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Abstract
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A Introduction

The reduction of carbon dioxide emissions has been one of the main objectives of various
United Nations summits with the intention of moderating or reversing climate change. In
this regard, the focus has fallen on the road transport sector, which contributes more than any
other industry to the volume of emissions. Indeed, according to the latest statistics published
by the European Union, the sectors share in total emissions in 2010 was as high as 19.98 per
cent.

While electric vehicles are not zero-emissions, given that electricity has to be generated
to power them, a number of studies, including (Ahman 2001 and WWF 2008), show that
electric vehicles are more efficient, generating lower emissions per kilometer. This reduction
is even higher in countries with a mix of electricity generation sources, that is, with a higher
share of renewables, whether hydro, wind or solar power.

While the introduction of electric vehicles should play a key role in reducing road transport
emissions, their eventual adoption must first overcome a host of barriers. One barrier is the
cost associated to electric vehicles (EV) and the willingness to pay from consumers. In this
sense, different studies analyze the effect of price over adoption (Larson et al. 2014) and the
willingness to pay with or without public subsidies (Helveston et al. 2015 and Parsons et al.
2014) or the effect of public subsidies over EV adoption (Jenn et al. 2013).

Another of the key barriers is the limited number of charging stations that generate
‘range anxiety’ among users of electric vehicles, fearful of not reaching their destination. In
this regard, the deployment of a network of fast charging stations that can reduce this anxiety
is essential to the adoption en masse of electric vehicles.

This paper uses a game of strategic interaction to simulate the entry of fast charging
stations for electric vehicles1. The study evaluates the equilibria in terms of social welfare
and firm space differentiation. Demand specification considers consumer mobility. Decisions
of consumers and producers are modelled taking into account the expectation of finding a
given facility located in each feasible location. The model is applied to the case of the city of
Barcelona using the mobility survey, demographic and income data, and the street graph of
the city.

To the best of our knowledge, this is the first paper to study the entry and location
of fast charging stations using a simulated game of competitive strategic interaction among
potential entrants. By so doing, we seek to offer novel perspectives on the following two
questions. First, the simulations identify the penetration rate of electric vehicles necessary to
have a fast charge station network profitable, and a network that can overcome commuters
‘range anxiety’ . Second, the model allows us to assess whether competing firms tend to cluster
or disperse when consumers move around commuting routes. Differentiation is measured in
terms of consumer deviations from the commuting paths to the facilities, rather than distances
from a given fixed consumer location to facilities.

With respect to the first question, we calculate that the threshold for the penetration of
electric vehicles would have to reach 3% to guarantee the sustainability of the fast charge
station network in Barcelona. This threshold allows commuters to recharge close to 10%
of their energy requirements on the go, and overcome their range anxiety. This threshold

1We consider like fast charging station the points of 43kw or more, which can recharge more than 80%
of the battery in less of 30 minutes. The alternative technologies to recharge the car are: accelerated points
(between 7 and 22kw) that need between 1 and 4 hours; and the conventional points (3kw) that spend 8 hours.
We do not consider those alternatives
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is 15 times higher than the current penetration rate2. With respect to the second issue,
we find evidence that price competition drives location differentiation. Price competition
lead firms to locate farther away from competitors measured in deviations from commuting
paths. This results is novel but similar to the results obtained by the traditional models of
space differentiation that measure how firms locate farther apart in distances with respect to
consumer fixed locations.

Following on from this introduction, the rest of the paper is organized as follows. In
section 2 we present the literature related to this paper on spatial localization of firms. In
Section 3, we describe the set-up of the game of strategic interaction used in simulating
entry at the different locations. In section 4 we present our data and empirical methodology.
Section 5 reports the results obtained in the simulation for the city of Barcelona and the
robustness checks, and finally the paper ends by discussing the main conclusions arising from
the simulation.

B Literature Review

There are two forces acting behind firm location decisions known in the economic literature
as ‘the market power effect’ and the ‘business stealing effect’ . The ‘market power effect’ is
known as the capability of firms to set differentiated prices from competitors when situated
farther apart from them. Distance increases the flexibility in the price-setting decision of
firms and, therefore, offers incentives to locate far apart from competitors. The ‘business
stealing effect’ , on the other hand, offers the opposite incentive. Being close to a competitor
increases the probability of stealing some market share. If ‘business stealing effect’ dominates
the ‘market power effect’, agglomeration of firms is expected.

Previous theoretical studies examining the spatial localization of firms do not report a
unique outcome in their predictions as to whether entrants locate in close proximity to in-
cumbents or at some distance from them. Results depend on the assumptions made over
consumer preferences and costs, the type of competition examined and the number of com-
petitors in the market. Indeed, a great effort has been devoted in the economic literature to
study the spatial competition among firms since the seminal studies of Hotelling (1929) and
D’Aspremont and Thisse (1979) that report opposing outcomes of minimum and maximum
differentiation, respectively, in a setting with two players. These opposite results are due
to the different assumptions regarding consumer transportation cost: while Hotelling (1929)
consider lineal transport costs, D’Aspremont and Thisse (1979) introduces transport costs in
a quadratic form. Hotelling (1929), however, do not find a unique stable equilibrium when
more than two entrants are taken into account. Indeed, closer to our paper are the studies
examining competition in both price and location in an oligopoly. In particular, in a set-
ting with heterogeneous consumers Anderson et al. (1992) predict that the agglomeration
of firms is the most probable outcome. In this setting, differentiation in pricing implies a
differentiation in locations in contrast to uniform price setting that leads towards clustering
in locations.

In the empirical literature, clustering outcome tends to dominate; although there is evid-
ence of both outcomes.

Early empirical studies that show clustering include the examination by Borenstein and
Netz (1999) and Salvanes et al. (2005) of spatial competition in airline departures times for

2The current penetration rate in Spain is 0.2%, according to the International Energy Agency, 2014.
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United States and Norway, respectively. The first authors find that when prices are fixed
exogenously airlines tend to schedule departure times next to the others or, equivalently,
cluster. No competiong in pricing seems to drive clustering in departure times. For the
unregulated period, however, results are not conclusive. Salvanes et al. (2005) main finding
is that competitors tend to cluster when prices are set endogenously, in the case of duopoly
routes compared to monopoly routes. With price competition, oligopolies seem to offer more
clustered frequencies rather than monopolies.

Pinske and Slade (1998) and Netz and Taylor (2002) study the case of gasoline retail
markets. The first ones focus in studying whether firms with similar contractual agreement
tend to cluster or to differentiate. Using only data of the gasoline stations integrated with the
four existent oil companies, the authors find that firms with equal contracts tend to cluster.
The hypothesis of clustering among firms is obtained also in Vitorino (2012) analysis about
shopping centers stores in the United States. Other papers such as Buenstorf and Klepper
(2010) and Pennerstorfer and Weiss (2013) also find some sort of clustering.

On the contrary, spacial differentiation is also found in other papers. Of particular relev-
ance for our analysis, the study of Netz and Taylor (2002) reports by focusing in Los Angeles
market, that when localized in a more competitive market, gasoline stations tend to spatially
differentiated from each other.

Spatial differentiation across firms is also found as a result in Seim (2006) respect to video
retail industry and in Borrell and Fernandez-Villadangos (2011) for the case of pharmacies.

Finally, Elizalde (2013) find an inverse relationship between differentiation in multiple
dimensions: geographical location and product variety. In the case of the Spanish movie
theatre exhibition market, he finds that clustering in location drives differentiation in movie
variety, while spatial differentiation in location drives clustering in movie variety. .

Summing up, in the empirical literature, there is evidence of both outcomes, clustering
and spatial differentiation depending on the degree and the type of competition in pricing
and other dimensions such as location and product quality and variety. So, only by studying
the details of the drivers of localization and competition in pricing and in other dimensions
that we would be able to foresee whether clustering or sparsity would dominate in the case of
the deployment of new networks of fast charging stations for electric vehicles. We will study
such details using and entry game of strategic interaction and mobility data.

C The entry game of strategic interaction

Consider a model of entry where within the geographical space there is a road network used
by individuals to undertake all types of journey. Consider also that the intersection points
of the road network constitute a set of finite feasible locations j (j = 1, 2, ..., J) at which the
firms might decide to enter.

Each location is differentiated in terms of two features that are common knowledge to the
firms: on the one hand, they are differentiated by the station set-up costs (essentially grid
reinforcement and localization costs) outlined in the vector zrj , where r indexes different cost
shifters r = 1, 2, ..., R; and, on the other, they are differentiated in terms of their attraction
to consumers, dependent on whether the location provides additional amenities, including,
for example, a coffee shop, supermarket, car wash, etc. as detailed in the vector xj .

Unlike common entry games and following Houde (2012), we assume that demand is
not fixed in any single area and consumers are considered to be mobile between origin and
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destination nodes. We also take into account that consumers differ with respect to income as
in Berry et al. (1995)(BLP).

Additionally, as is usual in models of this type, we consider an identically and independ-
ently distributed (i.i.d.) random draw constituting profit relevant information on costs across
all feasible locations (sεεj) for any feasible location j (j = 1, 2, ..., J), where sε is the scale
of the standard deviation of the fixed cost random draw ε. We also consider idiosyncratic
consumer tastes regarding the utility for individual i (i = 1, 2, , I) traveling between the origin
and destination nodes oi, di (o,d=1,2,...J)), where oi 6= di, to purchase from a facility located
in j (εij) to be identically and independently distributed (i.i.d). Both random shocks are
private information: the former is private information of the costs for each potential entrant
at each location, and the latter is private information for consumer preferences when deciding
where to recharge batteries on the go.

Firms take observable information to estimate the expected profits of entering at each
feasible location j and simultaneously decide to enter when profits are non-negative. The
probability of entry at each feasible location is expressed by σj . The sum of probabilities of
entry into the market is then given by:

N =

J∑
j=1

σj (1)

We assume that there is one and only one potential entrant at each node, and that they
are one-shop stations. We assume that there are no chains. We have also computed the
equilibrium for just one monopolist in the city. Having competing chains is computationally
burdensome because of multiple equilibria and the curse of dimensionality. Absence of eco-
nomies of scale in energy consumption and lack of differentiation between energy supplied by
different brands support the non-existence of chains.

It is unclear whether the industry equilibrium would converge towards a structure with
most of the stations being independent firms, or just having a few chains of stations. Eco-
nomies of scale do not appear to be very important as the industry will be able to buy energy
from the spot market, and stations are just resellers with some localized grid costs. There
might be some economies of scale and scope at the managing procurement and reselling, but
there is not room for scale savings.

By contrast, market power would be very important. The industry would be very different
whether it converges to the two extremes: fully independent firms or monopoly. We have
estimated both extremes. Accordingly, we will show that the number of stations with fully
independent firms is a lower bound while in the monopoly case the number of stations would
be an upper bound.

We focus on the case of fully independent firms (the lower bound) because it will allow us
to discuss whether the industry is offering enough recharging on the go to make the system
work even in the case of fully effective market competition among outlets open to the public.

The set up about the information set available for consumers is a key ingredient in the
analysis, and it should be conveniently modelled taking into account that our aim is to
analyze the entry decisions by potential station entrepreneur. What it is important is to
model accurately the expected sales of any potential entrant at each location (equation 9
bellow).

From the point of view of each potential entrant, the more accurate way to form the
expectation of sales is looking at the expected number of consumers that will stop by the
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station. This expectation is modelled from the consumer perspective using equations 2, 5, 7
and 8 bellow.

Consumers compare utility across all potential locations of recharging stations, and also
compare them to the utility from recharging at home. So, we assume that for each location
j, consumers have a correct expectation of pricing and amenities at that location, and the
deviation from their path.

What we then assume is that, consumers will opt for that station if that is the option that
delivers the maximum utility from the close set of exhaustive and mutually exclusive discrete
choice options: whether each station provides the maximum utility compared to recharging
at home or recharging on the go in any other potential location.

We assume as in Bajari and Nekipelov (2010) that potential consumers of each station
compare recharging at j with the alternative stations weighed by a vector of expectations of
finding any station available in any potential location σk for any k = 1, 2, kJ but k 6= j. OJO
REVISAR LATEX

So doing, each entrant expected sales depend on whether, in equilibrium, whether there
are other competitors opening an station in the nearby.

For searching the equilibrium, we start setting this vector all equal to ones, as if consumers
could recharge in any location (all potential stations open to the public). And also, we look
for the case in which this vector all equal to zeros, as if consumers could recharge only in
that particular location or at home. We compute all equilibra iterating from this vector of
probabilities of entry that soon converge to probabilities very close to one or zero for a reduced
set of locations.

C.1 Demand specification

Let demand for the fast charging of electric vehicles be modeled as a discrete choice prob-
lem over j = 0, 1, 2, 3, ..., J possibilities. Consumers are therefore able to choose between
consuming at one of the J feasible locations or recharging at home (outside-good, j = 0).

Let the commuting paths of individuals between origin-destination zones be called (o, d)
Additionally, let the utility of buying from store j = 1, 2, ..., J depend on the distance

between the commuting paths of the individuals and location j, the features of the location,
the characteristics of individuals and unobservable idiosyncratic tastes over each j location.

Then, the deterministic component of the indirect utility of recharging from station j to
individual i that makes a trip between o, d, (φij) can be expressed as follows:

φij = −λD[(oi, di), lj ] + βxj − (α− α log Yi)pj (2)

being the indirect utility function of recharging at any of the feasible locations j:

uij = φij + εij (3)

and the indirect utility function of recharging at home:

ui0 = 0 + εi0 (4)

where D[(oi, di), lj ] represents the distance between path (oi, di) and facility j with its
location expressed as lj and λ is a parameter that expresses the disutility of deviating from
the commuting path to reach facility j measured in minutes; xj is a binary variable that takes
the value of 1 whenever there are any amenities, such as car wash services, supermarkets or
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coffee stores, at feasible location j; αpj measures the disutility of paying the posted prices; and
α log(Yi)pj introduce the interaction between income and prices and express the differentiation
between individuals that make the same trip in terms of price sensitivity for different levels
of personal income.

As usual in multinomial logit models, the utility of recharging at home is normalized to
zero.

Consumers derive utility from not deviating from their commuting path (equation 2). So
the longer the commuting path, the better off are the consumers once there is another station
available, and the more likely they are of recharging at that additional charging stations.Thus,
the probability that individual i making trip o, d will recharge at facility j, Φij is given by a
multinomial logit model, where the individual is allowed to choose between recharging at any
facility j = 1, 2, ..., J , recharging at home j = 0, or buying from any other location. However,
as we focus in a utility model in which each consumer and potential entrant does not know
where all the available stations are, following Bajari and Nekipelov (2010) and Borrell and
Casso (2011) we allow consumers to evaluate the utility of recharging at each node with
respect to the utility of recharging at any other node in expectation of the probability that
finally a station will be available at these other nodes. This is why the existence of a facility at
any other location apart from j enters in expected terms as the probability that individual i
making trip l will find a facility at any other location. This probability of having any entrant
at each location is named by the parameter σk. Consumers form their expectation of σk
simultaneously, as an assumption of tractability.

Thus, the probability that individual i making trip o, d will recharge at facility j, Φij

is given by a multinomial logit model, where the individual is allowed to choose between
recharging at any facility j = 1, 2, ..., J , recharging at home j = 0, or buying from any other
location. However, as we focus in a utility model in which each consumer and potential
entrant does not know where all the available stations are, following Bajari and Nekipelov
(2010) and Borrell and Casso (2011) we allow consumers to evaluate the utility of recharging
at each node with respect to the utility of recharging at any other node in expectation of
the probability that finally a station will be available at these other nodes. This is why the
existence of a facility at any other location apart from j enters in expected terms as the
probability that individual i making trip l will find a facility at any other location. This
probability of having any entrant at each location is named by the parameter σk. Consumers
form their expectation of σk simultaneously, as an assumption of tractability.

Φij is therefore given by:

Φij =
exp[φij ]

1 + exp[φij ] +
∑J

k=1,k 6=j σk exp[φij ]
(5)

and the probability for the outside good is given by:

Φi0l =
1

1 +
∑J

j=1 σk exp[φijl]
(6)

This demand specification clearly predicts, as expected, that recharging on-the-go in-
creases with the number of charging stations open to the public. And, on the contrary,
recharging at home decreases with the number of charging stations available.

On the other hand, we assume that individuals demand heterogeneous quantities of energy
proportional to the distance traveled per year, which is obtained by multiplying all the trips
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between origin (oi) and destination nodes (di) as registered in the survey for each individual
i by the number of days in a week and the number of weeks in a year.

We also consider that the quantity of energy demanded depends on the share of the electric
vehicle (υ). It also depends on the share of consumption of the electric vehicle recharged on the
go (τ), and the energy consumption per kilometer (C0). We assume that all these parameters
are common for all individuals. Therefore, individual demand for energy on the go (ei) is
given by:

ei = υτC0D(oi, di) (7)

C.2 The supply

Given the previous set-up, expected sales at location j (qj) are given by integrating, by
simulation, the probability of recharging at each location j across consumers:

qj =

I∑
i=1

pjΦijei (8)

and expect profits are therefore as follows:

πj = qj −
I∑
i=1

cjΦijei − Fj (9)

where
∑I

i=1 cjΦijei are the variable costs of providing energy common to all locations,
and Fj is the fixed costs associated with location j.

Entrants’ profits (equation 9) depend strongly on how close competitors are located trough
market shares, and pricing (equation 5, 8 and 11 below). Market shares and pricing decrease
with new entrants. So, there is a business stealing effect modeled in the game.

Let the fixed costs Fj have an observable part comprising a common component in equip-
ment for all locations f , a component that is specific to each location j as regards grid
reinforcement and localization zrj , and the unobservable (i.i.d.) random draw on costs (sεεj).
Therefore, the fixed cost equation is given by:

Fj = f +
R∑
r=1

µrjz
r
j + sεεj (10)

where µrj is a parameter that takes different values according to variable zrj , for any
r = 1, 2, ..., R and sε is the scale parameter of the variance of the random draw of the fixed
cost at each location. Increasing the standard deviation we would make costs more location
specific according to unobservable factors, while decreasing it, we would be making fixed costs
more closely related to the observable deterministic part of fixed costs (grid reinforcement
costs and rental costs). In the simulations, we are assuming that the deterministic part of
the fixed costs is prevalent in our case of study and that the scale is equal to one: sε = 1.

C.3 Solving the entry game of strategic interaction

We assume that each entrant competes à la Bertrand in prices with respect to the set of ex-
pected entrants that are differentiated by location. From the system of first order conditions,
the Nash equilibrium pricing is as follows:
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pj = cj −
∑I

i=1 Φijqi∑I
i=1

∂Φij

∂pj
qi

(11)

where
∑I

i=1 Φijqi∑I
i=1

∂Φij
∂pj

qi
is the mark up of the firm that enters at location j.

Consider now that from Bertrand competition an equilibrium price is obtained. Finally,
suppose that given equilibrium pricing pj and expected profits at each feasible location πj ,
each potential firm at each node simultaneously decides whether to enter or not to enter. As
we assume that the unobserved costs distribute as a type-one extreme value random shock,
the probability of entry is given by the following logit model:

σj =
exp[E(πj)]

1 + exp[E(πj)]
(12)

It is straightforward to verify that the result of the game of strategic interaction gives the
total number of entrants to the market N :

N =
J∑
j=1

σj (13)

As far as the equilibrium is concerned, the type-one extreme value distribution of the error
term guarantees that the firms conjectures are monotonic, continuous and strictly bounded
inside the set (0,1). Therefore, by Brower’s fixed point theorem the entry game of strategic
interaction has at least one solution.

D Data and methodology

We use Barcelona as a case study for testing how the free entry game of strategic interaction
simulates the entry and location of fast charging stations in a dense city (for which we have
access to mobility survey data as well as demographic and income data), under a number of
assumptions regarding the values of certain parameters, including the percentage of electric
vehicles in the citys overall vehicle park.

The origin-destination paths. The origin-destination commuting paths were built using
four sources of information: the Mobility Survey conducted by the Metropolitan Transport
Authority and the Territorial Department for the year 2006; the Catalonia Road Graph; and,
the Barcelona Neighborhood and Census Zoning Maps published by the Regional Government.

The survey collects data on all the trips made by the residents of Catalonia of above 4
years old. Participants in the survey are randomly selected and the interview is made by
phone. Within the survey, the Metropolitan Region of Barcelona is divided into 308 zones, 63
of which correspond to the city of Barcelona. The data corresponding to the trips made by
residents of the Metropolitan Region in their private vehicles within the Metropolitan Region
number 58,443. Of these, 18,411 have Barcelona as their origin or destination while 6,330
are made within the city. Taking into account commuter trips, the most frequent origin-
destination zone is 17 (the southern entrance to the city), while in the case of trips within
the city the mode zone is 12, in the city center.
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The Catalonia Road Graph was filtered leaving information just for the city, and four
nodes and two arcs were added using the city map published online at the website of the
Barcelona City Council. In total, the road graph contains 891 nodes and 2,436 arcs. These
arcs were made bidirectional, as the map uses a simplified version of the city network.

The Barcelona Neighborhood Map used corresponds to 2011 and it divides the city in
75 neighborhoods. It provides population information disaggregated by gender and area
in square meters for each of the polygons. The total population is 1,631,259 inhabitants,
distributed through the neighbourhoods. The smallest neighbourhood in terms of population
has 466 people and the largest one 58204.

The Census Zoning map used also corresponds to 2011. It divides the city in 1,063 census
zones and provides the same information as the former map but for smaller statistical areas.
The mean population per zone is 1,537, while the minimum and maximum populations in a
zone are 466 and 7,291, respectively.

In order to estimate the shortest path corresponding to every commuting trip, an origin-
destination (OD) matrix was built. For trips within the city, a three-step methodology was
used. First, each origin and destination zone was assigned to a node in the network by first
building the geometric centroids and then assigning them to the corresponding node with the
population density criterion. This yielded as a result, original (b) origins and destinations ob

db, with b = 1, 2, ..., 63. Second, the spatial correlation within the origins and destinations was
tested and kriging techniques were applied. With the results of the kriging and the density
of population corresponding to each node, we were able to assign a probability of being an
origin or a destination to all the nodes in the network. Therefore, in our case study, final
origins and destinations are given by: o = 1, 2, ..., 891 and d = 1, 2, ..., 891. Finally, a random
sample with uniform distribution was built for every origin and every destination of the paths
in order to assign the nodes corresponding to each commuting path within the survey (see
Appendix A for a fuller explanation).

Commuters were assigned to the corresponding node of entry in to or out of the city,
according to the shortest path given by googlemaps. The destination or origin within the city
was assigned as above.

To estimate the commuting path between each origin and destination, Dijkstras shortest
path algorithm was used (Dijkstra 19593). Thus, we ascertained the mobility flows via the
891 nodes and 2552 arcs across the city of Barcelona.

With this information, we were able to make a plausible approximation of the mobility
flows in the city for all types of movement: home to work, home to study, home to shopping,
home to any other destination, all back-to-home movements, and paired movements between
all these destinations across the 891 nodes and 2436 arcs.

We are using a graph with the main roads as arcs and the main nodes as spots as origins
or destinations of their commuting paths, and also available as locations for charging stations
in the city. So the algorithm is good at comparing all the paths from any node A and B, and
computing the shortest distance from that two spots. The model is also good at computing
the shortest deviation for any consumer going from A to B for recharging at C. However, we
are assuming that there is not congestion within the graph, as if all the main roads would be
able to attract traffic. This is not probably the case in some rush hours.

So, there might be some differences to real traffic flows due to some rush hours localized
congestion; however mean differences for all year round shouldn’t be too large if the main

3This algorithm connects any two nodes from a network through the shortest path between them
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roads suffer the same mean level of congestion or capacity constraints across the city at the
same time hours. In any case, congestion is not controlled for in our exercise as we do not
have real time data, we are offering a mean year round approximation that it is not biasing
our results of localization in the city as long as unobservables related to congestion are i.d.d
across city arcs and nodes.

The feasible locations. The nodes were differentiated in terms of set-up costs and their
ability to attract demand. To this end, a map showing all fuel stations, hypermarkets and
malls in the city was drawn up and these facilities were assigned to the closest node in the
network. Second, the nodes in the network were assigned to one of the 73 neighborhoods of
Barcelona.

The set-up cost vector zrj contains four different variables (i.e. R=4). For the grid re-
inforcement cost (r=1,2,3), locations were aggregated into three categories according to the
following criteria (Figure 1): nodes with a petrol station and a car wash (z1

j = 1); nodes with

a petrol station with more than 10 pumps(z2
j = 2); and neither of the previous two options

(z3
j = 3). Entrants at most of the nodes need to pay set-up costs upfront and in full for grid

reinforcement as nodes are equipped with neither a petrol station with a car wash nor a petrol
station with ten pumps(z3

j = 3). Entrants at nodes with a petrol station with more than ten

pumps has to afford half of the grid reinforcement cost (z2
j = 2). Finally, at locations with

a car wash entrants do not have a grid reinforcement cost (z1
j = 1). However, all facilities

must pay the localization cost corresponding to the rent of a commercial establishment in the
neighborhood in which the node is located. Following, z4

j , where it takes 73 different values
according to the localization in the corresponding neighborhood. Set-up costs range from
1, 236 eto 57, 676 e.

Petrol station data were obtained from the website of the Spanish Ministry of Industry,
Tourism and Commerce. The costs of connection were taken from Schroeder and Traber
(2012) and set in 15, 000 e. Costs of localization in Barcelona were assigned according to
the average price in 2007 of a square meter of a commercial establishment as published by
Barcelona Open Data.

The malls and hypermarkets (Figure 1) together with the amenities of the petrol stations
were used to characterize the feasible locations in terms of their ability to attract demand.
This feature was included by using a binary variable that took a value 1 whenever amenities
such as a bar, restaurant, store, and so on were available at the feasible location.
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Amenities

Gasoline stations with carwash

Gasoline stations with 10 or more pumps

Figure 1: Locations with amenities, gasoline stations with carwash and gasoline stations with
10 or more pumps

The marginal cost of providing energy was considered to be equal to 0.15 euros/kWh
applied to a standard recharging of 16 kWh for every feasible location. This represents the
average cost of the kWh plus the transport cost for the Spanish market in 2013.

Assumptions regarding consumers and mobility. Consumers considered were all mak-
ing trips in private vehicles between the different zones of the city and commuting trips to
Barcelona from the rest of Catalonia.

An homogeneous penetration of electric vehicles in each zone of Barcelona was considered.
Income data for the citys residents were taken from a report on income distribution conducted
by the Barcelona City Council and the Catalan Statistics Institute (IDESCAT). Income data
for commuters resident in the Metropolitan Region were taken from the statistics prepared
by the Barcelona Provincial Council. And data for the residents of the rest of Catalonia were
taken from IDESCAT. The average income for the individuals in the sample takes a value of
16,439.41 e/year, with a standard deviation of 5,600.26 e/year, where the maximum income
was 33,809 e/year and the minimum 10,276 e/year.

The parameters The equilibrium of the entry game of strategic interaction was solved
given the parameters of the indirect utility function: {λ, β, α, α}; υ and τ for the quantity of
energy needed; and, µj for the grid reinforcement costs.

Of these, λ was taken from Houde (2012) (1.0004), as it is the only paper that includes
the disutility of deviating from the commuting path in the estimation of gasoline demand
when considering consumer mobility.

β was set-up at 2.5, as the existence of amenities constitutes a fundamental characteristic
at the moment of choosing whether to recharge at a station or to recharge at home, taking
into account that the average time for a recharge is 20 minutes.

Regarding price elasticity, α was set-up at 0.65 and α at 0.06.
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Robustness checks for the indirect utility function parameters were made and are shown
in the Results Section.

Different scenarios were considered with regard to the share of electric vehicles (EVs)
within the overall vehicle park υ. Our results are presented for the 1%, 3% and 5% scenarios.
The last scenario was included as this is the goal for EV penetration set by the European
Commission, while the first two are included to ensure that the market at least meets the
10% recharging on-the-go target.

To fix the upper bound of the market potential, the share of consumption of the electric
vehicle recharged on the go, τ was considered to be equal to 10.5%. This choice was condi-
tioned by the calibration of the model to approximate the recharging on the go to the 10%
projections made by the European Commission.

Finally, µ1
j takes the value of 0 whenever there is a petrol station with car wash facilities

at the feasible location, µ2
j 1, 019 ea year whenever there is a petrol station with 10 or

more pumps at the location, µ3
j 2, 038ea year when the location does not have any of the

aforementioned facilities. These results are derived from considering an annual payment with
an interest rate of 6 per cent for a ten-year credit for grid reinforcement costs. Finally, µj
takes the value of 1 for r = 4.

Methodology. To avoid the curse of dimensionality, we integrate logit demand across a
random sample of only 100 representative individuals a la BLP. They were selected from the
Mobility Survey as a random sample but respecting the weights of each trip (See Appendix
B for details).

The probability of entering at each location was obtained via a simulation process including
the simultaneous determination of: i) the probability of individual i on origin-destination trip
i recharging at facility j (Φij); ii) the Bertrand (Nash in prices) equilibrium pricing at each
feasible location j (pj); and, iii) the probability of entry at location j (σj).

The probability of individual i on origin-destination trip i refueling at facility j (Φij) was
introduced as a multinomial logit with random coefficients as in Berry et al. (1995). The
sources of heterogeneity included are two: i) origin-destination path (oi, di); and ii) income
Yi.

The price equation pj was derived from the first order condition of the firms by considering
Bertrand competition (Nash in prices equilibrium). See also Berry et al. (1995). Finally, the
probability of entry at location j (σj) was introduced as a discrete choice logit model where,
following Borrell and Casso (2011), the expected profits of a potential entrant at each location
j depend on the probability of having any number of competitors at the other j − 1 feasible
locations.

The simultaneous non-linear entry game problem was solved in Matlab by iteration.
To search for multiple equilibria, first, we obtained the vector of entry probabilities in

equilibrium starting iterations with σ1 = ... = σk = ... = σJ = 1 as if consumers expect
to find a fast charging station at all nodes and entrants expect to have a competitor at
all other nodes, and the vector of entry probabilities in equilibrium starting iterations with
σ1 = ... = σk = ... = σJ = 0 as if consumers expect to find only one fast charging station
and entrants at each node expect to be monopolists and to have no competition at the other
nodes. Second, we run the entry game from both extreme solutions to look for the equilibria,
allowing the model to converge to multiple equilibria.

The number of stations at the first iteration assuming that entrants disregard the entry of
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other firms in other locations is far from the number and location of stations we obtain from
the full game of strategic interaction. In the case of the 5% penetration rate, disregarding
the interaction would drive more than 300 stations in the market, while the final equilibrium
with non-negative profits and full strategic interactions the number of stations goes down to
only 83 as we will show bellow.

E Results

E.1 The equilibria

The model shows that a unique stable equilibrium can be achieved for every level of penetra-
tion of electric vehicles (EVs) considered. Starting iterations with σ1 = ... = σk = ... = σJ = 1
as if consumers expect to find a fast charging station at all nodes and entrants expect to have
a competitor at all other nodes always renders a unique equilibrium with the expected number
of entrants being equal to only 2, 51 entrants or as many as 83, depending on the level of
penetration of EVs being 1%, 3% or 5% respectively. Starting the iterations by assuming that
σ1 = ... = σk = ... = σJ = 0 as if consumers expect to find only one fast charging station while
the entrants at each node expect to be monopolists, we always obtain these same equilibria
as previously described (Figure 2).

In the equilibria, we obtain very sharp estimated σj as those are taking values very close
to 1 (0.999) or very close to 0 (0.001). This means that exact location of the stations at each
equilibria is very sharp and clearly identified. Nodes are offering clearly non-negative profits
for the place where stations enter, while clearly negative profits for all the rest.

14



1% Share Electric Vehicle 3% Share Electric Vehicle 

5% Share Electric Vehicle 

4.18 4.2 4.22 4.24 4.26 4.28 4.3 4.32 4.34 4.36

x 10
5

4.574

4.576

4.578

4.58

4.582

4.584

4.586

4.588

4.59

4.592
x 10

6

4.18 4.2 4.22 4.24 4.26 4.28 4.3 4.32 4.34 4.36

x 10
5

4.574

4.576

4.578

4.58

4.582

4.584

4.586

4.588

4.59

4.592
x 10

6

4.18 4.2 4.22 4.24 4.26 4.28 4.3 4.32 4.34 4.36

x 10
5

4.574

4.576

4.578

4.58

4.582

4.584

4.586

4.588

4.59

4.592
x 10

6

Figure 2: Equilibria at 1%, 3% and 5% share of EV

The entry game of strategic interaction shows that the free market solution offers sufficient
recharge on the go from a 3% threshold of EV penetration. Even though an equilibrium
is achieved for a 1% share of EV penetration, recharging on the go would satisfy only an
insignificant part of energy needs (0.482%)(Tablei). In the case of 3%, the market can be
considered to offer sufficient recharging on the go, since 8% of energy needs would be met by
recharging in the network of fast charging stations. Finally, if 5% of the vehicle park were
to be electric, around 9.5% of recharges would be on the go, which is very close to the 10%
target set by the European Commission (MEMO 24/12/2013 EC). Note that Table i shows,
as expected, that the mean price falls with the number of entrants. Congestion problems do
not appear to be relevant, as all the entrants show available capacity after serving demand in
any equilibria: none station has ever to attend near or more than 96 recharges per day (24
hour availability times 2 recharges per hour times 2 plugs per station).

Table i: Equilibria at 1%, 3% and 5% of penetration of EV
Variable/ Share EV 1% 3% 5%

Number of entrants 2 51 83

Share ‘on the go’ (%) 0.482 8.06 9.47

Mean Price (e) 25.09 18.87 18.55
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Expected profits seem to depend more on demand drivers as distance to stations and
existence of amenities. Nevertheless, the entry cost play also a role in determining the entry
locations. In table below it is shown a full characterization of the locations of the fast charging
stations for each rate of penetration of EV.

Table ii: Characterization of locations at 1%, 3% and 5% of penetration of EV
Variable/ Share EV 1% 3% 5% Total feasible locations

Number of locations 2 51 83 891

Amenities 100% 100% 75% 8.4% (75)

Grid reinforcement costs
Type 1 (0 cost) 0% 23.5% 19% 2.24% (20)
Type 2 (half cost) 0% 4% 4% 0.45% (4)
Type 3 (full cost) 100% 72.5% 77% 97.3% (867)

Localization costs (average e) 2250 1786 1791 1811

E.2 The spatial competition

In addition, we find evidence that supports the spatial differentiation of competitors in the
free-pricing competitive scenario. Results are robust with two different counterfactuals and
several distance measures.

We first compared the competitive outcome to that obtained by simulating a monopoly
with free entry. As state in Netz and Taylor (2002),the monopoly equilibrium should be
characterize by a situation where facilities are located minimizing transportation costs of
consumers. These locations maximize the amount of consumer surplus that can be appro-
priated by the monopoly by charging higher prices. Introducing competition, if firms have a
tendency to a minimum differentiation the outcome would be clustering among competitors.
By contrast, if competitive firms tend to maximum differentiate, increasing competition would
turn in firm spatial differentiation. Hence, whether competition increase the degree of spatial
differentiation or not relies on whether firms tend to maximum or minimum differentiate.

Differently from the airline industry (See Salvanes et al. 2005) and equal to gasoline
stations, we expected to find higher spatial differentiation among firms as the degree of com-
petition in the market increases. Overall, because possible capacity contraints may encourage
firms to locate far from competitors and charge higher prices than trying to steal some sales
by locating close.

We calculated the monopoly solution by obtaining the system of price equations from the
first order condition of the profit maximization problem, as usual in these kinds of games.
Hence, price for the j location is given by:

pj = cj + ∆−1
I∑
i=1

Φijqi (14)

where ∆ is a J by J matrix, whose (j, k) element are given by:

∆j,k =
−∂(

∑I
i=1 Φikqi)

∂pj
(15)

and the (j, j) elements are given by the facility j own price elasticity:
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∆j,j =
−∂(

∑I
i=1 Φijqi)

∂pj
(16)

We compare the results in terms of location:where would the monopolist locate the same
exact number of entrants than in the single facility competition case.

The second benchmark is the counterfactual given by establishing a uniform regulated
price. With no entry restrictions and the same number of entrants, the comparison with
the uniform regulated price scenario allow us to identify differences in location due to price
competition. Here again, we expected to find larger location differentiation between firms in
the free-pricing and single firm competition setting.

Recall that, differently from previous literature, in our case, transportation costs are
given by the distance traveled by consumers to facilities as deviations from their commuting
path. Consumers are not expected to stop by a facility close to their home but close to their
commuting path. Hence, we first measure differentiation between firms through the average
distance consumers need to deviate from their commuting path in the different settings. If
the deviation is lower, then firms must be located closer to the paths were demand flows
and to each other (being the extreme case the monopoly setting). If the average deviation is
higher, firms must be located far away from competitors increasing the distance commuters
have to travel to reach them. To check the robustness of results, in second place we use two
different measures of geographical distance: a) we compare the Euclidean distance between
competitors in the different settings with different definitions of market size (half-, one-, and
two-mile radii) as in Netz and Taylor (2002); b) we compare the distance between competitors
taking into account network paths in the graph.

For the uniform price benchmark, for the 3% scenario, the regulated price was set at 16eso
as to achieve the same outcome as in the free pricing case in terms of the number of entrants
(51 facilities). For the 5% scenario, the same procedure was adopted and the regulated price
was set at 26ereaching 83 entrants as in the case of free entry.

Results measuring the distance trough deviations of commuting paths are presented for the
5% of electric vehicles scenario. For the 3% scenario results are inconclusive: the monopoly
setting do not render to a unique stable comparable equilibrium, and, statistical significance
of the results obtained in the second benchmark can not be guaranteed. This is, the difference
in average deviation is only statistically significant in the 5% scenario.

The results for the three settings are presented in (Tableiii).
Spatial differentiation of firms when both price and entrance are unregulated is the out-

come we obtain when single facility firms compete. The monopoly case renders the largest
degree of facilities agglomeration around communting flows, and therefore, to each other fa-
cility. As shown in the table, the average deviation of the commuting path in the monopoly
case is just 9 meters. We also observe that, as expected, the deviation and distance between
facilities significantly increases if single facility firms compete in the market.

We restrict the analysis to the location of the more profitable 83 facilities in the monopoly
case (5% penetration rate), the same number as in the single facility firms competition.
However, in monopoly, the number of facilities with non-negative profits is much larger (361)
as mean pricing is also much higher. These more profitable locations in the monopoly case are
the locations in which travel costs of commuters are minimized given the number of locations
are 83.

The comparison between the free-price setting and uniform price-setting also shows that
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deviation is larger when firms are allowed to compete in prices. This was the expected result
as in the regulated setting the market power effect is not biding and therefore firms have
only incentives to locate closer to competitors to steal part of their sales. However, the small
difference found between the uniform and free price settings also may show that the market
power effect is important but not very large.

Table iii: Distance between competitors measured in deviations of the consumers
Share EV- Entrants 5%- 83

Variable Free Regulated Monopoly

Average deviation (m) 144.84 127.23 9.67

ttest 1.7724* 17.9419***

Note: statistical significance at 1% (***), 5% (**) and 10% (*).

Moreover, our results are consistent with the theoretical previous work that used two
sets of assumptions to guarantee the existence of Nash equilibria in the location and price
games. On the one hand, it is consistent with the results found in Osborne and Pitchik (1987)
using a mixed strategies approach; on the other, it is also a feasible outcome considering pure
strategies with heterogeneous consumers as in Anderson et al. (1992).

Results using Euclidean distance in space and through the road network (shortest path)
are only conclusive when the independent competitive firms setting is compared with the
monopoly setting. This, as equality of means between regulated price and independent firms
setting cannot be rejected. In Table iv are presented the distances between competitors for
the different market definitions and the corresponding equality of means test. In the case
of the independent competitive firms setting compared with the monopoly setting, results
confirm that competition increases the spatial differentiation between firms.

Table iv: Distance among competitors measured in Euclidean and shortest path distances
Distance In space -Euclidean- In the network -shortest path-

Miles half one two half one two

Regulated price 479.3 938.8 1787.9 480.86 910.2 1822.69

Independent firms 457.8 902.9 1748.5 461.0 872.9 1776.5

ttest -0.63 -0.77 -0.85 -0.51 -0.6885 -0.748

Monopoly 361.8 720.6 1052.5 373.4 702.4 1088.2

Independent firms 457.8 902.9 1748.5 461.0 872.9 1776.5

ttest 3.2860*** 4.2485*** 12.0020*** 2.6819*** 3.7259*** 10.7340***

Note: statistical significance at 1% (***), 5% (**) and 10% (*).

Comparison between the locations chosen by independent single facility competitors and
the ones that would have been chosen by a monopoly setting up the same number of facilities
is shown in (Figure 3).
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Figure 3: Locations equilibria at 5% penetration rate: monopoly vs. independent competitors

As an additional interesting result looking at figure 3, the model shows that in a free
pricing setting of independent single facility firms in competition, no zones in the city remain
with a lack of supply of fast charging stations.

E.3 The social welfare

In this section we compute consumer and producer surplus, and also total welfare, to analyze
whether some public intervention or a monopolic structure could render an improvement in
social welfare with respect to the free price and location competition scenario.

As usual, we estimated welfare as the sum of the expected producer and expected consumer
surpluses:

SW =
J∑
j=1

E(πj) +
I∑
i=1

E(CSi) (17)

Following Train (2009) we calculated the expected consumer surplus in euros as:

E(CSi) =
Yi
αipj

E[maxj(φij + εij)] (18)

where
αipj
Yi

is the marginal utility of income and maxj(φij + εij) the alternative that
provides the greatest utility to consumer i. The results presented are from simulating 100
times εij following a type-one extreme value distribution.
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We first compute social welfare to compare whether if a price regulation could improve the
outcomes obtained under the free pricing and entry scenario. Results for the 3% and 5% of
penetration of the electric vehicle are presented in (Table vii). As expected, in the free pricing
scenario utility increases with the number of entrants as consumers value variety. Expected
profits increase primarily because of the expansion of the market, while the business stealing
effect is shown to exist, albeit only at a very low level. Total welfare therefore increases with
the share of penetration of EVs.

The counterfactual given by the uniform regulated price show that in the 3% scenario,
social welfare is higher with uniform prices that are set lower than the mean nonuniform un-
regulated prices, while in the 5% scenario the opposite outcome is obtained, welfare decreases
with uniform prices that are set higher than the mean free prices. Hence, this implies that a
policy intervention that sets a uniform price lower than the one obtained in the free pricing
equilibrium while keeping the same number of facilities and the degree of differentiation may
improve social welfare.

Moreover, in the 5% scenario, the higher welfare obtained in the free scenario is consistent
with the results obtained in the spatial analysis (See Osborne and Pitchik 1987). By differ-
entiating, firms tend to locate closer to the efficient result. Higher uniform pricing leads to
clustering and to a less efficient equilibrium.

Further research should be aimed at assessing the extent to which different combinations
of price regulations and/or transfers would provide better outcomes than those obtained with
free entry, free pricing and no transfer equilibria. This question remains out from the scope
of this paper.

Table v: Welfare decomposition and evolution. Free vs Regulated Pricing
Share EV 3% 5%
Setting Free Regulated Free Regulated

Price (e) 18.87 16 18.55 26

Number of entrants 51 51 83 83

Utility (e) 2,023,273,821 3,573,555,810 3,519,014,534 2,552,805,932

Standard deviation 69,347,928.29 80,165,929 124,869,843 127,680,934

Expected Profits (e) 784,253 587,677 1,679,874 2,238,592

Total Welfare (e) 2,024,058,074 3,654,309,416 3,520,694,408 2,555,044,524

Following, we use the 3% setting to compare the free entry case with situations where the
location is regulated. Particularly, we estimate the social welfare of: i) randomly assign the
same number of entrants; ii) assign the number of entrants to one zone of the city; iii) locate
one entrant in every gasoline station.

Results are presented in Table vi by total welfare descending order. As observed, the free
market allocation overcome any of the other scenarios in terms of consumer surplus, expected
profits and total welfare.

With respect to utility, in the free setting scenario is more than five times bigger than
the utility expected to be obtained in the other settings with the same number of entrants.
Even in the case of the gasoline stations location, with 74 entrants, the utility of consumers
is lower than in the free setting scenario. This work as expected, as these new locations do
not take into account consumers mobility patterns nor amenities preference.

Expected profits are also lower in the regulated locations settings, arising to be negative
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in the one zone location. Again results worked as expected as the location of the facilities did
not take into account nor costs nor expected sales at the locations.

Hence, we couldn’t find any evidence supporting location regulation without taking into
account demand and supply drivers. Finding whether it exist or not one location that improve
total welfare following either utility or profits maximization is out of the scope of this article.

Table vi: Welfare decomposition. Free setting vs regulated location. 3% scenario
Setting Free Gasoline stations Random One zone

Number of entrants 51 74 51 51

Utility (e) 2,023,273,821 1,969,488,880 405,074,016 389,989,752

Standard deviation 69,347,928 76,218,851 62,779,184 37,122,942

Expected Profits (e) 784,253 553,340.37 56,495 -98,981

Total Welfare (e) 2,024,058,074 1,970,042,221 405,130,512 389,890,770

Finally, we use the 5% setting analysis to compare the welfare obtained in the free entry
of independent firms scenario with the monopoly situation. Our result is compatible with
economic theory: the monopoly appropriates part of the consumer surplus and profits are
higher but there is a loss in efficiency that implies a lower total welfare in the monopoly case.

Table vii: Welfare decomposition. Independent competitors vs Monopoly
Setting Independent firms Monopoly

Number of entrants 83 361

Utility (e) 3,519,014,534 1,339,784,013

Standard deviation 69,347,928 180,872,477

Expected Profits (e) 784,253 86,481,175

Total Welfare (e) 3,520,694,408 1,426,265,188

E.4 Robustness checks

We conducted several robustness checks for the results. Particulary, we tested the sensibility
of results regarding the parameters and the sample. We also compare our results with the 5
European cities with the higher electric vehicle penetration rate and with the actual situation
in Barcelona.

As for the consistency of the demand parameters, all robustness checks conducted support
the reliability of the results obtained. First, we calculated the travel costs in line with Houde
(2012): taking the rent (Y) to rent per minutes and in cents of euros, where the travel cost is
given by λ

α+α∗log(Y ) . The results show the need for a 1.7119 cents difference in price in order
to deviate one minute from the commuting path. Therefore, given an average recharge of
16 kWh, this implies a compensated cost for deviating to complete an average recharging of
16.43 euros per hour. This amount is similar to the average income of 13.07 euros per hour
published by the statistics office IDESCAT for Catalonia for the year 2006.

Second, the price elasticity of recharging at location j with respect to the other locations
and the outside good was obtained: the 3% scenario gives an average result of a 2.21 per
cent reduction in quantity sold at location j for j = 1, ..., J because of a one per cent price
increment; the 5% scenario gives a result of −2.23. Of these amounts, a certain percentage is
dedicated to the other locations and another to recharging at home.
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The price elasticity of recharging on the go with respect to recharging at home was also
calculated. The results show how recharging at home increases with a one per cent increment
in the price of the fast recharge. The outcome for the 3% scenario is −0.098 while that for
the 5% scenario is −0.104. Previous evidence for the demand elasticity of gasoline supports
the calibration of the parameters used in this model. Espey (1998) meta-analysis includes
studies published between 1966 and 1997 and he reports that estimates for the short-run price
elasticity of gasoline ranged between 0 and -1.36. Brons et al. (2008) meta-analysis draws
on data published between 1978 and 1999 and the authors report estimates of price elasticity
ranging between -1.36 and 0.37, with the highest frequency of estimates in the -0.1 to -0.2
interval followed by the interval corresponding to estimators between 0 and -0.1.

We also tested the sensibility of results regarding consumers price sensitivity and amenities
preference. We first used the 3% electric vehicle penetration scenario to run the model
increasing and decreasing price sensitivity. This is, changing the parameters α and αi. Results
are presented in Table viii, where α = 0.6 and αi = 0.055 correspond to the parameters used
in the setting. As observed, results show a low sensitivity to price parameters changes and all
main results hold for every specification. A change of a 30% in price sensitivity (the extreme
cases) increases/reduces the number of entrants in 2, while the recharges on the go are of
about an 8% for every specification. Additionally, the results show that, as expected, mean
price increase when the consumers are less sensitive and decrease in the opposite case.

Table viii: Consumers price sensitivity robustness checks
Setting α = 0.45,

αi = 0.04
α = 0.6,
αi = 0.055

α = 0.65,
αi = 0.06

α = 0.7,
αi = 0.065

α = 0.85,
αi = 0.08

Number of entrants 53 52 51 51 49

Share ’on the go’ 8.12 8.14 8.06 8.09 7.92

Mean price (e) 20.41 19.2 18.87 18.51 17.61

Notes α = 0.6 and αi = 0.055 are the parameters used in the model.

Second, we used the same share of EV to test the sensibility of results respect to amenities
preference. Results show that when preference for amenities increase in around a 10% the
number of entrants increase in one, while when the preference decreases by the same quantity
entrants remain in 51.

Respect to the sample, we generated six additional random samples following the same
procedure than in the original one to test the sensibility of results regarding the sample
selection. After running the model for the three electric vehicle rates of penetration for each
sample, we constructed the confidence intervals of the mean of the distribution to test whether
our original sample results hold inside. For a 99% confidence interval, the original sample
renders a result in the number of stations that are inside the confidence interval 4. This also
holds for the 1% and 3% electric vehicle rates for a 95% confidence and 90%.

Additionally, we tested how results would change if the adoption wasn’t random but
similar to the groups that have already adopted the electric vehicle in other countries. This
is, we selected a random sample within the young population (until 44 years old) and with the
highest income. As showed in Table ix, main results hold: a market proves to be self-sufficient

4Confidence intervals are [ -0.69 3.55], [40.82 54.52] and [44.79 84.71], respectively for the 1%, 3% and 5%
share of EV.
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from a 3% electric vehicle penetration rate, the number of entrants increase with the electric
vehicle share and price decreases with the number of entrants.

Table ix: Random vs young and with high income samples
Share EV 1% 3% 5%

Setting Random Young Random Young Random Young

Number of entrants 2 2 51 58 83 71

Share ’on the go’ (%) 0.482 0.53 8.06 8.49 8.35 9.47

Mean price (e) 25.09 20.78 18.87 18.64 18.55 18.52

Finally, we compare our results with the five European cities with the higher electric
vehicle penetration rate and with the actual situation in Barcelona. Table below presents the
rate of penetration at country level, and the number of fast charging stations in the different
cities. For the case of Barcelona, with a 0.2% of penetration rate, our model predicts less
than two fast charging stations. This is compatible with the current situation as although in
the table appear 25 stations, only one of them is private. The rest were located by the local
government without any mobility or business criteria. Moreover, as our model predicts, the
unique private station is located in a gasoline station with car wash and amenities (supermar-
ket, bar,...). In general, table shows a positive relationship between the share of the electric
vehicles and the number of fast charging stations. However, the relationship seems not to
be linear so exists other drivers that affect the entry of stations like density of population,
mobility patterns and costs. Therefore, like in our model, is important take into account all
these factors and not only the penetration rate.

Table x: EV and fast charging stations in Europe
Country Stock of EV

and PHEV
(%)*

No. of sta-
tions**

Density of pop-
ulation***

Norway (Oslo) 12.5 34 1,400

Netherlands (Amsterdam) 3.9 26 4,908

Sweden (Stockholm) 1.4 29 4,800

Denmark (Copenhagen) 0.9 24 7,400

France (Paris) 0.7 36 21,258

Spain (Barcelona) 0.2 25 † 15,687
Notes * International Energy Agency (2014), Plug-in Hybrid Electric Vehicle (PHEV); **
Chargemap.com. Number of fast charging stations in a radius of 25 km around the city
center; *** Eurostat; †From the 25, only 1 is private.

F Concluding remarks

This paper has simulated a full game of strategic interaction to model the entry and location
of fast charging stations for electric vehicles. It draws on mobility information in the city
of Barcelona for both residents and commuters together with their income and demographic
data. Additionally, it employs information about the road network, petrol stations and other
amenities, including super/hypermarkets, and the cost of location around the city to simulate

23



the equilibria of the game. Robustness checks conducted on the parameters support the
evidence provided by the simulation.

A sufficient network of fast charging stations is only found to offer a solution for ‘range
anxiety’ when the electric vehicle penetration rate rises above 3%. For the 3% and 5% scen-
arios, a unique stable equilibrium is achieved with the entry of 51 and 83 firms, respectively.
Thus, our results indicate that a system of transfers to support a network of fast charging sta-
tions is not needed if electric vehicles attain a significant rate of market penetration. However,
this threshold is 15 times higher than the current penetration rate in Barcelona.

Demand drivers seem to have a stronger influence than entry costs in determining the
localization of the fast charging stations. Further, when competing in terms of location and
price, firms seem to differentiate from competitors more in spatial terms than when they are
in the same setting with a uniform price or in comparison to the monopoly case. ‘Market
power effect’ and ‘market expansion effect’ seem to be stronger than the ‘business stealing
effect’Ṫhe model also shows that without any entry restrictions the entire geographical space
would be supplied with fast charging stations.

As it is usual in differentiated product markets, consumers show a preference for variety.
Here, the market expands with the rise in penetration of electric vehicles in two ways: first, in
response to the growth in the need for electricity and, second, because of the greater demand
for recharging on the go.

The counterfactual establishing uniform regulated prices shows that a policy intervention
in the form of a uniform price lower than that obtained in the free-pricing equilibrium would
improve social welfare. However, policy intervention is not found to improve welfare for every
level of penetration of electric vehicles.

Further research will be conducted to assess the extent to which different combinations of
transfers and price regulations would provide better outcomes than those obtained with free
entry, free pricing and no transfer equilibria.
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Appendix A Kriging and Origin Destination Matrix

Kriging is an interpolation method used to predict the unknown values of a variable given the
spatial correlation presented by the observable values. The technique uses both the distance
and the degree of variation between known data points to estimate values in unknown areas.
The degree of relation between points is measured by using the semivariance. As the distance
between points to be compared increases so does the semivariance.

A.1 Ordinary Kriging fundamentals

As presented in Hengl (2009) ordinary kriging is based on the model presented below. For
expository reasons, the variable that is spatially distributed along x (latitude and longitude)
locations will be called o, the known values of the variable will be presented as o(xc) and at
unobserved locations as o(xe).

o(x) = µ(x) + ε(x) (A.1.1)

where µ(x) is the global mean and ε(x) the spatially correlated stochastic part of the
variable o. By using ordinary kriging the predictions of the value of a variable at some new
location xe are given by:

ô(xe) =
N∑
e=1

we(x
e)o(xc) (A.1.2)

where we are the kriging weights and o(xc) the values at the observed locations.
This is the same as:

ô(xe) = λeo
c (A.1.3)

with λe the vector of kriging weights and oc the vector of C observed values.
The technique uses the semivariance γ(h) to express the degree of relationship between

points (weights):

γ(h) =
1

2
E[o(xc)− o(xc + h)2] (A.1.4)

where o(xc) is the value of the variable at some observable location and o(xc+h) the value
of the neighbour at a distance xc + h. By plotting all semivariances versus the separation
distances a variogram is obtained. And using the average values for a standard distance called
’lag’ an experimental variogram is obtained. As expected, semivariances should be smaller at
shorter distance and at certain distance ’sill’ should stabilize.

After obtaining the experimental variogram this is fitted to some theoretical variogram
model such as the linear, spherical, gaussian, exponential, etc

A.2 Kriging Results

The estimation was made twice, once for origins and again for destinations. In our case the
known values are, as stated, 63 (ob = 1, 2, ..., 63) and the unknowns 828 (oe = 1, 2, ..., 828).
For destinations, the variable could be renamed with the same amount of known and unknown
values.

In both cases, the experimental variogram was fitted to a theoretical model using a least
squares fit of various theoretical variograms to an experimental, isotropic variogram.
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The theoretical model was chosen using the goodness of fit criterion as several models
were tested (spherical, pentaspherical, exponential, gaussian, circular,mattern, among oth-
ers). The theoretical model selected for both origin and destination variables was the linear
model.

In the case of origins, the Gaussian model presented a higher goodness of fit than that of
the linear model, but some results for the unobserved positions became negative because of
the nonlinearity of the weights. As the difference in goodness of fit was almost imperceptible
between models (0.7111 over 0.7093), we decided to use the Linear for both samples. The
goodness of fit for origins is 0.7093 and for destinations 0.7208. The variograms are presented
in Figure A.2.1, a and b.

Figure a. Origins  

Figure b. Destinations  

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

2.5

3

x 10
4

lag distance h

(
h
)

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

2.5

x 10
4

lag distance h

(
h
)

      Experimental Variogram 
      Linear Variogram  

      Experimental Variogram 
      Linear Variogram  

Figure A.2.1: Experimental and Theoretical Variograms

A.3 Construction of the OD Matrix within Barcelona

As stated, the kriging technique was applied to distribute origins and destinations within
Barcelona across the whole road network. By making use of the number of trips at observed
locations (node centroids) and the spatial correlation between observed values, we were able
to approximate the number of trips at unknown locations (rest of nodes in the network).
Additionally, we used the distribution of population within the city to establish the weight of
each node and to distribute existing trips across the full network.
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We ran the procedure described below twice: first for origins, with the variable value being
the number of trips originating from node x, o(x); and, second for destinations, with variable
value being the number of trips with their destination at node x, d(x). For expositive reasons
we explain the procedure using only o.

Data used: 1. number of trips at each origin and destination;2. georeferences; 3. popula-
tion of every neighbourhood of Barcelona;4. population at census areas within the city.

Steps: 1st step. We distributed the population of Barcelona between the 63 original

origin- destination nodes (obanddb). This was achieved by assigning the population of the
neighborhoods of Barcelona to the corresponding node (centroid of the survey zone). For
the case of neighborhoods without a centroid, the population was assigned using the distance
criterion to the closest node. Henceforth, population at each known location is referred to as
P (xc).

2nd step. We obtained our weighted observed values (wo(xc)) by dividing the number of
trips at every observed location o(xc) by the corresponding population at the location P (xc):

wo(xc) =
o(xc)

P (xc)
(A.3.1)

for every c = 1, 2, ..., 63

3rd step. We applied the ordinary kriging method. This involved the construction of
the experimental variogram; the fitting of the latter to the authorized variogram; and, the
interpolation of the values using kriging. From this step we obtained the ŵo(xe) for every
i = 1, 2, ..., 828 unknown values. Combining known and unknown values we have a total of
891. Total estimators are wo(x), where x = 1, 2, ..., 891

4th step. We distributed the population of Barcelona across all the nodes of the network
(891) by using the map of census areas. Population at node x can be expressed as P (x).

5th step. We obtained the new number of trips at each location ô(x) by multiplying the
ŵo(x) by the population obtained in 4 P (x):

ô(x) = o(x)P (x) (A.3.2)

with, as stated, P (x) the population by node assigned in step 4 and (x = 1, 2, ..., 891)

6th step. By using the estimators obtained in 5 (ô(x)) we were able to create a probability
of being chosen for every node in the network.

Appendix B Sample Selection

We need to integrate by simulation à la BLP over a set of individuals that have idiosyncratic
tastes. We take a 100 draws from a sample of 18411 trips for which we know origin, destination
and personal characteristics. The selection was made taking into account the number of trips
of the population that each in the survey represents.

B.1 The weights

Every trip of the survey has assigned a survey weight according to the trips made by the
entire population of the region. This survey weight was assigned by the Metropolitan Agency
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of Transport considering the mobility characteristics of the trip and socioeconomic character-
istics of the people surveyed. From now on, we will express the trip made in between origin
and destination (o,d) as l and survey weight as swil. This last expression accounts for all the
trips l made by the population with equal characteristics.

B.2 The Selection

Each journey made by private transport containing at least origin or destination in Barcelona
constitutes our full survey. The sample was randomly selected taking into account the sample
weight generated as described in the equation below:

$il =
swil

ΣL
l=1swil

(B.2.1)

with, $il the sample weight, swil the survey weight, and L = 18411.
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