calculated by the algorithm explained in the Ap-
pendix. We see that the system starts being quasiperiodic
(l150) at a50, as it should be for an irrational frequency
ratio. Then ata'0.005 it locks to a period-5 orbit (l1,0)
terminated by some chaotic windows ata'0.01 (l1.0).
Notice the first appearance of chaos at relatively small driv-
ing amplitude (;1% ofVb). After a.0.085 several chaotic
windows can be seen, and then the solution becomes again
quasiperiodic~as it was ata50) before locking to the driv-
ing frequencyf d at a'0.145.

More insight into the transition between chaotic and non-
chaotic regions of the bifurcation diagram can be obtained by
sweeping up~or sweeping down! through it, using the
electric-field profile stored at the end of each simulation~for
a5a0) as an initial condition for the next simulation~for
a5a01Da). This approach is close to the process of experi-
mental sweeping-up measurements. By this technique we in-
vestigated some critical points in the bifurcation diagram and
found different pictures when sweep-up and sweep-down
runs were made, thus demonstrating hysteresis. For example,
such hysteretic behavior we obtained for the transition point
between period-2 orbit and chaos ata'0.085, which points
out the existence of a subcritical bifurcation.

B. Current-voltage phase plots and Fourier spectra

Figure 7 showsI -V phase plots and the corresponding
Fourier spectra~FS! for some specific values ofa. These
phase plots could be measured experimentally by depicting
the current in the external circuit as a function of the instan-
taneous value of the ac1dc voltage bias. We observe differ-
ent types of solutions as shown in Fig. 7. Periodic orbits
appear as simple closed loops@Figs. 7~c!,~f!#; they have few
frequency peaks in the FS, corresponding to the driving fre-
quency f d and its harmonics. The quasiperiodic orbits look
more complicated@Figs. 7~a!,~e!#, but their FS are still
simple. For the case of Fig. 7~e! ~strong driving! the main
peaks appear atmfd (m51,2, . . . ).Additional small double
peaks around (m2 1

2) f d ~with m51,2, . . . ; theseparation be-
tween the peaks of each pair is always the same for all
double peaks! are related to one of the harmonics of the
natural frequencyf 0 , thereby providing coexistence of the
two frequenciesf 0 and f d . For the quasiperiodic case of Fig.
7~a! ~weak driving! the main peaks are atmf0 with the same
type of the double peaks, which are already related tof d .
Thus the natural and driving frequencies exchange their roles
depending on the strength of the forcing. Finally, for the
chaotic solutions@Figs. 7~b!,~d!# the FS become very irregu-
lar with a large number of peaks, which could be considered
as an additional method to detect chaos. The FS for chaotic
solutions should not be necessarily continuous. In our system
the sharp frequency components are also present in the FS as
in the case of the familiar Ro¨ssler attractor.30

The Poincare´ mapping used to obtain the bifurcation dia-
gram of Fig. 6~a! can be understood from Fig. 7 as the suc-
cessive crossing of the orbit through the lineV 51.2, where
ac part of the voltage crosses zero~at upper values of the
current corresponding to the increasing voltages!. For aperi-
odic solutions those crossing points are distributed over
some interval~or intervals! of the current.

C. First return map

One of the main quantities observable in experiment is the
current density in the external circuitJ(t). By sampling the
currentJ(t) each driving periodTd , one obtains the data set
Jm . This set can be analyzed by means of the first return
map plottingJm11 as a function ofJm . After some transient
time the resultant attractor for ann-period solution will be
just then separate points~0-dimensional object!, while for
an aperiodic~chaotic or quasiperiodic! solution it will be
represented by a higher dimensional object.

FIG. 6. Bifurcation diagram of the current obtained by means of
Poincare´ mapping each driving-force periodTd ~a! and the first two
Lyapunov exponents~b!, both versus the driving-force amplitude
a for the golden-mean ratio between natural and driving frequen-
cies. Windows of chaotic solutions are marked by arrows.
Lyapunov exponents are scaled on the driving periodTd .
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A closed smooth loop with regular distribution of the
points indicates quasiperiodicity@Fig. 8~a!#. The chaotic at-
tractor is a layered~sometimes folding! structure with vary-
ing density of the points on different regions@Fig. 8~b!#, and
it can be characterized by the multifractal dimensionDq .

31

Sometimes the chaotic attractor contains several separate
branches almost continuously filled as in Fig. 8~c!. In this

particular case the attractor has five branches, indicating that
the solution is close to period-5 locking for this value of the
control parametera. The chaotic solution has the same sym-
metry as the frequency-locked solution which lies nearby.

FIG. 7. Phase current-voltage plots~left! and the corresponding
Fourier spectra of the current~right! for different driving amplitudes
a: 0.005~a!; 0.0102~b!; 0.05 ~c!; 0.09 ~d!; 0.144~e!; 0.16 ~f!.

FIG. 8. First return map for current densityJm at different driv-
ing amplitudesa: 0.14~a!; 0.09~b!; 0.101~c!, indicating quasiperi-
odicity ~a! and chaos~b!,~c!.
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D. Spatiotemporal aspects of chaos

So far we have only characterized the temporal aspects of
our chaotic current oscillations leaving aside the spatial de-
pendence of electric field and charge density. This depen-
dence is a very characteristic feature of our system because
the oscillations of the current are due to the dynamics of
nonlinear traveling charge waves. Thus we analyze here what
are the field and charge density profiles in the dynamical
regimes of interest described previously.

Under pure dc voltage bias, the SL exhibits time-periodic
current oscillations accompanied by a periodical recycling of
the monopole charge wave~domain wall! in space as de-
scribed in Sec. III. When an ac signal is superimposed on the
dc voltage bias, the current can become chaotic for particular
values of the control parameters. For that case the motion of
the charge waves becomes chaotic too, as shown in Fig. 9~a!.
The ac part of the voltage causes the electric field in different
parts of the SL to take on values in the NDC region at dif-
ferent instants of time. This results in irregular amplification
or damping of the charge disturbance at different QW’s.

There are two significant features for a SL under ac and
dc voltage bias as compared to the pure dc case. The first
distinctive feature is that the monopoles may be generated
closer to the beginning of the SL, thereby leaving more room
to their motion towards the end of the SL; see Fig. 9~a!. Then
the peak-to-valley ratio in the current oscillations increases
as it can be appreciated in Fig. 7. Amplification of the ac
signal is not linked to chaos since it can also be observed in
cases where there is frequency locking and a uniform electric
field profile inside the SL.32 In fact, the amplification is most

pronounced at the instability threshold for the dopingn* ,
where the current oscillations appear. Then the electric field
is almost uniform all the time.

The second feature is the qualitative change of the travel-
ing wave picture for longer SL. For short SL (N,80), at
most two domain walls~separating three domains! can coex-
ist at a given time@see Fig. 9~a!#, whereas up to three coex-
isting domain walls~separating four domains! can be ob-
served for long SL’s during certain short time intervals@for
the case of Fig. 9~b! at t'41.1;46.5#. In Figs. 10~a!–10~c!
we show the presence of one, two, or three electric charge
monopoles at different times for a 200-well SL under ac and
dc voltage bias. It is important to note that in case one or two
monopoles coexist, as in Figs. 10~a!,~b!, the electric field on
the flat regions I, II, and III corresponds to the zeros of the
equationenv(E)5J ~thus the field follows adiabatically the
instantaneous value of the current density!. Instead for the
ac-driven case of Fig. 10~c!, very short transients occur dur-
ing which three monopoles~thus four domains! coexist. Of
these domains, I and IV approximately correspond to zeros
of env(E)2J on the first and third branches ofv(E),
whereas domain II approximately corresponds to the zero of
env(E)2J on the NDC branch ofv(E). Domain III does
not correspond to any zero ofenv(E)2J. This situation
lasts for a short time only: domains II and III coalesce onto
the NDC zero ofenv(E)2J. During the transitory situation,
the monopole separating domains I and II keeps moving
while the other two monopoles~separating domains II and III
and domains III and IV! remain approximately stationary.

The width of a domain wall ('6 wells for our particular
set of parameters! is determined by the velocity profile and it
is approximately independent of the SL length.5 Then the
monopole has more room to move on a longer SL~under

FIG. 9. Chaotic propagation of the charge accumulation waves
in a 40-period SL fora50.09 ~a! and in a 200-period SL for
a50.12 ~b!. Electron densityn is in dimensionless units explained
in the text. Time is in units oft tunN.

FIG. 10. Nonuniform distribution of electric-field domains for a
200-period SL:~a! a50 at the time momentt53.20 ~one mono-
pole!; ~b! a50 at t54.35 ~two monopoles!; ~c! a50.112 at
t518.05 ~three monopoles!. Electron densityn and electric field
E ~both in dimensionless units! are indicated by the full and dotted
lines, respectively.
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pure dc bias, monopole recycling takes place on about 12
periods of a 40-well SL as compared to about 90 periods of
a 200-well SL!. The disturbance caused by the ac bias on
monopole motion is thus much larger for a longer SL, which
results in quite different spatiotemporal structures under ac
and dc bias@compare the charge densities of Figs. 9~a! and
9~b!#. For a short SL the chaotic behavior can be associated
with a chaotic domain wall dynamics that resembles the dc
voltage bias case: most of the time there is only one domain
wall which moves to the end of the SL and disappears, and
about that time another monopole is generated, sometimes
quite close to the beginning of the SL@see Fig. 9~a!#. On the
other hand, for a long SL the graph of the electron density is
disjoint: In addition to long-living waves traveling over al-
most the whole SL, there are short-living waves existing
only at the beginning of the SL. The two types of waves are
distributed chaotically in space.

We have not found more than three monopoles by increas-
ing further the SL lengthN. This may be due to the fact that
there is not enough charge in the SL~determined by doping!
to provide more than three jumps in the electric field. It
might be possible to observe more complicated field struc-
tures in parameter regions where the current instabilities ex-
ist at much higher electron densities.

The spatially chaotic nature of the solutions can be illus-
trated by picking two far-away QW’s and depicting the si-
multaneous values of the electric field at them after each
period of the driving forceTd . The resultant attractors will
be very similar to those obtained for the first return map
Jm112Jm described in Sec. V C~cf. Fig. 2 in Ref. 14 with
Fig. 8 of the present paper!.

VI. CONCLUSIONS

Dynamic properties of the high-field transport in weakly
coupled superlattices under ac and dc biases have been stud-
ied numerically within the simple self-consistent discrete
drift model. A nonlinear interaction between an internally
generated periodical motion of the accumulated charge wave
and an external microwave signal gives rise to a frequency-
locking, quasiperiodicity or chaos depending on the external
driving parameters. The calculated phase diagram of the
frequency-locked solutions~Arnol’d tongues! shows the fol-
lowing features:~i! the first overlapping of tongues giving
transition to chaos occurs under very weak driving
(a;0.01); ~ii ! there is a bending of tongues under strong
driving ~red shift in frequency! which we associate with the
delay in natural oscillation frequency, and that is a conse-
quence of our spatially extended system.

Besides the chaotic dynamics, the microwave forcing was
found to give an amplification of the self-sustained current
oscillations, which is most pronounced at the instability
threshold for the dopingn* , where the oscillations appear.

It would be of interest to verify our predictions by making
measurements in currently availablen-doped GaAs/AlAs
samples formingn1-n-n1 diodes. These samples exhibit
self-sustained oscillations under pure dc voltage bias,8 and
are thus suitable candidates for observing chaos when an
appropriate microwave signal is superimposed on the dc
voltage bias. More highly doped samples present multistable
stationary solution branches~corresponding to coexisting

static electric-field domains1! in their current-voltage charac-
teristics under dc voltage bias. Studying the response of
these samples to ac and dc voltage bias would also be of
interest. Preliminary calculations show rich spatiotemporal
behavior including chaos.
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APPENDIX: LYAPUNOV EXPONENTS

Consider theN-dimensional phase space for the electric-
field vectorEi . The evolution of its trajectoryEi(t) is de-
scribed by the set of nonlinear equations~6!. Since we want
to know how trajectories infinitesimally close to the real tra-
jectory of our system diverge from it, we can use a linearized
version of the equations~6!:

dêi
dt

5
1

N(
j51

N

@v8~Ej
t!nj

têj1v~Ej
t!~ êj2êj21!#

2v8~Ei
t!ni

têi2v~Ei
t!~ êi2êi21!. ~A1!

Here êi , with i51, . . . ,N, is the vector of the disturbances
of the electric field. The velocityv(Ei

t), its derivative
v8(Ei

t), and the electron densityni
t5Ei

t2Ei21
t 1n are cal-

culated on the fiducial trajectoryEi(t). The boundary con-
dition for the system~A1! is ê05ê1 .

To calculate the largest Lyapunov exponentl1 is very
easy. We take an arbitrary initial vectorêi(0). Then both the
nonlinear system~6! and the linearized system~A1! are ad-
vanced forward in time simultaneously.

Denoting byi êi(t)i the Euclidean norm of the vectorêi
at timet, the largest Lyapunov exponent is given by

l15 lim
t→`

1

t
ln

i êi~t!i

i êi~0!i
. ~A2!

The linear system without nonlinearities will give an ex-
ponential growth~relaxation! of the solution for a positive
~negative! l1 . Therefore, the perturbations will need to be
renormalized from time to time to prevent overflow~under-
flow!, because they are only represented with a finite floating
point numbers in the computer. To avoid this we use the
algorithm of Benettinet al.33 and renormalize our perturba-
tion vector after each half-periodTd/2 of the ac voltage bias.
Thenl1 will be given by

l15 lim
k→`

2

kTd
(
j51

k

lnidj i , ~A3!

where dj is the vector perturbation growth during thej th
renormalization period. Figure 11 shows the results for
l1(tk) obtained after computing ofk renormalization inter-
vals. In the limit k→` l1 converges to its limiting value
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~positive, zero, or negative! according to the control param-
eter a. Notice a little difference betweena50.01 and
a50.0102 gives a drastic difference in values of the
Lyapunov exponents from negative to positive.

To look at our chaotic solutions from the point of view of
their dimensionality we have to compute the next Lyapunov
numbers. Of course, we do not need all the Lyapunov spec-
trum of 40 numbers to characterize our system. Kaplan and
Yorke defined a quantity called the Lyapunov dimension
DL , given by a formula,34

DL5K1
1

ulK11u
(
i51

K

l i , ~A4!

whereK is the largest integer such that( i51
K l i>0 ~all l i are

arranged in decreasing sequence!. Since different Lyapunov
exponents characterize the stretching and contracting of
phase space in different directions, the Lyapunov dimension
is then the number of vectors in phase space needed to de-
scribe an infinitesimal volume that remains constant on the
average.DL is related to the information dimension of the
systemD1 ~Ref. 34! and can be used to characterize the
fractal dimension of the associated chaotic attractor.

To calculate the firstn exponentsl1 , . . . ,ln we define

n initial perturbation vectorsêi
(n)(0), which are orthonormal,

so that they formn-dimensional sphere. As the system is
integrated forward in time, the sphere of trajectories will
become an ellipsoid since different directions in phase space
will expand or contract at different rates. The Lyapunov ex-
ponentsl i are determined by the rate of expansion or con-
traction of the principal axes of the ellipsoid averaged over
the entire attractor. One additional problem arises here. Since
all the vectorsêi

(n)(t) tend to line up in the direction of the
greatest growth we have to use the Gram-Schmidt orthonor-
malization procedure to separate the vectors into orthogonal
components. The Lyapunov exponentsl i are then calculated
by the same formula~A3! as for l1 , with dj

(n) being the
orthonormalized perturbation growth ofi êi

(n)i during j th or-
thonormalization period.

Figure 12 shows the temporal convergence of the first
three Lyapunov exponents for the particular chaotic solution
(a50.09!. The estimated from those values Lyapunov di-
mension DL'2.208 indicates low-dimensional chaos for
chaotic dynamics in our SL. By further increasing the length
of the SLN the characteristic Lyapunov dimension does not
grow. Since we did not see a transition from low- to high-
dimensional chaos, it could be concluded that our system is
not extensively chaotic. We have not observed hyperchaos
either, where the second Lyapunov exponent is positive.
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