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Abstract 20 

Little is known about the metabolome fingerprint of pulse consumption. The 21 

study of robust and accurate biomarkers for pulse dietary assessment has great 22 

value for nutritional epidemiology regarding health benefits and their 23 

mechanisms. To characterize the fingerprinting of dietary pulses (chickpeas, 24 

lentils and beans), spot urine samples from a subcohort from the PREDIMED 25 

study were stratified, using a validated food frequency questionnaire. Non-pulse 26 

consumers (≤ 4 g/day of pulse intake) and habitual pulse consumers (≥ 25 27 

g/day of pulse intake) were analysed using a 1H-NMR metabolomics approach 28 

combined with multi- and univariate data analysis. Pulse consumption showed 29 

differences through 16 metabolites coming from (i) choline metabolism, (ii) 30 

protein-related compounds, and (iii) energy metabolism (including lower urinary 31 

glucose). Stepwise logistic regression analysis was applied to design a 32 

combined model of pulse exposure, which resulted in glutamine, dimethylamine 33 

and 3-methylhistidine. This model was evaluated by receiver operating 34 

characteristic curve (AUC > 90% in both training and validation sets). The 35 

application of NMR-based metabolomics to pulse exposure highlighted new 36 

candidates for biomarkers of pulse consumption, the role of choline metabolism 37 

and the impact on energy metabolism, generating new hypotheses on energy 38 

modulation. Further intervention studies will confirm these findings. 39 
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1. Introduction 44 

The Mediterranean diet (MD) is a dietary pattern characterized by a high intake 45 

of vegetables, cereals, pulses, nuts, fish and olive oil, low intake of red meat 46 

and processed meat products, and low to moderate consumption of poultry, 47 

wine and dairy products.1 Moreover, the MD has been demonstrated to be 48 

useful in the prevention of type 2 diabetes, obesity, inflammatory diseases, 49 

cardiovascular diseases (CVD) and even cancer.2–5  50 

One of the components of the MD is pulses, which constitute an excellent food, 51 

providing protein, dietary fibre, many vitamins and minerals, as well as a great 52 

variety of phytochemicals.6–8 Thus, they could contribute to the beneficial effects 53 

reported for this dietary pattern.9 In addition, pulses are increasingly being 54 

recognized for their role in promoting good health.6,10–12
 Indeed, habitual pulse 55 

consumption is included in the main dietary guidelines worldwide, including the 56 

MD,13 the Dietary Guidelines for Americans14,15 and the Nordic Diet,16 among 57 

others, and they are also advocated in view of their low environmental impact 58 

compared with other protein sources.17 59 

Metabolomics is a powerful tool for identifying food exposure biomarkers in 60 

humans18 and provides new information on dietary components and dietary 61 

patterns.19 In this regard, the evaluation of dietary exposure through a 62 

combination of biomarkers enables a better understanding of compliance to a 63 

dietary exposure.20 Moreover, little is known about the metabolome fingerprint 64 

from legume consumption either individually or as a complex food group, with 65 

only a few tentative biomarkers being described.21,22 66 
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Determining the changes in the urinary metabolome, new biomarkers of intake 67 

and/or their effect may reveal potential modifications in diet-related physiology 68 

both in healthy and diseased individuals.23 Furthermore, metabolomic 69 

approaches have been proposed for evaluating the relationship between 70 

nutrition and health status.24 In light of this connection, recent scientific 71 

publications have pointed out the potential health benefits of legumes in chronic 72 

diet-related diseases, such as CVD and type 2 diabetes mellitus.6,8,25,26 Thus 73 

the application of nutrimetabolomics to a high-cardiovascular-risk population 74 

could provide new insights into this potential relationship.  75 

In the present work, we compared the metabolome profiles of reported pulse 76 

consumption in a free-living population to find putative biomarkers reflecting 77 

intake and/or effect of intake. Analysis of individuals under free-living conditions 78 

enables more representative data to be obtained on the metabolome 79 

fingerprints of pulse consumers. In light of this, a better understanding of the 80 

specific role of pulse consumption in terms of health benefits, beyond their 81 

excellent nutritional profile, is expected. Therefore, the aim of the present study 82 

was to investigate dietary pulse fingerprinting in spot urine using an untargeted 83 

1H-NMR metabolomic approach on a free-living subcohort from the PREDIMED 84 

study. For this purpose, we mainly focused on urinary biomarkers of a complex 85 

pulse exposure comprising chickpeas, lentils and beans in a combined urinary 86 

biomarker model. 87 

 88 

2. Material and methods 89 

2.1. PREDIMED subcohort study  90 
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For the present study, a subsample of 50 participants from the PREDIMED 91 

study (ISRCTN 35739639; http://www.predimed.org) was taken. The 92 

PREDIMED study is a large, parallel-group, multicentre, randomized and 93 

controlled clinical trial assessing the effects of an MD on the primary prevention 94 

of CVD. The trial protocol was conducted according to the Declaration of 95 

Helsinki and was approved by the Institutional Review Boards of all the centres 96 

involved. Briefly, free-living participants (55–80 years old) without CVD that 97 

fulfilled at least one of the two following criteria – type 2 diabetes mellitus or 98 

three or more major cardiovascular risk factors – were included for an MD 99 

supplemented either with extra virgin olive oil or mixed nuts.27 The exclusion 100 

criteria were CVD, any severe chronic illness, drug or alcohol addiction, a 101 

history of allergy, or intolerance to olive oil or nuts. The subcohort consisted of a 102 

random sample of participants at high cardiovascular risk, recruited from the 103 

Barcelona and Valencia PREDIMED centres. The PREDIMED study design and 104 

137-item validated food frequency questionnaires (FFQs) used have been 105 

reported elsewhere.28,29 Data reported from the FFQs included information on 106 

total legume consumption, and disaggregated type of legume consumed. 107 

 108 

2.2. Stratification of the study population 109 

2.2.1. Defining potential consumers 110 

Both the use of FFQs and the population stratification of a cohort of individuals 111 

by consumption have demonstrated an effective approach for the study of 112 

biomarkers of food consumption.30–32 Participants were classified into two levels 113 

(consumers and non-consumers) of habitual intake of dietary pulse foods 114 
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(chickpeas, lentils or beans) based on the analysis of the validated FFQs 115 

(Supporting Information, Table S1). Intake of pulses was calculated as the sum 116 

of consumed chickpeas, lentils and beans. Non-pulse (NP) consumers were 117 

defined as subjects with sporadic or non-consumption (≤ 4.00 g/day) of pulses. 118 

Habitual pulse (HP) consumers were set at a consumption of ≥ 25.71 g/day, 119 

regularly. In order to explore global pulse consumption, individuals that did not 120 

consume the three kinds of pulses simultaneously were also excluded. 121 

Additionally, the condition of sporadic or non-intake of peas (≤ 4 g/day) was 122 

taken into consideration, since the features of this type of legume are not similar 123 

to the others.33 No other legume types were considered.  124 

 125 

2.2.2. Selecting individuals by consumption 126 

Spot urine samples were matched to corresponding individual FFQ data. From 127 

a cohort of 828 individuals, 25 subjects were defined as NP consumers and 37 128 

as HP consumers (none of the other participants from both pulse consumer 129 

groups fulfilled any criteria). In order to reduce the potential sources of 130 

variability not related to pulse exposure, the number of HP consumers was 131 

balanced against NP consumers (HP = 25, NP = 25). Finally, dietary data, 132 

anthropometry, biochemical parameters, health status and medication were 133 

explored with a view to discarding any variability unrelated to pulse 134 

consumption. 135 

 136 

2.3. Metabolomics analysis 137 
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2.3.1. Urine sample analysis and data processing  138 

Morning fasting spot urine samples were collected, aliquoted, encoded and 139 

frozen at -80 ºC until were use. Sample preparation was based on the 140 

methodology previously published.19 The 1H-NMR urinary spectra were 141 

acquired using a Varian-Inova-500 MHz NMR spectrometer with presaturation 142 

of the water resonance using a NOESYPRESAT pulse sequence. During the 143 

acquisition, the internal temperature was kept constant at 298 K. An exponential 144 

window function was applied to the free induction decay (FID) with a line-145 

broadening factor of 0.3 Hz prior to Fourier transformation. For each sample, a 146 

total of 128 scans were collected into 32 K data points with a spectral width of 147 

14 ppm at 300 K, an acquisition time of 3.2 s and a relaxation delay of 3 s.  148 

1H-NMR spectra were phased, baseline-corrected and calibrated (TSP, 0.0 149 

ppm) using TopSpin software (version 3.0, Bruker, BioSpin, Germany). After 150 

baseline correction, original spectral data were bucketed in intelligent bucketing 151 

domains of 0.005 ppm with ACD/NMR Processor 12.0 software (Advanced 152 

Chemistry Development, Toronto, Canada). The water signal and noise regions 153 

above 9.5 ppm and below 0.5 ppm were excluded from the analysis. 154 

Data were submitted to MetaboAnalyst 3.0 for interquartile range filtering and 155 

normalization by the sum of the intensities of the spectra.34 156 

 157 

2.3.2. Statistical analysis 158 

The NMR data set was log-transformed, Pareto-scaled and posteriorly analysed 159 

in a multivariate approach using SIMCA-P+13.0 software (Umetrics, Umeå, 160 
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Sweden). Interindividual variation may confuse the effects of intervention, 161 

particularly in multivariate data of high dimensionality. Therefore, partial least 162 

squares discriminant analysis with orthogonal signal correction (OSC-PLS-DA) 163 

was used to explore the differences in metabolomes among the pulse 164 

consumption.35 OSC filtration was used to reduce the variability not associated 165 

with dietary classification, as has been done in other published 166 

nutrimetabolomic studies.19,31,36 The quality of the models was evaluated by the 167 

proportion of the variance of the response variable that is explained by the 168 

model (R2Y) and the predictive ability (Q2) parameters.35 Validation of the 169 

models and the evaluation of the degree of overfitting were carried out using a 170 

permutation test (n = 200), and the correlation coefficient between the original Y 171 

and the permuted Y plotted against the cumulative R2 and Q2 was calculated. 172 

Those NMR signals with variable importance for projection (VIP) values ≥1 in 173 

the component of the OSC-PLS-DA model were selected as being relevant for 174 

explaining the differences in metabolic profiles. These variables were further 175 

studied through the univariate Student’s t-test among HP and NP consumers to 176 

assess the statistical significances. Multiple tests were controlled by the false 177 

discovery rate (FDR). Statistical significance was considered at an FDR-178 

adjusted p-value <0.05. Then, Cliff's delta was chosen for estimation of the 179 

effect size37 and calculated for each feature. 180 

 181 

2.3.3. Metabolite identification 182 

Metabolite identification was performed using the Chenomx NMR Suite 183 

Professional Software package (version 8.1; Chenomx Inc., Edmonton, 184 
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Canada) and by comparing NMR spectral data to those available in databases 185 

such as the Human Metabolome Database (http://www.hmdb.ca), the Biological 186 

Magnetic Resonance Data Bank (http://www.bmrb.wisc.edu) and the Madison 187 

Metabolomics Consortium Database (www.mmcd.nmrfam.wisc.edu), along with 188 

the existing NMR-based metabolomics literature. Further, a Pearson’s 189 

correlation test and clustering analysis with Pearson distance and Ward’s 190 

minimum variance using PermutMatrix 1.9.3.0 software38 were applied in order 191 

to identify the signals corresponding to the same metabolite. 192 

 193 

2.4. Study of combined urinary biomarker model 194 

The interaction between gender and the resulting metabolites was evaluated by 195 

a logistic regression for discarding any effect on the biomarkers. Then, these 196 

metabolites were submitted to a stepwise logistic regression analysis (IBM 197 

SPSS Statistics 20 software, SPSS, Inc., Chicago, IL, USA) to evaluate whether 198 

the combination of more than one biomarker improves the discrimination20 of 199 

pulse consumption. The models were constructed through a dichotomous 200 

variable of pulse consumption as dependent variable and identified metabolites 201 

as independent variables, with a p-value of <0.05 as a condition required for 202 

entering and remaining in the model. For validation of models, the analysis with 203 

a training set of 2/3 of the samples (removing 1/3 of the individuals as the 204 

validation set) was permuted 20 times. Spearman’s rank correlation coefficient 205 

was used to assess correlations between the combined models and pulse 206 

consumption. 207 
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The global performance of the models was evaluated by receiver operating 208 

characteristic (ROC) curve and estimation of the area under the curve (AUC) 209 

values. The optimum cut-off for sensitivity and specificity of the biomarkers was 210 

determined as the minimum distance to the top-left corner.39  211 

 212 

3. Results 213 

A flow chart of the participants allocated in the present study is presented in the 214 

Supplementary Information (Figure S1). Anthropometric measurements and 215 

biochemical analyses were performed using standardized methods.28 HP 216 

consumers showed a pulse consumption of 38.45 ± 14.68 g/day, while NP 217 

consumers reported a consumption of 3.75 ± 3.95 g/day (mean ± SD). The 218 

characteristics of participants classified by pulse consumption (Table S2) are 219 

presented in the Supplementary Information. The stratified populations were not 220 

different in terms of disease (type 2 diabetes mellitus or cardiovascular risk 221 

factors), medications or biochemical parameters, among other data. Subjects 222 

who were HP consumers showed higher amounts of both dietary fibre (p < 223 

0.01) and polyunsaturated fatty acid (p < 0.05) intakes as a consequence of 224 

legume macronutrient composition.6,40 No significances other than pulses were 225 

found with regard to food intake. 226 

 227 

3.1. Selection of significant biomarkers related to pulse consumption 228 

For the analysis of the features belonging to pulse consumption in the urinary 229 

metabolome of the HP and NP consumers, an orthogonal signal correction was 230 

applied before PLS-DA analysis. The OSC-PLS-DA analysis of the two groups 231 
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resulted in a latent variable model with R2Y and Q2 values of 0.954 and 0.809, 232 

respectively, indicating that the model was able to classify each subject in the 233 

correct consumption group. The corresponding permutation tests showed 234 

negative Q2 intercepts with a value of -0.164, implicating validation of the 235 

model.35 With the purpose of selecting the most discriminative urinary markers 236 

of consumption, only the statistically significant variables coming from both 237 

multi- and univariate analyses simultaneously were considered. 238 

 239 

3.2. Identified biomarkers of habitual pulse consumption 240 

A total of 16 compounds were identified as discriminant metabolites of pulse 241 

consumption. Metabolites and chemical shifts identified corresponding to 242 

statistical analyses are presented in Table 1. The total number of metabolites 243 

related to pulse consumption was divided into categories as follows: (i) choline 244 

metabolism: choline, dimethylglycine, trimethylamine-N-oxide (TMAO) and 245 

dimethylamine; (ii) protein-related compounds: 3-methylhistidine, 246 

methylguanidine, phenylalanine, glutamine and n-acetylglutamine; and (iii) 247 

energy metabolism: glucose, leucine, isovalerylglycine, and isobutyric, 248 

acetoacetic, citric and cis-aconitic acids. 249 

 250 

3.3. Combined urinary biomarker approach 251 

Logistic regression analysis revealed that there was no significant interaction 252 

between gender and the metabolites (p>0.05; all) shown in Table S3 253 

(Supplementary Information). To study the improvement of the discrimination 254 
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between groups (HP and NP consumers), a conditional stepwise variable 255 

selection method, through a binary logistic regression analysis, was used on a 256 

combination of more than one discriminant metabolite. Table S4 257 

(Supplementary Information) shows the resulting metabolites included in all 20 258 

permuted models and the contribution to the model. Three metabolites were 259 

included in the fitted model according to the maximum AUC, which contained 260 

two protein-related metabolites (glutamine and 3-methylhistidine) and one 261 

choline-related metabolite (dimethylamine). These three metabolites correlated 262 

individually with the pulse consumption. However, the combined model 263 

exhibited the strongest correlation (r=0.73, p<0.01) with the pulse exposure, as 264 

shown in Table S5 (Supplementary Information). 265 

The ROC curve analysis was used to evaluate the combined metabolite model 266 

and their metabolites using both training and validation sets separately. The 267 

highest AUC was for the combined metabolite model for both training (AUC = 268 

95.6%) and validation (AUC = 94.4%) sets, including glutamine, 3-269 

methylhistidine and dimethylamine followed by the individual metabolites 3-270 

methylhistidine (AUC = 82.4%), glutamine (AUC = 81.6%) and dimethylamine 271 

(AUC = 75.0%), as shown in Figure 1. The equations generated from the 272 

logistic regression and the AUCs from the models with their sensitivity and 273 

specificity are shown in Table 2. 274 
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 275 

Figure 1. Receiver operating characteristic (ROC) curves of combined model 276 

(continuous line) with the area under the ROC curve and of included individual 277 

metabolites (discontinuous lines) in the training (A) and validation (B) sets. 278 

 279 

4. Discussion 280 

In this study, we present a panel of different urinary metabolites related to 281 

habitual pulse exposure using a 1H-NMR-based untargeted nutrimetabolomic 282 

approach in a free-living population. In addition, high correlations were found 283 

when the exposure was assessed as a continuous variable (defined by the 284 

combined biomarker panel).  285 

 286 

4.1. Characterization of pulse fingerprinting in urine 287 

4.1.1. Pulse metabolomic fingerprinting and choline metabolism  288 

Several compounds found in the spot urine of pulse consumers are related to 289 

choline. Thus pulses, as a rich source of choline,41 may be the precursor of 290 
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additional metabolites that are susceptible to microbial degradation generating 291 

new compounds.42 Therefore, the increase of several intermediates of choline 292 

metabolism, such as choline itself, TMAO and dimethylamine, appears to be a 293 

consequence of the microbial activity in HP consumers. In relation to this, De 294 

Filippis and co-workers found an inverse correlation between urinary TMAO and 295 

vegetarian diets compared with omnivore ones. However, they suggest different 296 

food sources of carnitine and choline such as eggs, beef, pork and fish.43 297 

Hence, legumes from vegetarian diets should be proposed as a food choline 298 

source. The increase of dimethylamine, which is also a downstream product of 299 

choline, supports the microbial degradation of TMAO from choline. Furthermore, 300 

TMAO was identified as a major source of urinary dimethylamine in humans,44 301 

directly related to gut microbiota metabolism.45 On the other hand, the increase 302 

of urinary dimethylglycine may also come from the choline contained in pulses. 303 

The enzymes choline dehydrogenase, betaine aldehyde dehydrogenase and 304 

betaine homocysteine methyltransferase lead to dimethylglycine from choline.46 305 

Therefore, the results of the present study suggest a possible impact on urinary 306 

metabolome by choline from pulses that is degraded via both (i) mammalian 307 

pathways in which choline is converted to dimethylglycine through betaine, and 308 

(ii) microbial metabolism in which choline is degraded to trimethylamine, TMAO 309 

and dimethylamine. For this reason, we propose dimethylamine and 310 

dimethylglycine in spot urine as potential candidates for biomarkers of pulse 311 

consumption. Nevertheless, these choline-related metabolites need to be 312 

further explored in controlled studies confirming that they are food intake 313 

biomarkers instead of reflecting metabolic differences due to the pulse 314 
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consumption. Figure 2 shows both proposed pathways for downstream 315 

products of choline.  316 

 317 

 318 

Figure 2. Proposed pathways for choline degradation from pulses including 319 

significant metabolites in HP consumers in the present study. Image courtesy of 320 

Francisco Madrid-Gambin. Copyright 2016.  321 

 322 

4.1.2. Pulse metabolomic fingerprinting and protein-related compounds 323 

With regard to the increases in glutamine and the acetylated form n-324 

acetylglutamine, several explanations may be proposed. Glutamine and n-325 

acetylglutamine could come from dietary sources since glutamine is found in 326 

high-protein foods, such as pulses.47 Another explanation could be the 327 

alteration of urinary levels previously shown in this type of population,48 affected 328 

by pulse consumption. There was a higher excretion of 3-methylhistidine in HP 329 

consumers. This metabolite is a biomarker of meat and fish consumption,49 330 

denoting a potential role as a biomarker of consumption. Interestingly, all food 331 

sources of this metabolite are also protein sources, including pulses as a 332 
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vegetable source, as highlighted in the present study. However, 3-333 

methylhistidine is also a muscle protein breakdown that is sensitive to gender 334 

and age.50 Methylguanidine is derived from protein catabolism and from the 335 

breakdown of creatinine,51,52 therefore it may be related to protein from pulses. 336 

 337 

4.1.3. Pulse metabolomic fingerprinting and energy metabolism  338 

The signals of several usual metabolites were altered between the two groups. 339 

However, the definition as food intake biomarkers is controversial. Instead, they 340 

probably reflect metabolic differences associated with being a low and high 341 

consumer, based on the study design. Most of the biomarkers found in the 342 

present study are metabolites related to energy metabolism. The lower 343 

excretion of acetoacetic acid, glucose and tricarboxylic acid (TCA) cycle 344 

intermediates (citric and cis-aconitic acids) appears to involve a different energy 345 

modulation according to the pulse consumption. This fact is in part reinforced by 346 

changes in BCAAs and subproducts, which are involved in energy metabolism. 347 

For example, isobutyric acid is a short-chain fatty acid that is a product of BCAA 348 

catabolism of valine, which is a glucogenic BCAA metabolized via the 349 

methylmalonyl-CoA in the TCA cycle.53 On the other hand, acetoacetic acid is a 350 

ketone body produced in the human liver for fatty acid breakdown,54 which 351 

serves as a source of energy when normal glycolysis is altered. Interestingly, 352 

acetoacetic acid was shown to be increased in diabetes mellitus.55
 Hence, we 353 

hypothesize that gluconeogenesis may be diminished in pulse consumers, 354 

supported by the urinary reduction of acetoacetic and isobutyric acids (lower 355 

fatty acid catabolism), and the reduction of TCA cycle intermediates and urinary 356 
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glucose (better use of glucose). Furthermore, it was observed that pulse 357 

consumption has a glucose-lowering role in diabetes mellitus,56,57 thereby 358 

explaining the lower plasma glucose concentration and lower urinary excretion. 359 

Figure 3 shows the resulting endogenous metabolites connected to the TCA 360 

cycle. Nevertheless, the small sample size that resulted after the stratification of 361 

the population leads to only exploratory results that should be confirmed. 362 

The role of other findings such as increases of leucine and phenylalanine in 363 

pulse consumers is unclear. On the one hand, these habitual urinary 364 

compounds could be increased as a consequence of pulses being the source. 365 

However, another explanation of these findings could support the hypothesis 366 

above. Leucine, which is an acetoacetic acid precursor, may modulate glucose 367 

metabolism through oxidation, as well as insulin signalling and release. In 368 

addition, stimulation of glucose recycling via the glucose-alanine cycle by 369 

leucine may inhibit protein breakdown.58,59 However, alterations in urinary 370 

leucine have also been proposed for the prediction of diabetes mellitus, 371 

probably related to the perturbed energy metabolism.55 The origin of increased 372 

phenylalanine is also uncertain. This ketogenic amino acid can stimulate insulin 373 

and glucagon concentration, enhancing glucose homeostasis,60 and is also 374 

altered in an insulin-resistant state and obesity.61 Overall, the consumption of 375 

pulses seems to affect the energy metabolism in the studied population. 376 

 377 
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 378 

Figure 3. Modified metabolites found in HP consumers connected to energy 379 

metabolism. 380 

 381 

4.2. New biomarker panel to characterize habitual pulse consumption 382 

To delimit the prediction of habitual pulse intake, comprising lentils, chickpeas 383 

and beans, a combination of more than one discriminatory metabolite had to be 384 

studied. The combination of three metabolites enhanced considerably the AUC 385 

and the confidence interval of the model in comparison with individual 386 

metabolites, as shown in Table 2. The developed model indicated that 387 

glutamine, 3-methylhistidine and dimethylamine were the strongest candidates 388 

for exposure biomarkers. It is important to note that the role of the component 389 

coming from choline metabolism suggests the importance of this metabolite as 390 

a biomarker of intake. Interestingly, metabolites displaying changes in energy 391 

metabolism were scarcely considered by the stepwise logistic regression. None 392 

of the other metabolites entered the model, probably as a result of collinearity in 393 

the evidence provided by these compounds, which may originate from the same 394 
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metabolic pathways, giving similar biological or dietary information.36 Instead, 395 

two metabolites related to protein coming from pulses and one connected to 396 

microbiota choline degradation were established in the combined metabolite 397 

model, giving complementary information, showing a better discrimination (AUC 398 

> 90% in both training and validation sets) than each metabolite individually 399 

(AUC < 90% in all cases), and reinforcing the improved capacity of biomarker 400 

patterns to distinguish between different dietary exposures.  401 

 402 

5. Conclusions 403 

We applied an untargeted 1H-NMR-based metabolomic strategy to distinguish 404 

the urinary metabolome of habitual pulse consumption in a free-living 405 

population. Stepwise logistic regression analysis exhibited a useful approach to 406 

designing a combined urinary biomarker model taking into consideration the 407 

different characteristics of pulses. With regard to food metabolome, this study 408 

points to a central role of choline contained in pulses and breakdown products 409 

such as dimethylglycine, TMAO and dimethylamine. Protein-related compounds 410 

such as glutamine, 3-methylhistidine and methylguanidine were also increased 411 

in the urine of HP consumers. The combined metabolite model indicated that 412 

dimethylamine, 3-methylhistidine and glutamine were the strongest candidates 413 

for exposure prediction. In relation to energy metabolism, numerous compounds 414 

connected to the TCA cycle, including BCAAs and acetoacetic acid, were 415 

modified, denoting a substantial impact on energy metabolism modulation and 416 

on urinary glucose in this population. However, since the status of type 2 417 

diabetes mellitus or three or more major cardiovascular risk factors in the 418 
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studied population could have a distinctive energy modulation, properly 419 

controlled interventions could confirm the findings observed in this cross-420 

sectional study.  421 

 422 

6. Supporting Information  423 

Table S1 – Criteria for stratifying participants by frequency of consumption. 424 

Table S2 – Characteristics of the study population according to pulse 425 

consumption. 426 

Table S3 – Interaction between gender and the metabolites found in the present 427 

study. 428 

Table S4 – Permuted models used in training/validation sets with the resulting 429 

metabolites. 430 

Table S5 – Correlations between legume consumption and the combined model 431 

for prediction of legume exposure and considered individual metabolites. 432 

Figure S1 – Flow chart of subjects from the PREDIMED subcohort included in 433 

the study. 434 

 435 

7. Conflict of interest disclosure 436 

The authors declare no competing financial interest. 437 

 438 

8. Acknowledgements 439 



21 
 

This study is supported by Spanish National Grants from the Ministry of 440 

Economy and Competitiveness (MINECO), and co-funded by FEDER (Fondo 441 

Europeo de Desarrollo Regional): AGL2009-13906-C02-01, JPI HDHL 442 

FOODBALL Project (PCIN-2014-133-MINECO Spain), and the award of 443 

2014SGR1566 from the Generalitat de Catalunya’s Agency AGAUR. We also 444 

thank the EU Joint Programming Initiative “A Healthy Diet for a Healthy Life” on 445 

Biomarkers BioNHFOODBALL. F.M-G. acknowledges the APIF PhD fellowship 446 

(University of Barcelona). M.U-S. would like to thank the “Ramón y Cajal” 447 

programme (RYC-2011-09677) from MINECO and the Fondo Social Europeo. 448 

EAA would like to thank CONACYT (Mexico) for the PhD fellowship. 449 

 450 

Abbreviations 451 

AUC, area under the curve; FFQ, food frequency questionnaire; FID, free 452 

induction decay; HP, habitual pulses; ISRCTN, International Standard 453 

Randomized Controlled Trial Number; KOD, potassium deuteroxide; MD, 454 

Mediterranean diet; NMR, nuclear magnetic resonance; NP, non-pulses; OSC-455 

PLS-DA, partial least-squares discriminant analysis with orthogonal signal 456 

correction; ROC, receiver operating characteristic; TCA, tricarboxylic acid; 457 

TMAO, trimethylamine-N-oxide; TSP, 3-(trimethylsilyl)-proprionate-2,2,3,3-d4; 458 

VIP, variable importance projection.  459 



22 
 

References 460 

(1)  Bergouignan, A.; Momken, I.; Schoeller, D. A.; Simon, C.; Blanc, S. 461 
Metabolic fate of saturated and monounsaturated dietary fats: the 462 

Mediterranean diet revisited from epidemiological evidence to cellular 463 
mechanisms. Prog. Lipid Res. 2009, 48 (3–4), 128–147. 464 

(2)  Salas-Salvadó, J.; Bulló, M.; Babio, N.; Martínez-González, M. Á.; 465 
Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M. I.; Corella, D.; 466 

Arós, F.; et al. Reduction in the incidence of type 2 diabetes with the 467 
Mediterranean diet: results of the PREDIMED-Reus nutrition intervention 468 
randomized trial. Diabetes Care 2011, 34 (1), 14–19. 469 

(3)  Marlow, G.; Ellett, S.; Ferguson, I. R.; Zhu, S.; Karunasinghe, N.; 470 
Jesuthasan, A. C.; Han, D. Y.; Fraser, A. G.; Ferguson, L. R. 471 

Transcriptomics to study the effect of a Mediterranean-inspired diet on 472 
inflammation in Crohn’s disease patients. Hum. Genomics 2013, 7 (1), 24. 473 

(4)  Lopez-Legarrea, P.; Fuller, N. R.; Zulet, M. A.; Martinez, J. A.; Caterson, 474 

I. D. The influence of Mediterranean, carbohydrate and high protein diets 475 
on gut microbiota composition in the treatment of obesity and associated 476 
inflammatory state. Asia Pac. J. Clin. Nutr. 2014, 23 (3), 360–368. 477 

(5)  Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; 478 

Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary 479 
prevention of cardiovascular disease with a Mediterranean diet. N. Engl. 480 
J. Med. 2013, 368 (14), 1279–1290. 481 

(6)  Bouchenak, M.; Lamri-Senhadji, M. Nutritional quality of legumes, and 482 
their role in cardiometabolic risk prevention: a review. J. Med. Food 2013, 483 

16 (3), 1–14. 484 

(7)  Roy, F.; Boye, J. I.; Simpson, B. K. Bioactive proteins and peptides in 485 
pulse crops: Pea, chickpea and lentil. Food Res. Int. 2010, 43 (2), 432–486 

442. 487 

(8)  Campos-Vega, R.; Loarca-Piña, G.; Oomah, B. D. Minor components of 488 
pulses and their potential impact on human health. Food Res. Int. 2010, 489 

43 (2), 461–482. 490 

(9)  Sofi, F.; Abbate, R.; Gensini, G. F.; Casini, A. Accruing evidence on 491 

benefits of adherence to the Mediterranean diet on health: an updated 492 
systematic review and meta-analysis. Am. J. Clin. Nutr. 2010, 92 (5), 493 

1189–1196. 494 

(10)  Dilis, V.; Trichopoulou, A. Nutritional and health properties of pulses. 495 
Mediterranean Journal of Nutrition and Metabolism. IOS Press January 1, 496 

2009, pp 149–157. 497 

(11)  Ramalingam, A.; Kudapa, H.; Pazhamala, L. T.; Weckwerth, W.; 498 
Varshney, R. K. Proteomics and Metabolomics: Two Emerging Areas for 499 
Legume Improvement. Front. Plant Sci. 2015, 6 (December), 1116. 500 



23 
 

(12)  Faris, M. A. I. E.; Takruri, H. R.; Issa, A. Y. Role of lentils (Lens culinaris 501 

L.) in human health and nutrition: A review. Mediterranean Journal of 502 
Nutrition and Metabolism. IOS Press January 1, 2013, pp 3–16. 503 

(13)  Bach-Faig, A.; Berry, E. M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; 504 

Dernini, S.; Medina, F. X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. 505 
Mediterranean diet pyramid today. Science and cultural updates. Public 506 
Health Nutr. 2011, 14 (12A), 2274–2284. 507 

(14)  U.S. Department of Health and Human Services and U.S. Department of 508 

Agriculture. 2015–2020 Dietary Guidelines for Americans 509 
http://health.gov/dietaryguidelines/2015/ (accessed May 9, 2016). 510 

(15)  Britten, P.; Marcoe, K.; Yamini, S.; Davis, C. Development of food intake 511 

patterns for the MyPyramid Food Guidance System. J. Nutr. Educ. Behav. 512 
2006, 38 (6 Suppl), S78-92. 513 

(16)  Mithril, C.; Dragsted, L. O.; Meyer, C.; Tetens, I.; Biltoft-Jensen, A.; 514 

Astrup, A. Dietary composition and nutrient content of the New Nordic 515 
Diet. Public Health Nutr. 2013, 16 (5), 777–785. 516 

(17)  MacWilliam, S.; Wismer, M.; Kulshreshtha, S. Life cycle and economic 517 

assessment of Western Canadian pulse systems: The inclusion of pulses 518 
in crop rotations. Agric. Syst. 2014, 123, 43–53. 519 

(18)  O’Gorman, A.; Gibbons, H.; Brennan, L. Metabolomics in the Identification 520 
of Biomarkers of Dietary Intake. Comput. Struct. Biotechnol. J. 2013, 4 521 

(5), 1–7. 522 

(19)  Vázquez-Fresno, R.; Llorach, R.; Urpi-Sarda, M.; Lupianez-Barbero, A.; 523 
Estruch, R.; Corella, D.; Fitó, M.; Arós, F.; Ruiz-Canela, M.; Salas-524 

Salvadó, J.; et al. Metabolomic pattern analysis after mediterranean diet 525 
intervention in a nondiabetic population: A 1- and 3-year follow-up in the 526 
PREDIMED study. J. Proteome Res. 2015, 14 (1), 531–540. 527 

(20)  Garcia-Aloy, M.; Llorach, R.; Urpi-Sarda, M.; Tulipani, S.; Estruch, R.; 528 
Martínez-González, M. a.; Corella, D.; Fitó, M.; Ros, E.; Salas-Salvadó, 529 

J.; et al. Novel multimetabolite prediction of walnut consumption by a 530 
urinary biomarker model in a free-living population: The predimed study. 531 
J. Proteome Res. 2014, 13 (7), 3476–3483. 532 

(21)  Perera, T.; Young, M. R.; Zhang, Z.; Murphy, G.; Colburn, N. H.; Lanza, 533 

E.; Hartman, T. J.; Cross, A. J.; Bobe, G. Identification and monitoring of 534 
metabolite markers of dry bean consumption in parallel human and 535 
mouse studies. Mol. Nutr. Food Res. 2015, 59 (4), 795–806. 536 

(22)  Bonetti, A.; Marotti, I.; Dinelli, G. Urinary excretion of kaempferol from 537 
common beans (Phaseolus vulgaris L.) in humans. Int. J. Food Sci. Nutr. 538 
2007, 58 (4), 261–269. 539 

(23)  Scalbert, A.; Brennan, L.; Manach, C.; Andres-Lacueva, C.; Dragsted, L. 540 
O.; Draper, J.; Rappaport, S. M.; van der Hooft, J. J. J.; Wishart, D. S. 541 

The food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 542 



24 
 

2014, 99 (6), 1286–1308. 543 

(24)  McNiven, E. M. S.; German, J. B.; Slupsky, C. M. Analytical 544 

metabolomics: nutritional opportunities for personalized health. J. Nutr. 545 
Biochem. 2011, 22 (11), 995–1002. 546 

(25)  Souza, R. G. M.; Gomes, A. C.; Naves, M. M. V; Mota, J. F. Nuts and 547 
legume seeds for cardiovascular risk reduction: scientific evidence and 548 
mechanisms of action. Nutr. Rev. 2015, 73 (6), 335–347. 549 

(26)  Wilson, C. Nutrition: Consumption of legumes might be beneficial in type 550 
2 diabetes mellitus. Nat. Rev. Endocrinol. 2013, 9 (1), 3. 551 

(27)  Martinez-Gonzalez, M. A.; Corella, D.; Salas-Salvado, J.; Ros, E.; Covas, 552 

M. I.; Fiol, M.; Warnberg, J.; Aros, F.; Ruiz-Gutierrez, V.; Lamuela-553 
Raventos, R. M.; et al. Cohort Profile: Design and methods of the 554 
PREDIMED study. Int. J. Epidemiol. 2012, 41 (2), 377–385. 555 

(28)  Estruch, R.; Martinez-Gonzalez, M. A.; Corella, D.; Salas-Salvado, J.; 556 
Ruiz-Gutierrez, V.; Covas, M. I. Effects of a Mediterranean-Style Diet on 557 
Cardiovascular Risk Factors. Ann. Intern. Med. 2006, 145 (1), 1–11. 558 

(29)  Fernández-Ballart, J. D.; Piñol, J. L.; Zazpe, I.; Corella, D.; Carrasco, P.; 559 

Toledo, E.; Perez-Bauer, M.; Martínez-González, M. A.; Salas-Salvadó, 560 
J.; Martín-Moreno, J. M. Relative validity of a semi-quantitative food-561 

frequency questionnaire in an elderly Mediterranean population of Spain. 562 
Br. J. Nutr. 2010, 103, 1808–1816. 563 

(30)  Khan, N.; Khymenets, O.; Urpí-Sardà, M.; Tulipani, S.; Garcia-Aloy, M.; 564 

Monagas, M.; Mora-Cubillos, X.; Llorach, R.; Andres-Lacueva, C. Cocoa 565 
polyphenols and inflammatory markers of cardiovascular disease. 566 
Nutrients 2014, 6 (2), 844–880. 567 

(31)  Pujos-Guillot, E.; Hubert, J.; Martin, J. F.; Lyan, B.; Quintana, M.; Claude, 568 
S.; Chabanas, B.; Rothwell, J. a.; Bennetau-Pelissero, C.; Scalbert, A.; et 569 

al. Mass spectrometry-based metabolomics for the discovery of 570 
biomarkers of fruit and vegetable intake: Citrus fruit as a case study. J. 571 
Proteome Res. 2013, 12 (4), 1645–1659. 572 

(32)  Vázquez-Fresno, R.; Llorach, R.; Urpi-Sarda, M.; Khymenets, O.; Bullo, 573 

M.; Corella, D.; Fito, M.; Martinez-Gonzalez, M. A.; Estruch, R.; Andres-574 
Lacueva, C. An NMR metabolomics approach reveals a combined-575 

biomarkers model in a wine interventional trial with validation in free-living 576 
individuals of the PREDIMED study. Metabolomics 2015, 11 (4), 797–577 

806. 578 

(33)  Food and Agriculture Organization. Definition and classification of 579 
commodities, 1994. http://www.fao.org/ES/faodef/fdef04e.htm (Accessed 580 

May 2016). 581 

(34)  Xia, J.; Sinelnikov, I. V.; Han, B.; Wishart, D. S. MetaboAnalyst 3.0-582 
making metabolomics more meaningful. Nucleic Acids Res. 2015, 43 583 

(W1), W251–W257. 584 



25 
 

(35)  Llorach-Asunción, R.; Jauregui, O.; Urpi-Sarda, M.; Andres-Lacueva, C. 585 

Methodological aspects for metabolome visualization and 586 
characterization: a metabolomic evaluation of the 24 h evolution of human 587 
urine after cocoa powder consumption. J. Pharm. Biomed. Anal. 2010, 51 588 

(2), 373–381. 589 

(36)  Garcia-Aloy, M.; Llorach, R.; Urpi-Sarda, M.; Jáuregui, O.; Corella, D.; 590 

Ruiz-Canela, M.; Salas-Salvadó, J.; Fitó, M.; Ros, E.; Estruch, R.; et al. A 591 
metabolomics-driven approach to predict cocoa product consumption by 592 

designing a multimetabolite biomarker model in free-living subjects from 593 
the PREDIMED study. Mol. Nutr. Food Res. 2015, 59 (2), 212–220. 594 

(37)  Cliff, N. Dominance statistics: Ordinal analyses to answer ordinal 595 
questions. 1993, 114 (3), 494–509. 596 

(38)  Caraux, G.; Pinloche, S. PermutMatrix: A graphical environment to 597 

arrange gene expression profiles in optimal linear order. Bioinformatics 598 
2005, 21 (7), 1280–1281. 599 

(39)  Xia, J.; Broadhurst, D. I.; Wilson, M.; Wishart, D. S. Translational 600 

biomarker discovery in clinical metabolomics: An introductory tutorial. 601 
Metabolomics 2013, 9 (2), 280–299. 602 

(40)  De Almeida Costa, G. E.; Da Silva Queiroz-Monici, K.; Pissini Machado 603 

Reis, S. M.; De Oliveira, A. C. Chemical composition, dietary fibre and 604 
resistant starch contents of raw and cooked pea, common bean, chickpea 605 
and lentil legumes. Food Chem. 2006, 94 (3), 327–330. 606 

(41)  Lewis, E. D.; Kosik, S. J.; Zhao, Y.-Y.; Jacobs, R. L.; Curtis, J. M.; Field, 607 

C. J. Total choline and choline-containing moieties of commercially 608 
available pulses. Plant Foods Hum. Nutr. 2014, 69 (2), 115–121. 609 

(42)  Tremaroli, V.; Bäckhed, F. Functional interactions between the gut 610 
microbiota and host metabolism. Nature 2012, 489 (7415), 242–249. 611 

(43)  De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I. B.; La Storia, A.; 612 
Laghi, L.; Serrazanetti, D. I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; et al. 613 

High-level adherence to a Mediterranean diet beneficially impacts the gut 614 
microbiota and associated metabolome. Gut 2015, 65 (11), 1812–1821. 615 

(44)  Zhang, A. Q.; Mitchell, S. C.; Ayesh, R.; Smith, R. L. Dimethylamine 616 
formation in man. Biochem. Pharmacol. 1993, 45 (11), 2185–2188. 617 

(45)  Dumas, M.-E.; Barton, R. H.; Toye, A.; Cloarec, O.; Blancher, C.; 618 

Rothwell, A.; Fearnside, J.; Tatoud, R.; Blanc, V.; Lindon, J. C.; et al. 619 
Metabolic profiling reveals a contribution of gut microbiota to fatty liver 620 
phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. U. S. A. 2006, 621 

103 (33), 12511–12516. 622 

(46)  Friesen, R. W.; Novak, E. M.; Hasman, D.; Innis, S. M. Relationship of 623 

Dimethylglycine, Choline, and Betaine with Oxoproline in Plasma of 624 
Pregnant Women and Their Newborn Infants. J. Nutr. 2007, 137 (12), 625 

2641–2646. 626 



26 
 

(47)  Marinangeli, C. P. F.; Jones, P. J. H. Pulse grain consumption and 627 

obesity: effects on energy expenditure, substrate oxidation, body 628 
composition, fat deposition and satiety. Br. J. Nutr. 2012, 108 (S1), S46–629 

S51. 630 

(48)  Roberts, L. D.; Koulman, A.; Griffin, J. L. Towards metabolic biomarkers 631 
of insulin resistance and type 2 diabetes: progress from the metabolome. 632 
Lancet Diabetes Endocrinol. 2014, 2 (1), 65–75. 633 

(49)  Brennan, L.; Gibbons, H.; O’Gorman, A. An Overview of the Role of 634 

Metabolomics in the Identification of Dietary Biomarkers. Curr. Nutr. Rep. 635 
2015, 4 (4), 304–312. 636 

(50)  Aranibar, N.; Vassallo, J. D.; Rathmacher, J.; Stryker, S.; Zhang, Y.; Dai, 637 

J.; Janovitz, E. B.; Robertson, D.; Reily, M.; Lowe-Krentz, L.; et al. 638 
Identification of 1- and 3-methylhistidine as biomarkers of skeletal muscle 639 

toxicity by nuclear magnetic resonance-based metabolic profiling. Anal. 640 
Biochem. 2011, 410 (1), 84–91. 641 

(51)  Yokozawa, T.; Fujitsuka, N.; Oura, H. Studies on the precursor of 642 
methylguanidine in rats with renal failure. Nephron 1991, 58 (1), 90–94. 643 

(52)  Ando, A.; Orita, Y.; Nakata, K.; Tsubakihara, Y.; Takamitsu, Y.; Ueda, N.; 644 
Yanase, M.; Abe, H. Effect of low protein diet and surplus of essential 645 

amino acids on the serum concentration and the urinary excretion of 646 
methylguanidine and guanidinosuccinic acid in chronic renal failure. 647 
Nephron 1979, 24 (4), 161–169. 648 

(53)  Hutson, S. M.; Sweatt, A. J.; Lanoue, K. F. Branched-chain amino acid 649 
metabolism: implications for establishing safe intakes. J Nutr 2005, 135 (6 650 

Suppl), 1557S–64S. 651 

(54)  Stern, J. R. Enzymes of acetoacetate formation and breakdown. Methods 652 
Enzymol. 1955, 1, 573–585. 653 

(55)  Urpi-Sarda, M.; Almanza-Aguilera, E.; Tulipani, S.; Tinahones, F. J.; 654 
Salas-Salvadó, J.; Andres-Lacueva, C. Metabolomics for Biomarkers of 655 

Type 2 Diabetes Mellitus: Advances and Nutritional Intervention Trends. 656 
Curr. Cardiovasc. Risk Rep. 2015, 9 (3), 12. 657 

(56)  Mudryj, A. N.; Yu, N.; Aukema, H. M. Nutritional and health benefits of 658 
pulses. Appl. Physiol. Nutr. Metab. = Physiol. Appl. Nutr. métabolisme 659 
2014, 39 (11), 1197–1204. 660 

(57)  Singhal, P.; Kaushik, G.; Mathur, P. Antidiabetic potential of commonly 661 
consumed legumes: a review. Crit. Rev. Food Sci. Nutr. 2014, 54 (5), 662 

655–672. 663 

(58)  Layman, D. K.; Walker, D. A. Potential importance of leucine in treatment 664 
of obesity and the metabolic syndrome. J. Nutr. 2006, 136 (1 Suppl), 665 

319S–23S. 666 

(59)  Shearer, J.; Duggan, G.; Weljie, A.; Hittel, D. S.; Wasserman, D. H.; 667 

Vogel, H. J. Metabolomic profiling of dietary-induced insulin resistance in 668 



27 
 

the high fat-fed C57BL/6J mouse. Diabetes, Obes. Metab. 2008, 10 (10), 669 

950–958. 670 

(60)  Nuttall, F. Q.; Schweim, K. J.; Gannon, M. C. Effect of orally administered 671 
phenylalanine with and without glucose on insulin, glucagon and glucose 672 

concentrations. Horm. Metab. Res. = Horm. und Stoffwechselforsch. = 673 
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Table 1. Tentative discriminant metabolites derived from the multi- and 679 

univariate analysis of 1H-NMR signal intensities in urine from HP consumersa 680 

Source Metabolite 
HP vs 

NP 
δ (multiplicity) 

FDR p-

value
†
 

Cliff’s 
delta

§
 

Choline 
metabolism 

Choline ↑ 3.19 (s) 3.27 x 10
-2
 0.475 

Dimethylglycine ↑ 2.93 (s) 3.81 x 10
-2
 0.386 

TMAO ↑ 3.27 (s) 7.29 x 10
-3
 0.485 

Dimethylamine ↑ 2.72 (s) 1.05 x 10
-2
 0.488 

Protein-related 
compounds 

N-acetylglutamine ↑ 2.04 (s) 
2.08 (m) 
2.26 (m) 
4.18 (m) 

2.55 x 10
-2
 0.706 

Glutamine ↑ 2.12 (m) 
2.46 (m) 
3.76 (t) 

1.17 x 10
-6
 0.814 

Phenylalanine ↑ 3.19 (m) 
3.98 (dd) 
7.32 (d) 
7.36 (m) 
7.42 (m) 

3.21 x 10
-2
 0.354 

Methylguanidine ↑ 2.83 (s) 3.72 x 10
-4
 0.635 

3-Methylhistidine ↑ 7.18 (s) 
7.92 (s) 

1.73 x 10
-4
 0.658 

Energy 
metabolism 

Citric acid ↓ 2.55 (dd) 
2.69 (dd) 

8.43 x 10
-5
 -0.690 

Cis-aconitic acid ↓ 5.74 (s) 
3.12 (s) 

1.11 x 10
-3
 -0.629 

Glucose ↓ 3.50 (m) 
4.66 (d) 
5.25 (d) 

7.89 x 10
-5
 -0.718 

Acetoacetic acid ↓ 2.27 (s) 1.95 x 10
-2
 -0.408 

Isovalerylglycine ↑ 0.92 (d) 
2.16 (d) 
3.74 (d) 

2.83 x 10
-4
 0.635 

Leucine  ↑ 0.94 (t) 
1.70 (m) 
3.72 (m) 

1.18 x 10
-3
 0.626 

Isobutyric acid ↓ 1.06 (d) 1.29 x 10
-2
 -0.446 

aAll features have VIP values ≥1.0 in the corresponding OSC-PLS-DA model.
 †P-value 681 

of Student’s t-test with False Discovery Rate correction. §Estimation of the effect size 682 

by Cliff’s delta with thresholds: |n|<0.330 "small", 0.330>|n|<0.474 "medium" and 683 

|n|>0.474 "large". TMAO, trimethylamine-N-oxide. s: singlet, d: doublet, t: triplet, dd: 684 

double doublet, m: multiplet. 685 
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Table 2. Receiver operating characteristic (ROC) curve parameters of 687 

combined models and of individual metabolites in both training and validation 688 

sets 689 

 Set
†
 Sensitivity (%) Specificity (%) AUC (95% CI) 

Combined model Training 88.2 93.7 95.6 (89.4–100.0) 

 Validation 87.5 88.9 94.4 (84.1–100.0) 

3-Methylhistidine Training 76.5 87.5 82.4 (67.7–97.0) 

 Validation 87.5 77.8 80.6 (56.2–100.0) 

Glutamine Training 76.5 81.2 81.6 (67.0–96.3) 

 Validation 87.5 77.8 84.7 (65.3–100.0) 

Dimethylamine Training 82.4 62.5 75.0 (57.8–92.2) 

 Validation 50.0 66.7 68.1 (40.4–100.0) 

AUC: area under the ROC curve. CI: confidence interval. †Corresponding to 2/3 of the 690 

population for the training and 1/3 for the validation set. 691 
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Figure 1. Receiver operating characteristic (ROC) curves of combined model 693 

(continuous line) with the area under the ROC curve and of included individual 694 

metabolites (discontinuous lines) in the training (A) and validation (B) sets. 695 

 696 

Figure 2. Proposed pathways for choline degradation from pulses including 697 

significant metabolites in HP consumers in the present study. 698 

 699 

Figure 3. Modified metabolites found in HP consumers connected to energy 700 

metabolism. 701 
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