Abstract

More than 15 years after the introduction of highly active antiretroviral therapy, HIV/HAART-associated lipodystrophy syndrome still shadows the indisputable efficacy of antiretroviral therapy. Several issues related to this complication (prevalence, diagnosis, pathogenesis, prevention, or clinical management) have not been completely clarified. However, in the last years, substantial progress has been made in elucidating some of these basic aspects. This includes a better knowledge of the pathogenic mechanisms underlying HIV/HAART-associated lipodystrophy syndrome such as genetic host determinants, the impact of HIV infection per se, as well as the contribution of antiretroviral therapy. In regard to treatment, we have learned that certain drugs are especially prone to cause HIV/HAART-associated lipodystrophy syndrome (i.e. thymidine analogues). Pharmacological interventions to treat this condition have yielded mostly disappointing results, and the only intervention which offers an immediate aesthetical improvement for patients with HIV/HAART-associated lipodystrophy syndrome is plastic surgery. Even under the most favorable conditions (ideal host genetic make-up, and the timely initiation of HIV therapy with less toxic drugs), current data show that HIV/HAART-associated lipodystrophy syndrome is a complication of HIV infection and/or antiretroviral treatment that we are unable to avoid. In the context of HIV-1-infected patients under long-term antiretroviral therapy, fat toxicity is still the dark side of the rainbow. (AIDS Rev. 2012;14:112-23)

Corresponding author: Pere Domingo, pdomingo@santpau.cat

Key words

Introduction

Highly active antiretroviral therapy (HAART)-associated lipodystrophy syndrome (HALS) is one of the most important and feared complications of antiretroviral therapy (ART) for HIV-1 infection. It was initially described in 1998, almost simultaneously to the encouraging results of combination ART in reducing AIDS-associated mortality and opportunistic infections.

Early reports of body shape changes included limb fat loss and trunk fat accumulation and were initially considered to be different manifestations of the same condition. Its frequent association with metabolic derangements, such as hyperlipidemia and insulin resistance, led to the consideration of HALS as a syndrome (i.e. a group of symptoms which consistently occur together).

A major problem that limits the definition of the syndrome is the absence of adequate diagnostic criteria for fat distribution abnormalities. Patterns of fat distribution in the general population are influenced by age, sex, and body weight, but these patterns are not well characterized. Currently, there is no consensus on a
hypertrophy, or fat accumulation, is less frequent than cal changes in fat. Lipomatosis (localized or generalized lipoma) is not a frequent manifestation of lipohypertrophy, but can be observed in armpits, suprapubic regions, or other locations. These fat distribution abnormalities are often associated with hypertriglyceridemia, low HDL cholesterol, and insulin resistance.

In 2003, Carr, et al. carried out a rigorous attempt to define HALS objectively. By comparing patients with and without evident body fat changes, the HIV Lipodystrophy Case Definition (LDCD) established a diagnostic model that included age, sex, known duration of HIV infection, HIV disease stage, waist-to-hip ratio, anion gap, serum HDL cholesterol concentration, trunk-to-peripheral fat ratio, leg fat percentage, and intra-to-extra abdominal fat ratio. This model had approximately 80% accuracy for HALS diagnosis. Prospective studies confirmed its value and the increased sensitivity of LDCD scores for HALS diagnosis. However, the complexity of the diagnostic model has limited its clinical usefulness.

Epidemiology

Limitations in the definition of HALS make it very difficult to accurately establish the prevalence of this condition. Several studies report diverse frequencies, probably reflecting differences in the diagnostic criteria and in the populations studied.

Considering studies in which a clinically-based diagnosis of HALS was used, the prevalence of HALS ranged from 13 to 70% in HIV patients receiving ART9-16. The wide range observed regarding HALS prevalence might be explained by differences in the study designs as well as the time of follow-up considered for each study. Although there is no consensus on how much fat must be lost to define HALS, a cut-off of limb fat loss > 10-20% has been arbitrarily used. In general, results from clinical trials in antiretroviral (ARV)-naive patients initiating ART in absence of zidovudine or stavudine (Castle, STARTMRK, and ACTG 5224) report that around 6% of patients develop a significant loss of limb fat (> 20%) by the second year of treatment17-19. The Gilead-934 trial20 showed that 5% of patients receiving tenofovir/emtricitabine plus efavirenz developed > 20% limb fat loss between weeks 96 to 144 versus 20% in the zidovudine/lamivudine plus efavirenz arm.

At present, the number of new cases of HALS has significantly declined, but the prevalence of this condition still remains very high. Some recent studies report prevalence rates of around half of patients attending out-patient consultations. HALS is not only important due to its high prevalence, but also because of its limited reversibility once established.

Risk factors for HIV/HAART-associated lipodystrophy syndrome

The main risks factors for lipatrophy and lipohypertrophy are summarized in tables 1 and 212,14,21-28, respectively. There are certain treatment-related factors most consistently associated with HALS. Prolonged exposure to thymidine nucleotide reverse transcriptase inhibitors (tNRTI), specifically stavudine and to a lesser extent zidovudine, is associated with a greater risk of developing body fat changes, in particular subcutaneous fat loss. The role of other antiretroviral drugs is controversial, partly due to the lack of longitudinal objective data, but also due to the difficulty in establishing a causal relationship with combination regimens. The nucleoside/nucleotide reverse transcriptase inhibitor (NRTI) drug family has been considered low-risk for the development of HALS. However, preliminary results of ritonavir-boosted protease inhibitor (PI/r) monotherapy simplification studies suggest that avoidance of any NRTI may be beneficial for fat recovery.

The first-generation of unboosted PI, particularly indinavir31, were initially considered as causative agents for HALS. However, the strength of the association was difficult to prove and was attenuated after adjustment for NRTI exposure. In fact, the consideration of exposure to boosted PI as a risk factor for the development of HALS has recently changed after the results reported by several studies, particularly the ACTG 5142 study22. In this study, fewer patients treated with ritonavir-boosted lopinavir (LPV/r) developed HALS (> 20% limb fat loss) at 96 weeks when compared to efavirenz-treated...
Table 1. Risk factors associated with lipoatrophy in clinical studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients (n)</th>
<th>Host factors</th>
<th>HIV-1-associated factors</th>
<th>ART-dependent factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miller, et al.</td>
<td>1,348</td>
<td>Age > 50</td>
<td>CDC disease category C</td>
<td>Stavudine > 17 months Pi use > 22 months</td>
</tr>
<tr>
<td>Heath, et al.</td>
<td>1,261</td>
<td></td>
<td>CDC disease category</td>
<td>Stavudine therapy duration</td>
</tr>
<tr>
<td>Lichtenstein, et al.</td>
<td>1,244</td>
<td>White race</td>
<td>CD4 nadir < 100 cells/µl</td>
<td>Stavudine therapy Indinavir > 2 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age > 49</td>
<td>BMI < 24 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Haubrich, et al.</td>
<td>753</td>
<td>Male sex</td>
<td></td>
<td>Elavirenz vs. lopinavir/r</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age</td>
<td></td>
<td>Stavudine vs. zidovudine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Black race</td>
<td></td>
<td>Tenofovir vs. zidovudine</td>
</tr>
<tr>
<td>Saves, et al.</td>
<td>614</td>
<td>Male sex</td>
<td></td>
<td>Stavudine therapy</td>
</tr>
<tr>
<td>Thiebaut, et al.</td>
<td>581</td>
<td>Age</td>
<td></td>
<td>Treatment duration</td>
</tr>
<tr>
<td>Martinez, et al.</td>
<td>494</td>
<td>Male sex</td>
<td></td>
<td>Stavudine therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Treatment duration</td>
</tr>
<tr>
<td>Mauss, et al.</td>
<td>221</td>
<td>Hypertriglyceridemia</td>
<td>CD4 nadir < 200 cells/µl</td>
<td>Stavudine > 12 months NNRTI > 12 months</td>
</tr>
<tr>
<td>Joly, et al.</td>
<td>170</td>
<td>White race</td>
<td></td>
<td>Stavudine vs. zidovudine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age > 40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ART: antiretroviral therapy; BMI: body mass index; CDC: Centers for Disease Control and Prevention; NNRTI: nonnucleoside reverse transcriptase inhibitors; PI: protease inhibitor.

Table 2. Risk factors associated with lipo-accumulation in clinical studies

<table>
<thead>
<tr>
<th>Authors</th>
<th>Patients (n)</th>
<th>Host factors</th>
<th>HIV-1-associated factors</th>
<th>ART-dependent factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miller, et al.</td>
<td>1,348</td>
<td>Age > 50</td>
<td>CDC disease category C</td>
<td>NRTI use > 57 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stavudine use > 17 months Pi use > 15 months</td>
</tr>
<tr>
<td>Heath, et al.</td>
<td>1,261</td>
<td></td>
<td></td>
<td>Stavudine use > 17 months Pi use > 15 months</td>
</tr>
<tr>
<td>Lichtenstein, et al.</td>
<td>1,244</td>
<td>BMI increased</td>
<td></td>
<td>Age > 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration of treatment > 5 years</td>
</tr>
<tr>
<td>Saves, et al.</td>
<td>614</td>
<td></td>
<td>CD4 increase</td>
<td>Saquinavir use</td>
</tr>
<tr>
<td>Thiebaut, et al.</td>
<td>581</td>
<td>BMI</td>
<td></td>
<td>Lamivudine use</td>
</tr>
<tr>
<td>Martinez, et al.</td>
<td>494</td>
<td>Female sex</td>
<td></td>
<td>Treatment duration</td>
</tr>
<tr>
<td>Joly, et al.</td>
<td>170</td>
<td>Female sex</td>
<td></td>
<td>Treatment duration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age (per 10 years older)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogner, et al.</td>
<td>115</td>
<td></td>
<td></td>
<td>Treatment duration</td>
</tr>
<tr>
<td>Palacios, et al.</td>
<td>80</td>
<td>Lipoatrophy</td>
<td></td>
<td>Stavudine use (per 6 month intervals)</td>
</tr>
</tbody>
</table>

ART: antiretroviral therapy; BMI: body mass index; CDC: Centers for Disease Control and Prevention; NRTI: nucleoside reverse transcriptase inhibitors; PI: protease inhibitor.
patients, regardless of the NRTI backbone used. Also, a low frequency of fat distribution abnormalities has been described in contemporary clinical trials when a PI/r plus non-tNRTI were used in ART18. Surprisingly, the use of ritonavir could potentially mitigate the negative effect on HALS development induced by stavudine, as shown in one clinical trial in which ritonavir-boosted atazanavir had a significantly lower incidence of lipoatrophy compared with unboosted atazanavir32.

The role of nonnucleoside reverse transcriptase inhibitors (NNRTI) on HALS is controversial and data about the effect of these drugs on body fat are obscured by the concomitant use of tNRTI. In fact, nevirapine use may also exert a protective effect on HALS7 and a recently published trial comparing efavirenz with raltegravir (both with tenofovir/emtricitabine) showed a similar increase in limb fat at 96 weeks19.

Many non-pharmacologic factors have been associated with HALS development, but their etiologic role is unclear. In most studies, HALS is associated with increased age20. Among immunologic factors, high CD4 counts21,33 but also a low CD4 nadir12 have been associated with HALS. Female sex is associated with an increased risk for lipohypertrophy in some studies24 but not in others33. Ethnic factors, such as Caucasian and Asian race, have also been associated with HALS32.

Assessment of fat redistribution

Subjective assessment of HIV/HAART-associated lipodystrophy syndrome

Specific scores to measure the subjective perception of fat loss or accumulation have been developed. The Lipodystrophy Severity Grading Scale provides a standardized measurement of subjective lipoatrophy or lipoaccumulation, comparing patient perception with that of an experienced observer34. But clinically, body fat changes are recognized late when a substantial amount of subcutaneous fat has been lost8.

Objective assessment methods of HIV/HAART-associated lipodystrophy syndrome

Anthropometric measurements are inexpensive and easy to take. Patient weight, height or body mass index, waist and hip girth, different limb circumferences, and skin folds have been used. These measurements are highly operator-dependent35.

Bioelectrical impedance is also a cheap method to estimate total body water and subsequently total lean body mass and adipose tissue36. It does not discriminate distribution (regional, subcutaneous, or visceral) of fat. Ultrasound provides regional adipose tissue thickness when measuring subcutaneous fat with good correlation with CT37,38, but it is highly operator-dependent and without standardized reference points.

Dual-energy X-ray absorptiometry (DEXA) is an easy to use and popular low-cost, low-radiation assessment method. It provides the total fat content of trunk, limbs, or a determined area and is an excellent method to follow-up patients on treatment. Advantages of DEXA are good accuracy and reproducibility38; DEXA does not discriminate between visceral or subcutaneous fat.

Computerized imaging techniques (CT) and magnetic resonance imaging (MRI) are the most accurate methods for qualitative and quantitative measurements of adipose tissue. When assessing fat content, these methods discriminate between subcutaneous and visceral adipose tissue, and measure the subcutaneous fat thickness and the total visceral adipose tissue expressed as an area from a single slice or even as a volume from multiple slices40. Both CT and MRI are expensive and time consuming, and CT irradiates the patient.

Facial lipoatrophy

Facial loss of adipose tissue in cheek, supra-zygomatic, and temporal areas gives the patient a characteristic look. Facial lipoatrophy is present in 38-52% of people suffering from HALS. In order to standardize reproducible measurement for clinical purposes, two scales have graded lipoatrophy from 0 (absent) to 3 or 4 (severe), depending on cheek flattening or depression, nasogenian fold depth, and temporal and supra-zygomatic fat loss41,42. Objective methods such as CT, MRI, or three dimensional laser scans are not useful in the clinical setting.

How can we diagnose HIV/HAART-associated lipodystrophy syndrome?

As HALS is a complex syndrome, attempts to find a single and useful diagnostic tool have failed. The more objective and reproducible techniques to quantify fat depots (DEXA, CT, MRI), but do not provide a diagnosis. Fat changes become evident only by repeating assessments in a longitudinal fashion.

Normal fat varies, depending on sex, age, and body mass index (BMI) and the pattern in the general
population is not well known. Fat mass index (FMI = fat mass kg/height [m²]) has been suggested in a similar way to BMI. The normal FMI is 3-6 for men and 5-9 for women. The FMI varies from < 3 (severe fat deficit) to 21 (obesity grade III)43. In order to assess whether fat distribution (trunk or peripheral) is balanced, a number of peripheral-to-central fat or limb-to-trunk fat ratios such as fat mass ratio (FMR = % trunk fat mass/% lower limb fat mass) have been proposed44. An FMR > 1.96 in men and > 1.33 in women is diagnostic of lipodystrophy.

Abnormal fat distribution may also exist in ART-naive HIV-infected patients with less limb and trunk fat than uninfected controls. But the decrease in limb fat is greater than the decrease in trunk fat, resulting in a higher FMR than uninfected controls45. The FMR could be a valid method for one-time diagnosis of lipoatrophy43,44.

Pathogenesis of HIV/HAART-associated lipodystrophy syndrome

Adipose tissue mass provides an indication of the average number and volume of adipocytes46. The volume of fat reflects the balance between lipid synthesis (lipogenesis) and breakdown (lipolysis/fatty acid oxidation), whereas the number reflects the balance between cell production (pre-adipocyte replication/differentiation) and loss (apoptosis/adipocyte de-differentiation). Thus, HALS could be defined as an imbalance between the acquisition and loss of adipocytes and/or between the synthesis and breakdown of fat. There are at least three different pathogenic factors: host-, viral- and ARV-associated factors, with the complex interplay between them leading to the development of HALS.

Host factors: the role of genetics

Factors intrinsic to the host associated with HALS include age, gender, and ethnicity, without a clear biological explanation for their association47. Genetic factors for HALS include polymorphisms in genes encoding for enzymes of the pyrimidine pathway, polymerase-γ, and cytokines such as tumor necrosis factor alpha (TNF-α), interleukins (IL) 1β and 6 and resistin (Table 3)47. Genetic variants within HLA in a Thai population, mitochondrial haplogroups, mitochondrial dysfunction and inflammation, and matrix metalloproteinase 1 gene polymorphisms have been associated with HALS development47. Multigene approaches suggest that genetic polymorphisms of genes involved in apoptosis and adipocyte metabolism are related to HALS. However, to date most of these associations have not been replicated or data are controversial.

The pathogenic role of HIV-1 infection

HIV-1 infection per se can cause deleterious effects on fat. The HIV-1-infected patients naive to ARV have less fat than age- and sex-matched uninfected controls4 and 1-3% of them present with HALS14,48. Deleterious effects of HIV-1 on adipocytes are exerted at least in part through viral proteins49. Tat protein activates mononuclear cells to secrete IL-1β, IL-6, IL-8, and TNF-α, and induces the expression of inflammatory cytokines and adhesion molecules and the release of monocyte chemoattractant protein (MCP)-1 by endothelial cells, thereby easing the transmigration of infected monocytes across endothelium50. Vpr and Nef inhibit adipogenesis by a decrease in peroxisome proliferator-activated receptor (PPAR)-γ activity and promote insulin resistance50.

Gene expression abnormalities in ex vivo fat samples from ART-naive patients resemble those found in patients with HALS51.

The role of antiretroviral drugs

Mitochondrial dysfunction is the proposed mechanism via which some NRTI may exert deleterious effects on fat50 since it induces oxidative stress, leading to a reduction in leptin and adiponectin and an increase in MCP-1 and IL-6 production50. The NRTI also increase the expression of genes involved in oxidative stress and apoptosis and impair adipocyte differentiation53. Efavirenz also inhibits adipocyte differentiation54. First- and second-generation PI inhibit adipocyte differentiation and lipogenesis in vitro50. This is caused by prelamin A accumulation due to the inhibition of ZMP-STE24, induction of nuclear architecture disruption, and sterol regulatory element-binding protein (SREBP)-1 mislocation50. Some PI induce adipocyte apoptosis, insulin resistance, and oxidative stress and impair adipokine production55. All these effects may be explained by endoplasmic reticulum stress induction and/or proteasome inhibition52.

Interplay mechanisms of fat toxicity: mitochondrial dysfunction and inflammation

The NRTI toxicity involves mitochondrial dysfunction with mtDNA depletion due to the inhibition of host
Table 3. Genetic host factors associated with HIV/HAART-associated lipodystrophy syndrome

<table>
<thead>
<tr>
<th>Authors</th>
<th>Candidate gene</th>
<th>Polymorphism (risk alleles)</th>
<th>Sample size</th>
<th>HALS diagnosis</th>
<th>% HALS</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maher, et al.</td>
<td>TNF-α</td>
<td>238G/A</td>
<td>96</td>
<td>Clinical</td>
<td>36.5</td>
<td>Caucasian patients</td>
</tr>
<tr>
<td>Nolan, et al.</td>
<td>TNF-α</td>
<td>238G/A</td>
<td>220</td>
<td>Clinical</td>
<td>NA</td>
<td>Found in Caucasians</td>
</tr>
<tr>
<td>Tarr, et al.</td>
<td>TNF-α</td>
<td>238G/A</td>
<td>325</td>
<td>Clinical</td>
<td>25.2</td>
<td></td>
</tr>
<tr>
<td>Asensi, et al.</td>
<td>TNF-α</td>
<td>238G/A</td>
<td>243</td>
<td>Clinical</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td>Asensi, et al.</td>
<td>IL-1β</td>
<td>3954 C/T</td>
<td>243</td>
<td>Clinical</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td>Hulgan, et al.</td>
<td>Hemochromatosis</td>
<td>187 C/C</td>
<td>96</td>
<td>DXA</td>
<td>46.0</td>
<td></td>
</tr>
<tr>
<td>Hulgan, et al.</td>
<td>Mitochondrial</td>
<td>H, U, T</td>
<td>54</td>
<td>DXA</td>
<td>44.0</td>
<td>Protective effect for mitochondrial haplogroup J</td>
</tr>
<tr>
<td>Ranade, et al.</td>
<td>Resistin</td>
<td>rs3219177 C/T, T/T</td>
<td>104</td>
<td>Clinical, DXA</td>
<td>23.1</td>
<td>Caucasians</td>
</tr>
<tr>
<td>Zanone, et al.</td>
<td>ApoC3</td>
<td>455 C/, T/T</td>
<td>255</td>
<td>Clinical</td>
<td>27.5</td>
<td>Lipoatrophy alone</td>
</tr>
<tr>
<td>Zanone, et al.</td>
<td>Fas</td>
<td>670 A/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zanone, et al.</td>
<td>Adrβ2</td>
<td>16 A/A</td>
<td>255</td>
<td>Clinical</td>
<td>24.7</td>
<td>Lipohypertrophy</td>
</tr>
<tr>
<td>Chiappini, et al.</td>
<td>PblG</td>
<td>E1143</td>
<td>197</td>
<td>Clinical</td>
<td>35.0</td>
<td>Case-control study</td>
</tr>
<tr>
<td>Domingo, et al.</td>
<td>Thymidylate</td>
<td>Low expression TS</td>
<td>33</td>
<td>Clinical, DXA</td>
<td>51.5</td>
<td>Caucasians on d4T-based therapy</td>
</tr>
<tr>
<td>Wangsomboonsiri, et al.</td>
<td>HLA</td>
<td>HLA-B*4001</td>
<td>103</td>
<td>Clinical, DXA</td>
<td>54.4</td>
<td>Thai patients on d4T-based therapy</td>
</tr>
<tr>
<td>Montes, et al.</td>
<td>MMP-1</td>
<td>−16071G/2G</td>
<td>216</td>
<td>Clinical, DXA</td>
<td>38.0</td>
<td>d4T- and azathioprine-based therapy</td>
</tr>
</tbody>
</table>

HALS: HIV-1/HAART-associated lipodystrophy syndrome; TNF-α: tumor necrosis factor alpha; IL-1β: interleukin 1 beta; HLA: human leukocyte antigen; DXA: dual X-ray absorptiometry; ApoC: apolipoprotein C3; Adrβ: adrenergic receptor beta; d4T: stavudine; NA: not available; MMP-1: matrix metalloproteinase 1.

mtDNA polymerase-α. Other mechanisms, such as oxidative mtDNA damage, heteroplasm mtDNA point mutations, multiple mtDNA deletions, and ADP/ATP translocase inhibition, can directly cause mitochondrial dysfunction, whereas TNF-α and PI may act as contributors.

Mitochondrial abnormalities will eventually lead to an increased production of reactive oxygen species (ROS), which has been linked to lipoatrophy. Down-regulation of uncoupling protein 2 may contribute to enhanced ROS production. The ROS are signaling molecules that control pre-adipocyte proliferation and adipocyte differentiation, and their generation may constitute an early and crucial event in HALS. Alternatively, events such as the collapse of membrane potential, cytochrome C release, and ultimately apoptosis are influenced by mitochondrial bioenergetics. Excess adipocyte apoptosis was found in ex vivo fat samples from lipoatrophic areas.

HALS is linked to a chronic low-grade inflammatory state, which is observed in fat and at systemic level. At the systemic level, high free fatty acid (FFA) levels, increased insulin resistance, increased levels of C-reactive protein, and reduced levels of adiponectin are found. In subcutaneous adipose tissue (SAT), enhanced TNF-α, IL-6, and MCP-1 expression is reported. Enhanced expression of CD68, coupled with evidence of lipogranulomas, indicates increased macrophage infiltration. A complex cross-talk between adipocytes, pre-adipocytes, and inflammatory cells present within...
SAT is therefore likely to be involved in the creation of this proinflammatory environment. Also, TNF-α and other proinflammatory cytokines are known to impair PPAR-γ expression and promote lipolysis. Antiretrovirals may contribute to fat inflammation and the role of NRTI has been demonstrated. Inflammation increases the expression of adipocyte nucleoside transporters and facilitates higher intracellular levels of NRTI. It may also enhance the deleterious effects of drugs, as is the case when stavudine is combined with C-reactive protein.

Lipohypertrophy: a growing paradox

Increased amounts of visceral adipose tissue (VAT) are often observed in HALS, although the mechanism by which this occurs remains unclear. VAT and SAT are different in terms of metabolism, gene expression, and inflammatory status. Adipocytes or other cells in SAT and VAT may in fact respond to the insults which cause HALS in an intrinsically different manner, thus resulting in atrophy in one area and hypertrophy in another. This is supported by studies showing that VAT and SAT adipocytes exhibit differential responses to PI, and greater resistance to zidovudine-induced mitochondrial toxicity. It could be that SAT constitutes the main target of HALS-related insults, and that VAT is simply a repository for fat that cannot be properly stored in SAT. This phenomenon could represent a kind of "secondary" lipotoxicity. A recent study showed that VAT from HALS did not exhibit impaired adipogenic gene expression, although it did share certain features with SAT such as impaired mitochondrial function and changes in inflammatory markers.

Enlargement of the dorso-cervical fat pad (buffalo hump) is another distinct manifestation of hypertrophy in another. This is supported by studies showing that VAT and SAT adipocytes exhibit differential responses to PI, and greater resistance to zidovudine-induced mitochondrial toxicity. It could be that SAT constitutes the main target of HALS-related insults, and that VAT is simply a repository for fat that cannot be properly stored in SAT. This phenomenon could represent a kind of "secondary" lipotoxicity. A recent study showed that VAT from HALS did not exhibit impaired adipogenic gene expression, although it did share certain features with SAT such as impaired mitochondrial function and changes in inflammatory markers.

Clinical consequences of HIV/HAART-associated lipodystrophy syndrome

Lipotoxicity

Lipotoxicity refers to the accumulation of fat in ectopic areas outside classical adipose tissue depots. This accumulation can cause toxic effects in muscle, liver, or pancreas. In HALS patients, insulin resistance, visceral obesity, and the release of FFA into the bloodstream induce nonalcoholic fatty liver disease. The accumulation of lipid in skeletal muscle is considered a primary event in the pathogenesis of insulin resistance. There is a significant link between lipid accumulation in muscle and insulin resistance and with the extent of peripheral lipodystrophy. Protease inhibitors have been reported to inhibit glucose uptake in muscle, which may contribute to insulin-resistant states.

Patients with HALS frequently display alterations in glucose homeostasis due to peripheral insulin resistance, as well as reduced pancreatic insulin secretion. Impaired glucose tolerance in HALS patients is linked to reduced pancreatic β-cell compensation for decrements in insulin sensitivity, despite a simultaneous reduction in insulin clearance. The etiology of β-cell dysfunction in HALS is unknown, although it is thought that the effects of ARV and/or elevated FFA play a role.

Implications for cardiovascular health

HALS is associated with dyslipidemia, altered glucose tolerance, insulin resistance, and hypertension, all of which are reminiscent of the metabolic syndrome, a well-known cluster of cardiovascular risk factors. In addition, HALS has been linked to a heightened risk of subclinical atherosclerosis. In some cohorts, HALS has been identified more frequently among patients with coronary heart disease.

Quality of life, social and psychological impact

Changes in body morphology and facial lipoatrophy are stigmatizing and may severely impact quality of life, leading to psychological distress, decreased self-esteem, and increased anxiety and depression. The social effects include difficulties in finding clothing and impaired quality of social relationships, which can cause social alienation. Local fat atrophy may have
physical consequences, which include discomfort while sitting or pedal pain while standing. Sexual dysfunction has been observed in HALS patients because of their negative perception of self-image71.

Early senescence

The HIV-1-infected patients have higher than expected rates of diseases associated with the normal ageing process. The most prevalent include cardiovascular, cancer, liver, and kidney disease, neurological complications, osteopenia/osteoporosis, and frailty72. Ageing is physiologically associated with fat redistribution and may share common pathogenic mechanisms with most of these comorbidities, including oxidative stress and low-grade inflammation55. Cellular insults by PI and tNRTI may lead to pre-adipocyte premature senescence55.

Prevention and treatment of HIV/HAART-associated lipodystrophy syndrome

Prevention of lipoatrophy

Regimens without tNRTI contribute less to subcutaneous fat loss than regimens containing tNRTI22,33,74. Ritonavir-boosted PI such as lopinavir22 or atazanavir18 led to higher increases in limb fat than the NNRTI efavirenz. The PI/r-containing NRTI-sparing regimens may lead to higher increases in limb fat as compared to standard triple regimens containing two NRTI75.

Because the risk of developing lipoatrophy is inversely proportional to the CD4 cell count76, it might be lower if initiating ART earlier. Several genetic polymorphisms have been associated with a higher risk of developing lipoatrophy76-78, but they are not yet ready for clinical use. Intense regular aerobic exercise, low-fat diets, and chronic metformin therapy might decrease subcutaneous fat and therefore increase the risk for lipoatrophy79.

Prevention of lipohypertrophy

A net energy imbalance in favor of caloric consumption against its expenditure leads to fat storage. In HIV-infected patients with lipoatrophy, the subcutaneous fat compartment cannot adequately store fat and leaves the visceral compartment as the major repository for fat storage. Increased visceral fat may be present even if a patient is not considered obese, as defined by body mass index. Beyond caloric restriction, there is no evidence that further modification of dietary factors may prevent lipohypertrophy80. The use of inhaled corticosteroids in patients treated with PI may lead to Cushing’s syndrome81.

Strategies for the management of HIV/HAART-associated lipodystrophy syndrome

Management of lipoatrophy

Once lipoatrophy has developed, subcutaneous fat could potentially recover, although recovery is slow and incomplete either due to irreversible damage of adipose tissue or due to persistency of unknown or unavoidable factors contributing to fat loss, or a combination of these factors. There is no evidence showing that diet or exercise can improve lipoatrophy79,80,82.

Modification of successful ART may increase the risk of virologic failure63, and potentially adds the risk of toxicity from new drug(s). When switching from PI, metabolic complications such as dyslipidemia and insulin resistance seem to be partly reversible, whereas the morphologic alterations appear to be unchanged. When NRTI are switched, a modest improvement in lipoatrophy has been reported, but dyslipidemia appears unaffected84. Switching from stavudine to zidovudine85, reducing stavudine dose86, and discontinuing ART57,87,88 have been associated with limb fat gain, but these cannot be considered as reasonable options to improve lipoatrophy in clinical practice. Switching from tNRTI to either abacavir or tenofovir or to nucleoside-sparing regimens is associated with a 200-800 mg increase in limb fat after one year (Fig. 1 A, B, C)31,89-92. In ARV-naive HIV-infected patients, PI/r-containing regimens have shown higher increases in limb fat mass compared with regimens containing NNRTI22. Whether this difference might translate into any clinical benefit for the management or prevention of lipoatrophy is currently unknown.

Pharmacological interventions to treat lipoatrophy have shown controversial results. Thiazolidinediones induce adipocyte differentiation and increase subcutaneous fat mass53. However, a meta-analysis of six placebo-controlled trials of thiazolidinedione therapy for HIV lipoatrophy revealed that pioglitazone therapy was more effective than placebo to increase limb fat mass, whereas rosiglitazone was not significantly better than placebo84. Another more comprehensive meta-analysis confirmed the lack of clinically significant effects of both pioglitazone and rosiglitazone in
HIV-infected patients with HALS have been reported to improve HALS in small randomized clinical trials, but these effects have not been confirmed.

Facial filling has proven to be an aesthetic only but highly satisfactory procedure. Transplantation of autologous fat is more time consuming than injections of gel fillers and may not be feasible in cases of severe lipoatrophy. However, fat is less expensive and as durable as gel fillers.

Management of lipohypertrophy

Low-caloric or low-fat, high-fiber diets and aerobic or resistance exercise have shown benefits on central fat accumulation. Diet and exercise might worsen lipoatrophy in HIV-infected patients with a low BMI. It remains unproven that switching or discontinuing ARV drugs may have a benefit in reducing VAT.
in HIV-infected patients with HALS103. Growth hormone has been used at doses of 0.33 to 6 mg daily46. With doses of 4 mg every day or every other day104,105, patients with abdominal lipo hypertrophy experienced 10-20\% reduction in VAT and 6-7\% reduction in subcutaneous fat. Body fat effects were lost when growth hormone dose was reduced or discontinued. The reduction in VAT as well as the frequency and intensity of adverse events were directly proportional to the growth hormone dose used. Arthralgia, myalgia, edema, and glucose intolerance or diabetes are not uncommon side-effects of growth hormone therapy.

Tesamorelin is a growth hormone-releasing hormone analogue that mimics closely the physiological dose and function of growth hormone, but with potentially fewer side effects. Two large randomized, double-blinded, placebo-controlled trials have106 reported 11-15\% reductions in VAT after six months of tesamorelin use, although this effect was lost upon therapy discontinuation. Tesamorelin may infrequently induce injection-site reactions (2\% of patients) and growth hormone-related side effects such as arthralgia or edema, but it was not associated with glycemic abnormalities.

Superficial, localized fat accumulation in HIV-infected patients has been successfully treated with surgical interventions. Liposuction has been used to remove fat from the anterior neck, enlarged breasts, and subcutaneous abdominal compartment107-109, but it cannot remove intra-abdominal fat. Approximately 25\% of patients will develop a recurrence of lipo hypertrophy after liposuction108.

Financial support

This work was partially funded by the Fondo de Investigaciones Sanitarias (FIS 02/1280, 05/1591, 07/0976, EC08/00256), the Fundación para la Preven ción del SIDA en España (FIPSE 36610, 36572/06), and the Red de Investigación en SIDA (RIS RD06/006/0022, RD06/0006/1004).

Conflicts of interest

The authors do not declare any conflict of interest.

References

in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lan-
by nucleoside-analogue reverse-transcriptase inhibitors is a key factor

Gi
Fr
K
Fu
B
Sm
Ma
sonography and anthropometry for measuring regional body fat in HIV-
alterations and their modifications over time in HIV-1-infected women
Pa
Po
Va
Ga
Pa
sion in adipose tissue, which contributes to HIV-1/HAART-associated
of lipodystrophy and HIV-uninfected controls: a substudy of the Multi-
metric changes in HIV-infected men with and without clinical evidence
Luzi L, Perseghin G, Tambussi G, et al. Intramyocellular lipid accumula-
tion and reduced whole body lipid oxidation in HIV-infected patients. Am J
Phsiol Endocrinol Metab. 2003;289:E747-80.
insulin clearance in insulin-resistant human immunodeficiency virus
Moyle G, Moutschen M, Martinez E, et al. Epidemiology, assessment,
and management of excess abdominal fat in persons with HIV infection.
Freitas P, Carvalho D, Madureira A, et al. Cardiol lipin-media thickness
is increased in HIV-infected patients with clinical lipodystrophy. 15th
European AIDS Conference/EACs, Madrid, Spain 2007 [Abstract 36]
Martinez E, RCVen Study group. Clinically evident facial lipatrophy is
associated with a higher cardiovascular risk. Antivir Ther. 2007;12(Suppl
2):L40.
Marrin A, Casado J, Aranzabal L, et al. Validation of a specific question-
naire on psychological and social repercussions of the lipodystrophy
M. Liver triglyceride content in HIV-1-infected patients on combination
antiretroviral therapy studied with 1H-MR spectroscopy. Antivir Ther.
of gene expression in visceral versus subcutaneous adipose tissue from
Guillar J, Gallego-Escuredo J, Domingo J, et al. Differential gene expres-
sion indicates that ‘buffalo hump’ is a distinct adipose tissue distur-
Rodrigo E, de la Concepcion M, Yubero P, Domingo J, et al. Reverse
transcriptase inhibitors and mitochondrial bio-
Moreno-Torres A, Domingo P, Pujol J, Blanco-Vaca F, Arroyo J, Sambate
M. Liver triglyceride content in HIV-1-infected patients on combination
antiretroviral therapy studied with 1H-MR spectroscopy. Antivir Ther.
No part of this publication may be reproduced or photocopying without the prior written permission of the publisher. © Permanyer Publications 2012